Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid
Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and i...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 56; no. 6; pp. 2209 - 2220 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2012
Wiley Wolters Kluwer Health, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B‐mediated hepatic insulin resistance, and if so, what the underlying basis is. In high‐fat‐diet‐fed mice or hepatocyte models with insulin resistance, the expression of microRNA‐122 (miR‐122), the most abundant microRNA in the liver, was substantially down‐regulated among those predicted to interact with the 3′‐untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR‐122 mimic and its inhibitor indicated that miR‐122 repression caused PTP1B induction. Overexpression of c‐Jun N‐terminal kinase 1 (JNK1) resulted in miR‐122 down‐regulation with the induction of PTP1B. A dominant‐negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR‐122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR‐122 level was strengthened by cell‐based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR‐122 levels and abrogated hepatic insulin resistance in mice fed a high‐fat diet, causing a glucose‐lowering effect. Conclusion: Decreased levels of miR‐122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209–2220) |
---|---|
AbstractList | Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect.UNLABELLEDProtein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect.Decreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK.CONCLUSIONDecreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect. Decreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B‐mediated hepatic insulin resistance, and if so, what the underlying basis is. In high‐fat‐diet‐fed mice or hepatocyte models with insulin resistance, the expression of microRNA‐122 (miR‐122), the most abundant microRNA in the liver, was substantially down‐regulated among those predicted to interact with the 3′‐untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR‐122 mimic and its inhibitor indicated that miR‐122 repression caused PTP1B induction. Overexpression of c‐Jun N‐terminal kinase 1 (JNK1) resulted in miR‐122 down‐regulation with the induction of PTP1B. A dominant‐negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR‐122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR‐122 level was strengthened by cell‐based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR‐122 levels and abrogated hepatic insulin resistance in mice fed a high‐fat diet, causing a glucose‐lowering effect. Conclusion: Decreased levels of miR‐122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209–2220) Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4[alpha] (HNF4[alpha]) responsible for miR-122 expression, as verified by the lack of HNF4[alpha] binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect. Conclusion: Decreased levels of miR-122 as a consequence of HNF4[alpha] phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209-2220) [PUBLICATION ABSTRACT] |
Author | Seo, So Yeon Kim, Sang Geon Yang, Yoon Mee Kim, Tae Hyun |
Author_xml | – sequence: 1 givenname: Yoon Mee surname: Yang fullname: Yang, Yoon Mee organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea – sequence: 2 givenname: So Yeon surname: Seo fullname: Seo, So Yeon organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea – sequence: 3 givenname: Tae Hyun surname: Kim fullname: Kim, Tae Hyun organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea – sequence: 4 givenname: Sang Geon surname: Kim fullname: Kim, Sang Geon email: sgk@snu.ac.kr organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853032$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22807119$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFDEUhoNU7LZ64R-QgBQUnDYfk8nMZVtrK9QqRellyGRO3NTZZExmWvdX-JfNursKRa8CJ8_7cDjvHtrxwQNCzyk5pISwozkMh0w0lD1CMyqYLDgXZAfNCJOkaChvdtFeSreEkKZk9RO0y1hNJKXNDP18CyaCToCDxQtnYri-Oi4oY9joKUHC2a1HZ7DzaeqdxxGSS6P2BnC7zNNuMs5_xUMMI-TvcRlDch7wMA9pmOtxpaYnb_D93Jk5dikL7iAm6Fbx3pkQXVbZXt8FH1z3FD22uk_wbPPuoy_vzj6fXhSXH8_fnx5fFkYwxgpRc2mYraBtNHDNOiGBldYAo03btLqjpSS1JsZoayUQqKRsa1Z3ti67ijZ8H71ae_Pi3ydIo1q4ZKDvtYcwJZUvwEvOhCAZffkAvQ1T9Hm7FUVFJUpJM_ViQ03tAjo1RLfQcam2p87AwQbQyejexnxDl_5yVS044SxzR2sud5FSBKuMG3MFwY9Ru15Rolalq1yM-l16Trx-kNhK_8Vu7Peuh-X_QXVx9mmbKNaJXDv8-JPQ8ZuqJJdC3VydK8makxtRfVDX_BfdbsqQ |
CODEN | HPTLD9 |
CitedBy_id | crossref_primary_10_1186_1471_2164_15_70 crossref_primary_10_3390_biom12020208 crossref_primary_10_1016_j_bbadis_2021_166083 crossref_primary_10_1002_jcp_26442 crossref_primary_10_1093_hmg_ddac088 crossref_primary_10_1210_er_2016_1122 crossref_primary_10_2174_0929867325666171205163944 crossref_primary_10_1016_j_abb_2015_09_018 crossref_primary_10_1016_j_mrgentox_2014_01_010 crossref_primary_10_2217_epi_2016_0168 crossref_primary_10_1038_srep21510 crossref_primary_10_4239_wjd_v14_i7_958 crossref_primary_10_1002_biof_1517 crossref_primary_10_1210_jc_2018_02693 crossref_primary_10_3389_fphys_2023_1198390 crossref_primary_10_1371_journal_pone_0268526 crossref_primary_10_1146_annurev_nutr_071813_105729 crossref_primary_10_1007_s12272_014_0439_9 crossref_primary_10_1016_j_phrs_2019_04_025 crossref_primary_10_3389_fcell_2023_1101844 crossref_primary_10_1189_jlb_3A0114_005RR crossref_primary_10_1177_10915818211059470 crossref_primary_10_1016_j_bbrc_2014_02_034 crossref_primary_10_1038_s41598_019_52856_5 crossref_primary_10_1016_j_yexcr_2025_114507 crossref_primary_10_1111_liv_12496 crossref_primary_10_1016_j_foodres_2021_110180 crossref_primary_10_1038_jhg_2016_150 crossref_primary_10_3389_fendo_2023_1097337 crossref_primary_10_3390_molecules28176202 crossref_primary_10_3109_10409238_2013_819830 crossref_primary_10_1016_j_gene_2018_06_082 crossref_primary_10_1007_s12013_013_9708_3 crossref_primary_10_1007_s00535_015_1051_6 crossref_primary_10_1186_s12964_014_0071_9 crossref_primary_10_4155_fmc_2016_0064 crossref_primary_10_1007_s13105_021_00860_7 crossref_primary_10_1007_s13668_024_00549_5 crossref_primary_10_1155_2018_8394818 crossref_primary_10_1016_j_nano_2015_10_008 crossref_primary_10_1039_C6AY02952C crossref_primary_10_1371_journal_pone_0101330 crossref_primary_10_3390_ijms22094901 crossref_primary_10_18632_oncotarget_3957 crossref_primary_10_1016_j_ygeno_2024_110795 crossref_primary_10_1016_j_envpol_2019_02_015 crossref_primary_10_1016_j_ijbiomac_2023_123189 crossref_primary_10_1111_acel_14227 crossref_primary_10_1530_JOE_13_0553 crossref_primary_10_1080_15476286_2019_1673656 crossref_primary_10_1016_j_biopha_2022_114173 crossref_primary_10_3389_fcell_2022_830009 crossref_primary_10_3389_fendo_2018_00210 crossref_primary_10_1186_s12902_021_00829_z crossref_primary_10_1038_onc_2014_218 crossref_primary_10_1530_JOE_13_0544 crossref_primary_10_1016_j_jff_2024_106105 crossref_primary_10_3389_fendo_2023_1195658 crossref_primary_10_1038_s41467_022_33749_0 crossref_primary_10_3389_fendo_2018_00046 crossref_primary_10_3892_ol_2015_3759 crossref_primary_10_2147_DMSO_S291595 crossref_primary_10_3389_fphar_2020_00717 crossref_primary_10_1016_j_bbalip_2020_158640 crossref_primary_10_1186_s12263_019_0630_1 crossref_primary_10_1017_S0007114514000579 crossref_primary_10_3390_nu8120791 crossref_primary_10_1002_jbt_22408 crossref_primary_10_3892_ijmm_2014_2023 crossref_primary_10_1080_15476286_2020_1804236 crossref_primary_10_3390_ijms19123705 crossref_primary_10_1038_s12276_022_00781_5 crossref_primary_10_4239_wjd_v15_i6_1187 crossref_primary_10_1016_j_molmet_2022_101581 crossref_primary_10_1152_physiolgenomics_00106_2013 crossref_primary_10_1016_j_yjmcc_2016_09_002 crossref_primary_10_1210_er_2016_1122_2017_1_test crossref_primary_10_1080_1061186X_2025_2473024 crossref_primary_10_1126_scitranslmed_aan4735 crossref_primary_10_1089_jir_2013_0078 crossref_primary_10_1016_j_bcp_2017_04_014 crossref_primary_10_1111_liv_12429 crossref_primary_10_1016_j_cbpb_2013_12_002 crossref_primary_10_3390_ijms19051542 crossref_primary_10_1002_jbt_22388 crossref_primary_10_3389_fcvm_2024_1445739 crossref_primary_10_1002_jcb_29299 crossref_primary_10_1016_j_bbadis_2013_05_022 crossref_primary_10_1515_jpem_2023_0320 crossref_primary_10_1016_j_bbcan_2013_06_001 crossref_primary_10_1186_s12986_017_0168_4 crossref_primary_10_3390_ijms21134725 crossref_primary_10_1007_s12272_021_01338_2 crossref_primary_10_7554_eLife_92075_3 crossref_primary_10_1021_acs_jafc_2c08184 crossref_primary_10_1016_j_jnutbio_2024_109714 crossref_primary_10_1016_j_tem_2013_03_002 crossref_primary_10_1242_bio_20134507 crossref_primary_10_1155_2020_3907920 crossref_primary_10_1210_endocr_bqab250 crossref_primary_10_1016_j_metabol_2018_07_001 crossref_primary_10_7554_eLife_92075 crossref_primary_10_1097_CP9_0000000000000062 crossref_primary_10_1111_febs_13314 crossref_primary_10_1016_j_isci_2019_06_028 crossref_primary_10_1371_journal_pone_0069817 crossref_primary_10_1016_j_bcp_2019_113688 crossref_primary_10_2337_db21_0909 crossref_primary_10_2174_0929867329666220801161536 crossref_primary_10_1016_j_cellsig_2017_04_017 crossref_primary_10_3389_fnut_2020_612115 |
Cites_doi | 10.1073/pnas.142298199 10.1038/labinvest.2010.166 10.1074/jbc.M800061200 10.1053/j.gastro.2009.02.067 10.1053/j.gastro.2008.01.075 10.1126/science.283.5407.1544 10.1194/jlr.M800509-JLR200 10.2337/db08-0913 10.1073/pnas.92.25.11686 10.1016/j.freeradbiomed.2010.09.001 10.1038/nature01137 10.1074/jbc.M101521200 10.1152/ajpgi.00207.2004 10.1021/jf802601j 10.1021/bi1014453 10.1016/S0026-0495(97)90206-7 10.1002/med.20219 10.1002/hep.22569 10.1016/j.cmet.2006.01.005 10.1038/bjp.2008.79 10.1002/hep.22578 10.1089/ars.2010.3834 10.1093/carcin/12.2.317 10.1309/1PX2LMPQUH1EE12U 10.1016/j.ccr.2011.01.001 10.1207/S15327914nc391_1 10.1002/hep.23524 10.1007/s10753-010-9206-3 10.1073/pnas.0603509103 10.1016/j.molcel.2004.08.028 10.1016/j.mce.2007.04.005 10.1016/j.cmet.2008.06.010 10.1152/ajpcell.00394.2002 10.1038/nature03354 10.1002/hep.23818 10.1016/j.cell.2009.01.002 10.1016/j.cmet.2007.08.014 10.2337/diabetes.53.11.3007 10.1017/S1462399408000781 10.1038/ncb2211 10.1016/j.drudis.2007.03.011 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Association for the Study of Liver Diseases 2014 INIST-CNRS Copyright © 2012 American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: Copyright © 2012 American Association for the Study of Liver Diseases – notice: 2014 INIST-CNRS – notice: Copyright © 2012 American Association for the Study of Liver Diseases. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 |
DOI | 10.1002/hep.25912 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 2220 |
ExternalDocumentID | 2831418351 22807119 26853032 10_1002_hep_25912 HEP25912 ark_67375_WNG_729BW56M_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Science and Technology funderid: 2012‐0000843 – fundername: World Class University project funderid: R32‐2011‐000‐10098‐ |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OB 1OC 1ZS 1~5 24P 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABMAC ABOCM ABPVW ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFGKR AFPWT AFUWQ AFZJQ AHMBA AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RGB RIG RIWAO RJQFR ROL RPZ RWI RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AANHP ABWVN ACLDA ACRPL ACYXJ ADNMO AAYXX ABJNI ACZKN AFNMH AGQPQ AHQVU CITATION MEWTI WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW ACIJW CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c5222-5837c2f6eb9ae3a2d57e24fce219b9bad14708a0ccaff7e0e677b828df84d6193 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Thu Jul 10 18:48:55 EDT 2025 Fri Jul 25 22:55:59 EDT 2025 Wed Feb 19 01:52:43 EST 2025 Mon Jul 21 09:16:48 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 03:33:32 EDT 2025 Wed Jan 22 16:21:01 EST 2025 Wed Oct 30 09:49:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Endocrinopathy Enzyme Liver Phosphoric monoester hydrolases Metabolic diseases Esterases Flavonoid Target tissue resistance Polyphenol Gastroenterology Phenols Hydrolases Insulin resistance Protein-tyrosine-phosphatase |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 Copyright © 2012 American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5222-5837c2f6eb9ae3a2d57e24fce219b9bad14708a0ccaff7e0e677b828df84d6193 |
Notes | World Class University project - No. R32-2011-000-10098- Potential conflict of interest: Nothing to report. Ministry of Education, Science and Technology - No. 2012-0000843 istex:197E5252AD1DBB1A9243134C8EC54532A6D2C2F6 Supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2012-0000843) and in part by the World Class University project (R32-2011-000-10098-0). ark:/67375/WNG-729BW56M-R ArticleID:HEP25912 Supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2012‐0000843) and in part by the World Class University project (R32‐2011‐000‐10098‐0). fax: +82‐2‐872‐1795 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.25912 |
PMID | 22807119 |
PQID | 1221565471 |
PQPubID | 996352 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1223432550 proquest_journals_1221565471 pubmed_primary_22807119 pascalfrancis_primary_26853032 crossref_citationtrail_10_1002_hep_25912 crossref_primary_10_1002_hep_25912 wiley_primary_10_1002_hep_25912_HEP25912 istex_primary_ark_67375_WNG_729BW56M_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wolters Kluwer Health, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wolters Kluwer Health, Inc |
References | Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-319. Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 2011; 91: 283-293. Zhang S, Zhang ZY. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 2007; 12: 373-381. Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57: 820-825. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548. Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer 2001; 39: 1-11. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. HEPATOLOGY 2008; 48: 1810-1820. Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. HEPATOLOGY 2010; 52; 1431-1442. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369-1375. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233. Guo H, Wei J, Inoue Y, Gonzalez FJ, Kuo PC. Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes. Am J Physiol Cell Physiol 2003; 284: C1090-C1099. Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46: 1140-1145. Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 2004; 15: 713-725. Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, et al. The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis 1991; 12: 317-323. Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 2006; 103: 10741-10746. Pulido R, Serra-Pagès C, Tang M, Streuli M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A 1995; 92: 11686-11690. Kim YM, Kim TH, Kim YW, Yang YM, Ryu da H, Hwang SJ, et al. Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med 2010; 49: 1722-1734. Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446. Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50: 1756-1765. Jahan A, Chiang JY. Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene. Am J Physiol Gastrointest Liver Physiol 2005; 288: G685-G695. Inada S, Ikeda Y, Suehiro T, Takata H, Osaki F, Arii K, et al. Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes. Mol Cell Endocrinol 2007; 271: 64-70. Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, et al. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 2011; 15: 2135-2146. Hennessy E, O'Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 2008; 10: e24. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277: 1531-1537. Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 2004; 53: 3007-3012. Haeusler RA, Accili D. The double life of Irs. Cell Metab 2008; 8: 7-9. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336. Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 2012; 32: 459-517. Goldstein BJ. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 1993; 3: 1-15. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98. Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: 2304-2315. Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. HEPATOLOGY 2010; 51: 1555-1566. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232-243. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 2008; 154: 165-173. Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123: 503-509. Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009; 58: 590-599. Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002; 99: 11357-11362. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283: 14230-14241. Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. HEPATOLOGY 2009; 49: 87-96. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118. MohammadTaghvaei N, Meshkani R, Taghikhani M, Larijani B, Adeli K. Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells. Inflammation 2011; 34: 43-48. Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50: 2339-2356. 1995; 92 1991; 12 2005; 434 1997; 46 2002; 99 2002; 277 1999; 283 2008; 8 2008; 10 2011; 13 2006; 3 2011; 34 2011; 15 2011; 19 2007; 12 1993; 3 2009; 136 2009; 49 2012; 32 2008; 283 2009; 58 2004; 53 2009; 57 2010; 49 2007; 271 2005; 288 2005; 123 2011; 91 2009; 50 2004; 15 2011; 50 2002; 420 2008; 48 2007; 6 2001; 39 2008; 134 2008; 154 2010; 52 2010; 51 2006; 103 2003; 284 Elchebly (10.1002/hep.25912-BIB6|cit6) 1999; 283 Kim (10.1002/hep.25912-BIB12|cit12) 2010; 49 Rodgers (10.1002/hep.25912-BIB42|cit42) 2005; 434 Zinker (10.1002/hep.25912-BIB7|cit7) 2002; 99 Xu (10.1002/hep.25912-BIB14|cit14) 2010; 52 Thareja (10.1002/hep.25912-BIB35|cit35) 2012; 32 Goldstein (10.1002/hep.25912-BIB5|cit5) 1993; 3 Sun (10.1002/hep.25912-BIB40|cit40) 2007; 6 Hirosumi (10.1002/hep.25912-BIB13|cit13) 2002; 420 Li (10.1002/hep.25912-BIB28|cit28) 2009; 50 Pulido (10.1002/hep.25912-BIB4|cit4) 1995; 92 Kay (10.1002/hep.25912-BIB41|cit41) 2011; 15 Hennessy (10.1002/hep.25912-BIB10|cit10) 2008; 10 Tuncman (10.1002/hep.25912-BIB32|cit32) 2006; 103 Cheung (10.1002/hep.25912-BIB9|cit9) 2008; 48 Li (10.1002/hep.25912-BIB21|cit21) 2010; 51 Zabolotny (10.1002/hep.25912-BIB31|cit31) 2008; 283 Haeusler (10.1002/hep.25912-BIB2|cit2) 2008; 8 Zhang (10.1002/hep.25912-BIB8|cit8) 2007; 12 Kim (10.1002/hep.25912-BIB39|cit39) 2008; 154 Ren (10.1002/hep.25912-BIB3|cit3) 2011; 50 Jahan (10.1002/hep.25912-BIB16|cit16) 2005; 288 Hou (10.1002/hep.25912-BIB25|cit25) 2011; 19 Bento (10.1002/hep.25912-BIB19|cit19) 2004; 53 Wang (10.1002/hep.25912-BIB36|cit36) 2001; 39 Yamamoto (10.1002/hep.25912-BIB38|cit38) 1991; 12 Delibegovic (10.1002/hep.25912-BIB20|cit20) 2009; 58 Alisi (10.1002/hep.25912-BIB27|cit27) 2011; 91 MohammadTaghvaei (10.1002/hep.25912-BIB30|cit30) 2011; 34 Jayaprakasam (10.1002/hep.25912-BIB37|cit37) 2009; 57 Sekine (10.1002/hep.25912-BIB11|cit11) 2009; 136 Bartel (10.1002/hep.25912-BIB23|cit23) 2009; 136 Ahmad (10.1002/hep.25912-BIB18|cit18) 1997; 46 Korenblat (10.1002/hep.25912-BIB1|cit1) 2008; 134 Jordan (10.1002/hep.25912-BIB24|cit24) 2011; 13 Inada (10.1002/hep.25912-BIB29|cit29) 2007; 271 Sanderson (10.1002/hep.25912-BIB22|cit22) 2005; 123 Esau (10.1002/hep.25912-BIB26|cit26) 2006; 3 Aguirre (10.1002/hep.25912-BIB17|cit17) 2002; 277 Singh (10.1002/hep.25912-BIB34|cit34) 2009; 49 Sabapathy (10.1002/hep.25912-BIB33|cit33) 2004; 15 Guo (10.1002/hep.25912-BIB15|cit15) 2003; 284 |
References_xml | – reference: Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118. – reference: Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548. – reference: Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 2008; 154: 165-173. – reference: Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446. – reference: Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. HEPATOLOGY 2010; 52; 1431-1442. – reference: Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009; 58: 590-599. – reference: Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336. – reference: Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232-243. – reference: Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123: 503-509. – reference: Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98. – reference: Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, et al. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 2011; 15: 2135-2146. – reference: Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 2004; 53: 3007-3012. – reference: Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. HEPATOLOGY 2008; 48: 1810-1820. – reference: Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 2012; 32: 459-517. – reference: Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50: 2339-2356. – reference: Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. HEPATOLOGY 2010; 51: 1555-1566. – reference: Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. HEPATOLOGY 2009; 49: 87-96. – reference: Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50: 1756-1765. – reference: Guo H, Wei J, Inoue Y, Gonzalez FJ, Kuo PC. Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes. Am J Physiol Cell Physiol 2003; 284: C1090-C1099. – reference: Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer 2001; 39: 1-11. – reference: Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57: 820-825. – reference: Haeusler RA, Accili D. The double life of Irs. Cell Metab 2008; 8: 7-9. – reference: Jahan A, Chiang JY. Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene. Am J Physiol Gastrointest Liver Physiol 2005; 288: G685-G695. – reference: Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233. – reference: Goldstein BJ. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 1993; 3: 1-15. – reference: Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, et al. The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis 1991; 12: 317-323. – reference: Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277: 1531-1537. – reference: Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 2006; 103: 10741-10746. – reference: Zhang S, Zhang ZY. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 2007; 12: 373-381. – reference: Pulido R, Serra-Pagès C, Tang M, Streuli M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A 1995; 92: 11686-11690. – reference: Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-319. – reference: Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: 2304-2315. – reference: MohammadTaghvaei N, Meshkani R, Taghikhani M, Larijani B, Adeli K. Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells. Inflammation 2011; 34: 43-48. – reference: Hennessy E, O'Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 2008; 10: e24. – reference: Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002; 99: 11357-11362. – reference: Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369-1375. – reference: Inada S, Ikeda Y, Suehiro T, Takata H, Osaki F, Arii K, et al. Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes. Mol Cell Endocrinol 2007; 271: 64-70. – reference: Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46: 1140-1145. – reference: Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 2011; 91: 283-293. – reference: Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283: 14230-14241. – reference: Kim YM, Kim TH, Kim YW, Yang YM, Ryu da H, Hwang SJ, et al. Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med 2010; 49: 1722-1734. – reference: Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 2004; 15: 713-725. – volume: 34 start-page: 43 year: 2011 end-page: 48 article-title: Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells publication-title: Inflammation – volume: 284 start-page: C1090 year: 2003 end-page: C1099 article-title: Serine/threonine phosphorylation regulates HNF4α‐dependent redox‐mediated iNOS expression in hepatocytes publication-title: Am J Physiol Cell Physiol – volume: 99 start-page: 11357 year: 2002 end-page: 11362 article-title: PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice publication-title: Proc Natl Acad Sci U S A – volume: 57 start-page: 820 year: 2009 end-page: 825 article-title: Licorice flavonoids inhibit eotaxin‐1 secretion by human fetal lung fibroblasts in vitro publication-title: J Agric Food Chem – volume: 92 start-page: 11686 year: 1995 end-page: 11690 article-title: The LAR/PTP delta/PTP sigma subfamily of transmembrane protein‐tyrosine‐phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue‐specific manner and associate with the LAR‐interacting protein LIP.1 publication-title: Proc Natl Acad Sci U S A – volume: 434 start-page: 113 year: 2005 end-page: 118 article-title: Nutrient control of glucose homeostasis through a complex of PGC‐1alpha and SIRT1 publication-title: Nature – volume: 271 start-page: 64 year: 2007 end-page: 70 article-title: Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes publication-title: Mol Cell Endocrinol – volume: 12 start-page: 317 year: 1991 end-page: 323 article-title: The potent anti‐tumor‐promoting agent isoliquiritigenin publication-title: Carcinogenesis – volume: 103 start-page: 10741 year: 2006 end-page: 10746 article-title: Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance publication-title: Proc Natl Acad Sci U S A – volume: 3 start-page: 1 year: 1993 end-page: 15 article-title: Regulation of insulin receptor signaling by protein‐tyrosine dephosphorylation publication-title: Receptor – volume: 12 start-page: 373 year: 2007 end-page: 381 article-title: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery publication-title: Drug Discov Today – volume: 154 start-page: 165 year: 2008 end-page: 173 article-title: Anti‐inflammatory effects of liquiritigenin as a consequence of the inhibition of NF‐kappaB‐dependent iNOS and proinflammatory cytokines production publication-title: Br J Pharmacol – volume: 136 start-page: 2304 year: 2009 end-page: 2315 article-title: Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis publication-title: Gastroenterology – volume: 46 start-page: 1140 year: 1997 end-page: 1145 article-title: Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein‐tyrosine phosphatases in adipose tissue publication-title: Metabolism – volume: 53 start-page: 3007 year: 2004 end-page: 3012 article-title: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes publication-title: Diabetes – volume: 3 start-page: 87 year: 2006 end-page: 98 article-title: miR‐122 regulation of lipid metabolism revealed by in vivo antisense targeting publication-title: Cell Metab – volume: 283 start-page: 14230 year: 2008 end-page: 14241 article-title: Protein‐tyrosine phosphatase 1B expression is induced by inflammation in vivo publication-title: J Biol Chem – volume: 49 start-page: 87 year: 2009 end-page: 96 article-title: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance publication-title: HEPATOLOGY – volume: 19 start-page: 232 year: 2011 end-page: 243 article-title: Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR‐199a/b‐3p as therapeutic target for hepatocellular carcinoma publication-title: Cancer Cell – volume: 52 start-page: 1431 year: 2010 end-page: 1442 article-title: Liver‐enriched transcription factors regulate microRNA‐122 that targets CUTL1 during liver development publication-title: HEPATOLOGY – volume: 91 start-page: 283 year: 2011 end-page: 293 article-title: Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet‐induced nonalcoholic fatty liver disease publication-title: Lab Invest – volume: 10 start-page: e24 year: 2008 article-title: Molecular medicine of microRNAs: structure, function and implications for diabetes publication-title: Expert Rev Mol Med – volume: 58 start-page: 590 year: 2009 end-page: 599 article-title: Liver‐specific deletion of protein‐tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet‐induced endoplasmic reticulum stress publication-title: Diabetes – volume: 50 start-page: 1756 year: 2009 end-page: 1765 article-title: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status publication-title: J Lipid Res – volume: 48 start-page: 1810 year: 2008 end-page: 1820 article-title: Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression publication-title: HEPATOLOGY – volume: 288 start-page: G685 year: 2005 end-page: G695 article-title: Cytokine regulation of human sterol 12alpha‐hydroxylase (CYP8B1) gene publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 136 start-page: 215 year: 2009 end-page: 233 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell – volume: 39 start-page: 1 year: 2001 end-page: 11 article-title: Licorice and cancer publication-title: Nutr Cancer – volume: 6 start-page: 307 year: 2007 end-page: 319 article-title: SIRT1 improves insulin sensitivity under insulin‐resistant conditions by repressing PTP1B publication-title: Cell Metab – volume: 277 start-page: 1531 year: 2002 end-page: 1537 article-title: Phosphorylation of Ser307 in insulin receptor substrate‐1 blocks interactions with the insulin receptor and inhibits insulin action publication-title: J Biol Chem – volume: 123 start-page: 503 year: 2005 end-page: 509 article-title: The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens publication-title: Am J Clin Pathol – volume: 420 start-page: 333 year: 2002 end-page: 336 article-title: A central role for JNK in obesity and insulin resistance publication-title: Nature – volume: 51 start-page: 1555 year: 2010 end-page: 1566 article-title: Curcumin inhibits hepatic protein‐tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose‐fed rats publication-title: HEPATOLOGY – volume: 13 start-page: 434 year: 2011 end-page: 446 article-title: Obesity‐induced overexpression of miRNA‐143 inhibits insulin‐stimulated AKT activation and impairs glucose metabolism publication-title: Nat Cell Biol – volume: 49 start-page: 1722 year: 2010 end-page: 1734 article-title: Inhibition of liver X receptor‐α‐dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition publication-title: Free Radic Biol Med – volume: 15 start-page: 713 year: 2004 end-page: 725 article-title: Distinct roles for JNK1 and JNK2 in regulating JNK activity and c‐Jun‐dependent cell proliferation publication-title: Mol Cell – volume: 134 start-page: 1369 year: 2008 end-page: 1375 article-title: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects publication-title: Gastroenterology – volume: 50 start-page: 2339 year: 2011 end-page: 2356 article-title: Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP‐1, and SHP‐2 publication-title: Biochemistry – volume: 15 start-page: 2135 year: 2011 end-page: 2146 article-title: Nrf2 inhibits LXRα‐dependent hepatic lipogenesis by competing with FXR for acetylase binding publication-title: Antioxid Redox Signal – volume: 8 start-page: 7 year: 2008 end-page: 9 article-title: The double life of Irs publication-title: Cell Metab – volume: 32 start-page: 459 year: 2012 end-page: 517 article-title: Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus publication-title: Med Res Rev – volume: 283 start-page: 1544 year: 1999 end-page: 1548 article-title: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase‐1B gene publication-title: Science – volume: 99 start-page: 11357 year: 2002 ident: 10.1002/hep.25912-BIB7|cit7 article-title: PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.142298199 – volume: 91 start-page: 283 year: 2011 ident: 10.1002/hep.25912-BIB27|cit27 article-title: Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease publication-title: Lab Invest doi: 10.1038/labinvest.2010.166 – volume: 283 start-page: 14230 year: 2008 ident: 10.1002/hep.25912-BIB31|cit31 article-title: Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo publication-title: J Biol Chem doi: 10.1074/jbc.M800061200 – volume: 136 start-page: 2304 year: 2009 ident: 10.1002/hep.25912-BIB11|cit11 article-title: Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.02.067 – volume: 134 start-page: 1369 year: 2008 ident: 10.1002/hep.25912-BIB1|cit1 article-title: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.01.075 – volume: 283 start-page: 1544 year: 1999 ident: 10.1002/hep.25912-BIB6|cit6 article-title: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene publication-title: Science doi: 10.1126/science.283.5407.1544 – volume: 50 start-page: 1756 year: 2009 ident: 10.1002/hep.25912-BIB28|cit28 article-title: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status publication-title: J Lipid Res doi: 10.1194/jlr.M800509-JLR200 – volume: 58 start-page: 590 year: 2009 ident: 10.1002/hep.25912-BIB20|cit20 article-title: Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress publication-title: Diabetes doi: 10.2337/db08-0913 – volume: 92 start-page: 11686 year: 1995 ident: 10.1002/hep.25912-BIB4|cit4 article-title: The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.25.11686 – volume: 49 start-page: 1722 year: 2010 ident: 10.1002/hep.25912-BIB12|cit12 article-title: Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2010.09.001 – volume: 420 start-page: 333 year: 2002 ident: 10.1002/hep.25912-BIB13|cit13 article-title: A central role for JNK in obesity and insulin resistance publication-title: Nature doi: 10.1038/nature01137 – volume: 277 start-page: 1531 year: 2002 ident: 10.1002/hep.25912-BIB17|cit17 article-title: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action publication-title: J Biol Chem doi: 10.1074/jbc.M101521200 – volume: 288 start-page: G685 year: 2005 ident: 10.1002/hep.25912-BIB16|cit16 article-title: Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00207.2004 – volume: 57 start-page: 820 year: 2009 ident: 10.1002/hep.25912-BIB37|cit37 article-title: Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro publication-title: J Agric Food Chem doi: 10.1021/jf802601j – volume: 50 start-page: 2339 year: 2011 ident: 10.1002/hep.25912-BIB3|cit3 article-title: Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2 publication-title: Biochemistry doi: 10.1021/bi1014453 – volume: 46 start-page: 1140 year: 1997 ident: 10.1002/hep.25912-BIB18|cit18 article-title: Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue publication-title: Metabolism doi: 10.1016/S0026-0495(97)90206-7 – volume: 32 start-page: 459 year: 2012 ident: 10.1002/hep.25912-BIB35|cit35 article-title: Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus publication-title: Med Res Rev doi: 10.1002/med.20219 – volume: 48 start-page: 1810 year: 2008 ident: 10.1002/hep.25912-BIB9|cit9 article-title: Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression publication-title: HEPATOLOGY doi: 10.1002/hep.22569 – volume: 3 start-page: 87 year: 2006 ident: 10.1002/hep.25912-BIB26|cit26 article-title: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting publication-title: Cell Metab doi: 10.1016/j.cmet.2006.01.005 – volume: 154 start-page: 165 year: 2008 ident: 10.1002/hep.25912-BIB39|cit39 article-title: Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production publication-title: Br J Pharmacol doi: 10.1038/bjp.2008.79 – volume: 49 start-page: 87 year: 2009 ident: 10.1002/hep.25912-BIB34|cit34 article-title: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance publication-title: HEPATOLOGY doi: 10.1002/hep.22578 – volume: 15 start-page: 2135 year: 2011 ident: 10.1002/hep.25912-BIB41|cit41 article-title: Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding publication-title: Antioxid Redox Signal doi: 10.1089/ars.2010.3834 – volume: 12 start-page: 317 year: 1991 ident: 10.1002/hep.25912-BIB38|cit38 article-title: The potent anti-tumor-promoting agent isoliquiritigenin publication-title: Carcinogenesis doi: 10.1093/carcin/12.2.317 – volume: 123 start-page: 503 year: 2005 ident: 10.1002/hep.25912-BIB22|cit22 article-title: The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens publication-title: Am J Clin Pathol doi: 10.1309/1PX2LMPQUH1EE12U – volume: 19 start-page: 232 year: 2011 ident: 10.1002/hep.25912-BIB25|cit25 article-title: Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.01.001 – volume: 39 start-page: 1 year: 2001 ident: 10.1002/hep.25912-BIB36|cit36 article-title: Licorice and cancer publication-title: Nutr Cancer doi: 10.1207/S15327914nc391_1 – volume: 51 start-page: 1555 year: 2010 ident: 10.1002/hep.25912-BIB21|cit21 article-title: Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats publication-title: HEPATOLOGY doi: 10.1002/hep.23524 – volume: 34 start-page: 43 year: 2011 ident: 10.1002/hep.25912-BIB30|cit30 article-title: Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells publication-title: Inflammation doi: 10.1007/s10753-010-9206-3 – volume: 103 start-page: 10741 year: 2006 ident: 10.1002/hep.25912-BIB32|cit32 article-title: Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603509103 – volume: 15 start-page: 713 year: 2004 ident: 10.1002/hep.25912-BIB33|cit33 article-title: Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation publication-title: Mol Cell doi: 10.1016/j.molcel.2004.08.028 – volume: 271 start-page: 64 year: 2007 ident: 10.1002/hep.25912-BIB29|cit29 article-title: Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2007.04.005 – volume: 8 start-page: 7 year: 2008 ident: 10.1002/hep.25912-BIB2|cit2 article-title: The double life of Irs publication-title: Cell Metab doi: 10.1016/j.cmet.2008.06.010 – volume: 284 start-page: C1090 year: 2003 ident: 10.1002/hep.25912-BIB15|cit15 article-title: Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00394.2002 – volume: 434 start-page: 113 year: 2005 ident: 10.1002/hep.25912-BIB42|cit42 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 publication-title: Nature doi: 10.1038/nature03354 – volume: 52 start-page: 1431 year: 2010 ident: 10.1002/hep.25912-BIB14|cit14 article-title: Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development publication-title: HEPATOLOGY doi: 10.1002/hep.23818 – volume: 136 start-page: 215 year: 2009 ident: 10.1002/hep.25912-BIB23|cit23 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 6 start-page: 307 year: 2007 ident: 10.1002/hep.25912-BIB40|cit40 article-title: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B publication-title: Cell Metab doi: 10.1016/j.cmet.2007.08.014 – volume: 53 start-page: 3007 year: 2004 ident: 10.1002/hep.25912-BIB19|cit19 article-title: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.53.11.3007 – volume: 10 start-page: e24 year: 2008 ident: 10.1002/hep.25912-BIB10|cit10 article-title: Molecular medicine of microRNAs: structure, function and implications for diabetes publication-title: Expert Rev Mol Med doi: 10.1017/S1462399408000781 – volume: 13 start-page: 434 year: 2011 ident: 10.1002/hep.25912-BIB24|cit24 article-title: Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism publication-title: Nat Cell Biol doi: 10.1038/ncb2211 – volume: 3 start-page: 1 year: 1993 ident: 10.1002/hep.25912-BIB5|cit5 article-title: Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation publication-title: Receptor – volume: 12 start-page: 373 year: 2007 ident: 10.1002/hep.25912-BIB8|cit8 article-title: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2007.03.011 |
SSID | ssj0009428 |
Score | 2.4373283 |
Snippet | Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2209 |
SubjectTerms | 3' Untranslated Regions 3T3-L1 Cells Animals Biological and medical sciences Chalcones - pharmacology Diet, High-Fat Down-Regulation Flavanones - pharmacology Gastroenterology. Liver. Pancreas. Abdomen Hep G2 Cells Hepatocyte Nuclear Factor 4 - metabolism Hepatocytes - metabolism Hepatology Humans Insulin Insulin Receptor Substrate Proteins - drug effects Insulin Receptor Substrate Proteins - metabolism Insulin Resistance JNK Mitogen-Activated Protein Kinases - drug effects JNK Mitogen-Activated Protein Kinases - metabolism Kinases Liver. Biliary tract. Portal circulation. Exocrine pancreas Male Medical sciences Mice Mice, Inbred C57BL MicroRNAs - metabolism Mitogen-Activated Protein Kinase 8 - genetics Mitogen-Activated Protein Kinase 8 - metabolism Phosphorylation Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Signal Transduction |
Title | Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid |
URI | https://api.istex.fr/ark:/67375/WNG-729BW56M-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.25912 https://www.ncbi.nlm.nih.gov/pubmed/22807119 https://www.proquest.com/docview/1221565471 https://www.proquest.com/docview/1223432550 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfHFb220llVEfDDXZC8fF3xqtfUQ7pDD0j4Iy2Y_zNEzOS6JWp_8E_Rf9C9xZvNxnFQQ30IyOzCT2c1vsrO_IeSppwXzdDR0AewnbqANc5ORlq5SQaxGSklmWydMptH4JHh7Fp5tkZfdWZiGH6L_4YYzw67XOMFFWu6vSUMzvRwAdrcdhrFWCwHRbE0dlQS2rypkXR7uLicdq5DH9vuRG9-iK-jWr1gbKUpwj2n6WlwGPDdxrP0QHd8gHzoTmvqT80FdpQP57Q92x_-08Sa53gJUetBE1C2ypfPb5Oqk3YK_Q36-tkCz1LQw9BOW882mB7--__AZo1LUpS4p6EMeWNrWuVPI6BGlQnjR9ALuqhpUfaSWIgIeVxfgHdBNl1lRLjNRoXL_8AX9ks1lRuclRZqpVakVDl9A6CIREjUL8bnIi7m6S06Oj96_GrttXwdXAtpjeNArlsxEOk2EHgqmwlizwEgNq2eapEL5QeyNhAfBZUysIZTiOIXMUJlRoCDhG94j23mR6x1Cla8jHUGGHxoVJKBRhjAMT2qnqYJc1SHPuzfMZUt6jr03Fryha2YcXMKtix3ypBddNkwflwk9s2HSS4jVOZbGxSE_nb7hkKkcnobRhM8csrcRR_0AFgFA8oagabcLLN4uGyWHVwX5dAiAwSGP-8cw4XEXR-S6qK0MHgYGEx1yvwnItXLkNvL9BMy2YfV3Q_j46J29ePDvog_JNYCLrCnm2SXb1arWjwCSVemenXu_AXXqM2w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVgIuvB-BUgxCiAPZJt48NhKXlrYs0F2hVav2giwntsmqS7LaJEA58RPgL_JLmHEeq0VFQtyiZDzSTMbON_H4G0KeOkowRwV9G8B-ZHtKMzsaqMSW0gvlQMqEmdYJo3EwPPbenvqna-Rlexam5ofofrjhzDDrNU5w_CG9vWQNTdW8B-AdWwxvYEdvZM7fmyzJoyLPdFaFvMvB_eWo5RVy2HY3dOVrtIGO_YrVkaIAB-m6s8VF0HMVyZpP0cE18qE1oq5AOetVZdxLvv3B7_i_Vl4nVxuMSnfqoLpB1lR2k1waNbvwt8jPPYM1C0VzTT9hRd9kvPPr-w-XMZqIqlAFBX1IBUubUncKST0CVYgwGp_DXVmBqo_UsETA4_Ic3AO66TzNi3kqSlTu7r6gX9JpktJpQZFpalEoicNnEL3IhUT1THzOs3wqb5Pjg_2jV0O7ae1gJwD4GJ71ChOmAxVHQvUFk36omKcTBQtoHMVCul7oDIQD8aV1qCCawjCG5FDqgSch5-vfIetZnql7hEpXBSqAJN_X0otAY-LDMDysHccS0lWLPG9fMU8a3nNsvzHjNWMz4-ASblxskSed6Lwm-7hI6JmJk05CLM6wOi70-cn4NYdkZffED0Z8YpGtlUDqBrAAMJLTB02bbWTxZuUoOLwqSKl9wAwWedw9hjmPGzkiU3llZPA8MJhokbt1RC6VI72R60ZgtomrvxvCh_vvzcX9fxd9RC4Pj0aH_PDN-N0DcgXQI6trezbJermo1ENAaGW8ZSbib4YtN4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrVRx4f0wlLIghDjg1N74EYtTSxrCI1EVUbWHSqv1PkjUYFtxApQTPwH-Ir-EmbXjKKhIiJtlz44049n1N97Zbwh56mnBPB21XQD7iRtow9yko6WrVBCrjlKS2dYJg2HUPw7enoanG-Tl8ixMxQ_R_HDDmWHXa5zghTJ7K9LQsS5agN2xw_BWEHkJ9m3ojlbcUUlgG6tC2uXh9nKypBXy2F4zdO1jtIV-_YrFkaIE_5iqscVlyHMdyNovUe8aOVvaUBWgnLcW87Qlv_1B7_ifRl4nV2uESverkLpBNnR2k2wP6j34W-Rn1yLNUtPc0E9Yzzca7v_6_sNnjEqxKHVJQR8SwdK60J1CSo8wFeKLphdwVy1A1UdqOSLg8fwCvAO6aTHOy2Is5qjcP3hBv4wnckwnJUWeqVmpFQ6fQuwiExI1U_E5z_KJuk2Oe4cfXvXdurGDKwHuMTzpFUtmIp0mQrcFU2GsWWCkhuUzTVKh_CD2OsKD6DIm1hBLcZxCaqhMJ1CQ8bXvkM0sz_Q9QpWvIx1Bih8aFSSgUYYwDI9qp6mCZNUhz5dvmMua9Rybb0x5xdfMOLiEWxc75EkjWlRUH5cJPbNh0kiI2TnWxsUhPxm-5pCqHJyE0YCPHLK7FkfNABYBQvLaoGlnGVi8XjdKDq8KEuoQEINDHjePYcbjNo7IdL6wMngaGEx0yN0qIFfKkdzI9xMw24bV3w3h_cMje3H_30Ufke2jbo-_fzN894BcAejIqsKeHbI5ny30Q4Bn83TXTsPfvOU2Nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decrease+of+microRNA-122+causes+hepatic+insulin+resistance+by+inducing+protein+tyrosine+phosphatase+1B%2C+which+is+reversed+by+licorice+flavonoid&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Yang%2C+Yoon+Mee&rft.au=Seo%2C+So+Yeon&rft.au=Kim%2C+Tae+Hyun&rft.au=Kim%2C+Sang+Geon&rft.date=2012-12-01&rft.issn=1527-3350&rft.eissn=1527-3350&rft.volume=56&rft.issue=6&rft.spage=2209&rft_id=info:doi/10.1002%2Fhep.25912&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |