Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid

Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and i...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 56; no. 6; pp. 2209 - 2220
Main Authors Yang, Yoon Mee, Seo, So Yeon, Kim, Tae Hyun, Kim, Sang Geon
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley
Wolters Kluwer Health, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B‐mediated hepatic insulin resistance, and if so, what the underlying basis is. In high‐fat‐diet‐fed mice or hepatocyte models with insulin resistance, the expression of microRNA‐122 (miR‐122), the most abundant microRNA in the liver, was substantially down‐regulated among those predicted to interact with the 3′‐untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR‐122 mimic and its inhibitor indicated that miR‐122 repression caused PTP1B induction. Overexpression of c‐Jun N‐terminal kinase 1 (JNK1) resulted in miR‐122 down‐regulation with the induction of PTP1B. A dominant‐negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR‐122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR‐122 level was strengthened by cell‐based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR‐122 levels and abrogated hepatic insulin resistance in mice fed a high‐fat diet, causing a glucose‐lowering effect. Conclusion: Decreased levels of miR‐122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209–2220)
AbstractList Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect.UNLABELLEDProtein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect.Decreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK.CONCLUSIONDecreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK.
Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR-122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect. Decreased levels of miR-122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK.
Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B‐mediated hepatic insulin resistance, and if so, what the underlying basis is. In high‐fat‐diet‐fed mice or hepatocyte models with insulin resistance, the expression of microRNA‐122 (miR‐122), the most abundant microRNA in the liver, was substantially down‐regulated among those predicted to interact with the 3′‐untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR‐122 mimic and its inhibitor indicated that miR‐122 repression caused PTP1B induction. Overexpression of c‐Jun N‐terminal kinase 1 (JNK1) resulted in miR‐122 down‐regulation with the induction of PTP1B. A dominant‐negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4α (HNF4α) responsible for miR‐122 expression, as verified by the lack of HNF4α binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR‐122 level was strengthened by cell‐based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR‐122 levels and abrogated hepatic insulin resistance in mice fed a high‐fat diet, causing a glucose‐lowering effect. Conclusion: Decreased levels of miR‐122 as a consequence of HNF4α phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209–2220)
Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor substrate (IRS). MicroRNAs may modulate metabolic functions. In view of the lack of understanding of the regulatory mechanism of PTP1B and its chemical inhibitors, this study investigated whether dysregulation of specific microRNA causes PTP1B-mediated hepatic insulin resistance, and if so, what the underlying basis is. In high-fat-diet-fed mice or hepatocyte models with insulin resistance, the expression of microRNA-122 (miR-122), the most abundant microRNA in the liver, was substantially down-regulated among those predicted to interact with the 3'-untranslated region of PTP1B messenger RNA (mRNA). Experiments using miR-122 mimic and its inhibitor indicated that miR-122 repression caused PTP1B induction. Overexpression of c-Jun N-terminal kinase 1 (JNK1) resulted in miR-122 down-regulation with the induction of PTP1B. A dominant-negative mutant of JNK1 had the opposite effect. JNK1 facilitated inactivating phosphorylation of hepatocyte nuclear factor 4[alpha] (HNF4[alpha]) responsible for miR-122 expression, as verified by the lack of HNF4[alpha] binding to the gene promoter. The regulatory role of JNK1 in PTP1B induction by a decrease in miR-122 level was strengthened by cell-based assays using isoliquiritigenin and liquiritigenin (components in Glycyrrhizae radix) as functional JNK inhibitors; JNK inhibition enabled cells to restore IR and IRS1/2 tyrosine phosphorylation and insulin signaling against tumor necrosis factor alpha, and prevented PTP1B induction. Moreover, treatment with each of the agents increased miR-122 levels and abrogated hepatic insulin resistance in mice fed a high-fat diet, causing a glucose-lowering effect. Conclusion: Decreased levels of miR-122 as a consequence of HNF4[alpha] phosphorylation by JNK1 lead to hepatic insulin resistance through PTP1B induction, which may be overcome by chemical inhibition of JNK. (HEPATOLOGY 2012;56:2209-2220) [PUBLICATION ABSTRACT]
Author Seo, So Yeon
Kim, Sang Geon
Yang, Yoon Mee
Kim, Tae Hyun
Author_xml – sequence: 1
  givenname: Yoon Mee
  surname: Yang
  fullname: Yang, Yoon Mee
  organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
– sequence: 2
  givenname: So Yeon
  surname: Seo
  fullname: Seo, So Yeon
  organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
– sequence: 3
  givenname: Tae Hyun
  surname: Kim
  fullname: Kim, Tae Hyun
  organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
– sequence: 4
  givenname: Sang Geon
  surname: Kim
  fullname: Kim, Sang Geon
  email: sgk@snu.ac.kr
  organization: College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853032$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22807119$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNU7LZ64R-QgBQUnDYfk8nMZVtrK9QqRellyGRO3NTZZExmWvdX-JfNursKRa8CJ8_7cDjvHtrxwQNCzyk5pISwozkMh0w0lD1CMyqYLDgXZAfNCJOkaChvdtFeSreEkKZk9RO0y1hNJKXNDP18CyaCToCDxQtnYri-Oi4oY9joKUHC2a1HZ7DzaeqdxxGSS6P2BnC7zNNuMs5_xUMMI-TvcRlDch7wMA9pmOtxpaYnb_D93Jk5dikL7iAm6Fbx3pkQXVbZXt8FH1z3FD22uk_wbPPuoy_vzj6fXhSXH8_fnx5fFkYwxgpRc2mYraBtNHDNOiGBldYAo03btLqjpSS1JsZoayUQqKRsa1Z3ti67ijZ8H71ae_Pi3ydIo1q4ZKDvtYcwJZUvwEvOhCAZffkAvQ1T9Hm7FUVFJUpJM_ViQ03tAjo1RLfQcam2p87AwQbQyejexnxDl_5yVS044SxzR2sud5FSBKuMG3MFwY9Ru15Rolalq1yM-l16Trx-kNhK_8Vu7Peuh-X_QXVx9mmbKNaJXDv8-JPQ8ZuqJJdC3VydK8makxtRfVDX_BfdbsqQ
CODEN HPTLD9
CitedBy_id crossref_primary_10_1186_1471_2164_15_70
crossref_primary_10_3390_biom12020208
crossref_primary_10_1016_j_bbadis_2021_166083
crossref_primary_10_1002_jcp_26442
crossref_primary_10_1093_hmg_ddac088
crossref_primary_10_1210_er_2016_1122
crossref_primary_10_2174_0929867325666171205163944
crossref_primary_10_1016_j_abb_2015_09_018
crossref_primary_10_1016_j_mrgentox_2014_01_010
crossref_primary_10_2217_epi_2016_0168
crossref_primary_10_1038_srep21510
crossref_primary_10_4239_wjd_v14_i7_958
crossref_primary_10_1002_biof_1517
crossref_primary_10_1210_jc_2018_02693
crossref_primary_10_3389_fphys_2023_1198390
crossref_primary_10_1371_journal_pone_0268526
crossref_primary_10_1146_annurev_nutr_071813_105729
crossref_primary_10_1007_s12272_014_0439_9
crossref_primary_10_1016_j_phrs_2019_04_025
crossref_primary_10_3389_fcell_2023_1101844
crossref_primary_10_1189_jlb_3A0114_005RR
crossref_primary_10_1177_10915818211059470
crossref_primary_10_1016_j_bbrc_2014_02_034
crossref_primary_10_1038_s41598_019_52856_5
crossref_primary_10_1016_j_yexcr_2025_114507
crossref_primary_10_1111_liv_12496
crossref_primary_10_1016_j_foodres_2021_110180
crossref_primary_10_1038_jhg_2016_150
crossref_primary_10_3389_fendo_2023_1097337
crossref_primary_10_3390_molecules28176202
crossref_primary_10_3109_10409238_2013_819830
crossref_primary_10_1016_j_gene_2018_06_082
crossref_primary_10_1007_s12013_013_9708_3
crossref_primary_10_1007_s00535_015_1051_6
crossref_primary_10_1186_s12964_014_0071_9
crossref_primary_10_4155_fmc_2016_0064
crossref_primary_10_1007_s13105_021_00860_7
crossref_primary_10_1007_s13668_024_00549_5
crossref_primary_10_1155_2018_8394818
crossref_primary_10_1016_j_nano_2015_10_008
crossref_primary_10_1039_C6AY02952C
crossref_primary_10_1371_journal_pone_0101330
crossref_primary_10_3390_ijms22094901
crossref_primary_10_18632_oncotarget_3957
crossref_primary_10_1016_j_ygeno_2024_110795
crossref_primary_10_1016_j_envpol_2019_02_015
crossref_primary_10_1016_j_ijbiomac_2023_123189
crossref_primary_10_1111_acel_14227
crossref_primary_10_1530_JOE_13_0553
crossref_primary_10_1080_15476286_2019_1673656
crossref_primary_10_1016_j_biopha_2022_114173
crossref_primary_10_3389_fcell_2022_830009
crossref_primary_10_3389_fendo_2018_00210
crossref_primary_10_1186_s12902_021_00829_z
crossref_primary_10_1038_onc_2014_218
crossref_primary_10_1530_JOE_13_0544
crossref_primary_10_1016_j_jff_2024_106105
crossref_primary_10_3389_fendo_2023_1195658
crossref_primary_10_1038_s41467_022_33749_0
crossref_primary_10_3389_fendo_2018_00046
crossref_primary_10_3892_ol_2015_3759
crossref_primary_10_2147_DMSO_S291595
crossref_primary_10_3389_fphar_2020_00717
crossref_primary_10_1016_j_bbalip_2020_158640
crossref_primary_10_1186_s12263_019_0630_1
crossref_primary_10_1017_S0007114514000579
crossref_primary_10_3390_nu8120791
crossref_primary_10_1002_jbt_22408
crossref_primary_10_3892_ijmm_2014_2023
crossref_primary_10_1080_15476286_2020_1804236
crossref_primary_10_3390_ijms19123705
crossref_primary_10_1038_s12276_022_00781_5
crossref_primary_10_4239_wjd_v15_i6_1187
crossref_primary_10_1016_j_molmet_2022_101581
crossref_primary_10_1152_physiolgenomics_00106_2013
crossref_primary_10_1016_j_yjmcc_2016_09_002
crossref_primary_10_1210_er_2016_1122_2017_1_test
crossref_primary_10_1080_1061186X_2025_2473024
crossref_primary_10_1126_scitranslmed_aan4735
crossref_primary_10_1089_jir_2013_0078
crossref_primary_10_1016_j_bcp_2017_04_014
crossref_primary_10_1111_liv_12429
crossref_primary_10_1016_j_cbpb_2013_12_002
crossref_primary_10_3390_ijms19051542
crossref_primary_10_1002_jbt_22388
crossref_primary_10_3389_fcvm_2024_1445739
crossref_primary_10_1002_jcb_29299
crossref_primary_10_1016_j_bbadis_2013_05_022
crossref_primary_10_1515_jpem_2023_0320
crossref_primary_10_1016_j_bbcan_2013_06_001
crossref_primary_10_1186_s12986_017_0168_4
crossref_primary_10_3390_ijms21134725
crossref_primary_10_1007_s12272_021_01338_2
crossref_primary_10_7554_eLife_92075_3
crossref_primary_10_1021_acs_jafc_2c08184
crossref_primary_10_1016_j_jnutbio_2024_109714
crossref_primary_10_1016_j_tem_2013_03_002
crossref_primary_10_1242_bio_20134507
crossref_primary_10_1155_2020_3907920
crossref_primary_10_1210_endocr_bqab250
crossref_primary_10_1016_j_metabol_2018_07_001
crossref_primary_10_7554_eLife_92075
crossref_primary_10_1097_CP9_0000000000000062
crossref_primary_10_1111_febs_13314
crossref_primary_10_1016_j_isci_2019_06_028
crossref_primary_10_1371_journal_pone_0069817
crossref_primary_10_1016_j_bcp_2019_113688
crossref_primary_10_2337_db21_0909
crossref_primary_10_2174_0929867329666220801161536
crossref_primary_10_1016_j_cellsig_2017_04_017
crossref_primary_10_3389_fnut_2020_612115
Cites_doi 10.1073/pnas.142298199
10.1038/labinvest.2010.166
10.1074/jbc.M800061200
10.1053/j.gastro.2009.02.067
10.1053/j.gastro.2008.01.075
10.1126/science.283.5407.1544
10.1194/jlr.M800509-JLR200
10.2337/db08-0913
10.1073/pnas.92.25.11686
10.1016/j.freeradbiomed.2010.09.001
10.1038/nature01137
10.1074/jbc.M101521200
10.1152/ajpgi.00207.2004
10.1021/jf802601j
10.1021/bi1014453
10.1016/S0026-0495(97)90206-7
10.1002/med.20219
10.1002/hep.22569
10.1016/j.cmet.2006.01.005
10.1038/bjp.2008.79
10.1002/hep.22578
10.1089/ars.2010.3834
10.1093/carcin/12.2.317
10.1309/1PX2LMPQUH1EE12U
10.1016/j.ccr.2011.01.001
10.1207/S15327914nc391_1
10.1002/hep.23524
10.1007/s10753-010-9206-3
10.1073/pnas.0603509103
10.1016/j.molcel.2004.08.028
10.1016/j.mce.2007.04.005
10.1016/j.cmet.2008.06.010
10.1152/ajpcell.00394.2002
10.1038/nature03354
10.1002/hep.23818
10.1016/j.cell.2009.01.002
10.1016/j.cmet.2007.08.014
10.2337/diabetes.53.11.3007
10.1017/S1462399408000781
10.1038/ncb2211
10.1016/j.drudis.2007.03.011
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Study of Liver Diseases
2014 INIST-CNRS
Copyright © 2012 American Association for the Study of Liver Diseases.
Copyright_xml – notice: Copyright © 2012 American Association for the Study of Liver Diseases
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 American Association for the Study of Liver Diseases.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.25912
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 2220
ExternalDocumentID 2831418351
22807119
26853032
10_1002_hep_25912
HEP25912
ark_67375_WNG_729BW56M_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Science and Technology
  funderid: 2012‐0000843
– fundername: World Class University project
  funderid: R32‐2011‐000‐10098‐
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AANHP
ABWVN
ACLDA
ACRPL
ACYXJ
ADNMO
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c5222-5837c2f6eb9ae3a2d57e24fce219b9bad14708a0ccaff7e0e677b828df84d6193
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Jul 10 18:48:55 EDT 2025
Fri Jul 25 22:55:59 EDT 2025
Wed Feb 19 01:52:43 EST 2025
Mon Jul 21 09:16:48 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 03:33:32 EDT 2025
Wed Jan 22 16:21:01 EST 2025
Wed Oct 30 09:49:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Endocrinopathy
Enzyme
Liver
Phosphoric monoester hydrolases
Metabolic diseases
Esterases
Flavonoid
Target tissue resistance
Polyphenol
Gastroenterology
Phenols
Hydrolases
Insulin resistance
Protein-tyrosine-phosphatase
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
Copyright © 2012 American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5222-5837c2f6eb9ae3a2d57e24fce219b9bad14708a0ccaff7e0e677b828df84d6193
Notes World Class University project - No. R32-2011-000-10098-
Potential conflict of interest: Nothing to report.
Ministry of Education, Science and Technology - No. 2012-0000843
istex:197E5252AD1DBB1A9243134C8EC54532A6D2C2F6
Supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2012-0000843) and in part by the World Class University project (R32-2011-000-10098-0).
ark:/67375/WNG-729BW56M-R
ArticleID:HEP25912
Supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (No. 2012‐0000843) and in part by the World Class University project (R32‐2011‐000‐10098‐0).
fax: +82‐2‐872‐1795
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.25912
PMID 22807119
PQID 1221565471
PQPubID 996352
PageCount 12
ParticipantIDs proquest_miscellaneous_1223432550
proquest_journals_1221565471
pubmed_primary_22807119
pascalfrancis_primary_26853032
crossref_citationtrail_10_1002_hep_25912
crossref_primary_10_1002_hep_25912
wiley_primary_10_1002_hep_25912_HEP25912
istex_primary_ark_67375_WNG_729BW56M_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wolters Kluwer Health, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wolters Kluwer Health, Inc
References Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-319.
Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 2011; 91: 283-293.
Zhang S, Zhang ZY. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 2007; 12: 373-381.
Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57: 820-825.
Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548.
Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer 2001; 39: 1-11.
Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. HEPATOLOGY 2008; 48: 1810-1820.
Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. HEPATOLOGY 2010; 52; 1431-1442.
Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369-1375.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
Guo H, Wei J, Inoue Y, Gonzalez FJ, Kuo PC. Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes. Am J Physiol Cell Physiol 2003; 284: C1090-C1099.
Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46: 1140-1145.
Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 2004; 15: 713-725.
Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, et al. The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis 1991; 12: 317-323.
Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 2006; 103: 10741-10746.
Pulido R, Serra-Pagès C, Tang M, Streuli M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A 1995; 92: 11686-11690.
Kim YM, Kim TH, Kim YW, Yang YM, Ryu da H, Hwang SJ, et al. Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med 2010; 49: 1722-1734.
Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446.
Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50: 1756-1765.
Jahan A, Chiang JY. Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene. Am J Physiol Gastrointest Liver Physiol 2005; 288: G685-G695.
Inada S, Ikeda Y, Suehiro T, Takata H, Osaki F, Arii K, et al. Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes. Mol Cell Endocrinol 2007; 271: 64-70.
Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, et al. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 2011; 15: 2135-2146.
Hennessy E, O'Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 2008; 10: e24.
Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277: 1531-1537.
Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 2004; 53: 3007-3012.
Haeusler RA, Accili D. The double life of Irs. Cell Metab 2008; 8: 7-9.
Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336.
Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 2012; 32: 459-517.
Goldstein BJ. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 1993; 3: 1-15.
Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98.
Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: 2304-2315.
Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. HEPATOLOGY 2010; 51: 1555-1566.
Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232-243.
Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 2008; 154: 165-173.
Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123: 503-509.
Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009; 58: 590-599.
Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002; 99: 11357-11362.
Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283: 14230-14241.
Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. HEPATOLOGY 2009; 49: 87-96.
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118.
MohammadTaghvaei N, Meshkani R, Taghikhani M, Larijani B, Adeli K. Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells. Inflammation 2011; 34: 43-48.
Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50: 2339-2356.
1995; 92
1991; 12
2005; 434
1997; 46
2002; 99
2002; 277
1999; 283
2008; 8
2008; 10
2011; 13
2006; 3
2011; 34
2011; 15
2011; 19
2007; 12
1993; 3
2009; 136
2009; 49
2012; 32
2008; 283
2009; 58
2004; 53
2009; 57
2010; 49
2007; 271
2005; 288
2005; 123
2011; 91
2009; 50
2004; 15
2011; 50
2002; 420
2008; 48
2007; 6
2001; 39
2008; 134
2008; 154
2010; 52
2010; 51
2006; 103
2003; 284
Elchebly (10.1002/hep.25912-BIB6|cit6) 1999; 283
Kim (10.1002/hep.25912-BIB12|cit12) 2010; 49
Rodgers (10.1002/hep.25912-BIB42|cit42) 2005; 434
Zinker (10.1002/hep.25912-BIB7|cit7) 2002; 99
Xu (10.1002/hep.25912-BIB14|cit14) 2010; 52
Thareja (10.1002/hep.25912-BIB35|cit35) 2012; 32
Goldstein (10.1002/hep.25912-BIB5|cit5) 1993; 3
Sun (10.1002/hep.25912-BIB40|cit40) 2007; 6
Hirosumi (10.1002/hep.25912-BIB13|cit13) 2002; 420
Li (10.1002/hep.25912-BIB28|cit28) 2009; 50
Pulido (10.1002/hep.25912-BIB4|cit4) 1995; 92
Kay (10.1002/hep.25912-BIB41|cit41) 2011; 15
Hennessy (10.1002/hep.25912-BIB10|cit10) 2008; 10
Tuncman (10.1002/hep.25912-BIB32|cit32) 2006; 103
Cheung (10.1002/hep.25912-BIB9|cit9) 2008; 48
Li (10.1002/hep.25912-BIB21|cit21) 2010; 51
Zabolotny (10.1002/hep.25912-BIB31|cit31) 2008; 283
Haeusler (10.1002/hep.25912-BIB2|cit2) 2008; 8
Zhang (10.1002/hep.25912-BIB8|cit8) 2007; 12
Kim (10.1002/hep.25912-BIB39|cit39) 2008; 154
Ren (10.1002/hep.25912-BIB3|cit3) 2011; 50
Jahan (10.1002/hep.25912-BIB16|cit16) 2005; 288
Hou (10.1002/hep.25912-BIB25|cit25) 2011; 19
Bento (10.1002/hep.25912-BIB19|cit19) 2004; 53
Wang (10.1002/hep.25912-BIB36|cit36) 2001; 39
Yamamoto (10.1002/hep.25912-BIB38|cit38) 1991; 12
Delibegovic (10.1002/hep.25912-BIB20|cit20) 2009; 58
Alisi (10.1002/hep.25912-BIB27|cit27) 2011; 91
MohammadTaghvaei (10.1002/hep.25912-BIB30|cit30) 2011; 34
Jayaprakasam (10.1002/hep.25912-BIB37|cit37) 2009; 57
Sekine (10.1002/hep.25912-BIB11|cit11) 2009; 136
Bartel (10.1002/hep.25912-BIB23|cit23) 2009; 136
Ahmad (10.1002/hep.25912-BIB18|cit18) 1997; 46
Korenblat (10.1002/hep.25912-BIB1|cit1) 2008; 134
Jordan (10.1002/hep.25912-BIB24|cit24) 2011; 13
Inada (10.1002/hep.25912-BIB29|cit29) 2007; 271
Sanderson (10.1002/hep.25912-BIB22|cit22) 2005; 123
Esau (10.1002/hep.25912-BIB26|cit26) 2006; 3
Aguirre (10.1002/hep.25912-BIB17|cit17) 2002; 277
Singh (10.1002/hep.25912-BIB34|cit34) 2009; 49
Sabapathy (10.1002/hep.25912-BIB33|cit33) 2004; 15
Guo (10.1002/hep.25912-BIB15|cit15) 2003; 284
References_xml – reference: Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118.
– reference: Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548.
– reference: Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 2008; 154: 165-173.
– reference: Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446.
– reference: Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. HEPATOLOGY 2010; 52; 1431-1442.
– reference: Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009; 58: 590-599.
– reference: Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336.
– reference: Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232-243.
– reference: Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123: 503-509.
– reference: Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98.
– reference: Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, et al. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 2011; 15: 2135-2146.
– reference: Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 2004; 53: 3007-3012.
– reference: Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. HEPATOLOGY 2008; 48: 1810-1820.
– reference: Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 2012; 32: 459-517.
– reference: Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50: 2339-2356.
– reference: Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. HEPATOLOGY 2010; 51: 1555-1566.
– reference: Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. HEPATOLOGY 2009; 49: 87-96.
– reference: Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50: 1756-1765.
– reference: Guo H, Wei J, Inoue Y, Gonzalez FJ, Kuo PC. Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes. Am J Physiol Cell Physiol 2003; 284: C1090-C1099.
– reference: Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer 2001; 39: 1-11.
– reference: Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57: 820-825.
– reference: Haeusler RA, Accili D. The double life of Irs. Cell Metab 2008; 8: 7-9.
– reference: Jahan A, Chiang JY. Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene. Am J Physiol Gastrointest Liver Physiol 2005; 288: G685-G695.
– reference: Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
– reference: Goldstein BJ. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 1993; 3: 1-15.
– reference: Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, et al. The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis 1991; 12: 317-323.
– reference: Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277: 1531-1537.
– reference: Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 2006; 103: 10741-10746.
– reference: Zhang S, Zhang ZY. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 2007; 12: 373-381.
– reference: Pulido R, Serra-Pagès C, Tang M, Streuli M. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A 1995; 92: 11686-11690.
– reference: Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-319.
– reference: Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: 2304-2315.
– reference: MohammadTaghvaei N, Meshkani R, Taghikhani M, Larijani B, Adeli K. Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells. Inflammation 2011; 34: 43-48.
– reference: Hennessy E, O'Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 2008; 10: e24.
– reference: Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002; 99: 11357-11362.
– reference: Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369-1375.
– reference: Inada S, Ikeda Y, Suehiro T, Takata H, Osaki F, Arii K, et al. Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes. Mol Cell Endocrinol 2007; 271: 64-70.
– reference: Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997; 46: 1140-1145.
– reference: Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 2011; 91: 283-293.
– reference: Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283: 14230-14241.
– reference: Kim YM, Kim TH, Kim YW, Yang YM, Ryu da H, Hwang SJ, et al. Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med 2010; 49: 1722-1734.
– reference: Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 2004; 15: 713-725.
– volume: 34
  start-page: 43
  year: 2011
  end-page: 48
  article-title: Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells
  publication-title: Inflammation
– volume: 284
  start-page: C1090
  year: 2003
  end-page: C1099
  article-title: Serine/threonine phosphorylation regulates HNF4α‐dependent redox‐mediated iNOS expression in hepatocytes
  publication-title: Am J Physiol Cell Physiol
– volume: 99
  start-page: 11357
  year: 2002
  end-page: 11362
  article-title: PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 57
  start-page: 820
  year: 2009
  end-page: 825
  article-title: Licorice flavonoids inhibit eotaxin‐1 secretion by human fetal lung fibroblasts in vitro
  publication-title: J Agric Food Chem
– volume: 92
  start-page: 11686
  year: 1995
  end-page: 11690
  article-title: The LAR/PTP delta/PTP sigma subfamily of transmembrane protein‐tyrosine‐phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue‐specific manner and associate with the LAR‐interacting protein LIP.1
  publication-title: Proc Natl Acad Sci U S A
– volume: 434
  start-page: 113
  year: 2005
  end-page: 118
  article-title: Nutrient control of glucose homeostasis through a complex of PGC‐1alpha and SIRT1
  publication-title: Nature
– volume: 271
  start-page: 64
  year: 2007
  end-page: 70
  article-title: Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes
  publication-title: Mol Cell Endocrinol
– volume: 12
  start-page: 317
  year: 1991
  end-page: 323
  article-title: The potent anti‐tumor‐promoting agent isoliquiritigenin
  publication-title: Carcinogenesis
– volume: 103
  start-page: 10741
  year: 2006
  end-page: 10746
  article-title: Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  start-page: 1
  year: 1993
  end-page: 15
  article-title: Regulation of insulin receptor signaling by protein‐tyrosine dephosphorylation
  publication-title: Receptor
– volume: 12
  start-page: 373
  year: 2007
  end-page: 381
  article-title: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery
  publication-title: Drug Discov Today
– volume: 154
  start-page: 165
  year: 2008
  end-page: 173
  article-title: Anti‐inflammatory effects of liquiritigenin as a consequence of the inhibition of NF‐kappaB‐dependent iNOS and proinflammatory cytokines production
  publication-title: Br J Pharmacol
– volume: 136
  start-page: 2304
  year: 2009
  end-page: 2315
  article-title: Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis
  publication-title: Gastroenterology
– volume: 46
  start-page: 1140
  year: 1997
  end-page: 1145
  article-title: Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein‐tyrosine phosphatases in adipose tissue
  publication-title: Metabolism
– volume: 53
  start-page: 3007
  year: 2004
  end-page: 3012
  article-title: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes
  publication-title: Diabetes
– volume: 3
  start-page: 87
  year: 2006
  end-page: 98
  article-title: miR‐122 regulation of lipid metabolism revealed by in vivo antisense targeting
  publication-title: Cell Metab
– volume: 283
  start-page: 14230
  year: 2008
  end-page: 14241
  article-title: Protein‐tyrosine phosphatase 1B expression is induced by inflammation in vivo
  publication-title: J Biol Chem
– volume: 49
  start-page: 87
  year: 2009
  end-page: 96
  article-title: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance
  publication-title: HEPATOLOGY
– volume: 19
  start-page: 232
  year: 2011
  end-page: 243
  article-title: Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR‐199a/b‐3p as therapeutic target for hepatocellular carcinoma
  publication-title: Cancer Cell
– volume: 52
  start-page: 1431
  year: 2010
  end-page: 1442
  article-title: Liver‐enriched transcription factors regulate microRNA‐122 that targets CUTL1 during liver development
  publication-title: HEPATOLOGY
– volume: 91
  start-page: 283
  year: 2011
  end-page: 293
  article-title: Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet‐induced nonalcoholic fatty liver disease
  publication-title: Lab Invest
– volume: 10
  start-page: e24
  year: 2008
  article-title: Molecular medicine of microRNAs: structure, function and implications for diabetes
  publication-title: Expert Rev Mol Med
– volume: 58
  start-page: 590
  year: 2009
  end-page: 599
  article-title: Liver‐specific deletion of protein‐tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet‐induced endoplasmic reticulum stress
  publication-title: Diabetes
– volume: 50
  start-page: 1756
  year: 2009
  end-page: 1765
  article-title: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
  publication-title: J Lipid Res
– volume: 48
  start-page: 1810
  year: 2008
  end-page: 1820
  article-title: Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression
  publication-title: HEPATOLOGY
– volume: 288
  start-page: G685
  year: 2005
  end-page: G695
  article-title: Cytokine regulation of human sterol 12alpha‐hydroxylase (CYP8B1) gene
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 136
  start-page: 215
  year: 2009
  end-page: 233
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
– volume: 39
  start-page: 1
  year: 2001
  end-page: 11
  article-title: Licorice and cancer
  publication-title: Nutr Cancer
– volume: 6
  start-page: 307
  year: 2007
  end-page: 319
  article-title: SIRT1 improves insulin sensitivity under insulin‐resistant conditions by repressing PTP1B
  publication-title: Cell Metab
– volume: 277
  start-page: 1531
  year: 2002
  end-page: 1537
  article-title: Phosphorylation of Ser307 in insulin receptor substrate‐1 blocks interactions with the insulin receptor and inhibits insulin action
  publication-title: J Biol Chem
– volume: 123
  start-page: 503
  year: 2005
  end-page: 509
  article-title: The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens
  publication-title: Am J Clin Pathol
– volume: 420
  start-page: 333
  year: 2002
  end-page: 336
  article-title: A central role for JNK in obesity and insulin resistance
  publication-title: Nature
– volume: 51
  start-page: 1555
  year: 2010
  end-page: 1566
  article-title: Curcumin inhibits hepatic protein‐tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose‐fed rats
  publication-title: HEPATOLOGY
– volume: 13
  start-page: 434
  year: 2011
  end-page: 446
  article-title: Obesity‐induced overexpression of miRNA‐143 inhibits insulin‐stimulated AKT activation and impairs glucose metabolism
  publication-title: Nat Cell Biol
– volume: 49
  start-page: 1722
  year: 2010
  end-page: 1734
  article-title: Inhibition of liver X receptor‐α‐dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition
  publication-title: Free Radic Biol Med
– volume: 15
  start-page: 713
  year: 2004
  end-page: 725
  article-title: Distinct roles for JNK1 and JNK2 in regulating JNK activity and c‐Jun‐dependent cell proliferation
  publication-title: Mol Cell
– volume: 134
  start-page: 1369
  year: 2008
  end-page: 1375
  article-title: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects
  publication-title: Gastroenterology
– volume: 50
  start-page: 2339
  year: 2011
  end-page: 2356
  article-title: Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP‐1, and SHP‐2
  publication-title: Biochemistry
– volume: 15
  start-page: 2135
  year: 2011
  end-page: 2146
  article-title: Nrf2 inhibits LXRα‐dependent hepatic lipogenesis by competing with FXR for acetylase binding
  publication-title: Antioxid Redox Signal
– volume: 8
  start-page: 7
  year: 2008
  end-page: 9
  article-title: The double life of Irs
  publication-title: Cell Metab
– volume: 32
  start-page: 459
  year: 2012
  end-page: 517
  article-title: Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus
  publication-title: Med Res Rev
– volume: 283
  start-page: 1544
  year: 1999
  end-page: 1548
  article-title: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase‐1B gene
  publication-title: Science
– volume: 99
  start-page: 11357
  year: 2002
  ident: 10.1002/hep.25912-BIB7|cit7
  article-title: PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.142298199
– volume: 91
  start-page: 283
  year: 2011
  ident: 10.1002/hep.25912-BIB27|cit27
  article-title: Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2010.166
– volume: 283
  start-page: 14230
  year: 2008
  ident: 10.1002/hep.25912-BIB31|cit31
  article-title: Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M800061200
– volume: 136
  start-page: 2304
  year: 2009
  ident: 10.1002/hep.25912-BIB11|cit11
  article-title: Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.02.067
– volume: 134
  start-page: 1369
  year: 2008
  ident: 10.1002/hep.25912-BIB1|cit1
  article-title: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.01.075
– volume: 283
  start-page: 1544
  year: 1999
  ident: 10.1002/hep.25912-BIB6|cit6
  article-title: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
  publication-title: Science
  doi: 10.1126/science.283.5407.1544
– volume: 50
  start-page: 1756
  year: 2009
  ident: 10.1002/hep.25912-BIB28|cit28
  article-title: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M800509-JLR200
– volume: 58
  start-page: 590
  year: 2009
  ident: 10.1002/hep.25912-BIB20|cit20
  article-title: Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress
  publication-title: Diabetes
  doi: 10.2337/db08-0913
– volume: 92
  start-page: 11686
  year: 1995
  ident: 10.1002/hep.25912-BIB4|cit4
  article-title: The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.25.11686
– volume: 49
  start-page: 1722
  year: 2010
  ident: 10.1002/hep.25912-BIB12|cit12
  article-title: Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2010.09.001
– volume: 420
  start-page: 333
  year: 2002
  ident: 10.1002/hep.25912-BIB13|cit13
  article-title: A central role for JNK in obesity and insulin resistance
  publication-title: Nature
  doi: 10.1038/nature01137
– volume: 277
  start-page: 1531
  year: 2002
  ident: 10.1002/hep.25912-BIB17|cit17
  article-title: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M101521200
– volume: 288
  start-page: G685
  year: 2005
  ident: 10.1002/hep.25912-BIB16|cit16
  article-title: Cytokine regulation of human sterol 12alpha-hydroxylase (CYP8B1) gene
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00207.2004
– volume: 57
  start-page: 820
  year: 2009
  ident: 10.1002/hep.25912-BIB37|cit37
  article-title: Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro
  publication-title: J Agric Food Chem
  doi: 10.1021/jf802601j
– volume: 50
  start-page: 2339
  year: 2011
  ident: 10.1002/hep.25912-BIB3|cit3
  article-title: Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2
  publication-title: Biochemistry
  doi: 10.1021/bi1014453
– volume: 46
  start-page: 1140
  year: 1997
  ident: 10.1002/hep.25912-BIB18|cit18
  article-title: Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(97)90206-7
– volume: 32
  start-page: 459
  year: 2012
  ident: 10.1002/hep.25912-BIB35|cit35
  article-title: Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus
  publication-title: Med Res Rev
  doi: 10.1002/med.20219
– volume: 48
  start-page: 1810
  year: 2008
  ident: 10.1002/hep.25912-BIB9|cit9
  article-title: Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22569
– volume: 3
  start-page: 87
  year: 2006
  ident: 10.1002/hep.25912-BIB26|cit26
  article-title: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.01.005
– volume: 154
  start-page: 165
  year: 2008
  ident: 10.1002/hep.25912-BIB39|cit39
  article-title: Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production
  publication-title: Br J Pharmacol
  doi: 10.1038/bjp.2008.79
– volume: 49
  start-page: 87
  year: 2009
  ident: 10.1002/hep.25912-BIB34|cit34
  article-title: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22578
– volume: 15
  start-page: 2135
  year: 2011
  ident: 10.1002/hep.25912-BIB41|cit41
  article-title: Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2010.3834
– volume: 12
  start-page: 317
  year: 1991
  ident: 10.1002/hep.25912-BIB38|cit38
  article-title: The potent anti-tumor-promoting agent isoliquiritigenin
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/12.2.317
– volume: 123
  start-page: 503
  year: 2005
  ident: 10.1002/hep.25912-BIB22|cit22
  article-title: The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens
  publication-title: Am J Clin Pathol
  doi: 10.1309/1PX2LMPQUH1EE12U
– volume: 19
  start-page: 232
  year: 2011
  ident: 10.1002/hep.25912-BIB25|cit25
  article-title: Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.01.001
– volume: 39
  start-page: 1
  year: 2001
  ident: 10.1002/hep.25912-BIB36|cit36
  article-title: Licorice and cancer
  publication-title: Nutr Cancer
  doi: 10.1207/S15327914nc391_1
– volume: 51
  start-page: 1555
  year: 2010
  ident: 10.1002/hep.25912-BIB21|cit21
  article-title: Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23524
– volume: 34
  start-page: 43
  year: 2011
  ident: 10.1002/hep.25912-BIB30|cit30
  article-title: Palmitate enhances protein tyrosine phosphatase 1B (PTP1B) gene expression at transcriptional level in C2C12 skeletal muscle cells
  publication-title: Inflammation
  doi: 10.1007/s10753-010-9206-3
– volume: 103
  start-page: 10741
  year: 2006
  ident: 10.1002/hep.25912-BIB32|cit32
  article-title: Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603509103
– volume: 15
  start-page: 713
  year: 2004
  ident: 10.1002/hep.25912-BIB33|cit33
  article-title: Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.08.028
– volume: 271
  start-page: 64
  year: 2007
  ident: 10.1002/hep.25912-BIB29|cit29
  article-title: Glucose enhances protein tyrosine phosphatase 1B gene transcription in hepatocytes
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2007.04.005
– volume: 8
  start-page: 7
  year: 2008
  ident: 10.1002/hep.25912-BIB2|cit2
  article-title: The double life of Irs
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.06.010
– volume: 284
  start-page: C1090
  year: 2003
  ident: 10.1002/hep.25912-BIB15|cit15
  article-title: Serine/threonine phosphorylation regulates HNF4α-dependent redox-mediated iNOS expression in hepatocytes
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00394.2002
– volume: 434
  start-page: 113
  year: 2005
  ident: 10.1002/hep.25912-BIB42|cit42
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 52
  start-page: 1431
  year: 2010
  ident: 10.1002/hep.25912-BIB14|cit14
  article-title: Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23818
– volume: 136
  start-page: 215
  year: 2009
  ident: 10.1002/hep.25912-BIB23|cit23
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 6
  start-page: 307
  year: 2007
  ident: 10.1002/hep.25912-BIB40|cit40
  article-title: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.08.014
– volume: 53
  start-page: 3007
  year: 2004
  ident: 10.1002/hep.25912-BIB19|cit19
  article-title: Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.11.3007
– volume: 10
  start-page: e24
  year: 2008
  ident: 10.1002/hep.25912-BIB10|cit10
  article-title: Molecular medicine of microRNAs: structure, function and implications for diabetes
  publication-title: Expert Rev Mol Med
  doi: 10.1017/S1462399408000781
– volume: 13
  start-page: 434
  year: 2011
  ident: 10.1002/hep.25912-BIB24|cit24
  article-title: Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2211
– volume: 3
  start-page: 1
  year: 1993
  ident: 10.1002/hep.25912-BIB5|cit5
  article-title: Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation
  publication-title: Receptor
– volume: 12
  start-page: 373
  year: 2007
  ident: 10.1002/hep.25912-BIB8|cit8
  article-title: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2007.03.011
SSID ssj0009428
Score 2.4373283
Snippet Protein tyrosine phosphatase 1B (PTP1B) inhibits hepatic insulin signaling by dephosphorylating tyrosine residues in insulin receptor (IR) and insulin receptor...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2209
SubjectTerms 3' Untranslated Regions
3T3-L1 Cells
Animals
Biological and medical sciences
Chalcones - pharmacology
Diet, High-Fat
Down-Regulation
Flavanones - pharmacology
Gastroenterology. Liver. Pancreas. Abdomen
Hep G2 Cells
Hepatocyte Nuclear Factor 4 - metabolism
Hepatocytes - metabolism
Hepatology
Humans
Insulin
Insulin Receptor Substrate Proteins - drug effects
Insulin Receptor Substrate Proteins - metabolism
Insulin Resistance
JNK Mitogen-Activated Protein Kinases - drug effects
JNK Mitogen-Activated Protein Kinases - metabolism
Kinases
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Male
Medical sciences
Mice
Mice, Inbred C57BL
MicroRNAs - metabolism
Mitogen-Activated Protein Kinase 8 - genetics
Mitogen-Activated Protein Kinase 8 - metabolism
Phosphorylation
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism
Proteins
RNA, Messenger - genetics
RNA, Messenger - metabolism
Signal Transduction
Title Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid
URI https://api.istex.fr/ark:/67375/WNG-729BW56M-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.25912
https://www.ncbi.nlm.nih.gov/pubmed/22807119
https://www.proquest.com/docview/1221565471
https://www.proquest.com/docview/1223432550
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfHFb220llVEfDDXZC8fF3xqtfUQ7pDD0j4Iy2Y_zNEzOS6JWp_8E_Rf9C9xZvNxnFQQ30IyOzCT2c1vsrO_IeSppwXzdDR0AewnbqANc5ORlq5SQaxGSklmWydMptH4JHh7Fp5tkZfdWZiGH6L_4YYzw67XOMFFWu6vSUMzvRwAdrcdhrFWCwHRbE0dlQS2rypkXR7uLicdq5DH9vuRG9-iK-jWr1gbKUpwj2n6WlwGPDdxrP0QHd8gHzoTmvqT80FdpQP57Q92x_-08Sa53gJUetBE1C2ypfPb5Oqk3YK_Q36-tkCz1LQw9BOW882mB7--__AZo1LUpS4p6EMeWNrWuVPI6BGlQnjR9ALuqhpUfaSWIgIeVxfgHdBNl1lRLjNRoXL_8AX9ks1lRuclRZqpVakVDl9A6CIREjUL8bnIi7m6S06Oj96_GrttXwdXAtpjeNArlsxEOk2EHgqmwlizwEgNq2eapEL5QeyNhAfBZUysIZTiOIXMUJlRoCDhG94j23mR6x1Cla8jHUGGHxoVJKBRhjAMT2qnqYJc1SHPuzfMZUt6jr03Fryha2YcXMKtix3ypBddNkwflwk9s2HSS4jVOZbGxSE_nb7hkKkcnobRhM8csrcRR_0AFgFA8oagabcLLN4uGyWHVwX5dAiAwSGP-8cw4XEXR-S6qK0MHgYGEx1yvwnItXLkNvL9BMy2YfV3Q_j46J29ePDvog_JNYCLrCnm2SXb1arWjwCSVemenXu_AXXqM2w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVgIuvB-BUgxCiAPZJt48NhKXlrYs0F2hVav2giwntsmqS7LaJEA58RPgL_JLmHEeq0VFQtyiZDzSTMbON_H4G0KeOkowRwV9G8B-ZHtKMzsaqMSW0gvlQMqEmdYJo3EwPPbenvqna-Rlexam5ofofrjhzDDrNU5w_CG9vWQNTdW8B-AdWwxvYEdvZM7fmyzJoyLPdFaFvMvB_eWo5RVy2HY3dOVrtIGO_YrVkaIAB-m6s8VF0HMVyZpP0cE18qE1oq5AOetVZdxLvv3B7_i_Vl4nVxuMSnfqoLpB1lR2k1waNbvwt8jPPYM1C0VzTT9hRd9kvPPr-w-XMZqIqlAFBX1IBUubUncKST0CVYgwGp_DXVmBqo_UsETA4_Ic3AO66TzNi3kqSlTu7r6gX9JpktJpQZFpalEoicNnEL3IhUT1THzOs3wqb5Pjg_2jV0O7ae1gJwD4GJ71ChOmAxVHQvUFk36omKcTBQtoHMVCul7oDIQD8aV1qCCawjCG5FDqgSch5-vfIetZnql7hEpXBSqAJN_X0otAY-LDMDysHccS0lWLPG9fMU8a3nNsvzHjNWMz4-ASblxskSed6Lwm-7hI6JmJk05CLM6wOi70-cn4NYdkZffED0Z8YpGtlUDqBrAAMJLTB02bbWTxZuUoOLwqSKl9wAwWedw9hjmPGzkiU3llZPA8MJhokbt1RC6VI72R60ZgtomrvxvCh_vvzcX9fxd9RC4Pj0aH_PDN-N0DcgXQI6trezbJermo1ENAaGW8ZSbib4YtN4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrVRx4f0wlLIghDjg1N74EYtTSxrCI1EVUbWHSqv1PkjUYFtxApQTPwH-Ir-EmbXjKKhIiJtlz44049n1N97Zbwh56mnBPB21XQD7iRtow9yko6WrVBCrjlKS2dYJg2HUPw7enoanG-Tl8ixMxQ_R_HDDmWHXa5zghTJ7K9LQsS5agN2xw_BWEHkJ9m3ojlbcUUlgG6tC2uXh9nKypBXy2F4zdO1jtIV-_YrFkaIE_5iqscVlyHMdyNovUe8aOVvaUBWgnLcW87Qlv_1B7_ifRl4nV2uESverkLpBNnR2k2wP6j34W-Rn1yLNUtPc0E9Yzzca7v_6_sNnjEqxKHVJQR8SwdK60J1CSo8wFeKLphdwVy1A1UdqOSLg8fwCvAO6aTHOy2Is5qjcP3hBv4wnckwnJUWeqVmpFQ6fQuwiExI1U_E5z_KJuk2Oe4cfXvXdurGDKwHuMTzpFUtmIp0mQrcFU2GsWWCkhuUzTVKh_CD2OsKD6DIm1hBLcZxCaqhMJ1CQ8bXvkM0sz_Q9QpWvIx1Bih8aFSSgUYYwDI9qp6mCZNUhz5dvmMua9Rybb0x5xdfMOLiEWxc75EkjWlRUH5cJPbNh0kiI2TnWxsUhPxm-5pCqHJyE0YCPHLK7FkfNABYBQvLaoGlnGVi8XjdKDq8KEuoQEINDHjePYcbjNo7IdL6wMngaGEx0yN0qIFfKkdzI9xMw24bV3w3h_cMje3H_30Ufke2jbo-_fzN894BcAejIqsKeHbI5ny30Q4Bn83TXTsPfvOU2Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decrease+of+microRNA-122+causes+hepatic+insulin+resistance+by+inducing+protein+tyrosine+phosphatase+1B%2C+which+is+reversed+by+licorice+flavonoid&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Yang%2C+Yoon+Mee&rft.au=Seo%2C+So+Yeon&rft.au=Kim%2C+Tae+Hyun&rft.au=Kim%2C+Sang+Geon&rft.date=2012-12-01&rft.issn=1527-3350&rft.eissn=1527-3350&rft.volume=56&rft.issue=6&rft.spage=2209&rft_id=info:doi/10.1002%2Fhep.25912&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon