In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 25; no. 23; pp. 3144 - 3176 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
18.06.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201205292 |
Cover
Loading…
Abstract | The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials.
Significant progress in nano‐biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN‐based biomaterials for in vivo biomedical applications. |
---|---|
AbstractList | The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials. The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials.The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials. The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials. Significant progress in nano‐biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN‐based biomaterials for in vivo biomedical applications. The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials. Significant progress in nano-biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN-based biomaterials for in vivo biomedical applications. |
Author | Shi, Jianlin Chen, Yu Chen, Hangrong |
Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China – sequence: 2 givenname: Hangrong surname: Chen fullname: Chen, Hangrong email: hrchen@mail.sic.ac.cn organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China – sequence: 3 givenname: Jianlin surname: Shi fullname: Shi, Jianlin email: jlshi@sunm.shcnc.ac.cn organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23681931$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9v0zAYhi00xLrBlSPykUs6_4jj-Fja0Q22oWkDjpYbf9kMTpzZyaAH_ndS2k0ICe3kz9LzvPr0vQdorw0tIPSakiklhB0Z25gpI5QRwRR7hiZUMJrlRIk9NCGKi0wVebmPDlL6RghRBSleoH3Gi5IqTifo12mLv7j7gN-5kF2ZGvo1Pr43fjC9C23CprV44cxNG1LvqqPrW4img2Gc8azrvKt2XKjx_Baa8e_9Gi8guZsWLD6HFLoQw5DwldvQ-MK0oTNxDPCQXqLntfEJXu3eQ_T5_fH1_CQ7-7Q8nc_OskowxrK8zG2VS0VMLVcrgMoyEJzQEoRgdW0rawQrpWVcKGVqLoGJsgZLaWEFXRl-iN5uc7sY7gZIvW5cqsB708K4m6Y5V1JIVqinUV7IUkqasxF9s0OHVQNWd9E1Jq71w3VHIN8CVQwpRah15fo_B-ujcV5Tojcl6k2J-rHEUZv-oz0k_1dQW-GH87B-gtazxfnsbzfbui718PPRNfG7LiSXQn-9WOoPpSAfLy9P9JL_Bl8bv7k |
CitedBy_id | crossref_primary_10_1016_j_ccr_2022_214977 crossref_primary_10_1002_cnma_201700264 crossref_primary_10_1186_s12951_024_02680_5 crossref_primary_10_1002_smll_201601484 crossref_primary_10_1039_C9TB02578B crossref_primary_10_1039_C4RA05310A crossref_primary_10_2174_1567201818666211214112710 crossref_primary_10_1039_C6CP00906A crossref_primary_10_1039_C4CC07121B crossref_primary_10_1088_1361_6528_abfc6f crossref_primary_10_1039_C7TB01526G crossref_primary_10_1016_j_apsb_2025_03_021 crossref_primary_10_1111_1759_7714_13414 crossref_primary_10_1002_smll_201500540 crossref_primary_10_1002_adfm_201907066 crossref_primary_10_1021_acsabm_8b00633 crossref_primary_10_1016_j_jksus_2021_101587 crossref_primary_10_1016_j_micromeso_2018_04_031 crossref_primary_10_1016_j_matchemphys_2018_09_005 crossref_primary_10_1021_nl404316v crossref_primary_10_1002_adma_201402572 crossref_primary_10_1002_adma_201403783 crossref_primary_10_1002_adma_201401124 crossref_primary_10_1007_s12274_014_0701_y crossref_primary_10_1039_c8pp00143j crossref_primary_10_1016_j_jconrel_2019_08_022 crossref_primary_10_1016_j_biomaterials_2016_06_004 crossref_primary_10_1002_anbr_202000055 crossref_primary_10_1021_acs_langmuir_0c00729 crossref_primary_10_1016_j_scienta_2018_08_040 crossref_primary_10_1007_s12274_017_1530_6 crossref_primary_10_1007_s12274_020_2736_6 crossref_primary_10_1016_j_cis_2022_102773 crossref_primary_10_1021_am506849p crossref_primary_10_1039_C4RA10293B crossref_primary_10_1021_ja504115d crossref_primary_10_1039_C8RA08936A crossref_primary_10_3389_fphar_2015_00197 crossref_primary_10_1039_C5CS00243E crossref_primary_10_1088_1748_605X_abef58 crossref_primary_10_1021_acs_chemrev_5b00456 crossref_primary_10_1021_acsbiomedchemau_2c00040 crossref_primary_10_1002_adfm_201403079 crossref_primary_10_1002_adhm_202301837 crossref_primary_10_1016_j_cej_2019_123609 crossref_primary_10_1039_C4TA01795A crossref_primary_10_1007_s12274_017_1939_y crossref_primary_10_1021_acsami_6b06889 crossref_primary_10_1021_acs_langmuir_0c00832 crossref_primary_10_1016_j_msec_2019_110386 crossref_primary_10_1039_C4CC10413G crossref_primary_10_2217_nnm_2017_0353 crossref_primary_10_1016_j_biomaterials_2014_03_032 crossref_primary_10_1021_acs_bioconjchem_8b00522 crossref_primary_10_1002_ejic_201801039 crossref_primary_10_1016_j_micromeso_2014_04_057 crossref_primary_10_18632_oncotarget_12149 crossref_primary_10_1039_C4TB01536C crossref_primary_10_1016_j_apmt_2017_12_003 crossref_primary_10_1016_j_micromeso_2019_05_031 crossref_primary_10_1021_acsabm_9b00133 crossref_primary_10_1016_j_colsurfb_2020_110941 crossref_primary_10_1002_tcr_202000104 crossref_primary_10_1016_j_mtbio_2023_100574 crossref_primary_10_3390_inorganics7060072 crossref_primary_10_1007_s00604_018_3219_2 crossref_primary_10_1021_acsami_6b11802 crossref_primary_10_1039_C5RA14744A crossref_primary_10_1016_j_nano_2019_102040 crossref_primary_10_1021_ja407331n crossref_primary_10_1039_C5TB02371H crossref_primary_10_1515_pac_2018_0505 crossref_primary_10_1021_acsami_3c08643 crossref_primary_10_1016_j_ijpharm_2016_10_013 crossref_primary_10_1002_adma_201703651 crossref_primary_10_1016_j_biomaterials_2014_09_003 crossref_primary_10_1039_C5NR08691D crossref_primary_10_1038_srep05080 crossref_primary_10_1016_j_biomaterials_2021_120985 crossref_primary_10_1007_s12274_017_1466_x crossref_primary_10_1016_j_scitotenv_2022_158676 crossref_primary_10_1002_adma_202004460 crossref_primary_10_2217_nnm_2021_0413 crossref_primary_10_1002_adfm_201902652 crossref_primary_10_1002_advs_201801155 crossref_primary_10_1016_j_talanta_2019_120552 crossref_primary_10_1007_s00289_022_04250_x crossref_primary_10_1002_chem_201402864 crossref_primary_10_1002_adfm_201703313 crossref_primary_10_1002_lpor_202200651 crossref_primary_10_1038_s41467_024_49603_4 crossref_primary_10_1002_adhm_201700831 crossref_primary_10_3390_nano13142138 crossref_primary_10_1515_ejnm_2016_0011 crossref_primary_10_1016_j_cis_2016_08_001 crossref_primary_10_1016_j_jcis_2017_10_116 crossref_primary_10_1039_c4nr00384e crossref_primary_10_3390_ijms19123790 crossref_primary_10_1016_j_micromeso_2015_04_015 crossref_primary_10_1021_acsbiomaterials_0c00014 crossref_primary_10_1016_j_ejmech_2023_115676 crossref_primary_10_1016_j_colsurfb_2023_113613 crossref_primary_10_1007_s40820_020_00447_9 crossref_primary_10_1016_j_nantod_2016_05_009 crossref_primary_10_1039_C4NR07421A crossref_primary_10_1002_smll_201900669 crossref_primary_10_1039_C5TB02079D crossref_primary_10_1039_C5NR00072F crossref_primary_10_1016_j_surfin_2020_100596 crossref_primary_10_1039_C6TB01788F crossref_primary_10_1007_s12274_017_1465_y crossref_primary_10_1155_2022_6006601 crossref_primary_10_1002_adtp_202400425 crossref_primary_10_1111_cbdd_12716 crossref_primary_10_1016_j_jconrel_2021_07_010 crossref_primary_10_1002_advs_201801175 crossref_primary_10_1155_2015_846328 crossref_primary_10_1002_cplu_201402369 crossref_primary_10_1021_acsabm_0c00969 crossref_primary_10_1002_ppsc_201600062 crossref_primary_10_2174_1567201819666220616121602 crossref_primary_10_1002_adfm_201902634 crossref_primary_10_1016_j_apmt_2024_102278 crossref_primary_10_1039_D1NR07750C crossref_primary_10_1007_s10934_020_00885_1 crossref_primary_10_1039_C6CS00109B crossref_primary_10_1002_advs_202200756 crossref_primary_10_1002_nano_202000035 crossref_primary_10_1016_j_micromeso_2020_110504 crossref_primary_10_1002_adom_201900252 crossref_primary_10_1002_adfm_201704634 crossref_primary_10_1039_C5TB02619A crossref_primary_10_1002_adfm_201707325 crossref_primary_10_1002_adma_202008226 crossref_primary_10_1039_C5NR07853A crossref_primary_10_3390_pharmaceutics16010092 crossref_primary_10_26599_NTM_2022_9130005 crossref_primary_10_1039_C7QM00153C crossref_primary_10_1021_acs_jpcc_8b00277 crossref_primary_10_1007_s43207_022_00217_w crossref_primary_10_1002_adhm_202301577 crossref_primary_10_1021_acsami_7b06597 crossref_primary_10_1016_j_envpol_2017_06_016 crossref_primary_10_1016_j_nantod_2016_07_002 crossref_primary_10_1016_j_cej_2018_03_101 crossref_primary_10_1039_C5NR00451A crossref_primary_10_1002_anie_202112752 crossref_primary_10_1186_s40199_017_0186_9 crossref_primary_10_1016_j_biomaterials_2016_05_019 crossref_primary_10_1002_eom2_12028 crossref_primary_10_1016_j_biomaterials_2016_05_017 crossref_primary_10_1021_acsami_1c07748 crossref_primary_10_1016_j_ctrv_2016_02_005 crossref_primary_10_1021_nn5034955 crossref_primary_10_1007_s40843_015_0037_2 crossref_primary_10_1021_acsanm_9b01769 crossref_primary_10_3109_17435390_2014_958115 crossref_primary_10_1146_annurev_matsci_070214_020830 crossref_primary_10_1002_smll_201604228 crossref_primary_10_1007_s13399_023_04440_1 crossref_primary_10_1016_j_jconrel_2015_06_034 crossref_primary_10_1021_acsanm_3c00722 crossref_primary_10_1039_C7CS00630F crossref_primary_10_1007_s00210_023_02872_0 crossref_primary_10_1016_j_jcis_2014_05_016 crossref_primary_10_3390_ma13173795 crossref_primary_10_1016_j_ijpharm_2014_05_020 crossref_primary_10_1021_acsomega_8b00152 crossref_primary_10_1039_C6TB02820A crossref_primary_10_1002_adhm_201700720 crossref_primary_10_1021_acsami_5b11730 crossref_primary_10_1039_c3tb21193b crossref_primary_10_1039_C7TB03156D crossref_primary_10_1002_adma_201904535 crossref_primary_10_1016_j_biomaterials_2017_07_016 crossref_primary_10_1039_D4TB01114G crossref_primary_10_1039_C8NR07679K crossref_primary_10_1016_j_cej_2024_150392 crossref_primary_10_1002_anie_201404652 crossref_primary_10_1016_j_jconrel_2022_06_064 crossref_primary_10_1002_adma_201801690 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1016_j_jphotochemrev_2014_06_001 crossref_primary_10_1002_smll_201402297 crossref_primary_10_1016_j_biomaterials_2019_119723 crossref_primary_10_1021_acscentsci_7b00257 crossref_primary_10_1039_C6NR03229J crossref_primary_10_1016_j_jcis_2019_11_036 crossref_primary_10_1039_C7CS00316A crossref_primary_10_1021_acs_nanolett_2c04486 crossref_primary_10_1021_acsbiomaterials_5b00502 crossref_primary_10_3390_ijms241310931 crossref_primary_10_1016_j_biomaterials_2018_01_046 crossref_primary_10_1039_C5NR08292G crossref_primary_10_1039_C9RA01080G crossref_primary_10_1002_advs_202404431 crossref_primary_10_3390_pharmaceutics10030118 crossref_primary_10_1016_j_micromeso_2019_109768 crossref_primary_10_1007_s12274_020_3112_2 crossref_primary_10_1016_j_biomaterials_2021_121074 crossref_primary_10_1002_marc_201600253 crossref_primary_10_1039_C4NR06538G crossref_primary_10_1002_smll_201501449 crossref_primary_10_1016_j_biomaterials_2019_119738 crossref_primary_10_1016_j_ecoenv_2015_09_030 crossref_primary_10_1016_j_nano_2015_10_018 crossref_primary_10_1002_adma_201802896 crossref_primary_10_1098_rsos_180658 crossref_primary_10_1080_09205063_2019_1687132 crossref_primary_10_1021_la500746e crossref_primary_10_1002_adfm_201402255 crossref_primary_10_1002_adma_201602748 crossref_primary_10_4028_www_scientific_net_KEM_867_134 crossref_primary_10_1002_adma_201802725 crossref_primary_10_1016_j_actbio_2015_04_019 crossref_primary_10_1016_j_phymed_2025_156547 crossref_primary_10_1039_C4CS00270A crossref_primary_10_1002_advs_202403473 crossref_primary_10_1016_j_addr_2023_114868 crossref_primary_10_1002_adma_201705799 crossref_primary_10_1039_D0PY01102A crossref_primary_10_1039_D0TB02544E crossref_primary_10_1016_j_micromeso_2015_06_012 crossref_primary_10_1021_acsami_9b07664 crossref_primary_10_1016_j_biomaterials_2014_04_029 crossref_primary_10_1007_s11051_015_3110_6 crossref_primary_10_1016_j_biomaterials_2019_04_023 crossref_primary_10_1016_j_jddst_2018_01_014 crossref_primary_10_1039_C7ME00046D crossref_primary_10_1002_adhm_201700793 crossref_primary_10_1039_D0NA00219D crossref_primary_10_1089_nat_2013_0450 crossref_primary_10_1016_j_biomaterials_2014_05_058 crossref_primary_10_1039_C6RA10743E crossref_primary_10_1002_ejic_201800041 crossref_primary_10_1021_acs_molpharmaceut_5b00866 crossref_primary_10_1088_1361_648X_ab4ac5 crossref_primary_10_1371_journal_pone_0172499 crossref_primary_10_1002_adma_201505147 crossref_primary_10_1016_j_actbio_2021_05_007 crossref_primary_10_1039_C8CC04863K crossref_primary_10_1002_adfm_201601770 crossref_primary_10_1016_j_ijbiomac_2021_11_088 crossref_primary_10_1021_acsnano_0c10144 crossref_primary_10_1038_am_2016_146 crossref_primary_10_1016_j_biomaterials_2018_02_021 crossref_primary_10_1016_j_ejmcr_2024_100206 crossref_primary_10_1039_C4RA03122A crossref_primary_10_1002_adhm_201601080 crossref_primary_10_1007_s10853_018_2095_9 crossref_primary_10_1016_j_tifs_2021_01_037 crossref_primary_10_1002_adhm_201700646 crossref_primary_10_3762_bjnano_12_64 crossref_primary_10_3390_polym15081835 crossref_primary_10_1039_C8NR08337A crossref_primary_10_1002_adfm_201505155 crossref_primary_10_1039_C5NR04119H crossref_primary_10_2147_IJN_S243037 crossref_primary_10_1016_j_actbio_2019_02_031 crossref_primary_10_1021_acs_analchem_3c00485 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024051822 crossref_primary_10_1016_j_nantod_2015_06_004 crossref_primary_10_1039_C9TB01346F crossref_primary_10_1002_adma_201405634 crossref_primary_10_3390_jfb15080226 crossref_primary_10_1016_j_ccr_2024_216052 crossref_primary_10_1002_aelm_202101204 crossref_primary_10_1039_C4CC01429D crossref_primary_10_1021_acs_langmuir_1c01674 crossref_primary_10_1039_D2BM01950G crossref_primary_10_1002_cnma_202000172 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1039_C8CC03413C crossref_primary_10_1002_anie_201411137 crossref_primary_10_1007_s11095_017_2177_4 crossref_primary_10_1080_17425247_2016_1211637 crossref_primary_10_1515_ntrev_2023_0107 crossref_primary_10_1016_j_mtchem_2022_101144 crossref_primary_10_1039_C8CS00658J crossref_primary_10_1038_srep33335 crossref_primary_10_1039_D0NJ01221A crossref_primary_10_1016_j_nano_2021_102496 crossref_primary_10_3390_molecules21040522 crossref_primary_10_1016_j_apt_2020_07_025 crossref_primary_10_1002_adtp_202000218 crossref_primary_10_1021_am501337s crossref_primary_10_1016_j_biomaterials_2015_11_002 crossref_primary_10_1039_c3ra47654e crossref_primary_10_1016_j_biomaterials_2024_122853 crossref_primary_10_1016_j_jconrel_2015_10_012 crossref_primary_10_1016_j_jiec_2020_03_027 crossref_primary_10_2147_IJN_S256227 crossref_primary_10_1039_C4RA03277B crossref_primary_10_1021_acsami_6b11209 crossref_primary_10_1002_adhm_201801047 crossref_primary_10_1002_advs_201600122 crossref_primary_10_1002_nbm_4698 crossref_primary_10_1051_matecconf_20179805001 crossref_primary_10_1021_acsami_8b19236 crossref_primary_10_1002_ejic_201500573 crossref_primary_10_1517_17425247_2014_953051 crossref_primary_10_1002_cphc_201501167 crossref_primary_10_1002_adfm_201400221 crossref_primary_10_1039_C4NR05931J crossref_primary_10_1039_C8CC09389J crossref_primary_10_1021_acs_accounts_7b00635 crossref_primary_10_1039_C7DT03735J crossref_primary_10_1134_S1995078013060116 crossref_primary_10_1016_j_micromeso_2020_110049 crossref_primary_10_1016_j_polymer_2014_04_040 crossref_primary_10_1021_acs_molpharmaceut_3c00180 crossref_primary_10_1016_j_heliyon_2024_e27692 crossref_primary_10_1016_j_mser_2019_01_001 crossref_primary_10_1016_j_biomaterials_2016_03_019 crossref_primary_10_1016_j_nano_2016_10_018 crossref_primary_10_1166_sam_2022_4224 crossref_primary_10_1021_acsami_6b12653 crossref_primary_10_1039_C5TC02057C crossref_primary_10_1016_j_bios_2015_06_023 crossref_primary_10_1002_adma_201604634 crossref_primary_10_1039_C7TB03201C crossref_primary_10_1002_advs_202306480 crossref_primary_10_1002_adma_201707557 crossref_primary_10_1039_C5DT03144C crossref_primary_10_3390_technologies12110210 crossref_primary_10_1016_j_ijpharm_2016_06_133 crossref_primary_10_1016_j_nano_2017_03_014 crossref_primary_10_3390_mi12070740 crossref_primary_10_1016_j_micromeso_2015_09_004 crossref_primary_10_1021_ac402713a crossref_primary_10_1016_j_ijpharm_2015_05_010 crossref_primary_10_1002_smll_201600616 crossref_primary_10_1021_acsbiomaterials_6b00111 crossref_primary_10_1002_adhm_201700354 crossref_primary_10_1002_adma_201801964 crossref_primary_10_1039_C7TB00938K crossref_primary_10_1039_D0TB01868F crossref_primary_10_1002_adhm_201600402 crossref_primary_10_1016_j_chemosphere_2017_05_138 crossref_primary_10_1186_s12951_022_01315_x crossref_primary_10_1039_C5NR02767E crossref_primary_10_1021_acs_langmuir_0c03541 crossref_primary_10_1002_ejic_201500580 crossref_primary_10_1007_s12274_014_0698_2 crossref_primary_10_1016_j_snb_2018_03_053 crossref_primary_10_1002_mco2_313 crossref_primary_10_1007_s10856_018_6179_5 crossref_primary_10_1002_mabi_201300382 crossref_primary_10_1039_C8BM01219A crossref_primary_10_1016_j_biomaterials_2015_10_010 crossref_primary_10_1016_j_micromeso_2015_08_015 crossref_primary_10_1038_s41401_021_00648_x crossref_primary_10_1039_C5CC10106A crossref_primary_10_3390_vaccines11071172 crossref_primary_10_1021_acsami_2c13076 crossref_primary_10_1021_cm402592t crossref_primary_10_1021_acsanm_8b00307 crossref_primary_10_1002_adfm_201505569 crossref_primary_10_3390_ijms22094804 crossref_primary_10_1021_acsanm_0c00311 crossref_primary_10_1002_chem_201601024 crossref_primary_10_1007_s10450_015_9727_z crossref_primary_10_1039_C5RA07632C crossref_primary_10_1007_s11595_018_2003_9 crossref_primary_10_1002_adhm_201701248 crossref_primary_10_1002_adma_201604105 crossref_primary_10_1039_C3CS60433K crossref_primary_10_1016_j_actbio_2020_09_009 crossref_primary_10_1002_prp2_776 crossref_primary_10_1039_C6RA28860J crossref_primary_10_1007_s10856_018_6069_x crossref_primary_10_1016_j_ijpharm_2025_125499 crossref_primary_10_1002_adhm_201800268 crossref_primary_10_1002_wnan_1515 crossref_primary_10_1021_acs_nanolett_8b00040 crossref_primary_10_1021_acs_nanolett_0c02180 crossref_primary_10_1016_j_ajps_2023_100795 crossref_primary_10_1016_j_corsci_2021_109543 crossref_primary_10_1016_j_apmt_2021_101067 crossref_primary_10_3390_ijms24043249 crossref_primary_10_3390_magnetochemistry6030038 crossref_primary_10_1002_advs_201800518 crossref_primary_10_1016_j_actbio_2017_09_009 crossref_primary_10_1002_smll_201400042 crossref_primary_10_1039_C5TB00790A crossref_primary_10_1002_adma_201602012 crossref_primary_10_1142_S1793545816300056 crossref_primary_10_1002_adma_201902672 crossref_primary_10_1002_adfm_201302988 crossref_primary_10_1080_03639045_2021_1988097 crossref_primary_10_1039_C5TB01761K crossref_primary_10_1016_j_ccr_2020_213467 crossref_primary_10_1039_C7TB00680B crossref_primary_10_1002_ppsc_201300219 crossref_primary_10_1021_acs_bioconjchem_8b00399 crossref_primary_10_1016_j_carbpol_2019_115706 crossref_primary_10_1038_ncomms13936 crossref_primary_10_1016_j_matlet_2016_02_156 crossref_primary_10_1021_la504684g crossref_primary_10_1038_s41598_021_99678_y crossref_primary_10_1007_s11051_017_4077_2 crossref_primary_10_1021_acs_langmuir_5b03898 crossref_primary_10_1515_mr_2022_0020 crossref_primary_10_1039_c4ob00164h crossref_primary_10_1016_j_biomaterials_2014_06_012 crossref_primary_10_1021_acs_chemrev_4c00009 crossref_primary_10_2147_IJN_S451919 crossref_primary_10_1002_smll_202002091 crossref_primary_10_1021_mp400596v crossref_primary_10_1246_bcsj_20150420 crossref_primary_10_2174_1568026621666210910123749 crossref_primary_10_1016_j_brainres_2022_147786 crossref_primary_10_1021_ac504698j crossref_primary_10_1002_wnan_1658 crossref_primary_10_1002_adhm_202400888 crossref_primary_10_1002_advs_202309305 crossref_primary_10_1016_j_chempr_2018_02_012 crossref_primary_10_1039_C4DT02549K crossref_primary_10_1517_17425247_2014_908181 crossref_primary_10_1002_smtd_201900343 crossref_primary_10_1016_j_fbio_2023_102843 crossref_primary_10_1002_pen_26626 crossref_primary_10_1021_acsami_6b04998 crossref_primary_10_1038_aps_2017_1 crossref_primary_10_1002_cbic_202400962 crossref_primary_10_2147_IJN_S293190 crossref_primary_10_1021_ja4108287 crossref_primary_10_1039_D4NA00987H crossref_primary_10_1016_j_biomaterials_2017_11_015 crossref_primary_10_1016_j_jconrel_2016_01_040 crossref_primary_10_1002_adhm_201601431 crossref_primary_10_1002_ijc_34256 crossref_primary_10_1016_j_addr_2023_115115 crossref_primary_10_1021_acsnano_5b00526 crossref_primary_10_3390_mi13081358 crossref_primary_10_3390_ijms161023784 crossref_primary_10_1016_j_actbio_2017_11_007 crossref_primary_10_1021_ja508721y crossref_primary_10_3390_nano10030597 crossref_primary_10_1039_C7NJ04535B crossref_primary_10_1007_s10971_016_3991_6 crossref_primary_10_1166_nnl_2017_2561 crossref_primary_10_1002_smll_201805339 crossref_primary_10_1021_acs_langmuir_2c03126 crossref_primary_10_3390_nano5041906 crossref_primary_10_3390_pharmaceutics15041071 crossref_primary_10_1002_smll_201400765 crossref_primary_10_1021_acsanm_9b02298 crossref_primary_10_1016_j_canlet_2019_10_018 crossref_primary_10_1007_s12274_020_2838_1 crossref_primary_10_3389_fchem_2020_573297 crossref_primary_10_1002_ange_201411137 crossref_primary_10_3389_fbioe_2021_749381 crossref_primary_10_1016_j_micromeso_2020_110689 crossref_primary_10_1002_adfm_201909539 crossref_primary_10_1039_C4RA04294H crossref_primary_10_1016_j_mtnano_2021_100132 crossref_primary_10_1016_j_biomaterials_2020_120256 crossref_primary_10_3390_jfb13040181 crossref_primary_10_3390_nano12020288 crossref_primary_10_1016_j_jddst_2023_104306 crossref_primary_10_1002_smll_202101519 crossref_primary_10_1039_C7PY01259D crossref_primary_10_3389_fchem_2019_00290 crossref_primary_10_1021_am405633r crossref_primary_10_1038_srep08766 crossref_primary_10_1002_advs_201700474 crossref_primary_10_1021_acs_chemrev_7b00208 crossref_primary_10_1007_s12274_017_1947_y crossref_primary_10_1016_j_omtn_2021_10_024 crossref_primary_10_1016_j_jcis_2019_04_086 crossref_primary_10_1016_j_cbi_2021_109601 crossref_primary_10_1016_j_ceramint_2023_10_027 crossref_primary_10_1021_acsami_0c00596 crossref_primary_10_1007_s13770_022_00510_z crossref_primary_10_1016_j_biomaterials_2017_03_003 crossref_primary_10_1002_adma_201400303 crossref_primary_10_1002_smll_201902242 crossref_primary_10_1007_s10934_016_0231_y crossref_primary_10_1016_j_jconrel_2024_06_019 crossref_primary_10_1039_C7NR05402E crossref_primary_10_1021_acs_jpcc_0c04602 crossref_primary_10_3906_biy_1507_143 crossref_primary_10_1016_j_jddst_2023_104536 crossref_primary_10_1002_advs_202306884 crossref_primary_10_1016_j_micromeso_2020_110774 crossref_primary_10_1007_s12274_014_0558_0 crossref_primary_10_1016_j_foodchem_2018_09_148 crossref_primary_10_1007_s11426_020_9869_4 crossref_primary_10_1021_jf504455x crossref_primary_10_1002_wnan_1733 crossref_primary_10_1007_s13346_024_01609_7 crossref_primary_10_1038_s41467_019_11082_3 crossref_primary_10_1016_j_isci_2020_101687 crossref_primary_10_1016_j_biomaterials_2015_01_063 crossref_primary_10_1039_C8CS00028J crossref_primary_10_1002_advs_202411753 crossref_primary_10_1016_j_matdes_2016_12_028 crossref_primary_10_1142_S1793292019501418 crossref_primary_10_1021_acs_nanolett_1c04804 crossref_primary_10_2478_aoas2018_0029 crossref_primary_10_15171_bi_2018_13 crossref_primary_10_1117_1_JBO_21_11_115002 crossref_primary_10_1016_j_addr_2015_09_009 crossref_primary_10_1002_adhm_201400127 crossref_primary_10_1021_tx500473h crossref_primary_10_1016_j_trac_2016_10_005 crossref_primary_10_1002_slct_201600004 crossref_primary_10_1016_j_colsurfa_2021_127612 crossref_primary_10_1021_acsami_5b07856 crossref_primary_10_1016_j_biomaterials_2020_120191 crossref_primary_10_1002_ange_201404652 crossref_primary_10_1016_j_micromeso_2015_01_024 crossref_primary_10_1002_adma_202003537 crossref_primary_10_1039_C5DT03700J crossref_primary_10_1002_adfm_201910304 crossref_primary_10_1021_am506653n crossref_primary_10_1016_j_clay_2021_106132 crossref_primary_10_1039_C7MH00305F crossref_primary_10_1039_C6AN00003G crossref_primary_10_1007_s00216_017_0369_8 crossref_primary_10_1039_C6RA19242D crossref_primary_10_1016_j_solidstatesciences_2017_04_003 crossref_primary_10_1186_1556_276X_9_146 crossref_primary_10_1002_ppsc_201400079 crossref_primary_10_2217_nnm_15_1 crossref_primary_10_1002_adfm_202107826 crossref_primary_10_2478_aoas_2018_0029 crossref_primary_10_1039_C6RA23836J crossref_primary_10_1021_acs_langmuir_6b01845 crossref_primary_10_1063_5_0045945 crossref_primary_10_1021_acsagscitech_3c00436 crossref_primary_10_1039_C6CS00616G crossref_primary_10_3389_fcell_2022_989471 crossref_primary_10_1016_j_addr_2023_115049 crossref_primary_10_1016_j_micromeso_2016_03_040 crossref_primary_10_1155_2014_972475 crossref_primary_10_4155_tde_13_110 crossref_primary_10_1039_C4CC09382H crossref_primary_10_3390_molecules26144186 crossref_primary_10_1016_j_nano_2016_02_011 crossref_primary_10_1002_adma_201303123 crossref_primary_10_1039_D2AN01684B crossref_primary_10_1002_adtp_202200089 crossref_primary_10_1016_j_jddst_2020_101617 crossref_primary_10_1021_acs_orglett_5b00740 crossref_primary_10_1039_C4TA06316C crossref_primary_10_1016_j_addr_2021_113953 crossref_primary_10_1039_C8BM01658E crossref_primary_10_1021_acsami_6b01147 crossref_primary_10_1002_smll_202401776 crossref_primary_10_1039_C4NR02657H crossref_primary_10_1007_s12274_014_0503_2 crossref_primary_10_1039_C4RA15574B crossref_primary_10_3390_molecules25173814 crossref_primary_10_1039_C4CC10226F crossref_primary_10_1039_C6BM00039H crossref_primary_10_1080_07391102_2025_2481581 crossref_primary_10_1002_admi_202102558 crossref_primary_10_1021_acsnano_7b08225 crossref_primary_10_3390_jcs5050131 crossref_primary_10_1038_s41467_019_09158_1 crossref_primary_10_1002_adma_202211432 crossref_primary_10_1016_j_ejmech_2019_111620 crossref_primary_10_3389_fmolb_2016_00001 crossref_primary_10_1016_j_apradiso_2024_111615 crossref_primary_10_1016_j_bios_2023_115180 crossref_primary_10_1038_s41565_024_01673_7 crossref_primary_10_3390_molecules24020332 crossref_primary_10_2147_IJN_S429629 crossref_primary_10_3390_cancers11101474 crossref_primary_10_1021_acs_chemrev_8b00626 crossref_primary_10_1039_C4NR02753A crossref_primary_10_1039_C8TC02097C crossref_primary_10_1016_j_jinorgbio_2020_111117 crossref_primary_10_1021_acs_langmuir_5b03811 crossref_primary_10_1021_acsbiomaterials_5b00274 crossref_primary_10_1002_adma_201907035 crossref_primary_10_1021_acsami_6b16505 crossref_primary_10_1039_C4CS00300D crossref_primary_10_1021_acs_chemmater_5b04660 crossref_primary_10_1088_1361_6528_aac6b1 crossref_primary_10_1002_smll_201401559 crossref_primary_10_1002_aic_15976 crossref_primary_10_1021_acsami_7b14566 crossref_primary_10_1146_annurev_chembioeng_060817_084225 crossref_primary_10_1016_j_biomaterials_2015_01_028 crossref_primary_10_1002_ange_202112752 crossref_primary_10_1007_s42247_020_00078_1 crossref_primary_10_1002_adhm_202300711 crossref_primary_10_1021_acsnano_5b00651 crossref_primary_10_1186_s12951_024_02580_8 crossref_primary_10_1007_s12274_017_1592_5 |
Cites_doi | 10.1016/j.taap.2009.04.010 10.1002/smll.200900923 10.1021/ja028650l 10.1002/adma.201103343 10.1021/cm0705789 10.1038/nnano.2007.387 10.1021/nn2039643 10.1021/ja910846q 10.1021/ja1022267 10.1021/ja809346n 10.1039/b905158a 10.1038/nature01362 10.1016/S1748-0132(07)70084-1 10.1038/nmat2992 10.1016/j.addr.2009.11.007 10.1021/ja051113r 10.1002/smll.201001459 10.1002/anie.200501819 10.1038/nrc1591 10.1002/chem.201102599 10.1016/j.addr.2012.06.006 10.1002/adma.201101586 10.1002/jbm.a.31923 10.1039/c0jm03915b 10.1002/smll.200901789 10.1002/adfm.200701317 10.1002/anie.201106180 10.1021/nn1029229 10.1016/j.biomaterials.2011.12.008 10.1021/ar600032u 10.1021/jp9043978 10.1002/anie.200604488 10.2174/138161208784746671 10.1096/fj.04-2747rev 10.1016/j.biomaterials.2010.11.025 10.1021/cr0300789 10.1021/cr9004007 10.1021/ja211035w 10.1021/nl0502569 10.1016/j.micromeso.2010.01.009 10.1039/b9nr00162j 10.1002/adma.201104797 10.1259/bjr/17150274 10.1038/nrc1566 10.1016/j.micromeso.2009.03.031 10.1002/adfm.201002337 10.1021/nn200306g 10.1016/j.biomaterials.2011.10.017 10.1021/cr900232t 10.1016/j.biomaterials.2009.10.046 10.1016/j.addr.2012.05.008 10.1002/smll.201100521 10.1021/nn700008s 10.1016/j.jconrel.2011.10.037 10.1002/smll.201000538 10.1002/adma.201104714 10.1021/ja001106x 10.1021/jz2013837 10.1021/mp200287c 10.1002/anie.201004133 10.1016/j.addr.2008.08.003 10.1002/adma.201104763 10.1002/adfm.200601191 10.1016/j.biomaterials.2012.02.056 10.1016/j.solidstatesciences.2007.11.026 10.1039/c0cc05520d 10.1039/c1cc11479d 10.1021/nn202399w 10.1016/j.jconrel.2011.05.017 10.1039/c2cs15308d 10.1021/tx300166u 10.1021/cr200355j 10.1021/cr030698 10.2147/IJN.S26547 10.1002/anie.201203993 10.1021/cr000108x 10.1021/nl202949y 10.1039/c0jm00645a 10.1021/nn100918a 10.1016/j.micromeso.2009.11.015 10.1021/nl901589y 10.1021/nn101499d 10.1016/j.nantod.2011.10.003 10.1039/b902685a 10.1021/ja8060886 10.1016/j.addr.2008.03.012 10.1016/j.biomaterials.2012.06.059 10.1259/0007-1285-68-816-1296 10.1002/jbm.a.31371 10.2174/156720111797635522 10.1002/adma.201104033 10.1021/cm702792e 10.1021/ja0777584 10.1002/anie.201103108 10.1016/j.jconrel.2007.12.017 10.1039/c2cs15327k 10.1038/nbt1340 10.1021/ja2010175 10.1021/nl034134x 10.1016/j.micromeso.2005.05.001 10.1002/ejic.201101163 10.1039/c2cs15355f 10.1038/359710a0 10.1039/c1cc11760b 10.1002/anie.200603404 10.1002/smll.201200028 10.1002/adma.200900599 10.1021/ja710193c 10.1021/nn2043803 10.1002/adma.201201742 10.1016/j.addr.2008.08.004 10.1016/j.biomaterials.2010.10.035 10.1039/b822444g 10.1016/S1369-7021(11)70161-4 10.1021/ja057254a 10.1021/cr068445e 10.1021/nn103130q 10.1002/anie.201104765 10.1039/b902985k 10.1016/j.solidstatesciences.2005.04.003 10.1021/ja9061085 10.1016/j.actbio.2011.06.028 10.1016/j.jcis.2011.03.051 10.1002/smll.200902355 10.1021/cr100025t 10.1021/ja905793q 10.1126/science.1104274 10.1021/ja00053a020 10.1021/cm051198v 10.2217/nnm.11.19 10.1021/ja0565875 10.1021/jp306543q 10.1021/nn200809t 10.1148/radiol.2502080498 10.1088/0957-4484/20/4/045602 10.1126/science.279.5350.548 10.1002/cbic.200700509 10.1016/j.biomaterials.2012.02.060 10.1021/cr940351u 10.1016/j.biomaterials.2012.09.029 10.1002/adma.200600387 10.1039/c0md00139b 10.1021/nn200372g 10.1038/nrclinonc.2010.139 10.1002/anie.201002639 10.1021/ar2000259 10.1021/ja1084095 10.1016/j.biomaterials.2009.01.029 10.1007/3-540-45733-X_6 10.1016/S0022-5347(05)64992-0 10.2217/nnm.11.166 10.1016/j.addr.2012.06.012 10.1002/smll.201101055 10.1021/nn202863x 10.1021/nn100690m 10.1021/ar800018v 10.1038/nrd1033 10.1002/smll.200800926 10.1021/cm3001688 10.1016/j.nano.2011.06.002 10.1016/j.micromeso.2005.06.015 10.1016/j.biomaterials.2008.07.007 10.1016/j.addr.2003.07.013 10.1016/j.biomaterials.2010.05.065 10.1002/anie.200501500 10.1002/anie.200900880 10.1002/adfm.200800753 10.1021/cm703363w 10.1093/nar/gkq893 10.1021/cr068020s 10.1039/c1nr10718f 10.1002/anie.201002820 10.1002/anie.200802585 10.1002/smll.200701316 10.1021/ja201779d 10.1021/ja904456d 10.1039/c2nr12094a 10.1039/c0jm04115g 10.1021/nn800072t 10.1039/b517615h 10.1016/j.biomaterials.2009.09.060 10.1021/nn901398j 10.1021/nl0347334 10.1021/ja807798g 10.1021/nl902715v 10.1039/C1JM13102H 10.1021/nn200365a 10.1038/ncpneph0660 10.1039/b402025a 10.1016/j.biomaterials.2012.03.066 10.1002/anie.200602866 10.1038/nbt1006-1211 10.1002/adfm.201001495 10.1039/c0jm03851b 10.1021/ja901831u 10.1002/adfm.201102052 10.1016/S1476-5586(03)80005-2 10.1016/j.addr.2006.09.020 10.1039/c0cc02914a 10.1016/j.biomaterials.2010.07.103 10.1039/c1cs15246g 10.1016/j.biomaterials.2010.04.055 10.1172/JCI45600 10.1016/j.biomaterials.2011.11.086 10.1002/adma.200800854 10.1021/ja900025f 10.1021/ja206998x 10.1039/C1CS15187H 10.1038/nbt994 10.1039/B406727D 10.1021/jp103982a 10.1021/ja0772086 10.1016/j.biomaterials.2012.05.065 10.1002/anie.201001847 10.1002/smll.200900621 10.1021/ar200106e 10.1093/jnci/90.12.889 10.1002/adfm.201100031 10.1002/adfm.200500565 10.1039/C1CS15248C 10.1016/j.jconrel.2012.05.046 10.1021/nn800781r 10.1021/la903008z 10.1038/nnano.2007.108 10.1016/j.biomaterials.2010.01.015 10.1039/b804594a 10.1016/j.nantod.2011.02.007 10.1021/nn1015117 10.1016/j.progsolidstchem.2007.10.002 10.1039/c1cc13658e 10.1021/cm0204371 10.1021/cm203000u 10.1021/cm0011559 10.1002/adma.200901096 10.1002/smll.201001447 10.1016/j.biomaterials.2010.03.048 10.1021/ar800150g 10.1002/anie.200802469 10.1038/nrc1071 10.1038/nmat1390 10.1002/anie.201000827 10.1111/j.2042-7158.2010.01167.x 10.1002/chem.200600226 10.1002/anie.200200546 10.1039/c0jm02863k |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201205292 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 3176 |
ExternalDocumentID | 23681931 10_1002_adma_201205292 ADMA201205292 ark_67375_WNG_J850KQQH_G |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c5222-484dc4790af7bbeecd2e53018e552ffdcda5287d23599af37e258fed116d51ba3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:57:49 EDT 2025 Fri Jul 11 10:58:37 EDT 2025 Mon Jul 21 06:04:55 EDT 2025 Tue Jul 01 02:26:32 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Aug 20 07:24:25 EDT 2025 Wed Oct 30 09:52:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5222-484dc4790af7bbeecd2e53018e552ffdcda5287d23599af37e258fed116d51ba3 |
Notes | ark:/67375/WNG-J850KQQH-G istex:4C00EF9A4FE0B028D7B2824CDAB9A6DC9ADF5AEE ArticleID:ADMA201205292 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201205292 |
PMID | 23681931 |
PQID | 1367877142 |
PQPubID | 23479 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_1439757269 proquest_miscellaneous_1367877142 pubmed_primary_23681931 crossref_citationtrail_10_1002_adma_201205292 crossref_primary_10_1002_adma_201205292 wiley_primary_10_1002_adma_201205292_ADMA201205292 istex_primary_ark_67375_WNG_J850KQQH_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 18, 2013 |
PublicationDateYYYYMMDD | 2013-06-18 |
PublicationDate_xml | – month: 06 year: 2013 text: June 18, 2013 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538. Q. J. He, J. L. Shi, F. Chen, M. Zhu, L. X. Zhang, Biomaterials 2010, 31, 3335. J. Kobler, K. Moller, T. Bein, ACS Nano 2008, 2, 791. H. Meng, M. Xue, T. Xia, Z. X. Ji, D. Y. Tarn, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 4131. L. M. Pan, Q. J. He, J. N. Liu, Y. Chen, M. Ma, L. L. Zhang, J. L. Shi, J. Am. Chem. Soc. 2012, 134, 5722. H. Jaganathan, B. Godin, Adv. Drug Deliv. Rev. 2012, 64, 1800. M. Vendrell, D. T. Zhai, J. C. Er, Y. T. Chang, Chem. Rev. 2012, 112, 4391. Q. He, M. Ma, C. Wei, J. Shi, Biomaterials 2012, 33, 4392. S. Mura, P. Couvreur, Adv. Drug Deliv. Rev. 2012, 64, 1394. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084. H. Yan, C. Teh, S. Sreejith, L. L. Zhu, A. Kwok, W. Q. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. L. Zhao, Angew. Chem. Int. Ed. 2012, 51, 8373. M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438. Q. J. He, Z. W. Zhang, F. Gao, Y. P. Li, J. L. Shi, Small 2011, 7, 271. I. Izquierdo-Barba, M. Colilla, M. Vallet-Regi, J. Nanomater. 2008, DOI: 10.1155/2008/106970. B. A. Rzigalinski, J. S. Strobl, Toxicol. Appl. Pharm. 2009, 238, 280. A. Bernardos, L. Mondragon, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, ACS Nano 2010, 4, 6353. E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regi, Chem. Mater. 2007, 19, 3455. A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11. J. N. Liu, W. B. Bu, S. J. Zhang, F. Chen, H. Y. Xing, L. M. Pan, L. P. Zhou, W. J. Peng, J. L. Shi, Chem. Eur. J. 2012, 18, 2335. K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 872. S. M. Moghimi, A. C. Hunter, J. C. Murray, FASEB Journal 2005, 19, 311. J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc. 2010, 132, 552. H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon, D. H. Min, Small 2012, 8, 1752. P. P. Yang, S. L. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679. K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869. R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 2012, 41, 2943. S. A. Li, H. A. Liu, L. Li, N. Q. Luo, R. H. Cao, D. H. Chen, Y. Z. Shao, Appl. Phys. Lett. 2011, 98, DOI: DOI: 10.1155/2008/106970. T. T. Wang, F. Chai, Q. Fu, L. Y. Zhang, H. Y. Liu, L. Li, Y. Liao, Z. M. Su, C. A. Wang, B. Y. Duan, D. X. Ren, J. Mater. Chem. 2011, 21, 5299. M. Ma, H. R. Chen, Y. Chen, X. Wang, F. Chen, X. Z. Cui, J. L. Shi, Biomaterials 2012, 33, 989. E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, Solid State Sci. 2008, 10, 421. Y. Chen, C. Chu, Y. C. Zhou, Y. F. Ru, H. R. Chen, F. Chen, Q. J. He, Y. L. Zhang, L. L. Zhang, J. L. Shi, Small 2011, 7, 2935. M. Zhu, H. X. Wang, J. Y. Liu, H. L. He, X. G. Hua, Q. J. He, L. X. Zhang, X. J. Ye, J. L. Shi, Biomaterials 2011, 32, 1986. S. Beg, M. Rizwan, A. M. Sheikh, M. S. Hasnain, K. Anwer, K. Kohli, J. Pharm. Pharm. 2011, 63, 141. F. Sharif, F. Porta, A. H. Meijer, A. Kros, M. K. Richardson, Int. J. Nanomed. 2012, 7, 1875. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834. C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451. C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou, L. W. Lo, Angew. Chem. Int. Ed. 2010, 49, 8214. J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren, M. Linden, ACS Nano 2009, 3, 197. Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, Y. Li, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, L. Zhang, J. Shi, Adv. Mater. 2013, DOI: 10.1002/adma.201204685. J. L. Steinbacher, S. A. Lathrop, K. Cheng, J. M. Hillegass, K. Butnor, R. A. Kauppinen, B. T. Mossman, C. C. Landry, Small 2010, 6, 2678. J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small 2010, 6, 1234. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165. C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Adv. Drug Deliv. Rev. 2010, 62, 346. J. P. Lai, X. Mu, Y. Y. Xu, X. L. Wu, C. L. Wu, C. Li, J. B. Chen, Y. B. Zhao, Chem. Commun. 2010, 46, 7370. J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050. M. Ferrari, Nat. Rev. Cancer 2005, 5, 161. A. Baeza, E. Guisasola, E. Ruiz-Hernandez, M. Vallet-Regi, Chem. Mater. 2012, 24, 517. S. H. Cheng, C. C. Hsieh, N. T. Chen, C. H. Chu, C. M. Huang, P. T. Chou, F. G. Tseng, C. S. Yang, C. Y. Mou, L. W. Lo, Nano Today 2011, 6, 552. S. H. Crayton, A. Tsourkas, ACS Nano 2011, 5, 9592. J. G. Penfield, R. F. Reilly, Nat. Clin. Pract. Nephrol. 2007, 3, 654. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev. 1999, 99, 3181. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner, T. Bein, J. Am. Chem. Soc. 2009, 131, 11361. R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653. C. D. H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 2005, 34, 276. M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308. H. X. Wu, S. J. Zhang, J. M. Zhang, G. Liu, J. L. Shi, L. X. Zhang, X. Z. Cui, M. L. Ruan, Q. J. He, W. B. Bu, Adv. Funct. Mater. 2011, 21, 1850. J. Zhou, Z. Liu, F. Y. Li, Chem. Soc. Rev. 2012, 41, 1323. Y. Chen, H. R. Chen, S. J. Zhang, F. Chen, L. X. Zhang, J. M. Zhang, M. Zhu, H. X. Wu, L. M. Guo, J. W. Feng, J. L. Shi, Adv. Funct. Mater. 2011, 21, 270. Y. Z. Zhang, J. C. Wang, X. Y. Bai, T. Y. Jiang, Q. Zhang, S. L. Wang, Mol. Pharm. 2012, 9, 505. D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686. Y. Chen, H. R. Chen, Y. Sun, Y. Y. Zheng, D. P. Zeng, F. Q. Li, S. J. Zhang, X. Wang, K. Zhang, M. Ma, Q. J. He, L. L. Zhang, J. L. Shi, Angew. Chem. Int. Ed. 2011, 50, 12505. M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889. H. X. Wu, G. Liu, S. J. Zhang, J. L. Shi, L. X. Zhang, Y. Chen, F. Chen, H. R. Chen, J. Mater. Chem. 2011, 21, 3037. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161. J. M. Harris, R. B. Chess, Nat. Rev. Drug Discov. 2003, 2, 214. S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038. C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. W. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. M. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, C. J. Brinker, Nat. Mater. 2011, 10, 389. Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 84, 218. T. Asefa, Z. Tao, Chem. Res. Toxicol. 2012, 25, 2265. J. Perez-Rodriguez, S. Lai, B. D. Ehst, D. M. Fine, D. A. Bluemke, Radiology 2009, 250, 371. H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6267. C. Coll, L. Mondragon, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, P. Amoros, E. Perez-Paya, Angew. Chem. Int. Ed. 2011, 50, 2138. R. I. Nooney, D. Thirunavukkarasu, Y. M. Chen, R. Josephs, A. E. Ostafin, Chem. Mater. 2002, 14, 4721. K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382. L. Xing, H. Q. Zheng, Y. Y. Cao, S. A. Che, Adv. Mater. 2012, 24, 6433. L. L. Li, Y. Q. Guan, H. Y. Liu, N. J. Hao, T. L. Liu, X. W. Meng, C. H. Fu, Y. Z. Li, Q. L. Qu, Y. G. Zhang, S. Y. Ji, L. Chen, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 7462. D. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380. T. Kim, E. J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E. S. Lee, H. Baik, S. Haam, J. S. Suh, Y. M. Huh, K. Lee, Angew. Chem. Int. Ed. 2011, 50, 10589. C. E. Chen, F. Pu, Z. Z. Huang, Z. Liu, J. S. Ren, X. G. Qu, Nucleic Acids Res. 2011, 39, 1638. F. Zhang, G. B. Braun, A. Pallaoro, Y. C. Zhang, Y. F. Shi, D. X. Cui, M. Moskovits, D. Y. Zhao, G. D. Stucky, Nano Lett. 2012, 12, 61. C. C. Huang, C. Y. Tsai, H. S. Sheu, K. Y. Chuang, C. H. Su, U. S. Jeng, F. Y. Cheng, H. Y. Lei, C. S. Yeh, ACS Nano 2011, 5, 3905. D. D. Schwert, J. A. Davies, N. Richardson, Contrast Agents I 2002, 221, 165. J. Lu, Z. X. Li, J. I. Zink, F. Tamanoi, Nanome-Nanotechnol. 2012, 8, 212. H. P. Martinez, Y. Kono, S. L. Blair, S. Sandoval, J. Wang-Rodriguez, R. F. Mattrey, A. C. Kummel, W. C. Trogler, Medchemcomm 2010, 1, 266. E. Torres, F. Mainini, R. Napolitano, F. Fedeli, R. Cavalli, S. Aime, E. Terreno, J. Control. Release 2011, 154, 196. X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987. M. A. Malvindi, A. Greco, F. Conversano, A. Figuerola, M. Corti, M. Bonora, A. Lascialfari, H. A. Doumari, M. Moscardini, R. Cingolani, G. Gigli, S. Casciaro, T. Pellegrino, A. Ragusa, Adv. Funct. Mater. 2011, 21, 2548. J. L. Vivero-Escoto, Slowing, II, B. G. Trewyn, V. S. Y. Lin, Small 2010, 6, 1952. X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Adv. Mater. 2012, 24, 785. Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590. I. I. Slowing, C. W. Wu, J. L. Vivero-Escoto, V. S. Y. Lin, Small 2009, 5, 57. A. Bernardos, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, P. Amoros, Angew. Chem. Int. Ed. 2009, 48, 5884. X. Wang, H. R. Chen, Y. Chen, M. Ma, K. Zhang, F. Q. Li, Y. Y. Zheng, D. P. Zeng, Q. Wang, J. L. Shi, Adv. Mater. 2012, 24, 785. J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. 2011; 358 2004; 22 2002; 14 2007; 107 2006; 35 2008; 36 2004; 4 2008; 108 2009; 113 2012; 18 1998; 279 2012; 12 2009; 238 2010; 20 2010; 26 2012; 134 2010; 1 2006; 24 2008; 29 2010; 114 2005; 105 1992; 114 2010; 110 2011; 63 1992; 359 2008; 23 2009; 123 1998; 90 2007; 2 2000; 122 2008; 20 2007; 3 2012; 25 2012; 24 2009; 19 2012; 22 2010; 4 2003; 42 2010; 7 2010; 6 2011; 121 2007; 17 2007; 19 2010; 31 2006; 58 2005; 84 2005; 85 2008; 126 2011; 3 2011; 6 2011; 5 2012; 33 2011; 8 2011; 7 2011; 133 2005; 19 2010; 49 2012; 112 2010; 46 2009; 90A 2004; 56 2005; 127 2005; 5 2008; 47 2005; 4 2005; 7 2008; 41 2012; 116 2005; 17 2008; 130 2012; 41 2012; 161 2012; 163 2001; 101 2008; 9 2011; 10 2011; 98 2011; 14 2008; 4 2008; 2 2009; 48 2010; 62 2011; 154 2012; 51 1995; 68 2002; 221 2003; 2 2003; 3 1999; 99 2005; 307 2011; 21 2003; 5 2011; 23 2003; 125 2001; 13 2006; 128 2008; 60 2012; 64 2007; 25 2005; 34 2004; 104 2008; 84A 2009; 21 2009; 20 2006; 12 2008; 18 2006; 16 2008; 14 2008 2006; 18 2011; 32 2008; 10 2009; 250 2009; 131 2011; 39 2005; 44 2003; 76 2009; 30 2012; 3 2013; 34 2004; 14 2011; 50 2002; 167 2010; 132 2009; 9 2011; 44 2010; 131 2007; 40 2009; 5 2013 2011; 47 2012; 6 2009; 3 2012; 7 2009; 1 2012; 4 2003; 421 2007; 46 2012; 8 2012; 9 e_1_2_7_3_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_60_2 e_1_2_7_191_2 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_248_2 e_1_2_7_68_2 e_1_2_7_142_2 e_1_2_7_188_2 e_1_2_7_202_2 e_1_2_7_225_2 e_1_2_7_165_2 e_1_2_7_240_2 e_1_2_7_116_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_180_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_192_2 e_1_2_7_237_2 e_1_2_7_131_2 e_1_2_7_154_2 e_1_2_7_177_2 e_1_2_7_214_2 e_1_2_7_139_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_82_2 e_1_2_7_120_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_226_2 e_1_2_7_181_2 e_1_2_7_249_2 e_1_2_7_143_2 e_1_2_7_166_2 e_1_2_7_29_2 e_1_2_7_203_2 e_1_2_7_189_2 e_1_2_7_241_2 e_1_2_7_117_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_32_2 e_1_2_7_55_2 e_1_2_7_170_2 e_1_2_7_215_2 e_1_2_7_78_2 e_1_2_7_193_2 e_1_2_7_238_2 e_1_2_7_132_2 e_1_2_7_155_2 e_1_2_7_178_2 e_1_2_7_230_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_204_2 e_1_2_7_227_2 e_1_2_7_66_2 e_1_2_7_89_2 e_1_2_7_182_2 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_242_2 e_1_2_7_167_2 e_1_2_7_118_2 e_1_2_7_110_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_171_2 e_1_2_7_194_2 e_1_2_7_216_2 e_1_2_7_239_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_179_2 e_1_2_7_231_2 e_1_2_7_156_2 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_122_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_160_2 e_1_2_7_183_2 e_1_2_7_205_2 e_1_2_7_88_2 e_1_2_7_228_2 e_1_2_7_27_2 e_1_2_7_145_2 e_1_2_7_168_2 e_1_2_7_243_2 e_1_2_7_220_2 e_1_2_7_119_2 e_1_2_7_111_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_2 e_1_2_7_195_2 e_1_2_7_99_2 e_1_2_7_172_2 e_1_2_7_217_2 e_1_2_7_38_2 e_1_2_7_134_2 e_1_2_7_157_2 e_1_2_7_232_2 e_1_2_7_108_2 e_1_2_7_7_2 e_1_2_7_123_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_184_2 e_1_2_7_206_2 e_1_2_7_229_2 e_1_2_7_161_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_244_2 e_1_2_7_146_2 e_1_2_7_221_2 e_1_2_7_169_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_150_2 e_1_2_7_173_2 e_1_2_7_218_2 e_1_2_7_37_2 e_1_2_7_196_2 e_1_2_7_233_2 e_1_2_7_135_2 e_1_2_7_210_2 e_1_2_7_158_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_162_2 e_1_2_7_207_2 e_1_2_7_48_2 e_1_2_7_222_2 e_1_2_7_185_2 e_1_2_7_245_2 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_113_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_219_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_151_2 e_1_2_7_59_2 e_1_2_7_174_2 e_1_2_7_211_2 e_1_2_7_197_2 e_1_2_7_234_2 e_1_2_7_136_2 e_1_2_7_159_2 e_1_2_7_5_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_208_2 e_1_2_7_62_2 e_1_2_7_85_2 e_1_2_7_47_2 e_1_2_7_140_2 e_1_2_7_200_2 e_1_2_7_223_2 e_1_2_7_246_2 e_1_2_7_163_2 e_1_2_7_186_2 e_1_2_7_148_2 e_1_2_7_114_2 e_1_2_7_50_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 Chen Y. (e_1_2_7_57_2) 2013 e_1_2_7_152_2 e_1_2_7_175_2 e_1_2_7_212_2 e_1_2_7_235_2 Izquierdo‐Barba I. (e_1_2_7_198_2) 2008 e_1_2_7_137_2 e_1_2_7_250_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_190_2 e_1_2_7_209_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_141_2 e_1_2_7_164_2 e_1_2_7_187_2 e_1_2_7_201_2 e_1_2_7_224_2 e_1_2_7_149_2 e_1_2_7_115_2 Li S. A. (e_1_2_7_247_2) 2011; 98 e_1_2_7_72_2 e_1_2_7_22_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_130_2 e_1_2_7_153_2 e_1_2_7_199_2 e_1_2_7_236_2 e_1_2_7_176_2 e_1_2_7_213_2 e_1_2_7_138_2 |
References_xml | – reference: Y. Chen, Q. Yin, X. F. Ji, S. J. Zhang, H. R. Chen, Y. Y. Zheng, Y. Sun, H. Y. Qu, Z. Wang, Y. P. Li, X. Wang, K. Zhang, L. L. Zhang, J. L. Shi, Biomaterials 2012, 33, 7126. – reference: K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 872. – reference: A. Pietroiusti, M. Massimiani, I. Fenoglio, M. Colonna, F. Valentini, G. Palleschi, A. Camaioni, A. Magrini, G. Siracusa, A. Bergamaschi, A. Sgambato, L. Campagnolo, ACS Nano 2011, 5, 4624. – reference: J. K. Hsiao, C. P. Tsai, T. H. Chung, Y. Hung, M. Yao, H. M. Liu, C. Y. Mou, C. S. Yang, Y. C. Chen, D. M. Huang, Small 2008, 4, 1445. – reference: S. H. Wu, Y. Hung, C. Y. Mou, Chem. Commun. 2011, 47, 9972. – reference: J. P. Lai, X. Mu, Y. Y. Xu, X. L. Wu, C. L. Wu, C. Li, J. B. Chen, Y. B. Zhao, Chem. Commun. 2010, 46, 7370. – reference: M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, J. Santamaria, Nano Today 2007, 2, 22. – reference: Z. G. Feng, Y. S. Li, D. C. Niu, L. Li, W. R. Zhao, H. R. Chen, J. H. Gao, M. L. Ruan, J. L. Shi, Chem. Commun. 2008, 23, 2629. – reference: V. Salgueirino-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marzan, M. Farle, Adv. Funct. Mater. 2006, 16, 509. – reference: F. Sharif, F. Porta, A. H. Meijer, A. Kros, M. K. Richardson, Int. J. Nanomed. 2012, 7, 1875. – reference: I. Izquierdo-Barba, L. Ruiz-Gonzalez, J. C. Doadrio, J. M. Gonzalez-Calbet, M. Vallet-Regi, Solid State Sci. 2005, 7, 983. – reference: M. Hossain, M. Su, J. Phy. Chem. C 2012, 116, 23047. – reference: I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435-446. – reference: W. R. Zhao, M. D. Lang, Y. S. Li, L. Li, J. L. Shi, J. Mater. Chem. 2009, 19, 2778. – reference: D. Arcos, V. Fal-Miyar, E. Ruiz-Hernandez, M. Garcia-Hernandez, M. L. Ruiz-Gonzalez, J. Gonzalez-Calbet, M. Vallet-Regi, J. Mater. Chem. 2012, 22, 64. – reference: S. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res. 2008, 41, 1842. – reference: C. R. Hill, G. R. terHaar, Brit. J. Radiol. 1995, 68, 1296. – reference: Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, Y. Li, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, L. Zhang, J. Shi, Adv. Mater. 2013, DOI: 10.1002/adma.201204685. – reference: T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M. T. McMahon, A. Quinones-Hinojosa, J. W. M. Bulte, T. Hyeon, A. A. Gilad, J. Am. Chem. Soc. 2011, 133, 2955. – reference: D. Peer, J. M. Karp, S. Hong, O. C. FaroKhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. – reference: T. L. Liu, L. L. Li, C. H. Fu, H. Y. Liu, D. Chen, F. Q. Tang, Biomaterials 2012, 33, 2399. – reference: Y. Z. Shao, X. M. Tian, W. Y. Hu, Y. Y. Zhang, H. Liu, H. Q. He, Y. Y. Shen, F. K. Xie, L. Li, Biomaterials 2012, 33, 6438. – reference: J. N. Liu, W. B. Bu, S. J. Zhang, F. Chen, H. Y. Xing, L. M. Pan, L. P. Zhou, W. J. Peng, J. L. Shi, Chem. Eur. J. 2012, 18, 2335. – reference: H. A. Meng, M. Liong, T. A. Xia, Z. X. Li, Z. X. Ji, J. I. Zink, A. E. Nel, ACS Nano 2010, 4, 4539. – reference: H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165. – reference: J. T. Robinson, S. M. Tabakman, Y. Y. Liang, H. L. Wang, H. S. Casalongue, D. Vinh, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 6825. – reference: Q. J. He, J. L. Shi, F. Chen, M. Zhu, L. X. Zhang, Biomaterials 2010, 31, 3335. – reference: K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev. 1999, 99, 3181. – reference: H. Jaganathan, B. Godin, Adv. Drug Deliv. Rev. 2012, 64, 1800. – reference: T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889. – reference: O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, M. Q. Zhang, Nano Lett. 2005, 5, 1003. – reference: C. T. Wu, W. Fan, Y. F. Zhu, M. Gelinsky, J. Chang, G. Cuniberti, V. Albrecht, T. Friis, Y. Xiao, Acta Biomater. 2011, 7, 3563. – reference: J. Kobler, K. Moller, T. Bein, ACS Nano 2008, 2, 791. – reference: Q. J. He, Z. W. Zhang, F. Gao, Y. P. Li, J. L. Shi, Small 2011, 7, 271. – reference: K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154. – reference: M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morere, M. Garcia, J. O. Durand, L. Raehm, Angew. Chem. Int. Ed. 2011, 50, 11425. – reference: J. M. Harris, R. B. Chess, Nat. Rev. Drug Discov. 2003, 2, 214. – reference: M. Elsabahy, K. L. Wooley, Chem. Soc. Rev. 2012, 41, 2545. – reference: S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038. – reference: H. Hu, H. Zhou, J. Du, Z. Q. Wang, L. An, H. Yang, F. H. Li, H. X. Wu, S. P. Yang, J. Mater. Chem. 2011, 21, 6576. – reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692. – reference: J. V. Jokerst, T. Lobovkina, R. N. Zare, S. S. Gambhir, Nanomedicine 2011, 6, 715. – reference: P. L. Lin, R. J. Eckersley, E. A. H. Hall, Adv. Mater. 2009, 21, 3949. – reference: C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710. – reference: H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6267. – reference: D. D. Schwert, J. A. Davies, N. Richardson, Contrast Agents I 2002, 221, 165. – reference: H. Meng, M. Xue, T. Xia, Z. X. Ji, D. Y. Tarn, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 4131. – reference: F. Stallmach, J. Karger, C. Krause, M. Jeschke, U. Oberhagemann, J. Am. Chem. Soc. 2000, 122, 9237. – reference: Y. Chen, H. R. Chen, S. J. Zhang, F. Chen, L. X. Zhang, J. M. Zhang, M. Zhu, H. X. Wu, L. M. Guo, J. W. Feng, J. L. Shi, Adv. Funct. Mater. 2011, 21, 270. – reference: P. Juzenas, W. Chen, Y. P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, Adv. Drug Deliv. Rev. 2008, 60, 1600. – reference: L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, F. Y. Li, Biomaterials 2010, 31, 7078. – reference: Q. Gao, Y. Xu, D. Wu, Y. H. Sun, X. A. Li, J. Phys. Chem. C 2009, 113, 12753-12758. – reference: J. E. Kennedy, Nat. Rev. Cancer 2005, 5, 321. – reference: S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, J. Control. Release 2008, 126, 187. – reference: Y. N. Zhao, B. G. Trewyn, Slowing, II, V. S. Y. Lin, J. Am. Chem. Soc. 2009, 131, 8398. – reference: L. M. Pan, Q. J. He, J. N. Liu, Y. Chen, M. Ma, L. L. Zhang, J. L. Shi, J. Am. Chem. Soc. 2012, 134, 5722. – reference: X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Adv. Mater. 2012, 24, 2890. – reference: K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382. – reference: C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Adv. Drug Deliv. Rev. 2010, 62, 346. – reference: B. G. Trewyn, Slowing, II, S. Giri, H. T. Chen, V. S. Y. Lin, Acc. Chem. Res. 2007, 40, 846. – reference: C. D. H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 2005, 34, 276. – reference: D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686. – reference: S. M. Moghimi, A. C. Hunter, J. C. Murray, FASEB Journal 2005, 19, 311. – reference: Y. S. Li, J. L. Shi, Z. L. Hua, H. R. Chen, M. L. Ruan, D. S. Yan, Nano Lett. 2003, 3, 609. – reference: J. Lu, Z. X. Li, J. I. Zink, F. Tamanoi, Nanome-Nanotechnol. 2012, 8, 212. – reference: J. Pan, D. Wan, J. L. Gong, Chem. Commun. 2011, 47, 3442. – reference: M. Vallet-Regi, E. Ruiz-Hernandez, Adv. Mater. 2011, 23, 5177. – reference: Y. Chen, C. Chu, Y. C. Zhou, Y. F. Ru, H. R. Chen, F. Chen, Q. J. He, Y. L. Zhang, L. L. Zhang, J. L. Shi, Small 2011, 7, 2935. – reference: K. Glunde, D. Artemov, M. F. Penet, M. A. Jacobs, Z. M. Bhujwalla, Chem. Rev. 2010, 110, 3043. – reference: F. G. Gao, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, L. F. Tan, H. B. Li, X. L. Huang, B. Peng, C. M. Yan, L. Q. Yang, X. L. Wu, D. Chen, F. Q. Tang, Nanoscale 2012, 4, 3365. – reference: J. Lu, M. Liong, Z. X. Li, J. I. Zink, F. Tamanoi, Small 2010, 6, 1794. – reference: D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548. – reference: X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 5390. – reference: Q. J. He, J. L. Shi, M. Zhu, Y. Chen, F. Chen, Micro. Meso. Mater. 2010, 131, 314. – reference: C. Wu, Y. Ramaswamy, Y. F. Zhu, R. Zheng, R. Appleyard, A. Howard, H. Zreiqat, Biomaterials 2009, 30, 2199. – reference: M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084. – reference: M. Ma, H. R. Chen, Y. Chen, X. Wang, F. Chen, X. Z. Cui, J. L. Shi, Biomaterials 2012, 33, 989. – reference: Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 2008, 130, 28. – reference: H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi, K. Kuroda, Chem. Mater. 2012, 24, 1462. – reference: E. Climent, A. Bernardos, R. Martinez-Manez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenon, J. Soto, P. Amoros, J. Am. Chem. Soc. 2009, 131, 14075. – reference: I. I. Slowing, C. W. Wu, J. L. Vivero-Escoto, V. S. Y. Lin, Small 2009, 5, 57. – reference: M. Vallet-Regi, F. Balas, M. Colilla, M. Manzano, Prog. Solid State Chem. 2008, 36, 163. – reference: C. C. Huang, C. Y. Tsai, H. S. Sheu, K. Y. Chuang, C. H. Su, U. S. Jeng, F. Y. Cheng, H. Y. Lei, C. S. Yeh, ACS Nano 2011, 5, 3905. – reference: N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350. – reference: A. H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 2007, 46, 1222. – reference: Y. Chen, Y. Gao, H. R. Chen, D. P. Zeng, Y. P. Li, Y. Y. Zheng, F. Q. Li, X. F. Ji, X. Wang, F. Chen, Q. J. He, L. L. Zhang, J. L. Shi, Adv. Funct. Mater. 2012, 22, 1586-1597. – reference: D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Deliv. Rev. 2008, 60, 1627. – reference: J. Feng, S. Y. Song, R. P. Deng, W. Q. Fan, H. J. Zhang, Langmuir 2010, 26, 3596. – reference: H. J. Kim, H. Matsuda, H. S. Zhou, I. Honma, Adv. Mater. 2006, 18, 3083. – reference: A. Liberman, H. P. Martinez, C. N. Ta, C. V. Barback, R. F. Mattrey, Y. Kono, S. L. Blair, W. C. Trogler, A. C. Kummel, Z. Wu, Biomaterials 2012, 33, 5124. – reference: A. Bernardos, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, P. Amoros, Angew. Chem. Int. Ed. 2009, 48, 5884. – reference: Q. J. He, J. L. Shi, X. Z. Cui, C. Y. Wei, L. X. Zhang, W. Wu, W. B. Bu, H. R. Chen, H. X. Wu, Chem. Commun. 2011, 47, 7947. – reference: M. Vallet-Regi, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548. – reference: M. Ferrari, Nat. Rev. Cancer 2005, 5, 161. – reference: F. Q. Tang, L. L. Li, D. Chen, Adv. Mater. 2012, 24, 1504. – reference: K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869. – reference: Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 84, 218. – reference: S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, Y. N. Xia, Acc. Chem. Res. 2008, 41, 1587. – reference: I. Izquierdo-Barba, M. Colilla, M. Vallet-Regi, J. Nanomater. 2008, DOI: 10.1155/2008/106970. – reference: T. Kim, E. J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E. S. Lee, H. Baik, S. Haam, J. S. Suh, Y. M. Huh, K. Lee, Angew. Chem. Int. Ed. 2011, 50, 10589. – reference: Y. F. Zhu, S. Kaskel, T. Ikoma, N. Hanagata, Micro. Meso. Mater. 2009, 123, 107. – reference: H. Hu, H. Zhou, J. Liang, L. An, A. T. Dai, X. J. Li, H. Yang, S. P. Yang, H. X. Wu, J. Colloid Interface Sci. 2011, 358, 392. – reference: C. Urata, H. Yamada, R. Wakabayashi, Y. Aoyama, S. Hirosawa, S. Arai, S. Takeoka, Y. Yamauchi, K. Kuroda, J. Am. Chem. Soc. 2011, 133, 8102. – reference: M. Vallet-Regi, Chem. Eur. J. 2006, 12, 5934. – reference: W. R. Zhao, H. R. Chen, Y. S. Li, L. Li, M. D. Lang, J. L. Shi, Adv. Funct. Mater. 2008, 18, 2780. – reference: I. I. Slowing J. L. Vivero-Escoto, C. W. Wu, V. S. Y. Lin, Adv. Drug Deliv. Rev. 2008, 60, 1278. – reference: S. A. Li, H. A. Liu, L. Li, N. Q. Luo, R. H. Cao, D. H. Chen, Y. Z. Shao, Appl. Phys. Lett. 2011, 98, DOI: DOI: 10.1155/2008/106970. – reference: H. Y. Liu, T. L. Liu, X. L. Wu, L. L. Li, L. F. Tan, D. Chen, F. Q. Tang, Adv. Mater. 2012, 24, 755. – reference: F. Qin, Y. C. Zhou, J. L. Shi, Y. L. Zhang, J. Biomed. Mater. Res. Part A 2009, 90A, 333. – reference: J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834. – reference: F. Torney, B. G. Trewyn, V. S. Y. Lin, K. Wang, Nat. Nanotechnol. 2007, 2, 295. – reference: Y. Z. Zhang, J. C. Wang, X. Y. Bai, T. Y. Jiang, Q. Zhang, S. L. Wang, Mol. Pharm. 2012, 9, 505. – reference: N. Lee, T. Hyeon, Chem. Soc. Rev. 2012, 41, 2575. – reference: D. Schmaljohann, Adv. Drug Deliv. Rev. 2006, 58, 1655. – reference: T. L. Liu, L. L. Li, X. Teng, X. L. Huang, H. Y. Liu, D. Chen, J. Ren, J. Q. He, F. Q. Tang, Biomaterials 2011, 32, 1657. – reference: C. Y. Liu, J. Guo, W. L. Yang, J. H. Hu, C. C. Wang, S. K. Fu, J. Mater. Chem. 2009, 19, 4764. – reference: M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293. – reference: S. B. Hartono, W. Y. Gu, F. Kleitz, J. Liu, L. Z. He, A. P. J. Middelberg, C. Z. Yu, G. Q. Lu, S. Z. Qiao, ACS Nano 2012, 6, 2104. – reference: E. Terreno, D. D. Castelli, A. Viale, S. Aime, Chem. Rev. 2010, 110, 3019. – reference: Q. J. He, Z. W. Zhang, Y. Gao, J. L. Shi, Y. P. Li, Small 2009, 5, 2722. – reference: A. Bernardos, L. Mondragon, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, ACS Nano 2010, 4, 6353. – reference: T. T. Wang, F. Chai, Q. Fu, L. Y. Zhang, H. Y. Liu, L. Li, Y. Liao, Z. M. Su, C. A. Wang, B. Y. Duan, D. X. Ren, J. Mater. Chem. 2011, 21, 5299. – reference: C. E. Chen, F. Pu, Z. Z. Huang, Z. Liu, J. S. Ren, X. G. Qu, Nucleic Acids Res. 2011, 39, 1638. – reference: M. Benezra, O. Penate-Medina, P. B. Zanzonico, D. Schaer, H. Ow, A. Burns, E. DeStanchina, V. Longo, E. Herz, S. Iyer, J. Wolchok, S. M. Larson, U. Wiesner, M. S. Bradbury, J. Clin. Invest. 2011, 121, 2768. – reference: R. I. Nooney, D. Thirunavukkarasu, Y. M. Chen, R. Josephs, A. E. Ostafin, Chem. Mater. 2002, 14, 4721. – reference: H. X. Wu, G. Liu, S. J. Zhang, J. L. Shi, L. X. Zhang, Y. Chen, F. Chen, H. R. Chen, J. Mater. Chem. 2011, 21, 3037. – reference: U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434. – reference: Slowing, II, B. G. Trewyn, S. Giri, V. S. Y. Lin, Adv. Funct. Mater. 2007, 17, 1225. – reference: J. E. Kennedy, G. R. ter Haar, D. Cranston, Brit. J. Radiol. 2003, 76, 590. – reference: E. Torres, F. Mainini, R. Napolitano, F. Fedeli, R. Cavalli, S. Aime, E. Terreno, J. Control. Release 2011, 154, 196. – reference: V. Wagner, A. Dullaart, A. K. Bock, A. Zweck, Nat. Biotechnol. 2006, 24, 1211. – reference: R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653. – reference: T. Yu, K. Greish, L. D. McGill, A. Ray, H. Ghandehari, ACS Nano 2012, 6, 2289-2301. – reference: G. Pasut, F. M. Veronese, J. Control. Release 2012, 161, 461. – reference: W. Rima, L. Sancey, M.-T. Aloy, E. Armandy, G. B. Alcantara, T. Epicier, A. Malchère, L. Joly-Pottuz, P. Mowat, F. Lux, O. Tillement, B. Burdin, A. Rivoire, C. Boulé, I. Anselme-Bertrand, J. Pourchez, M. Cottier, S. Roux, C. Rodriguez-Lafrasse, P. Perriat, Biomaterials 2013, 34, 181. – reference: Q. Yang, S. H. Wang, P. W. Fan, L. F. Wang, Y. Di, K. F. Lin, F. S. Xiao, Chem. Mater. 2005, 17, 5999. – reference: J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small 2010, 6, 1234. – reference: S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Chem. Rev. 2008, 108, 2064. – reference: S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161. – reference: C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. W. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. M. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, C. J. Brinker, Nat. Mater. 2011, 10, 389. – reference: M. Vendrell, D. T. Zhai, J. C. Er, Y. T. Chang, Chem. Rev. 2012, 112, 4391. – reference: L. L. Li, F. Q. Tang, H. Y. Liu, T. L. Liu, N. J. Hao, D. Chen, X. Teng, J. Q. He, ACS Nano 2010, 4, 6874. – reference: X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat. Biotechnol. 2004, 22, 969. – reference: A. Baeza, E. Guisasola, E. Ruiz-Hernandez, M. Vallet-Regi, Chem. Mater. 2012, 24, 517. – reference: Q. J. He, J. L. Shi, J. Mater. Chem. 2011, 21, 5845. – reference: C. G. Trejo, D. Lozano, M. Manzano, J. C. Doadrio, A. J. Salinas, S. Dapia, E. Gomez-Barrena, M. Vallet-Regi, N. Garcia-Honduvilla, J. Bujan, P. Esbrit, Biomaterials 2010, 31, 8564. – reference: C. P. Tsai, C. Y. Chen, Y. Hung, F. H. Chang, C. Y. Mou, J. Mater. Chem. 2009, 19, 5737. – reference: H. Yan, C. Teh, S. Sreejith, L. L. Zhu, A. Kwok, W. Q. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. L. Zhao, Angew. Chem. Int. Ed. 2012, 51, 8373. – reference: D. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380. – reference: W. R. Zhao, J. L. Gu, L. X. Zhang, H. R. Chen, J. L. Shi, J. Am. Chem. Soc. 2005, 127, 8916. – reference: T. Yu, D. Hubbard, A. Ray, H. Ghandehari, J. Control. Release 2012, 163, 46. – reference: X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115. – reference: M. Mahkam, Curr. Drug Deliv. 2011, 8, 607. – reference: S. H. Wu, Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang, C. Y. Mou, Chembiochem 2008, 9, 53. – reference: J. L. Vivero-Escoto, Slowing, II, B. G. Trewyn, V. S. Y. Lin, Small 2010, 6, 1952. – reference: J. G. Penfield, R. F. Reilly, Nat. Clin. Pract. Nephrol. 2007, 3, 654. – reference: A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921. – reference: C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009, 131, 16614. – reference: H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon, D. H. Min, Small 2012, 8, 1752. – reference: J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. R. Xing, G. Q. Lu, Chem. Commun. 2011, 47, 12578. – reference: Y. Z. You, K. K. Kalebaila, S. L. Brock, D. Oupicky, Chem. Mater. 2008, 20, 3354. – reference: X. L. Huang, F. Zhang, S. Lee, M. Swierczewska, D. O. Kiesewetter, L. X. Lang, G. F. Zhang, L. Zhu, H. K. Gao, H. S. Choi, G. Niu, X. Y. Chen, Biomaterials 2012, 33, 4370. – reference: M. Mizutani, Y. Yamada, T. Nakamura, K. Yano, Chem. Mater. 2008, 20, 4777. – reference: D. Chen, L. L. Li, F. Q. Tang, S. O. Qi, Adv. Mater. 2009, 21, 3804. – reference: E. Climent, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, A. Maquieira, P. Amoros, Angew. Chem. Int. Ed. 2010, 49, 7281. – reference: X. L. Huang, J. Zhuang, X. Teng, L. L. Li, D. Chen, X. Y. Yan, F. Q. Tang, Biomaterials 2010, 31, 6142. – reference: X. Li, J. L. Shi, X. P. Dong, L. X. Zhang, H. Y. Zeng, J. Biomed. Mater. Res. Part A 2008, 84A, 84. – reference: J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050. – reference: J. L. Steinbacher, S. A. Lathrop, K. Cheng, J. M. Hillegass, K. Butnor, R. A. Kauppinen, B. T. Mossman, C. C. Landry, Small 2010, 6, 2678. – reference: Y. Chen, H. R. Chen, D. P. Zeng, Y. B. Tian, F. Chen, J. W. Feng, J. L. Shi, ACS Nano 2010, 4, 6001. – reference: M. A. Malvindi, A. Greco, F. Conversano, A. Figuerola, M. Corti, M. Bonora, A. Lascialfari, H. A. Doumari, M. Moscardini, R. Cingolani, G. Gigli, S. Casciaro, T. Pellegrino, A. Ragusa, Adv. Funct. Mater. 2011, 21, 2548. – reference: Q. J. He, J. M. Zhang, J. L. Shi, Z. Y. Zhu, L. X. Zhang, W. B. Bu, L. M. Guo, Y. Chen, Biomaterials 2010, 31, 1085. – reference: H. X. Wu, S. J. Zhang, J. M. Zhang, G. Liu, J. L. Shi, L. X. Zhang, X. Z. Cui, M. L. Ruan, Q. J. He, W. B. Bu, Adv. Funct. Mater. 2011, 21, 1850. – reference: R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 2012, 41, 2943. – reference: Y. Wan, D. Y. Zhao, Chem. Rev. 2007, 107, 2821. – reference: A. Schlossbauer, S. Warncke, P. M. E. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein, Angew. Chem. Int. Ed. 2010, 49, 4734. – reference: L. L. Li, Y. Q. Guan, H. Y. Liu, N. J. Hao, T. L. Liu, X. W. Meng, C. H. Fu, Y. Z. Li, Q. L. Qu, Y. G. Zhang, S. Y. Ji, L. Chen, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 7462. – reference: S. H. Cheng, C. H. Lee, M. C. Chen, J. S. Souris, F. G. Tseng, C. S. Yang, C. Y. Mou, C. T. Chen, L. W. Lo, J. Mater. Chem. 2010, 20, 6149. – reference: J. H. Ryu, H. Koo, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Deliv. Rev. 2012, 64, 1447. – reference: S. H. Crayton, A. Tsourkas, ACS Nano 2011, 5, 9592. – reference: N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, S. N. Bhatia, J. Am. Chem. Soc. 2011, 133, 19582. – reference: J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc. 2010, 132, 552. – reference: Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng, M. L. Ruan, Y. S. Li, Angew. Chem. Int. Ed. 2005, 44, 5083. – reference: M. Kueny-Stotz, A. Garofalo, D. Felder-Flesch, Eur. J. Inorg. Chem. 2012, 12, 1987-2005. – reference: T. Asefa, Z. Tao, Chem. Res. Toxicol. 2012, 25, 2265. – reference: E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regi, Chem. Mater. 2007, 19, 3455. – reference: J. T. Sun, C. Y. Hong, C. Y. Pan, J. Phys. Chem. C 2010, 114, 12481. – reference: X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Adv. Mater. 2012, 24, 785. – reference: X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987. – reference: F. Zhang, G. B. Braun, A. Pallaoro, Y. C. Zhang, Y. F. Shi, D. X. Cui, M. Moskovits, D. Y. Zhao, G. D. Stucky, Nano Lett. 2012, 12, 61. – reference: Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418. – reference: P. A. Schornack, R. J. Gillies, Neoplasia 2003, 5, 135. – reference: J. M. Rosenholm, E. Peuhu, J. E. Eriksson, C. Sahlgren, M. Linden, Nano Lett. 2009, 9, 3308. – reference: J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren, M. Linden, ACS Nano 2009, 3, 197. – reference: J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. A. Ho, C. Y. Mou, L. W. Lo, Biomaterials 2010, 31, 5564. – reference: Y. S. Lin, C. L. Haynes, J. Am. Chem. Soc. 2010, 132, 4834. – reference: S. P. Rigby, M. Fairhead, C. F. van der Walle, Curr. Pharm. Design 2008, 14, 1821. – reference: H. Y. Liu, D. Chen, L. L. Li, T. L. Liu, L. F. Tan, X. L. Wu, F. Q. Tang, Angew. Chem. Int. Ed. 2011, 50, 891. – reference: S. H. Cheng, C. C. Hsieh, N. T. Chen, C. H. Chu, C. M. Huang, P. T. Chou, F. G. Tseng, C. S. Yang, C. Y. Mou, L. W. Lo, Nano Today 2011, 6, 552. – reference: Y. F. Zhu, J. L. Shi, Y. S. Li, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 85, 75. – reference: K. K. Coti, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab, J. F. Stoddart, Nanoscale 2009, 1, 16. – reference: A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11. – reference: C. F. van Nostrum, Adv. Drug Deliv. Rev. 2004, 56, 9. – reference: J. L. Vivero-Escoto, Slowing, II, C. W. Wu, V. S. Y. Lin, J. Am. Chem. Soc. 2009, 131, 3462. – reference: X. Wang, H. R. Chen, Y. Chen, M. Ma, K. Zhang, F. Q. Li, Y. Y. Zheng, D. P. Zeng, Q. Wang, J. L. Shi, Adv. Mater. 2012, 24, 785. – reference: S. Mura, P. Couvreur, Adv. Drug Deliv. Rev. 2012, 64, 1394. – reference: Y. Chen, H. R. Chen, L. M. Guo, Q. J. He, F. Chen, J. Zhou, J. W. Feng, J. L. Shi, ACS Nano 2010, 4, 529. – reference: Y. S. Lin, K. R. Hurley, C. L. Haynes, J. Phy. Chem. Lett. 2012, 3, 364. – reference: L. Xing, H. Q. Zheng, Y. Y. Cao, S. A. Che, Adv. Mater. 2012, 24, 6433. – reference: S. P. Hudson, R. F. Padera, R. Langer, D. S. Kohane, Biomaterials 2008, 29, 4045. – reference: H. P. Martinez, Y. Kono, S. L. Blair, S. Sandoval, J. Wang-Rodriguez, R. F. Mattrey, A. C. Kummel, W. C. Trogler, Medchemcomm 2010, 1, 266. – reference: M. Zhu, H. X. Wang, J. Y. Liu, H. L. He, X. G. Hua, Q. J. He, L. X. Zhang, X. J. Ye, J. L. Shi, Biomaterials 2011, 32, 1986. – reference: X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538. – reference: C. Park, K. Oh, S. C. Lee, C. Kim, Angew. Chem. Int. Ed. 2007, 46, 1455. – reference: Z. Liu, J. T. Robinson, S. M. Tabakman, K. Yang, H. J. Dai, Mater. Today 2011, 14, 316. – reference: Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590. – reference: C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451. – reference: Q. He, M. Ma, C. Wei, J. Shi, Biomaterials 2012, 33, 4392. – reference: M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308. – reference: H. Koo, M. S. Huh, J. H. Ryu, D. E. Lee, I. C. Sun, K. Choi, K. Kim, I. C. Kwon, Nano Today 2011, 6, 204. – reference: H. F. Bao, J. P. Yang, Y. Huang, Z. P. Xu, N. Hao, Z. X. Wu, G. Q. Lu, D. Y. Zhao, Nanoscale 2011, 3, 4069. – reference: J. Zhou, Z. Liu, F. Y. Li, Chem. Soc. Rev. 2012, 41, 1323. – reference: J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103. – reference: C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou, L. W. Lo, Angew. Chem. Int. Ed. 2010, 49, 8214. – reference: Y. Chen, H. R. Chen, Y. Sun, Y. Y. Zheng, D. P. Zeng, F. Q. Li, S. J. Zhang, X. Wang, K. Zhang, M. Ma, Q. J. He, L. L. Zhang, J. L. Shi, Angew. Chem. Int. Ed. 2011, 50, 12505. – reference: P. P. Yang, S. L. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679. – reference: E. Ruiz-Hernandez, A. Baeza, M. Vallet-Regi, ACS Nano 2011, 5, 1259. – reference: S. Beg, M. Rizwan, A. M. Sheikh, M. S. Hasnain, K. Anwer, K. Kohli, J. Pharm. Pharm. 2011, 63, 141. – reference: J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438. – reference: Y. Chen, H. Chen, S. Zhang, F. Chen, S. Sun, Q. He, M. Ma, X. Wang, H. Wu, L. Zhang, L. Zhang, J. Shi, Biomaterials 2012, 33, 2388. – reference: X. L. Huang, X. Teng, D. Chen, F. Q. Tang, J. Q. He, Biomaterials 2010, 31, 438. – reference: R. Liu, X. Zhao, T. Wu, P. Y. Feng, J. Am. Chem. Soc. 2008, 130, 14418. – reference: M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889. – reference: B. A. Rzigalinski, J. S. Strobl, Toxicol. Appl. Pharm. 2009, 238, 280. – reference: V. Cauda, A. Schlossbauer, T. Bein, Micro. Meso. Mater. 2010, 132, 60. – reference: K. U. Kohrmann, M. S. Michel, J. Gaa, E. Marlinghaus, P. Alken, J. Urol. 2002, 167, 2397. – reference: J. M. Rosenholm, V. Mamaeva, C. Sahlgren, M. Linden, Nanomedicine 2012, 7, 111. – reference: C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, L. W. Lo, Adv. Funct. Mater. 2009, 19, 215. – reference: M. J. Masarudin, K. Yusoff, R. A. Rahim, M. Z. Hussein, Nanotechnology 2009, 20, DOI: 10.1088/0957-4484/20/4/045602. – reference: J. E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Acc. Chem. Res. 2011, 44, 893. – reference: J. Perez-Rodriguez, S. Lai, B. D. Ehst, D. M. Fine, D. A. Bluemke, Radiology 2009, 250, 371. – reference: C. R. Thomas, D. P. Ferris, J. H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J. S. Shin, J. Cheon, J. I. Zink, J. Am. Chem. Soc. 2010, 132, 10623. – reference: J. L. Vivero-Escoto, K. M. L. Taylor-Pashow, R. C. Huxford, J. Della Rocca, C. Okoruwa, H. Y. An, W. L. Lin, W. B. Lin, Small 2011, 7, 3519. – reference: C. Coll, L. Mondragon, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, P. Amoros, E. Perez-Paya, Angew. Chem. Int. Ed. 2011, 50, 2138. – reference: J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. H. Shin, J. G. Park, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 688. – reference: A. M. Chen, M. Zhang, D. G. Wei, D. Stueber, O. Taratula, T. Minko, H. X. He, Small 2009, 5, 2673. – reference: M. H. Kim, H. K. Na, Y. K. Kim, S. R. Ryoo, H. S. Cho, K. E. Lee, H. Jeon, R. Ryoo, D. H. Min, ACS Nano 2011, 5, 3568. – reference: E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, Solid State Sci. 2008, 10, 421. – reference: V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner, T. Bein, J. Am. Chem. Soc. 2009, 131, 11361. – volume: 46 start-page: 7548 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 3043 year: 2010 publication-title: Chem. Rev. – volume: 46 start-page: 1222 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 212 year: 2012 publication-title: Nanome‐Nanotechnol. – volume: 84A start-page: 84 year: 2008 publication-title: J. Biomed. Mater. Res. Part A – volume: 112 start-page: 4391 year: 2012 publication-title: Chem. Rev. – volume: 23 start-page: 5177 year: 2011 publication-title: Adv. Mater. – volume: 17 start-page: 1225 year: 2007 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 22 year: 2007 publication-title: Nano Today – volume: 9 start-page: 505 year: 2012 publication-title: Mol. Pharm. – volume: 132 start-page: 552 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 2768 year: 2011 publication-title: J. Clin. Invest. – volume: 24 start-page: 2890 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 4045 year: 2008 publication-title: Biomaterials – volume: 20 start-page: 3987 year: 2008 publication-title: Adv. Mater. – volume: 64 start-page: 1447 year: 2012 publication-title: Adv. Drug Deliv. Rev. – volume: 128 start-page: 2115 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 271 year: 2011 publication-title: Small – volume: 167 start-page: 2397 year: 2002 publication-title: J. Urol. – volume: 110 start-page: 3019 year: 2010 publication-title: Chem. Rev. – year: 2013 publication-title: Adv. Mater. – volume: 12 start-page: 5934 year: 2006 publication-title: Chem. Eur. J. – volume: 48 start-page: 5884 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 1587 year: 2008 publication-title: Acc. Chem. Res. – volume: 46 start-page: 7370 year: 2010 publication-title: Chem. Commun. – volume: 1 start-page: 16 year: 2009 publication-title: Nanoscale – volume: 10 start-page: 421 year: 2008 publication-title: Solid State Sci. – volume: 307 start-page: 538 year: 2005 publication-title: Science – volume: 132 start-page: 10623 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3365 year: 2012 publication-title: Nanoscale – volume: 131 start-page: 16614 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 5845 year: 2011 publication-title: J. Mater. Chem. – volume: 110 start-page: 2921 year: 2010 publication-title: Chem. Rev. – volume: 12 start-page: 1987 year: 2012 end-page: 2005 publication-title: Eur. J. Inorg. Chem. – volume: 24 start-page: 1462 year: 2012 publication-title: Chem. Mater. – volume: 3 start-page: 654 year: 2007 publication-title: Nat. Clin. Pract. Nephrol. – volume: 107 start-page: 2821 year: 2007 publication-title: Chem. Rev. – volume: 7 start-page: 983 year: 2005 publication-title: Solid State Sci. – volume: 5 start-page: 135 year: 2003 publication-title: Neoplasia – volume: 21 start-page: 270 year: 2011 publication-title: Adv. Funct. Mater. – volume: 41 start-page: 3679 year: 2012 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 3519 year: 2011 publication-title: Small – volume: 44 start-page: 5038 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 872 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 12505 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 111 year: 2012 publication-title: Nanomedicine – year: 2008 publication-title: J. Nanomater. – volume: 131 start-page: 314 year: 2010 publication-title: Micro. Meso. Mater. – volume: 125 start-page: 4451 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 688 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2780 year: 2008 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 3354 year: 2008 publication-title: Chem. Mater. – volume: 131 start-page: 11361 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 715 year: 2011 publication-title: Nanomedicine – volume: 41 start-page: 2943 year: 2012 publication-title: Chem. Soc. Rev. – volume: 221 start-page: 165 year: 2002 publication-title: Contrast Agents I – volume: 21 start-page: 1850 year: 2011 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 215 year: 2009 publication-title: Adv. Funct. Mater. – volume: 114 start-page: 12481 year: 2010 publication-title: J. Phys. Chem. C – volume: 18 start-page: 2335 year: 2012 publication-title: Chem. Eur. J. – volume: 154 start-page: 196 year: 2011 publication-title: J. Control. Release – volume: 50 start-page: 2138 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 99 start-page: 3181 year: 1999 publication-title: Chem. Rev. – volume: 31 start-page: 438 year: 2010 publication-title: Biomaterials – volume: 8 start-page: 1752 year: 2012 publication-title: Small – volume: 132 start-page: 60 year: 2010 publication-title: Micro. Meso. Mater. – volume: 21 start-page: 6576 year: 2011 publication-title: J. Mater. Chem. – volume: 25 start-page: 2265 year: 2012 publication-title: Chem. Res. Toxicol. – volume: 40 start-page: 846 year: 2007 publication-title: Acc. Chem. Res. – volume: 130 start-page: 2154 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 5737 year: 2009 publication-title: J. Mater. Chem. – volume: 7 start-page: 2935 year: 2011 publication-title: Small – volume: 7 start-page: 1875 year: 2012 publication-title: Int. J. Nanomed. – volume: 104 start-page: 293 year: 2004 publication-title: Chem. Rev. – volume: 32 start-page: 1986 year: 2011 publication-title: Biomaterials – volume: 22 start-page: 969 year: 2004 publication-title: Nat. Biotechnol. – volume: 9 start-page: 53 year: 2008 publication-title: Chembiochem – volume: 58 start-page: 1655 year: 2006 publication-title: Adv. Drug Deliv. Rev. – volume: 24 start-page: 755 year: 2012 publication-title: Adv. Mater. – volume: 14 start-page: 316 year: 2011 publication-title: Mater. Today – volume: 14 start-page: 2161 year: 2004 publication-title: J. Mater. Chem. – volume: 101 start-page: 1869 year: 2001 publication-title: Chem. Rev. – volume: 132 start-page: 4834 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1259 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 2673 year: 2009 publication-title: Small – volume: 131 start-page: 3462 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5390 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 9592 year: 2011 publication-title: ACS Nano – volume: 76 start-page: 590 year: 2003 publication-title: Brit. J. Radiol. – volume: 16 start-page: 509 year: 2006 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 197 year: 2009 publication-title: ACS Nano – volume: 36 start-page: 163 year: 2008 publication-title: Prog. Solid State Chem. – volume: 14 start-page: 4721 year: 2002 publication-title: Chem. Mater. – volume: 19 start-page: 3455 year: 2007 publication-title: Chem. Mater. – volume: 134 start-page: 5722 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 2778 year: 2009 publication-title: J. Mater. Chem. – volume: 30 start-page: 2199 year: 2009 publication-title: Biomaterials – volume: 20 start-page: 6149 year: 2010 publication-title: J. Mater. Chem. – volume: 2 start-page: 214 year: 2003 publication-title: Nat. Rev. Drug Discov. – volume: 39 start-page: 1638 year: 2011 publication-title: Nucleic Acids Res. – volume: 3 start-page: 380 year: 2003 publication-title: Nat. Rev. Cancer – volume: 133 start-page: 8102 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 607 year: 2011 publication-title: Curr. Drug Deliv. – volume: 13 start-page: 308 year: 2001 publication-title: Chem. Mater. – volume: 5 start-page: 4131 year: 2011 publication-title: ACS Nano – volume: 4 start-page: 1445 year: 2008 publication-title: Small – volume: 19 start-page: 311 year: 2005 publication-title: FASEB Journal – volume: 131 start-page: 14075 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 6438 year: 2012 publication-title: Biomaterials – volume: 44 start-page: 1050 year: 2011 publication-title: Acc. Chem. Res. – volume: 33 start-page: 5124 year: 2012 publication-title: Biomaterials – volume: 84 start-page: 218 year: 2005 publication-title: Micro. Meso. Mater. – volume: 50 start-page: 11425 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 1003 year: 2005 publication-title: Nano Lett. – volume: 4 start-page: 435 year: 2005 end-page: 446 publication-title: Nat. Mater. – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 20 year: 2009 publication-title: Nanotechnology – volume: 90 start-page: 889 year: 1998 publication-title: J. Natl. Cancer Inst. – volume: 21 start-page: 2548 year: 2011 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 6001 year: 2010 publication-title: ACS Nano – volume: 6 start-page: 204 year: 2011 publication-title: Nano Today – volume: 6 start-page: 552 year: 2011 publication-title: Nano Today – volume: 31 start-page: 3335 year: 2010 publication-title: Biomaterials – volume: 123 start-page: 107 year: 2009 publication-title: Micro. Meso. Mater. – volume: 49 start-page: 8214 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 1085 year: 2010 publication-title: Biomaterials – volume: 21 start-page: 3037 year: 2011 publication-title: J. Mater. Chem. – volume: 21 start-page: 5299 year: 2011 publication-title: J. Mater. Chem. – volume: 33 start-page: 4392 year: 2012 publication-title: Biomaterials – volume: 68 start-page: 1296 year: 1995 publication-title: Brit. J. Radiol. – volume: 56 start-page: 9 year: 2004 publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 2722 year: 2009 publication-title: Small – volume: 421 start-page: 350 year: 2003 publication-title: Nature – volume: 105 start-page: 1103 year: 2005 publication-title: Chem. Rev. – volume: 49 start-page: 4734 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 3568 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 4624 year: 2011 publication-title: ACS Nano – volume: 12 start-page: 61 year: 2012 publication-title: Nano Lett. – volume: 10 start-page: 389 year: 2011 publication-title: Nat. Mater. – volume: 25 start-page: 1165 year: 2007 publication-title: Nat. Biotechnol. – volume: 44 start-page: 893 year: 2011 publication-title: Acc. Chem. Res. – volume: 21 start-page: 3804 year: 2009 publication-title: Adv. Mater. – volume: 44 start-page: 5083 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 64 start-page: 1394 year: 2012 publication-title: Adv. Drug Deliv. Rev. – volume: 24 start-page: 785 year: 2012 publication-title: Adv. Mater. – volume: 85 start-page: 75 year: 2005 publication-title: Micro. Meso. Mater. – volume: 51 start-page: 8373 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 1686 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 9237 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 1323 year: 2012 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 891 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 321 year: 2005 publication-title: Nat. Rev. Cancer – volume: 9 start-page: 4434 year: 2009 publication-title: Nano Lett. – volume: 6 start-page: 2289 year: 2012 end-page: 2301 publication-title: ACS Nano – volume: 5 start-page: 57 year: 2009 publication-title: Small – volume: 5 start-page: 3905 year: 2011 publication-title: ACS Nano – volume: 131 start-page: 8398 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 653 year: 2010 publication-title: Nat. Rev. Clin. Oncol. – volume: 41 start-page: 2575 year: 2012 publication-title: Chem. Soc. Rev. – volume: 90A start-page: 333 year: 2009 publication-title: J. Biomed. Mater. Res. Part A – volume: 31 start-page: 8564 year: 2010 publication-title: Biomaterials – volume: 31 start-page: 6142 year: 2010 publication-title: Biomaterials – volume: 24 start-page: 1211 year: 2006 publication-title: Nat. Biotechnol. – volume: 60 start-page: 1278 year: 2008 publication-title: Adv. Drug Deliv. Rev. – volume: 47 start-page: 8438 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1234 year: 2010 publication-title: Small – volume: 41 start-page: 1842 year: 2008 publication-title: Acc. Chem. Res. – volume: 4 start-page: 529 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 6874 year: 2010 publication-title: ACS Nano – volume: 46 start-page: 1455 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 64 year: 2012 publication-title: J. Mater. Chem. – volume: 35 start-page: 1084 year: 2006 publication-title: Chem. Soc. Rev. – volume: 32 start-page: 1657 year: 2011 publication-title: Biomaterials – volume: 3 start-page: 364 year: 2012 publication-title: J. Phy. Chem. Lett. – volume: 33 start-page: 989 year: 2012 publication-title: Biomaterials – volume: 60 start-page: 1627 year: 2008 publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 161 year: 2005 publication-title: Nat. Rev. Cancer – volume: 7 start-page: 3563 year: 2011 publication-title: Acta Biomater. – volume: 47 start-page: 9972 year: 2011 publication-title: Chem. Commun. – volume: 116 start-page: 23047 year: 2012 publication-title: J. Phy. Chem. C – volume: 5 start-page: 7462 year: 2011 publication-title: ACS Nano – volume: 133 start-page: 6825 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 461 year: 2012 publication-title: J. Control. Release – volume: 4 start-page: 6353 year: 2010 publication-title: ACS Nano – volume: 14 start-page: 1821 year: 2008 publication-title: Curr. Pharm. Design – volume: 47 start-page: 7947 year: 2011 publication-title: Chem. Commun. – volume: 24 start-page: 1504 year: 2012 publication-title: Adv. Mater. – volume: 42 start-page: 1692 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 10834 year: 1992 publication-title: J. Am. Chem. Soc. – volume: 279 start-page: 548 year: 1998 publication-title: Science – volume: 6 start-page: 1794 year: 2010 publication-title: Small – volume: 24 start-page: 517 year: 2012 publication-title: Chem. Mater. – volume: 358 start-page: 392 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 2678 year: 2010 publication-title: Small – volume: 127 start-page: 8916 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 19582 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 14418 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 359 start-page: 710 year: 1992 publication-title: Nature – volume: 6 start-page: 2104 year: 2012 publication-title: ACS Nano – volume: 113 start-page: 12753 year: 2009 end-page: 12758 publication-title: J. Phys. Chem. C – volume: 1 start-page: 266 year: 2010 publication-title: Medchemcomm – volume: 21 start-page: 3949 year: 2009 publication-title: Adv. Mater. – volume: 3 start-page: 609 year: 2003 publication-title: Nano Lett. – volume: 47 start-page: 3442 year: 2011 publication-title: Chem. Commun. – volume: 4 start-page: 11 year: 2004 publication-title: Nano Lett. – volume: 2 start-page: 791 year: 2008 publication-title: ACS Nano – volume: 26 start-page: 3596 year: 2010 publication-title: Langmuir – volume: 63 start-page: 141 year: 2011 publication-title: J. Pharm. Pharm. – volume: 60 start-page: 1600 year: 2008 publication-title: Adv. Drug Deliv. Rev. – volume: 23 start-page: 2629 year: 2008 publication-title: Chem. Commun. – volume: 33 start-page: 4370 year: 2012 publication-title: Biomaterials – volume: 17 start-page: 5999 year: 2005 publication-title: Chem. Mater. – volume: 130 start-page: 28 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 62 start-page: 346 year: 2010 publication-title: Adv. Drug Deliv. Rev. – volume: 19 start-page: 6267 year: 2009 publication-title: J. Mater. Chem. – volume: 18 start-page: 3083 year: 2006 publication-title: Adv. Mater. – volume: 126 start-page: 187 year: 2008 publication-title: J. Control. Release – volume: 24 start-page: 1418 year: 2012 publication-title: Adv. Mater. – volume: 47 start-page: 12578 year: 2011 publication-title: Chem. Commun. – volume: 31 start-page: 5564 year: 2010 publication-title: Biomaterials – volume: 250 start-page: 371 year: 2009 publication-title: Radiology – volume: 133 start-page: 2955 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 6433 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 3308 year: 2009 publication-title: Nano Lett. – volume: 20 start-page: 4777 year: 2008 publication-title: Chem. Mater. – volume: 163 start-page: 46 year: 2012 publication-title: J. Control. Release – volume: 6 start-page: 1952 year: 2010 publication-title: Small – volume: 34 start-page: 276 year: 2005 publication-title: Chem. Soc. Rev. – volume: 64 start-page: 1800 year: 2012 publication-title: Adv. Drug Deliv. Rev. – volume: 2 start-page: 751 year: 2007 publication-title: Nat. Nanotechnol. – volume: 34 start-page: 181 year: 2013 publication-title: Biomaterials – volume: 49 start-page: 7281 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 889 year: 2008 publication-title: ACS Nano – volume: 3 start-page: 4069 year: 2011 publication-title: Nanoscale – volume: 33 start-page: 2399 year: 2012 publication-title: Biomaterials – volume: 4 start-page: 4539 year: 2010 publication-title: ACS Nano – volume: 50 start-page: 10589 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 2590 year: 2012 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 1586 year: 2012 end-page: 1597 publication-title: Adv. Funct. Mater. – volume: 108 start-page: 2064 year: 2008 publication-title: Chem. Rev. – volume: 33 start-page: 2388 year: 2012 publication-title: Biomaterials – volume: 130 start-page: 2382 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2545 year: 2012 publication-title: Chem. Soc. Rev. – volume: 33 start-page: 7126 year: 2012 publication-title: Biomaterials – volume: 31 start-page: 7078 year: 2010 publication-title: Biomaterials – volume: 19 start-page: 4764 year: 2009 publication-title: J. Mater. Chem. – volume: 2 start-page: 295 year: 2007 publication-title: Nat. Nanotechnol. – volume: 238 start-page: 280 year: 2009 publication-title: Toxicol. Appl. Pharm. – ident: e_1_2_7_226_2 doi: 10.1016/j.taap.2009.04.010 – ident: e_1_2_7_119_2 doi: 10.1002/smll.200900923 – ident: e_1_2_7_63_2 doi: 10.1021/ja028650l – ident: e_1_2_7_184_2 doi: 10.1002/adma.201103343 – ident: e_1_2_7_26_2 doi: 10.1021/cm0705789 – ident: e_1_2_7_30_2 doi: 10.1038/nnano.2007.387 – ident: e_1_2_7_77_2 doi: 10.1021/nn2039643 – ident: e_1_2_7_135_2 doi: 10.1021/ja910846q – ident: e_1_2_7_24_2 doi: 10.1021/ja1022267 – ident: e_1_2_7_74_2 doi: 10.1021/ja809346n – ident: e_1_2_7_97_2 doi: 10.1039/b905158a – ident: e_1_2_7_160_2 doi: 10.1038/nature01362 – ident: e_1_2_7_35_2 doi: 10.1016/S1748-0132(07)70084-1 – ident: e_1_2_7_64_2 doi: 10.1038/nmat2992 – ident: e_1_2_7_40_2 doi: 10.1016/j.addr.2009.11.007 – ident: e_1_2_7_84_2 doi: 10.1021/ja051113r – ident: e_1_2_7_66_2 doi: 10.1002/smll.201001459 – ident: e_1_2_7_164_2 doi: 10.1002/anie.200501819 – ident: e_1_2_7_192_2 doi: 10.1038/nrc1591 – ident: e_1_2_7_88_2 doi: 10.1002/chem.201102599 – ident: e_1_2_7_222_2 doi: 10.1016/j.addr.2012.06.006 – ident: e_1_2_7_25_2 doi: 10.1002/adma.201101586 – ident: e_1_2_7_154_2 doi: 10.1002/jbm.a.31923 – ident: e_1_2_7_232_2 doi: 10.1039/c0jm03915b – ident: e_1_2_7_103_2 doi: 10.1002/smll.200901789 – ident: e_1_2_7_48_2 – ident: e_1_2_7_140_2 doi: 10.1002/adfm.200701317 – ident: e_1_2_7_15_2 doi: 10.1002/anie.201106180 – ident: e_1_2_7_56_2 doi: 10.1021/nn1029229 – ident: e_1_2_7_136_2 doi: 10.1016/j.biomaterials.2011.12.008 – ident: e_1_2_7_108_2 doi: 10.1021/ar600032u – ident: e_1_2_7_171_2 doi: 10.1021/jp9043978 – ident: e_1_2_7_9_2 doi: 10.1002/anie.200604488 – ident: e_1_2_7_49_2 doi: 10.2174/138161208784746671 – ident: e_1_2_7_7_2 doi: 10.1096/fj.04-2747rev – ident: e_1_2_7_197_2 doi: 10.1016/j.biomaterials.2010.11.025 – ident: e_1_2_7_3_2 doi: 10.1021/cr0300789 – ident: e_1_2_7_203_2 doi: 10.1021/cr9004007 – ident: e_1_2_7_72_2 doi: 10.1021/ja211035w – ident: e_1_2_7_12_2 doi: 10.1021/nl0502569 – ident: e_1_2_7_131_2 doi: 10.1016/j.micromeso.2010.01.009 – ident: e_1_2_7_113_2 doi: 10.1039/b9nr00162j – ident: e_1_2_7_86_2 doi: 10.1002/adma.201104797 – ident: e_1_2_7_193_2 doi: 10.1259/bjr/17150274 – ident: e_1_2_7_4_2 doi: 10.1038/nrc1566 – ident: e_1_2_7_180_2 doi: 10.1016/j.micromeso.2009.03.031 – ident: e_1_2_7_241_2 doi: 10.1002/adfm.201002337 – ident: e_1_2_7_208_2 doi: 10.1021/nn200306g – ident: e_1_2_7_244_2 doi: 10.1016/j.biomaterials.2011.10.017 – ident: e_1_2_7_204_2 doi: 10.1021/cr900232t – ident: e_1_2_7_68_2 doi: 10.1016/j.biomaterials.2009.10.046 – ident: e_1_2_7_114_2 doi: 10.1016/j.addr.2012.05.008 – ident: e_1_2_7_248_2 doi: 10.1002/smll.201100521 – ident: e_1_2_7_73_2 doi: 10.1021/nn700008s – ident: e_1_2_7_125_2 doi: 10.1016/j.jconrel.2011.10.037 – ident: e_1_2_7_127_2 doi: 10.1002/smll.201000538 – ident: e_1_2_7_87_2 doi: 10.1002/adma.201104714 – ident: e_1_2_7_217_2 doi: 10.1021/ja001106x – ident: e_1_2_7_104_2 doi: 10.1021/jz2013837 – ident: e_1_2_7_150_2 doi: 10.1021/mp200287c – ident: e_1_2_7_175_2 doi: 10.1002/anie.201004133 – ident: e_1_2_7_21_2 doi: 10.1016/j.addr.2008.08.003 – ident: e_1_2_7_109_2 doi: 10.1002/adma.201104763 – ident: e_1_2_7_112_2 doi: 10.1002/adfm.200601191 – ident: e_1_2_7_231_2 doi: 10.1016/j.biomaterials.2012.02.056 – ident: e_1_2_7_27_2 doi: 10.1016/j.solidstatesciences.2007.11.026 – ident: e_1_2_7_224_2 doi: 10.1039/c0cc05520d – ident: e_1_2_7_230_2 doi: 10.1039/c1cc11479d – ident: e_1_2_7_138_2 doi: 10.1021/nn202399w – ident: e_1_2_7_221_2 doi: 10.1016/j.jconrel.2011.05.017 – ident: e_1_2_7_101_2 doi: 10.1039/c2cs15308d – ident: e_1_2_7_137_2 doi: 10.1021/tx300166u – ident: e_1_2_7_229_2 doi: 10.1021/cr200355j – ident: e_1_2_7_2_2 doi: 10.1021/cr030698 – ident: e_1_2_7_246_2 doi: 10.2147/IJN.S26547 – ident: e_1_2_7_155_2 doi: 10.1002/anie.201203993 – ident: e_1_2_7_13_2 doi: 10.1021/cr000108x – ident: e_1_2_7_242_2 doi: 10.1021/nl202949y – ident: e_1_2_7_188_2 doi: 10.1039/c0jm00645a – ident: e_1_2_7_146_2 doi: 10.1021/nn100918a – ident: e_1_2_7_130_2 doi: 10.1016/j.micromeso.2009.11.015 – ident: e_1_2_7_96_2 doi: 10.1021/nl901589y – ident: e_1_2_7_174_2 doi: 10.1021/nn101499d – ident: e_1_2_7_190_2 doi: 10.1016/j.nantod.2011.10.003 – ident: e_1_2_7_205_2 doi: 10.1039/b902685a – ident: e_1_2_7_165_2 doi: 10.1021/ja8060886 – ident: e_1_2_7_102_2 doi: 10.1016/j.addr.2008.03.012 – ident: e_1_2_7_93_2 doi: 10.1016/j.biomaterials.2012.06.059 – ident: e_1_2_7_194_2 doi: 10.1259/0007-1285-68-816-1296 – ident: e_1_2_7_200_2 doi: 10.1002/jbm.a.31371 – ident: e_1_2_7_50_2 doi: 10.2174/156720111797635522 – ident: e_1_2_7_191_2 doi: 10.1002/adma.201104033 – ident: e_1_2_7_75_2 doi: 10.1021/cm702792e – ident: e_1_2_7_82_2 doi: 10.1021/ja0777584 – ident: e_1_2_7_215_2 doi: 10.1002/anie.201103108 – ident: e_1_2_7_159_2 doi: 10.1016/j.jconrel.2007.12.017 – ident: e_1_2_7_31_2 doi: 10.1039/c2cs15327k – ident: e_1_2_7_134_2 doi: 10.1038/nbt1340 – ident: e_1_2_7_43_2 doi: 10.1021/ja2010175 – ident: e_1_2_7_79_2 doi: 10.1021/nl034134x – ident: e_1_2_7_142_2 doi: 10.1016/j.micromeso.2005.05.001 – ident: e_1_2_7_216_2 doi: 10.1002/ejic.201101163 – ident: e_1_2_7_41_2 doi: 10.1039/c2cs15355f – ident: e_1_2_7_59_2 doi: 10.1038/359710a0 – ident: e_1_2_7_106_2 doi: 10.1039/c1cc11760b – ident: e_1_2_7_167_2 doi: 10.1002/anie.200603404 – ident: e_1_2_7_78_2 doi: 10.1002/smll.201200028 – ident: e_1_2_7_81_2 doi: 10.1002/adma.200900599 – ident: e_1_2_7_91_2 doi: 10.1021/ja710193c – ident: e_1_2_7_126_2 doi: 10.1021/nn2043803 – ident: e_1_2_7_53_2 doi: 10.1002/adma.201201742 – ident: e_1_2_7_22_2 doi: 10.1016/j.addr.2008.08.004 – ident: e_1_2_7_129_2 doi: 10.1016/j.biomaterials.2010.10.035 – ident: e_1_2_7_144_2 doi: 10.1039/b822444g – ident: e_1_2_7_44_2 doi: 10.1016/S1369-7021(11)70161-4 – ident: e_1_2_7_20_2 doi: 10.1021/ja057254a – ident: e_1_2_7_34_2 doi: 10.1021/cr068445e – ident: e_1_2_7_76_2 doi: 10.1021/nn103130q – ident: e_1_2_7_189_2 doi: 10.1002/anie.201104765 – ident: e_1_2_7_179_2 doi: 10.1039/b902985k – ident: e_1_2_7_199_2 doi: 10.1016/j.solidstatesciences.2005.04.003 – ident: e_1_2_7_177_2 doi: 10.1021/ja9061085 – ident: e_1_2_7_28_2 doi: 10.1016/j.actbio.2011.06.028 – ident: e_1_2_7_234_2 doi: 10.1016/j.jcis.2011.03.051 – ident: e_1_2_7_95_2 doi: 10.1002/smll.200902355 – ident: e_1_2_7_213_2 doi: 10.1021/cr100025t – ident: e_1_2_7_99_2 doi: 10.1021/ja905793q – year: 2013 ident: e_1_2_7_57_2 publication-title: Adv. Mater. – ident: e_1_2_7_36_2 doi: 10.1126/science.1104274 – ident: e_1_2_7_58_2 doi: 10.1021/ja00053a020 – ident: e_1_2_7_166_2 doi: 10.1021/cm051198v – year: 2008 ident: e_1_2_7_198_2 publication-title: J. Nanomater. – ident: e_1_2_7_124_2 doi: 10.2217/nnm.11.19 – ident: e_1_2_7_85_2 doi: 10.1021/ja0565875 – ident: e_1_2_7_17_2 doi: 10.1021/jp306543q – ident: e_1_2_7_67_2 doi: 10.1021/nn200809t – ident: e_1_2_7_212_2 doi: 10.1148/radiol.2502080498 – ident: e_1_2_7_46_2 doi: 10.1088/0957-4484/20/4/045602 – ident: e_1_2_7_60_2 doi: 10.1126/science.279.5350.548 – ident: e_1_2_7_14_2 doi: 10.1002/adma.201104033 – ident: e_1_2_7_65_2 doi: 10.1002/cbic.200700509 – ident: e_1_2_7_223_2 doi: 10.1016/j.biomaterials.2012.02.060 – ident: e_1_2_7_10_2 doi: 10.1021/cr940351u – ident: e_1_2_7_16_2 doi: 10.1016/j.biomaterials.2012.09.029 – ident: e_1_2_7_172_2 doi: 10.1002/adma.200600387 – ident: e_1_2_7_233_2 doi: 10.1039/c0md00139b – volume: 98 year: 2011 ident: e_1_2_7_247_2 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_245_2 doi: 10.1021/nn200372g – ident: e_1_2_7_8_2 doi: 10.1038/nrclinonc.2010.139 – ident: e_1_2_7_169_2 doi: 10.1002/anie.201002639 – ident: e_1_2_7_105_2 doi: 10.1021/ar2000259 – ident: e_1_2_7_209_2 doi: 10.1021/ja1084095 – ident: e_1_2_7_201_2 doi: 10.1016/j.biomaterials.2009.01.029 – ident: e_1_2_7_214_2 doi: 10.1007/3-540-45733-X_6 – ident: e_1_2_7_195_2 doi: 10.1016/S0022-5347(05)64992-0 – ident: e_1_2_7_47_2 doi: 10.2217/nnm.11.166 – ident: e_1_2_7_238_2 doi: 10.1016/j.addr.2012.06.012 – ident: e_1_2_7_145_2 doi: 10.1002/smll.201101055 – ident: e_1_2_7_219_2 doi: 10.1021/nn202863x – ident: e_1_2_7_152_2 doi: 10.1021/nn100690m – ident: e_1_2_7_39_2 doi: 10.1021/ar800018v – ident: e_1_2_7_123_2 doi: 10.1038/nrd1033 – ident: e_1_2_7_115_2 doi: 10.1002/smll.200800926 – ident: e_1_2_7_132_2 doi: 10.1021/cm3001688 – ident: e_1_2_7_122_2 doi: 10.1016/j.nano.2011.06.002 – ident: e_1_2_7_141_2 doi: 10.1016/j.micromeso.2005.06.015 – ident: e_1_2_7_128_2 doi: 10.1016/j.biomaterials.2008.07.007 – ident: e_1_2_7_23_2 doi: 10.1016/j.addr.2003.07.013 – ident: e_1_2_7_227_2 doi: 10.1016/j.biomaterials.2010.05.065 – ident: e_1_2_7_139_2 doi: 10.1002/anie.200501500 – ident: e_1_2_7_173_2 doi: 10.1002/anie.200900880 – ident: e_1_2_7_89_2 doi: 10.1002/adfm.200800753 – ident: e_1_2_7_178_2 doi: 10.1021/cm703363w – ident: e_1_2_7_170_2 doi: 10.1093/nar/gkq893 – ident: e_1_2_7_61_2 doi: 10.1021/cr068020s – ident: e_1_2_7_45_2 doi: 10.1039/c1nr10718f – ident: e_1_2_7_185_2 doi: 10.1002/anie.201002820 – ident: e_1_2_7_1_2 doi: 10.1002/anie.200802585 – ident: e_1_2_7_92_2 doi: 10.1002/smll.200701316 – ident: e_1_2_7_116_2 doi: 10.1021/ja201779d – ident: e_1_2_7_181_2 doi: 10.1021/ja904456d – ident: e_1_2_7_147_2 doi: 10.1039/c2nr12094a – ident: e_1_2_7_149_2 doi: 10.1039/c0jm04115g – ident: e_1_2_7_240_2 doi: 10.1021/nn800072t – ident: e_1_2_7_19_2 doi: 10.1039/b517615h – ident: e_1_2_7_70_2 doi: 10.1016/j.biomaterials.2009.09.060 – ident: e_1_2_7_71_2 doi: 10.1021/nn901398j – ident: e_1_2_7_225_2 doi: 10.1021/nl0347334 – ident: e_1_2_7_163_2 doi: 10.1021/ja807798g – ident: e_1_2_7_211_2 doi: 10.1021/nl902715v – ident: e_1_2_7_29_2 doi: 10.1039/C1JM13102H – ident: e_1_2_7_120_2 doi: 10.1021/nn200365a – ident: e_1_2_7_210_2 doi: 10.1038/ncpneph0660 – ident: e_1_2_7_33_2 doi: 10.1039/b402025a – ident: e_1_2_7_236_2 doi: 10.1016/j.biomaterials.2012.03.066 – ident: e_1_2_7_207_2 doi: 10.1002/anie.200602866 – ident: e_1_2_7_6_2 doi: 10.1038/nbt1006-1211 – ident: e_1_2_7_239_2 doi: 10.1002/adfm.201001495 – ident: e_1_2_7_100_2 doi: 10.1039/c0jm03851b – ident: e_1_2_7_182_2 doi: 10.1021/ja901831u – ident: e_1_2_7_32_2 doi: 10.1002/adfm.201102052 – ident: e_1_2_7_220_2 doi: 10.1016/S1476-5586(03)80005-2 – ident: e_1_2_7_157_2 doi: 10.1016/j.addr.2006.09.020 – ident: e_1_2_7_162_2 doi: 10.1039/c0cc02914a – ident: e_1_2_7_202_2 doi: 10.1016/j.biomaterials.2010.07.103 – ident: e_1_2_7_110_2 doi: 10.1039/c1cs15246g – ident: e_1_2_7_121_2 doi: 10.1016/j.biomaterials.2010.04.055 – ident: e_1_2_7_51_2 doi: 10.1172/JCI45600 – ident: e_1_2_7_94_2 doi: 10.1016/j.biomaterials.2011.11.086 – ident: e_1_2_7_80_2 doi: 10.1002/adma.200800854 – ident: e_1_2_7_161_2 doi: 10.1021/ja900025f – ident: e_1_2_7_156_2 doi: 10.1021/ja206998x – ident: e_1_2_7_228_2 doi: 10.1039/C1CS15187H – ident: e_1_2_7_38_2 doi: 10.1038/nbt994 – ident: e_1_2_7_158_2 doi: 10.1039/B406727D – ident: e_1_2_7_168_2 doi: 10.1021/jp103982a – ident: e_1_2_7_176_2 doi: 10.1021/ja0772086 – ident: e_1_2_7_218_2 doi: 10.1016/j.biomaterials.2012.05.065 – ident: e_1_2_7_55_2 doi: 10.1002/anie.201001847 – ident: e_1_2_7_151_2 doi: 10.1002/smll.200900621 – ident: e_1_2_7_183_2 doi: 10.1021/ar200106e – ident: e_1_2_7_186_2 doi: 10.1093/jnci/90.12.889 – ident: e_1_2_7_237_2 doi: 10.1002/adfm.201100031 – ident: e_1_2_7_243_2 doi: 10.1002/adfm.200500565 – ident: e_1_2_7_206_2 doi: 10.1039/C1CS15248C – ident: e_1_2_7_117_2 doi: 10.1016/j.jconrel.2012.05.046 – ident: e_1_2_7_98_2 doi: 10.1021/nn800781r – ident: e_1_2_7_90_2 doi: 10.1021/la903008z – ident: e_1_2_7_153_2 doi: 10.1038/nnano.2007.108 – ident: e_1_2_7_118_2 doi: 10.1016/j.biomaterials.2010.01.015 – ident: e_1_2_7_143_2 doi: 10.1039/b804594a – ident: e_1_2_7_11_2 doi: 10.1016/j.nantod.2011.02.007 – ident: e_1_2_7_250_2 doi: 10.1021/nn1015117 – ident: e_1_2_7_196_2 doi: 10.1016/j.progsolidstchem.2007.10.002 – ident: e_1_2_7_111_2 doi: 10.1039/c1cc13658e – ident: e_1_2_7_69_2 doi: 10.1021/cm0204371 – ident: e_1_2_7_52_2 doi: 10.1021/cm203000u – ident: e_1_2_7_62_2 doi: 10.1021/cm0011559 – ident: e_1_2_7_235_2 doi: 10.1002/adma.200901096 – ident: e_1_2_7_249_2 doi: 10.1002/smll.201001447 – ident: e_1_2_7_133_2 doi: 10.1016/j.biomaterials.2010.03.048 – ident: e_1_2_7_18_2 doi: 10.1021/ar800150g – ident: e_1_2_7_83_2 doi: 10.1002/anie.200802469 – ident: e_1_2_7_187_2 doi: 10.1038/nrc1071 – ident: e_1_2_7_37_2 doi: 10.1038/nmat1390 – ident: e_1_2_7_54_2 doi: 10.1002/anie.201000827 – ident: e_1_2_7_42_2 doi: 10.1111/j.2042-7158.2010.01167.x – ident: e_1_2_7_107_2 doi: 10.1002/chem.200600226 – ident: e_1_2_7_5_2 doi: 10.1002/anie.200200546 – ident: e_1_2_7_148_2 doi: 10.1039/c0jm02863k |
SSID | ssj0009606 |
Score | 2.6060643 |
SecondaryResourceType | review_article |
Snippet | The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3144 |
SubjectTerms | Animals Antineoplastic Agents - administration & dosage Biocompatibility Biocompatible Materials - chemistry Biomaterials Biomedical materials Contrast Media diagnosis Drug Carriers - chemistry Humans In vivo In vivo testing In vivo tests Lipid Bilayers - metabolism mesoporous silica Nanocomposites nanomedicine Nanoparticles - chemistry Nanostructure Neoplasms - diagnosis Neoplasms - diagnostic imaging Neoplasms - drug therapy Porosity RNA, Small Interfering - administration & dosage Silicon Dioxide - chemistry Surgical implants therapy Tissue Engineering Ultrasonography |
Title | In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles |
URI | https://api.istex.fr/ark:/67375/WNG-J850KQQH-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201205292 https://www.ncbi.nlm.nih.gov/pubmed/23681931 https://www.proquest.com/docview/1367877142 https://www.proquest.com/docview/1439757269 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNF7ggfulGyAjIXjyWjt27DwWuq0MddLYBnuzfJWqTcm0thPjhX2EfUY-CXbcpC3iIsFjpJPEPjm2_46Pfwbglcki5i4ELzW5RjS3DgmVcYQtJU4URidk_mgvHx7R3WN2vLSLP_Eh2h9usWXU_XVs4EpPugtoqLI1NwiTuFYVO-GYsBVV0ccFPyrK8xq2lzFU5FQ01MYe6a7evjIq3YwO_vIrybmqYOshaPsuUE3hU-bJyeZsqjfN15-4jv9Tu3vgzlyfwn4KqPvghisfgNtL1MKH4Nv7En4aX1Tw7bj6fnV9oLybXsKtFhs-gaq0cJBy-MJjuoeLPV6wv7RgDisPG2DB6SUc1MkkzsKRm1RhWlDNJvBgHK1hGAPC5H6ew_cIHG1vHb4bovk5DsgEdUcQFdQayoue8lxr54wljoWORTjGiPfWWMXCxM2SjBWF8hl3hAnvLMa5ZVir7DFYK6vSPQVQB4mmg6R1hQkTJ4u19th6a632iou86ADUfEdp5pDzeNbGqUx4ZiKjY2Xr2A5409qfJbzHby1f12HRmqnzk5gUx5n8vLcjdwXrfdjfH8qdDnjZxI0MTTWuv6jSBZfJSMcTnGNK_mATBSLjJFblSQq69o0ky4N-y3AHkDp0_lJi2R-M-u3V-r_ctAFukXT8B8LiGVibns_c8yDCpvpF3dB-AIsgKtg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQewAOUN4pLyMhOLmJveu195iStukjkUpT4Gb5KUWtdqsmQZQL_IT-xv4S7HV20yAeEhxXGu_aszP2N_b4GwBe6yTQ3HnjTXWmUJoZi7hMGMImJZbnWkXK_MEw6x-ne59onU0Y7sJEfohmwy14RjVfBwcPG9LtBWuoNBVxECbhsMrPwquhrHcVVb1fMEgFgF7R7SUU5VnKa97GDmkvt19al1aDir_8CnQuY9hqEdq-C1Td_Zh7crIxm6oN_fUnZsf_Gt8auDOHqLAbbeoeuGGL--D2NeLCB-DbbgE_jD-XcHNcXn2_PJLOTi_gVsMcPoGyMLAX0_j8a9qjxTUv2L12Zg5LB2vOgtML2KvySayBAzspfWRQzibwaBykoV8GfHw_T-N7CI63t0bv-mheygFpD_AISnlqdMryjnRMKWu1IZb6uYVbSolzRhtJfexmSELzXLqEWUK5swbjzFCsZPIIrBRlYZ8AqDxKUx7V2lz72MlgpRw2zhijnGQ8y1sA1T9S6DnPeSi3cSoiQzMRQbGiUWwLvG3kzyLDx28l31R20YjJ85OQF8eo-DjcEXucdvYPD_tipwVe1YYjvLeGIxhZWK8yEQjyOGM4JX-QCRiRMhKG8jhaXfNFkmQewiW4BUhlO3_psej2Bt3maf1fGr0EN_ujwYE42B3uPwW3SKwGgjB_Blam5zP73GOyqXpRed0PHogu8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMcttEkIHjbu6xhgJARPXmvHTpzHQtZ1G60Y22Bvlq9StSmZ1hYxXsZH4DPySbCTJm0RFwkeI50k9smx_Xd8_DMAL3QUMHc-eKmOFaKxsYjLKEHYUGJ5qlWFzB8M4_4J3T9lpwu7-Cs-RPPDLbSMsr8ODfzCuPYcGipNyQ3CJKxV-U54lcYdHuI6ez8HSAV9XtL2IobSmPIa29gh7eX7l4al1eDhz7_SnMsSthyDeutA1qWvUk_OtqcTta2__AR2_J_q3QFrM4EKu1VE3QU3bH4P3F7AFt4H13s5_DD6VMDXo-L7129H0tnJFdxpuOFjKHMDsyqJzz-mfTzf5AW7CyvmsHCwJhacX8GszCaxBg7suPDzgmI6hkejYA39IOBn97MkvgfgpLdz_KaPZgc5IO3lHUGUU6NpknakS5SyVhtime9ZuGWMOGe0kczP3AyJWJpKFyWWMO6swTg2DCsZPQQreZHbDQCV12jKa1qbaj9zMlgph40zxignEx6nLYDq7yj0jHIeDts4FxWfmYjgWNE4tgVeNfYXFd_jt5Yvy7BozOTlWciKS5j4ONwV-5x1Dg4P-2K3BZ7XcSN8Ww0LMDK33mUi4PF4kmBK_mATFCJLSKjKoyromjeSKPYCLsItQMrQ-UuJRTcbdJurzX-56Rm4-S7ribd7w4PH4BapjgJBmG-Blcnl1D7xgmyinpZt7geLki2r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+bio-safety+evaluations+and+diagnostic%2Ftherapeutic+applications+of+chemically+designed+mesoporous+silica+nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yu&rft.au=Chen%2C+Hangrong&rft.au=Shi%2C+Jianlin&rft.date=2013-06-18&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=25&rft.issue=23&rft.spage=3144&rft_id=info:doi/10.1002%2Fadma.201205292&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |