In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles

The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 25; no. 23; pp. 3144 - 3176
Main Authors Chen, Yu, Chen, Hangrong, Shi, Jianlin
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 18.06.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201205292

Cover

Loading…
Abstract The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials. Significant progress in nano‐biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN‐based biomaterials for in vivo biomedical applications.
AbstractList The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials.
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials.The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials.
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material‐based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material‐based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well‐established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small‐animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs‐based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio‐safety evaluations of MSNs have revealed the evidences that the in vivo bio‐behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano‐synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli‐responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti‐bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs‐based “magic bullet” by advanced nano‐synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs‐based DDSs into clinical trials. Significant progress in nano‐biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN‐based biomaterials for in vivo biomedical applications.
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials. Significant progress in nano-biotechnology has promoted the biomedical evaluation and diagnostic/therapeutic applications of mesoporous silica nanoparticles (MSNs) from extensive in vitro research towards preliminary in vivo evaluation. This comprehensive review highlights the recent progresses in the chemical design and engineering of MSN-based biomaterials for in vivo biomedical applications.
Author Shi, Jianlin
Chen, Yu
Chen, Hangrong
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China
– sequence: 2
  givenname: Hangrong
  surname: Chen
  fullname: Chen, Hangrong
  email: hrchen@mail.sic.ac.cn
  organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China
– sequence: 3
  givenname: Jianlin
  surname: Shi
  fullname: Shi, Jianlin
  email: jlshi@sunm.shcnc.ac.cn
  organization: State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23681931$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v0zAYhi00xLrBlSPykUs6_4jj-Fja0Q22oWkDjpYbf9kMTpzZyaAH_ndS2k0ICe3kz9LzvPr0vQdorw0tIPSakiklhB0Z25gpI5QRwRR7hiZUMJrlRIk9NCGKi0wVebmPDlL6RghRBSleoH3Gi5IqTifo12mLv7j7gN-5kF2ZGvo1Pr43fjC9C23CprV44cxNG1LvqqPrW4img2Gc8azrvKt2XKjx_Baa8e_9Gi8guZsWLD6HFLoQw5DwldvQ-MK0oTNxDPCQXqLntfEJXu3eQ_T5_fH1_CQ7-7Q8nc_OskowxrK8zG2VS0VMLVcrgMoyEJzQEoRgdW0rawQrpWVcKGVqLoGJsgZLaWEFXRl-iN5uc7sY7gZIvW5cqsB708K4m6Y5V1JIVqinUV7IUkqasxF9s0OHVQNWd9E1Jq71w3VHIN8CVQwpRah15fo_B-ujcV5Tojcl6k2J-rHEUZv-oz0k_1dQW-GH87B-gtazxfnsbzfbui718PPRNfG7LiSXQn-9WOoPpSAfLy9P9JL_Bl8bv7k
CitedBy_id crossref_primary_10_1016_j_ccr_2022_214977
crossref_primary_10_1002_cnma_201700264
crossref_primary_10_1186_s12951_024_02680_5
crossref_primary_10_1002_smll_201601484
crossref_primary_10_1039_C9TB02578B
crossref_primary_10_1039_C4RA05310A
crossref_primary_10_2174_1567201818666211214112710
crossref_primary_10_1039_C6CP00906A
crossref_primary_10_1039_C4CC07121B
crossref_primary_10_1088_1361_6528_abfc6f
crossref_primary_10_1039_C7TB01526G
crossref_primary_10_1016_j_apsb_2025_03_021
crossref_primary_10_1111_1759_7714_13414
crossref_primary_10_1002_smll_201500540
crossref_primary_10_1002_adfm_201907066
crossref_primary_10_1021_acsabm_8b00633
crossref_primary_10_1016_j_jksus_2021_101587
crossref_primary_10_1016_j_micromeso_2018_04_031
crossref_primary_10_1016_j_matchemphys_2018_09_005
crossref_primary_10_1021_nl404316v
crossref_primary_10_1002_adma_201402572
crossref_primary_10_1002_adma_201403783
crossref_primary_10_1002_adma_201401124
crossref_primary_10_1007_s12274_014_0701_y
crossref_primary_10_1039_c8pp00143j
crossref_primary_10_1016_j_jconrel_2019_08_022
crossref_primary_10_1016_j_biomaterials_2016_06_004
crossref_primary_10_1002_anbr_202000055
crossref_primary_10_1021_acs_langmuir_0c00729
crossref_primary_10_1016_j_scienta_2018_08_040
crossref_primary_10_1007_s12274_017_1530_6
crossref_primary_10_1007_s12274_020_2736_6
crossref_primary_10_1016_j_cis_2022_102773
crossref_primary_10_1021_am506849p
crossref_primary_10_1039_C4RA10293B
crossref_primary_10_1021_ja504115d
crossref_primary_10_1039_C8RA08936A
crossref_primary_10_3389_fphar_2015_00197
crossref_primary_10_1039_C5CS00243E
crossref_primary_10_1088_1748_605X_abef58
crossref_primary_10_1021_acs_chemrev_5b00456
crossref_primary_10_1021_acsbiomedchemau_2c00040
crossref_primary_10_1002_adfm_201403079
crossref_primary_10_1002_adhm_202301837
crossref_primary_10_1016_j_cej_2019_123609
crossref_primary_10_1039_C4TA01795A
crossref_primary_10_1007_s12274_017_1939_y
crossref_primary_10_1021_acsami_6b06889
crossref_primary_10_1021_acs_langmuir_0c00832
crossref_primary_10_1016_j_msec_2019_110386
crossref_primary_10_1039_C4CC10413G
crossref_primary_10_2217_nnm_2017_0353
crossref_primary_10_1016_j_biomaterials_2014_03_032
crossref_primary_10_1021_acs_bioconjchem_8b00522
crossref_primary_10_1002_ejic_201801039
crossref_primary_10_1016_j_micromeso_2014_04_057
crossref_primary_10_18632_oncotarget_12149
crossref_primary_10_1039_C4TB01536C
crossref_primary_10_1016_j_apmt_2017_12_003
crossref_primary_10_1016_j_micromeso_2019_05_031
crossref_primary_10_1021_acsabm_9b00133
crossref_primary_10_1016_j_colsurfb_2020_110941
crossref_primary_10_1002_tcr_202000104
crossref_primary_10_1016_j_mtbio_2023_100574
crossref_primary_10_3390_inorganics7060072
crossref_primary_10_1007_s00604_018_3219_2
crossref_primary_10_1021_acsami_6b11802
crossref_primary_10_1039_C5RA14744A
crossref_primary_10_1016_j_nano_2019_102040
crossref_primary_10_1021_ja407331n
crossref_primary_10_1039_C5TB02371H
crossref_primary_10_1515_pac_2018_0505
crossref_primary_10_1021_acsami_3c08643
crossref_primary_10_1016_j_ijpharm_2016_10_013
crossref_primary_10_1002_adma_201703651
crossref_primary_10_1016_j_biomaterials_2014_09_003
crossref_primary_10_1039_C5NR08691D
crossref_primary_10_1038_srep05080
crossref_primary_10_1016_j_biomaterials_2021_120985
crossref_primary_10_1007_s12274_017_1466_x
crossref_primary_10_1016_j_scitotenv_2022_158676
crossref_primary_10_1002_adma_202004460
crossref_primary_10_2217_nnm_2021_0413
crossref_primary_10_1002_adfm_201902652
crossref_primary_10_1002_advs_201801155
crossref_primary_10_1016_j_talanta_2019_120552
crossref_primary_10_1007_s00289_022_04250_x
crossref_primary_10_1002_chem_201402864
crossref_primary_10_1002_adfm_201703313
crossref_primary_10_1002_lpor_202200651
crossref_primary_10_1038_s41467_024_49603_4
crossref_primary_10_1002_adhm_201700831
crossref_primary_10_3390_nano13142138
crossref_primary_10_1515_ejnm_2016_0011
crossref_primary_10_1016_j_cis_2016_08_001
crossref_primary_10_1016_j_jcis_2017_10_116
crossref_primary_10_1039_c4nr00384e
crossref_primary_10_3390_ijms19123790
crossref_primary_10_1016_j_micromeso_2015_04_015
crossref_primary_10_1021_acsbiomaterials_0c00014
crossref_primary_10_1016_j_ejmech_2023_115676
crossref_primary_10_1016_j_colsurfb_2023_113613
crossref_primary_10_1007_s40820_020_00447_9
crossref_primary_10_1016_j_nantod_2016_05_009
crossref_primary_10_1039_C4NR07421A
crossref_primary_10_1002_smll_201900669
crossref_primary_10_1039_C5TB02079D
crossref_primary_10_1039_C5NR00072F
crossref_primary_10_1016_j_surfin_2020_100596
crossref_primary_10_1039_C6TB01788F
crossref_primary_10_1007_s12274_017_1465_y
crossref_primary_10_1155_2022_6006601
crossref_primary_10_1002_adtp_202400425
crossref_primary_10_1111_cbdd_12716
crossref_primary_10_1016_j_jconrel_2021_07_010
crossref_primary_10_1002_advs_201801175
crossref_primary_10_1155_2015_846328
crossref_primary_10_1002_cplu_201402369
crossref_primary_10_1021_acsabm_0c00969
crossref_primary_10_1002_ppsc_201600062
crossref_primary_10_2174_1567201819666220616121602
crossref_primary_10_1002_adfm_201902634
crossref_primary_10_1016_j_apmt_2024_102278
crossref_primary_10_1039_D1NR07750C
crossref_primary_10_1007_s10934_020_00885_1
crossref_primary_10_1039_C6CS00109B
crossref_primary_10_1002_advs_202200756
crossref_primary_10_1002_nano_202000035
crossref_primary_10_1016_j_micromeso_2020_110504
crossref_primary_10_1002_adom_201900252
crossref_primary_10_1002_adfm_201704634
crossref_primary_10_1039_C5TB02619A
crossref_primary_10_1002_adfm_201707325
crossref_primary_10_1002_adma_202008226
crossref_primary_10_1039_C5NR07853A
crossref_primary_10_3390_pharmaceutics16010092
crossref_primary_10_26599_NTM_2022_9130005
crossref_primary_10_1039_C7QM00153C
crossref_primary_10_1021_acs_jpcc_8b00277
crossref_primary_10_1007_s43207_022_00217_w
crossref_primary_10_1002_adhm_202301577
crossref_primary_10_1021_acsami_7b06597
crossref_primary_10_1016_j_envpol_2017_06_016
crossref_primary_10_1016_j_nantod_2016_07_002
crossref_primary_10_1016_j_cej_2018_03_101
crossref_primary_10_1039_C5NR00451A
crossref_primary_10_1002_anie_202112752
crossref_primary_10_1186_s40199_017_0186_9
crossref_primary_10_1016_j_biomaterials_2016_05_019
crossref_primary_10_1002_eom2_12028
crossref_primary_10_1016_j_biomaterials_2016_05_017
crossref_primary_10_1021_acsami_1c07748
crossref_primary_10_1016_j_ctrv_2016_02_005
crossref_primary_10_1021_nn5034955
crossref_primary_10_1007_s40843_015_0037_2
crossref_primary_10_1021_acsanm_9b01769
crossref_primary_10_3109_17435390_2014_958115
crossref_primary_10_1146_annurev_matsci_070214_020830
crossref_primary_10_1002_smll_201604228
crossref_primary_10_1007_s13399_023_04440_1
crossref_primary_10_1016_j_jconrel_2015_06_034
crossref_primary_10_1021_acsanm_3c00722
crossref_primary_10_1039_C7CS00630F
crossref_primary_10_1007_s00210_023_02872_0
crossref_primary_10_1016_j_jcis_2014_05_016
crossref_primary_10_3390_ma13173795
crossref_primary_10_1016_j_ijpharm_2014_05_020
crossref_primary_10_1021_acsomega_8b00152
crossref_primary_10_1039_C6TB02820A
crossref_primary_10_1002_adhm_201700720
crossref_primary_10_1021_acsami_5b11730
crossref_primary_10_1039_c3tb21193b
crossref_primary_10_1039_C7TB03156D
crossref_primary_10_1002_adma_201904535
crossref_primary_10_1016_j_biomaterials_2017_07_016
crossref_primary_10_1039_D4TB01114G
crossref_primary_10_1039_C8NR07679K
crossref_primary_10_1016_j_cej_2024_150392
crossref_primary_10_1002_anie_201404652
crossref_primary_10_1016_j_jconrel_2022_06_064
crossref_primary_10_1002_adma_201801690
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1016_j_jphotochemrev_2014_06_001
crossref_primary_10_1002_smll_201402297
crossref_primary_10_1016_j_biomaterials_2019_119723
crossref_primary_10_1021_acscentsci_7b00257
crossref_primary_10_1039_C6NR03229J
crossref_primary_10_1016_j_jcis_2019_11_036
crossref_primary_10_1039_C7CS00316A
crossref_primary_10_1021_acs_nanolett_2c04486
crossref_primary_10_1021_acsbiomaterials_5b00502
crossref_primary_10_3390_ijms241310931
crossref_primary_10_1016_j_biomaterials_2018_01_046
crossref_primary_10_1039_C5NR08292G
crossref_primary_10_1039_C9RA01080G
crossref_primary_10_1002_advs_202404431
crossref_primary_10_3390_pharmaceutics10030118
crossref_primary_10_1016_j_micromeso_2019_109768
crossref_primary_10_1007_s12274_020_3112_2
crossref_primary_10_1016_j_biomaterials_2021_121074
crossref_primary_10_1002_marc_201600253
crossref_primary_10_1039_C4NR06538G
crossref_primary_10_1002_smll_201501449
crossref_primary_10_1016_j_biomaterials_2019_119738
crossref_primary_10_1016_j_ecoenv_2015_09_030
crossref_primary_10_1016_j_nano_2015_10_018
crossref_primary_10_1002_adma_201802896
crossref_primary_10_1098_rsos_180658
crossref_primary_10_1080_09205063_2019_1687132
crossref_primary_10_1021_la500746e
crossref_primary_10_1002_adfm_201402255
crossref_primary_10_1002_adma_201602748
crossref_primary_10_4028_www_scientific_net_KEM_867_134
crossref_primary_10_1002_adma_201802725
crossref_primary_10_1016_j_actbio_2015_04_019
crossref_primary_10_1016_j_phymed_2025_156547
crossref_primary_10_1039_C4CS00270A
crossref_primary_10_1002_advs_202403473
crossref_primary_10_1016_j_addr_2023_114868
crossref_primary_10_1002_adma_201705799
crossref_primary_10_1039_D0PY01102A
crossref_primary_10_1039_D0TB02544E
crossref_primary_10_1016_j_micromeso_2015_06_012
crossref_primary_10_1021_acsami_9b07664
crossref_primary_10_1016_j_biomaterials_2014_04_029
crossref_primary_10_1007_s11051_015_3110_6
crossref_primary_10_1016_j_biomaterials_2019_04_023
crossref_primary_10_1016_j_jddst_2018_01_014
crossref_primary_10_1039_C7ME00046D
crossref_primary_10_1002_adhm_201700793
crossref_primary_10_1039_D0NA00219D
crossref_primary_10_1089_nat_2013_0450
crossref_primary_10_1016_j_biomaterials_2014_05_058
crossref_primary_10_1039_C6RA10743E
crossref_primary_10_1002_ejic_201800041
crossref_primary_10_1021_acs_molpharmaceut_5b00866
crossref_primary_10_1088_1361_648X_ab4ac5
crossref_primary_10_1371_journal_pone_0172499
crossref_primary_10_1002_adma_201505147
crossref_primary_10_1016_j_actbio_2021_05_007
crossref_primary_10_1039_C8CC04863K
crossref_primary_10_1002_adfm_201601770
crossref_primary_10_1016_j_ijbiomac_2021_11_088
crossref_primary_10_1021_acsnano_0c10144
crossref_primary_10_1038_am_2016_146
crossref_primary_10_1016_j_biomaterials_2018_02_021
crossref_primary_10_1016_j_ejmcr_2024_100206
crossref_primary_10_1039_C4RA03122A
crossref_primary_10_1002_adhm_201601080
crossref_primary_10_1007_s10853_018_2095_9
crossref_primary_10_1016_j_tifs_2021_01_037
crossref_primary_10_1002_adhm_201700646
crossref_primary_10_3762_bjnano_12_64
crossref_primary_10_3390_polym15081835
crossref_primary_10_1039_C8NR08337A
crossref_primary_10_1002_adfm_201505155
crossref_primary_10_1039_C5NR04119H
crossref_primary_10_2147_IJN_S243037
crossref_primary_10_1016_j_actbio_2019_02_031
crossref_primary_10_1021_acs_analchem_3c00485
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024051822
crossref_primary_10_1016_j_nantod_2015_06_004
crossref_primary_10_1039_C9TB01346F
crossref_primary_10_1002_adma_201405634
crossref_primary_10_3390_jfb15080226
crossref_primary_10_1016_j_ccr_2024_216052
crossref_primary_10_1002_aelm_202101204
crossref_primary_10_1039_C4CC01429D
crossref_primary_10_1021_acs_langmuir_1c01674
crossref_primary_10_1039_D2BM01950G
crossref_primary_10_1002_cnma_202000172
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1039_C8CC03413C
crossref_primary_10_1002_anie_201411137
crossref_primary_10_1007_s11095_017_2177_4
crossref_primary_10_1080_17425247_2016_1211637
crossref_primary_10_1515_ntrev_2023_0107
crossref_primary_10_1016_j_mtchem_2022_101144
crossref_primary_10_1039_C8CS00658J
crossref_primary_10_1038_srep33335
crossref_primary_10_1039_D0NJ01221A
crossref_primary_10_1016_j_nano_2021_102496
crossref_primary_10_3390_molecules21040522
crossref_primary_10_1016_j_apt_2020_07_025
crossref_primary_10_1002_adtp_202000218
crossref_primary_10_1021_am501337s
crossref_primary_10_1016_j_biomaterials_2015_11_002
crossref_primary_10_1039_c3ra47654e
crossref_primary_10_1016_j_biomaterials_2024_122853
crossref_primary_10_1016_j_jconrel_2015_10_012
crossref_primary_10_1016_j_jiec_2020_03_027
crossref_primary_10_2147_IJN_S256227
crossref_primary_10_1039_C4RA03277B
crossref_primary_10_1021_acsami_6b11209
crossref_primary_10_1002_adhm_201801047
crossref_primary_10_1002_advs_201600122
crossref_primary_10_1002_nbm_4698
crossref_primary_10_1051_matecconf_20179805001
crossref_primary_10_1021_acsami_8b19236
crossref_primary_10_1002_ejic_201500573
crossref_primary_10_1517_17425247_2014_953051
crossref_primary_10_1002_cphc_201501167
crossref_primary_10_1002_adfm_201400221
crossref_primary_10_1039_C4NR05931J
crossref_primary_10_1039_C8CC09389J
crossref_primary_10_1021_acs_accounts_7b00635
crossref_primary_10_1039_C7DT03735J
crossref_primary_10_1134_S1995078013060116
crossref_primary_10_1016_j_micromeso_2020_110049
crossref_primary_10_1016_j_polymer_2014_04_040
crossref_primary_10_1021_acs_molpharmaceut_3c00180
crossref_primary_10_1016_j_heliyon_2024_e27692
crossref_primary_10_1016_j_mser_2019_01_001
crossref_primary_10_1016_j_biomaterials_2016_03_019
crossref_primary_10_1016_j_nano_2016_10_018
crossref_primary_10_1166_sam_2022_4224
crossref_primary_10_1021_acsami_6b12653
crossref_primary_10_1039_C5TC02057C
crossref_primary_10_1016_j_bios_2015_06_023
crossref_primary_10_1002_adma_201604634
crossref_primary_10_1039_C7TB03201C
crossref_primary_10_1002_advs_202306480
crossref_primary_10_1002_adma_201707557
crossref_primary_10_1039_C5DT03144C
crossref_primary_10_3390_technologies12110210
crossref_primary_10_1016_j_ijpharm_2016_06_133
crossref_primary_10_1016_j_nano_2017_03_014
crossref_primary_10_3390_mi12070740
crossref_primary_10_1016_j_micromeso_2015_09_004
crossref_primary_10_1021_ac402713a
crossref_primary_10_1016_j_ijpharm_2015_05_010
crossref_primary_10_1002_smll_201600616
crossref_primary_10_1021_acsbiomaterials_6b00111
crossref_primary_10_1002_adhm_201700354
crossref_primary_10_1002_adma_201801964
crossref_primary_10_1039_C7TB00938K
crossref_primary_10_1039_D0TB01868F
crossref_primary_10_1002_adhm_201600402
crossref_primary_10_1016_j_chemosphere_2017_05_138
crossref_primary_10_1186_s12951_022_01315_x
crossref_primary_10_1039_C5NR02767E
crossref_primary_10_1021_acs_langmuir_0c03541
crossref_primary_10_1002_ejic_201500580
crossref_primary_10_1007_s12274_014_0698_2
crossref_primary_10_1016_j_snb_2018_03_053
crossref_primary_10_1002_mco2_313
crossref_primary_10_1007_s10856_018_6179_5
crossref_primary_10_1002_mabi_201300382
crossref_primary_10_1039_C8BM01219A
crossref_primary_10_1016_j_biomaterials_2015_10_010
crossref_primary_10_1016_j_micromeso_2015_08_015
crossref_primary_10_1038_s41401_021_00648_x
crossref_primary_10_1039_C5CC10106A
crossref_primary_10_3390_vaccines11071172
crossref_primary_10_1021_acsami_2c13076
crossref_primary_10_1021_cm402592t
crossref_primary_10_1021_acsanm_8b00307
crossref_primary_10_1002_adfm_201505569
crossref_primary_10_3390_ijms22094804
crossref_primary_10_1021_acsanm_0c00311
crossref_primary_10_1002_chem_201601024
crossref_primary_10_1007_s10450_015_9727_z
crossref_primary_10_1039_C5RA07632C
crossref_primary_10_1007_s11595_018_2003_9
crossref_primary_10_1002_adhm_201701248
crossref_primary_10_1002_adma_201604105
crossref_primary_10_1039_C3CS60433K
crossref_primary_10_1016_j_actbio_2020_09_009
crossref_primary_10_1002_prp2_776
crossref_primary_10_1039_C6RA28860J
crossref_primary_10_1007_s10856_018_6069_x
crossref_primary_10_1016_j_ijpharm_2025_125499
crossref_primary_10_1002_adhm_201800268
crossref_primary_10_1002_wnan_1515
crossref_primary_10_1021_acs_nanolett_8b00040
crossref_primary_10_1021_acs_nanolett_0c02180
crossref_primary_10_1016_j_ajps_2023_100795
crossref_primary_10_1016_j_corsci_2021_109543
crossref_primary_10_1016_j_apmt_2021_101067
crossref_primary_10_3390_ijms24043249
crossref_primary_10_3390_magnetochemistry6030038
crossref_primary_10_1002_advs_201800518
crossref_primary_10_1016_j_actbio_2017_09_009
crossref_primary_10_1002_smll_201400042
crossref_primary_10_1039_C5TB00790A
crossref_primary_10_1002_adma_201602012
crossref_primary_10_1142_S1793545816300056
crossref_primary_10_1002_adma_201902672
crossref_primary_10_1002_adfm_201302988
crossref_primary_10_1080_03639045_2021_1988097
crossref_primary_10_1039_C5TB01761K
crossref_primary_10_1016_j_ccr_2020_213467
crossref_primary_10_1039_C7TB00680B
crossref_primary_10_1002_ppsc_201300219
crossref_primary_10_1021_acs_bioconjchem_8b00399
crossref_primary_10_1016_j_carbpol_2019_115706
crossref_primary_10_1038_ncomms13936
crossref_primary_10_1016_j_matlet_2016_02_156
crossref_primary_10_1021_la504684g
crossref_primary_10_1038_s41598_021_99678_y
crossref_primary_10_1007_s11051_017_4077_2
crossref_primary_10_1021_acs_langmuir_5b03898
crossref_primary_10_1515_mr_2022_0020
crossref_primary_10_1039_c4ob00164h
crossref_primary_10_1016_j_biomaterials_2014_06_012
crossref_primary_10_1021_acs_chemrev_4c00009
crossref_primary_10_2147_IJN_S451919
crossref_primary_10_1002_smll_202002091
crossref_primary_10_1021_mp400596v
crossref_primary_10_1246_bcsj_20150420
crossref_primary_10_2174_1568026621666210910123749
crossref_primary_10_1016_j_brainres_2022_147786
crossref_primary_10_1021_ac504698j
crossref_primary_10_1002_wnan_1658
crossref_primary_10_1002_adhm_202400888
crossref_primary_10_1002_advs_202309305
crossref_primary_10_1016_j_chempr_2018_02_012
crossref_primary_10_1039_C4DT02549K
crossref_primary_10_1517_17425247_2014_908181
crossref_primary_10_1002_smtd_201900343
crossref_primary_10_1016_j_fbio_2023_102843
crossref_primary_10_1002_pen_26626
crossref_primary_10_1021_acsami_6b04998
crossref_primary_10_1038_aps_2017_1
crossref_primary_10_1002_cbic_202400962
crossref_primary_10_2147_IJN_S293190
crossref_primary_10_1021_ja4108287
crossref_primary_10_1039_D4NA00987H
crossref_primary_10_1016_j_biomaterials_2017_11_015
crossref_primary_10_1016_j_jconrel_2016_01_040
crossref_primary_10_1002_adhm_201601431
crossref_primary_10_1002_ijc_34256
crossref_primary_10_1016_j_addr_2023_115115
crossref_primary_10_1021_acsnano_5b00526
crossref_primary_10_3390_mi13081358
crossref_primary_10_3390_ijms161023784
crossref_primary_10_1016_j_actbio_2017_11_007
crossref_primary_10_1021_ja508721y
crossref_primary_10_3390_nano10030597
crossref_primary_10_1039_C7NJ04535B
crossref_primary_10_1007_s10971_016_3991_6
crossref_primary_10_1166_nnl_2017_2561
crossref_primary_10_1002_smll_201805339
crossref_primary_10_1021_acs_langmuir_2c03126
crossref_primary_10_3390_nano5041906
crossref_primary_10_3390_pharmaceutics15041071
crossref_primary_10_1002_smll_201400765
crossref_primary_10_1021_acsanm_9b02298
crossref_primary_10_1016_j_canlet_2019_10_018
crossref_primary_10_1007_s12274_020_2838_1
crossref_primary_10_3389_fchem_2020_573297
crossref_primary_10_1002_ange_201411137
crossref_primary_10_3389_fbioe_2021_749381
crossref_primary_10_1016_j_micromeso_2020_110689
crossref_primary_10_1002_adfm_201909539
crossref_primary_10_1039_C4RA04294H
crossref_primary_10_1016_j_mtnano_2021_100132
crossref_primary_10_1016_j_biomaterials_2020_120256
crossref_primary_10_3390_jfb13040181
crossref_primary_10_3390_nano12020288
crossref_primary_10_1016_j_jddst_2023_104306
crossref_primary_10_1002_smll_202101519
crossref_primary_10_1039_C7PY01259D
crossref_primary_10_3389_fchem_2019_00290
crossref_primary_10_1021_am405633r
crossref_primary_10_1038_srep08766
crossref_primary_10_1002_advs_201700474
crossref_primary_10_1021_acs_chemrev_7b00208
crossref_primary_10_1007_s12274_017_1947_y
crossref_primary_10_1016_j_omtn_2021_10_024
crossref_primary_10_1016_j_jcis_2019_04_086
crossref_primary_10_1016_j_cbi_2021_109601
crossref_primary_10_1016_j_ceramint_2023_10_027
crossref_primary_10_1021_acsami_0c00596
crossref_primary_10_1007_s13770_022_00510_z
crossref_primary_10_1016_j_biomaterials_2017_03_003
crossref_primary_10_1002_adma_201400303
crossref_primary_10_1002_smll_201902242
crossref_primary_10_1007_s10934_016_0231_y
crossref_primary_10_1016_j_jconrel_2024_06_019
crossref_primary_10_1039_C7NR05402E
crossref_primary_10_1021_acs_jpcc_0c04602
crossref_primary_10_3906_biy_1507_143
crossref_primary_10_1016_j_jddst_2023_104536
crossref_primary_10_1002_advs_202306884
crossref_primary_10_1016_j_micromeso_2020_110774
crossref_primary_10_1007_s12274_014_0558_0
crossref_primary_10_1016_j_foodchem_2018_09_148
crossref_primary_10_1007_s11426_020_9869_4
crossref_primary_10_1021_jf504455x
crossref_primary_10_1002_wnan_1733
crossref_primary_10_1007_s13346_024_01609_7
crossref_primary_10_1038_s41467_019_11082_3
crossref_primary_10_1016_j_isci_2020_101687
crossref_primary_10_1016_j_biomaterials_2015_01_063
crossref_primary_10_1039_C8CS00028J
crossref_primary_10_1002_advs_202411753
crossref_primary_10_1016_j_matdes_2016_12_028
crossref_primary_10_1142_S1793292019501418
crossref_primary_10_1021_acs_nanolett_1c04804
crossref_primary_10_2478_aoas2018_0029
crossref_primary_10_15171_bi_2018_13
crossref_primary_10_1117_1_JBO_21_11_115002
crossref_primary_10_1016_j_addr_2015_09_009
crossref_primary_10_1002_adhm_201400127
crossref_primary_10_1021_tx500473h
crossref_primary_10_1016_j_trac_2016_10_005
crossref_primary_10_1002_slct_201600004
crossref_primary_10_1016_j_colsurfa_2021_127612
crossref_primary_10_1021_acsami_5b07856
crossref_primary_10_1016_j_biomaterials_2020_120191
crossref_primary_10_1002_ange_201404652
crossref_primary_10_1016_j_micromeso_2015_01_024
crossref_primary_10_1002_adma_202003537
crossref_primary_10_1039_C5DT03700J
crossref_primary_10_1002_adfm_201910304
crossref_primary_10_1021_am506653n
crossref_primary_10_1016_j_clay_2021_106132
crossref_primary_10_1039_C7MH00305F
crossref_primary_10_1039_C6AN00003G
crossref_primary_10_1007_s00216_017_0369_8
crossref_primary_10_1039_C6RA19242D
crossref_primary_10_1016_j_solidstatesciences_2017_04_003
crossref_primary_10_1186_1556_276X_9_146
crossref_primary_10_1002_ppsc_201400079
crossref_primary_10_2217_nnm_15_1
crossref_primary_10_1002_adfm_202107826
crossref_primary_10_2478_aoas_2018_0029
crossref_primary_10_1039_C6RA23836J
crossref_primary_10_1021_acs_langmuir_6b01845
crossref_primary_10_1063_5_0045945
crossref_primary_10_1021_acsagscitech_3c00436
crossref_primary_10_1039_C6CS00616G
crossref_primary_10_3389_fcell_2022_989471
crossref_primary_10_1016_j_addr_2023_115049
crossref_primary_10_1016_j_micromeso_2016_03_040
crossref_primary_10_1155_2014_972475
crossref_primary_10_4155_tde_13_110
crossref_primary_10_1039_C4CC09382H
crossref_primary_10_3390_molecules26144186
crossref_primary_10_1016_j_nano_2016_02_011
crossref_primary_10_1002_adma_201303123
crossref_primary_10_1039_D2AN01684B
crossref_primary_10_1002_adtp_202200089
crossref_primary_10_1016_j_jddst_2020_101617
crossref_primary_10_1021_acs_orglett_5b00740
crossref_primary_10_1039_C4TA06316C
crossref_primary_10_1016_j_addr_2021_113953
crossref_primary_10_1039_C8BM01658E
crossref_primary_10_1021_acsami_6b01147
crossref_primary_10_1002_smll_202401776
crossref_primary_10_1039_C4NR02657H
crossref_primary_10_1007_s12274_014_0503_2
crossref_primary_10_1039_C4RA15574B
crossref_primary_10_3390_molecules25173814
crossref_primary_10_1039_C4CC10226F
crossref_primary_10_1039_C6BM00039H
crossref_primary_10_1080_07391102_2025_2481581
crossref_primary_10_1002_admi_202102558
crossref_primary_10_1021_acsnano_7b08225
crossref_primary_10_3390_jcs5050131
crossref_primary_10_1038_s41467_019_09158_1
crossref_primary_10_1002_adma_202211432
crossref_primary_10_1016_j_ejmech_2019_111620
crossref_primary_10_3389_fmolb_2016_00001
crossref_primary_10_1016_j_apradiso_2024_111615
crossref_primary_10_1016_j_bios_2023_115180
crossref_primary_10_1038_s41565_024_01673_7
crossref_primary_10_3390_molecules24020332
crossref_primary_10_2147_IJN_S429629
crossref_primary_10_3390_cancers11101474
crossref_primary_10_1021_acs_chemrev_8b00626
crossref_primary_10_1039_C4NR02753A
crossref_primary_10_1039_C8TC02097C
crossref_primary_10_1016_j_jinorgbio_2020_111117
crossref_primary_10_1021_acs_langmuir_5b03811
crossref_primary_10_1021_acsbiomaterials_5b00274
crossref_primary_10_1002_adma_201907035
crossref_primary_10_1021_acsami_6b16505
crossref_primary_10_1039_C4CS00300D
crossref_primary_10_1021_acs_chemmater_5b04660
crossref_primary_10_1088_1361_6528_aac6b1
crossref_primary_10_1002_smll_201401559
crossref_primary_10_1002_aic_15976
crossref_primary_10_1021_acsami_7b14566
crossref_primary_10_1146_annurev_chembioeng_060817_084225
crossref_primary_10_1016_j_biomaterials_2015_01_028
crossref_primary_10_1002_ange_202112752
crossref_primary_10_1007_s42247_020_00078_1
crossref_primary_10_1002_adhm_202300711
crossref_primary_10_1021_acsnano_5b00651
crossref_primary_10_1186_s12951_024_02580_8
crossref_primary_10_1007_s12274_017_1592_5
Cites_doi 10.1016/j.taap.2009.04.010
10.1002/smll.200900923
10.1021/ja028650l
10.1002/adma.201103343
10.1021/cm0705789
10.1038/nnano.2007.387
10.1021/nn2039643
10.1021/ja910846q
10.1021/ja1022267
10.1021/ja809346n
10.1039/b905158a
10.1038/nature01362
10.1016/S1748-0132(07)70084-1
10.1038/nmat2992
10.1016/j.addr.2009.11.007
10.1021/ja051113r
10.1002/smll.201001459
10.1002/anie.200501819
10.1038/nrc1591
10.1002/chem.201102599
10.1016/j.addr.2012.06.006
10.1002/adma.201101586
10.1002/jbm.a.31923
10.1039/c0jm03915b
10.1002/smll.200901789
10.1002/adfm.200701317
10.1002/anie.201106180
10.1021/nn1029229
10.1016/j.biomaterials.2011.12.008
10.1021/ar600032u
10.1021/jp9043978
10.1002/anie.200604488
10.2174/138161208784746671
10.1096/fj.04-2747rev
10.1016/j.biomaterials.2010.11.025
10.1021/cr0300789
10.1021/cr9004007
10.1021/ja211035w
10.1021/nl0502569
10.1016/j.micromeso.2010.01.009
10.1039/b9nr00162j
10.1002/adma.201104797
10.1259/bjr/17150274
10.1038/nrc1566
10.1016/j.micromeso.2009.03.031
10.1002/adfm.201002337
10.1021/nn200306g
10.1016/j.biomaterials.2011.10.017
10.1021/cr900232t
10.1016/j.biomaterials.2009.10.046
10.1016/j.addr.2012.05.008
10.1002/smll.201100521
10.1021/nn700008s
10.1016/j.jconrel.2011.10.037
10.1002/smll.201000538
10.1002/adma.201104714
10.1021/ja001106x
10.1021/jz2013837
10.1021/mp200287c
10.1002/anie.201004133
10.1016/j.addr.2008.08.003
10.1002/adma.201104763
10.1002/adfm.200601191
10.1016/j.biomaterials.2012.02.056
10.1016/j.solidstatesciences.2007.11.026
10.1039/c0cc05520d
10.1039/c1cc11479d
10.1021/nn202399w
10.1016/j.jconrel.2011.05.017
10.1039/c2cs15308d
10.1021/tx300166u
10.1021/cr200355j
10.1021/cr030698
10.2147/IJN.S26547
10.1002/anie.201203993
10.1021/cr000108x
10.1021/nl202949y
10.1039/c0jm00645a
10.1021/nn100918a
10.1016/j.micromeso.2009.11.015
10.1021/nl901589y
10.1021/nn101499d
10.1016/j.nantod.2011.10.003
10.1039/b902685a
10.1021/ja8060886
10.1016/j.addr.2008.03.012
10.1016/j.biomaterials.2012.06.059
10.1259/0007-1285-68-816-1296
10.1002/jbm.a.31371
10.2174/156720111797635522
10.1002/adma.201104033
10.1021/cm702792e
10.1021/ja0777584
10.1002/anie.201103108
10.1016/j.jconrel.2007.12.017
10.1039/c2cs15327k
10.1038/nbt1340
10.1021/ja2010175
10.1021/nl034134x
10.1016/j.micromeso.2005.05.001
10.1002/ejic.201101163
10.1039/c2cs15355f
10.1038/359710a0
10.1039/c1cc11760b
10.1002/anie.200603404
10.1002/smll.201200028
10.1002/adma.200900599
10.1021/ja710193c
10.1021/nn2043803
10.1002/adma.201201742
10.1016/j.addr.2008.08.004
10.1016/j.biomaterials.2010.10.035
10.1039/b822444g
10.1016/S1369-7021(11)70161-4
10.1021/ja057254a
10.1021/cr068445e
10.1021/nn103130q
10.1002/anie.201104765
10.1039/b902985k
10.1016/j.solidstatesciences.2005.04.003
10.1021/ja9061085
10.1016/j.actbio.2011.06.028
10.1016/j.jcis.2011.03.051
10.1002/smll.200902355
10.1021/cr100025t
10.1021/ja905793q
10.1126/science.1104274
10.1021/ja00053a020
10.1021/cm051198v
10.2217/nnm.11.19
10.1021/ja0565875
10.1021/jp306543q
10.1021/nn200809t
10.1148/radiol.2502080498
10.1088/0957-4484/20/4/045602
10.1126/science.279.5350.548
10.1002/cbic.200700509
10.1016/j.biomaterials.2012.02.060
10.1021/cr940351u
10.1016/j.biomaterials.2012.09.029
10.1002/adma.200600387
10.1039/c0md00139b
10.1021/nn200372g
10.1038/nrclinonc.2010.139
10.1002/anie.201002639
10.1021/ar2000259
10.1021/ja1084095
10.1016/j.biomaterials.2009.01.029
10.1007/3-540-45733-X_6
10.1016/S0022-5347(05)64992-0
10.2217/nnm.11.166
10.1016/j.addr.2012.06.012
10.1002/smll.201101055
10.1021/nn202863x
10.1021/nn100690m
10.1021/ar800018v
10.1038/nrd1033
10.1002/smll.200800926
10.1021/cm3001688
10.1016/j.nano.2011.06.002
10.1016/j.micromeso.2005.06.015
10.1016/j.biomaterials.2008.07.007
10.1016/j.addr.2003.07.013
10.1016/j.biomaterials.2010.05.065
10.1002/anie.200501500
10.1002/anie.200900880
10.1002/adfm.200800753
10.1021/cm703363w
10.1093/nar/gkq893
10.1021/cr068020s
10.1039/c1nr10718f
10.1002/anie.201002820
10.1002/anie.200802585
10.1002/smll.200701316
10.1021/ja201779d
10.1021/ja904456d
10.1039/c2nr12094a
10.1039/c0jm04115g
10.1021/nn800072t
10.1039/b517615h
10.1016/j.biomaterials.2009.09.060
10.1021/nn901398j
10.1021/nl0347334
10.1021/ja807798g
10.1021/nl902715v
10.1039/C1JM13102H
10.1021/nn200365a
10.1038/ncpneph0660
10.1039/b402025a
10.1016/j.biomaterials.2012.03.066
10.1002/anie.200602866
10.1038/nbt1006-1211
10.1002/adfm.201001495
10.1039/c0jm03851b
10.1021/ja901831u
10.1002/adfm.201102052
10.1016/S1476-5586(03)80005-2
10.1016/j.addr.2006.09.020
10.1039/c0cc02914a
10.1016/j.biomaterials.2010.07.103
10.1039/c1cs15246g
10.1016/j.biomaterials.2010.04.055
10.1172/JCI45600
10.1016/j.biomaterials.2011.11.086
10.1002/adma.200800854
10.1021/ja900025f
10.1021/ja206998x
10.1039/C1CS15187H
10.1038/nbt994
10.1039/B406727D
10.1021/jp103982a
10.1021/ja0772086
10.1016/j.biomaterials.2012.05.065
10.1002/anie.201001847
10.1002/smll.200900621
10.1021/ar200106e
10.1093/jnci/90.12.889
10.1002/adfm.201100031
10.1002/adfm.200500565
10.1039/C1CS15248C
10.1016/j.jconrel.2012.05.046
10.1021/nn800781r
10.1021/la903008z
10.1038/nnano.2007.108
10.1016/j.biomaterials.2010.01.015
10.1039/b804594a
10.1016/j.nantod.2011.02.007
10.1021/nn1015117
10.1016/j.progsolidstchem.2007.10.002
10.1039/c1cc13658e
10.1021/cm0204371
10.1021/cm203000u
10.1021/cm0011559
10.1002/adma.200901096
10.1002/smll.201001447
10.1016/j.biomaterials.2010.03.048
10.1021/ar800150g
10.1002/anie.200802469
10.1038/nrc1071
10.1038/nmat1390
10.1002/anie.201000827
10.1111/j.2042-7158.2010.01167.x
10.1002/chem.200600226
10.1002/anie.200200546
10.1039/c0jm02863k
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201205292
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 3176
ExternalDocumentID 23681931
10_1002_adma_201205292
ADMA201205292
ark_67375_WNG_J850KQQH_G
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5222-484dc4790af7bbeecd2e53018e552ffdcda5287d23599af37e258fed116d51ba3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:57:49 EDT 2025
Fri Jul 11 10:58:37 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Tue Jul 01 02:26:32 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Aug 20 07:24:25 EDT 2025
Wed Oct 30 09:52:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5222-484dc4790af7bbeecd2e53018e552ffdcda5287d23599af37e258fed116d51ba3
Notes ark:/67375/WNG-J850KQQH-G
istex:4C00EF9A4FE0B028D7B2824CDAB9A6DC9ADF5AEE
ArticleID:ADMA201205292
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201205292
PMID 23681931
PQID 1367877142
PQPubID 23479
PageCount 33
ParticipantIDs proquest_miscellaneous_1439757269
proquest_miscellaneous_1367877142
pubmed_primary_23681931
crossref_citationtrail_10_1002_adma_201205292
crossref_primary_10_1002_adma_201205292
wiley_primary_10_1002_adma_201205292_ADMA201205292
istex_primary_ark_67375_WNG_J850KQQH_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 18, 2013
PublicationDateYYYYMMDD 2013-06-18
PublicationDate_xml – month: 06
  year: 2013
  text: June 18, 2013
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
Q. J. He, J. L. Shi, F. Chen, M. Zhu, L. X. Zhang, Biomaterials 2010, 31, 3335.
J. Kobler, K. Moller, T. Bein, ACS Nano 2008, 2, 791.
H. Meng, M. Xue, T. Xia, Z. X. Ji, D. Y. Tarn, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 4131.
L. M. Pan, Q. J. He, J. N. Liu, Y. Chen, M. Ma, L. L. Zhang, J. L. Shi, J. Am. Chem. Soc. 2012, 134, 5722.
H. Jaganathan, B. Godin, Adv. Drug Deliv. Rev. 2012, 64, 1800.
M. Vendrell, D. T. Zhai, J. C. Er, Y. T. Chang, Chem. Rev. 2012, 112, 4391.
Q. He, M. Ma, C. Wei, J. Shi, Biomaterials 2012, 33, 4392.
S. Mura, P. Couvreur, Adv. Drug Deliv. Rev. 2012, 64, 1394.
M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084.
H. Yan, C. Teh, S. Sreejith, L. L. Zhu, A. Kwok, W. Q. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. L. Zhao, Angew. Chem. Int. Ed. 2012, 51, 8373.
M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438.
Q. J. He, Z. W. Zhang, F. Gao, Y. P. Li, J. L. Shi, Small 2011, 7, 271.
I. Izquierdo-Barba, M. Colilla, M. Vallet-Regi, J. Nanomater. 2008, DOI: 10.1155/2008/106970.
B. A. Rzigalinski, J. S. Strobl, Toxicol. Appl. Pharm. 2009, 238, 280.
A. Bernardos, L. Mondragon, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, ACS Nano 2010, 4, 6353.
E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regi, Chem. Mater. 2007, 19, 3455.
A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11.
J. N. Liu, W. B. Bu, S. J. Zhang, F. Chen, H. Y. Xing, L. M. Pan, L. P. Zhou, W. J. Peng, J. L. Shi, Chem. Eur. J. 2012, 18, 2335.
K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 872.
S. M. Moghimi, A. C. Hunter, J. C. Murray, FASEB Journal 2005, 19, 311.
J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc. 2010, 132, 552.
H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon, D. H. Min, Small 2012, 8, 1752.
P. P. Yang, S. L. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679.
K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 2012, 41, 2943.
S. A. Li, H. A. Liu, L. Li, N. Q. Luo, R. H. Cao, D. H. Chen, Y. Z. Shao, Appl. Phys. Lett. 2011, 98, DOI: DOI: 10.1155/2008/106970.
T. T. Wang, F. Chai, Q. Fu, L. Y. Zhang, H. Y. Liu, L. Li, Y. Liao, Z. M. Su, C. A. Wang, B. Y. Duan, D. X. Ren, J. Mater. Chem. 2011, 21, 5299.
M. Ma, H. R. Chen, Y. Chen, X. Wang, F. Chen, X. Z. Cui, J. L. Shi, Biomaterials 2012, 33, 989.
E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, Solid State Sci. 2008, 10, 421.
Y. Chen, C. Chu, Y. C. Zhou, Y. F. Ru, H. R. Chen, F. Chen, Q. J. He, Y. L. Zhang, L. L. Zhang, J. L. Shi, Small 2011, 7, 2935.
M. Zhu, H. X. Wang, J. Y. Liu, H. L. He, X. G. Hua, Q. J. He, L. X. Zhang, X. J. Ye, J. L. Shi, Biomaterials 2011, 32, 1986.
S. Beg, M. Rizwan, A. M. Sheikh, M. S. Hasnain, K. Anwer, K. Kohli, J. Pharm. Pharm. 2011, 63, 141.
F. Sharif, F. Porta, A. H. Meijer, A. Kros, M. K. Richardson, Int. J. Nanomed. 2012, 7, 1875.
J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451.
C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou, L. W. Lo, Angew. Chem. Int. Ed. 2010, 49, 8214.
J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren, M. Linden, ACS Nano 2009, 3, 197.
Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, Y. Li, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, L. Zhang, J. Shi, Adv. Mater. 2013, DOI: 10.1002/adma.201204685.
J. L. Steinbacher, S. A. Lathrop, K. Cheng, J. M. Hillegass, K. Butnor, R. A. Kauppinen, B. T. Mossman, C. C. Landry, Small 2010, 6, 2678.
J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small 2010, 6, 1234.
H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.
C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Adv. Drug Deliv. Rev. 2010, 62, 346.
J. P. Lai, X. Mu, Y. Y. Xu, X. L. Wu, C. L. Wu, C. Li, J. B. Chen, Y. B. Zhao, Chem. Commun. 2010, 46, 7370.
J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050.
M. Ferrari, Nat. Rev. Cancer 2005, 5, 161.
A. Baeza, E. Guisasola, E. Ruiz-Hernandez, M. Vallet-Regi, Chem. Mater. 2012, 24, 517.
S. H. Cheng, C. C. Hsieh, N. T. Chen, C. H. Chu, C. M. Huang, P. T. Chou, F. G. Tseng, C. S. Yang, C. Y. Mou, L. W. Lo, Nano Today 2011, 6, 552.
S. H. Crayton, A. Tsourkas, ACS Nano 2011, 5, 9592.
J. G. Penfield, R. F. Reilly, Nat. Clin. Pract. Nephrol. 2007, 3, 654.
K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev. 1999, 99, 3181.
V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner, T. Bein, J. Am. Chem. Soc. 2009, 131, 11361.
R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653.
C. D. H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 2005, 34, 276.
M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308.
H. X. Wu, S. J. Zhang, J. M. Zhang, G. Liu, J. L. Shi, L. X. Zhang, X. Z. Cui, M. L. Ruan, Q. J. He, W. B. Bu, Adv. Funct. Mater. 2011, 21, 1850.
J. Zhou, Z. Liu, F. Y. Li, Chem. Soc. Rev. 2012, 41, 1323.
Y. Chen, H. R. Chen, S. J. Zhang, F. Chen, L. X. Zhang, J. M. Zhang, M. Zhu, H. X. Wu, L. M. Guo, J. W. Feng, J. L. Shi, Adv. Funct. Mater. 2011, 21, 270.
Y. Z. Zhang, J. C. Wang, X. Y. Bai, T. Y. Jiang, Q. Zhang, S. L. Wang, Mol. Pharm. 2012, 9, 505.
D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686.
Y. Chen, H. R. Chen, Y. Sun, Y. Y. Zheng, D. P. Zeng, F. Q. Li, S. J. Zhang, X. Wang, K. Zhang, M. Ma, Q. J. He, L. L. Zhang, J. L. Shi, Angew. Chem. Int. Ed. 2011, 50, 12505.
M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889.
H. X. Wu, G. Liu, S. J. Zhang, J. L. Shi, L. X. Zhang, Y. Chen, F. Chen, H. R. Chen, J. Mater. Chem. 2011, 21, 3037.
S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161.
J. M. Harris, R. B. Chess, Nat. Rev. Drug Discov. 2003, 2, 214.
S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038.
C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. W. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. M. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, C. J. Brinker, Nat. Mater. 2011, 10, 389.
Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 84, 218.
T. Asefa, Z. Tao, Chem. Res. Toxicol. 2012, 25, 2265.
J. Perez-Rodriguez, S. Lai, B. D. Ehst, D. M. Fine, D. A. Bluemke, Radiology 2009, 250, 371.
H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6267.
C. Coll, L. Mondragon, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, P. Amoros, E. Perez-Paya, Angew. Chem. Int. Ed. 2011, 50, 2138.
R. I. Nooney, D. Thirunavukkarasu, Y. M. Chen, R. Josephs, A. E. Ostafin, Chem. Mater. 2002, 14, 4721.
K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382.
L. Xing, H. Q. Zheng, Y. Y. Cao, S. A. Che, Adv. Mater. 2012, 24, 6433.
L. L. Li, Y. Q. Guan, H. Y. Liu, N. J. Hao, T. L. Liu, X. W. Meng, C. H. Fu, Y. Z. Li, Q. L. Qu, Y. G. Zhang, S. Y. Ji, L. Chen, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 7462.
D. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380.
T. Kim, E. J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E. S. Lee, H. Baik, S. Haam, J. S. Suh, Y. M. Huh, K. Lee, Angew. Chem. Int. Ed. 2011, 50, 10589.
C. E. Chen, F. Pu, Z. Z. Huang, Z. Liu, J. S. Ren, X. G. Qu, Nucleic Acids Res. 2011, 39, 1638.
F. Zhang, G. B. Braun, A. Pallaoro, Y. C. Zhang, Y. F. Shi, D. X. Cui, M. Moskovits, D. Y. Zhao, G. D. Stucky, Nano Lett. 2012, 12, 61.
C. C. Huang, C. Y. Tsai, H. S. Sheu, K. Y. Chuang, C. H. Su, U. S. Jeng, F. Y. Cheng, H. Y. Lei, C. S. Yeh, ACS Nano 2011, 5, 3905.
D. D. Schwert, J. A. Davies, N. Richardson, Contrast Agents I 2002, 221, 165.
J. Lu, Z. X. Li, J. I. Zink, F. Tamanoi, Nanome-Nanotechnol. 2012, 8, 212.
H. P. Martinez, Y. Kono, S. L. Blair, S. Sandoval, J. Wang-Rodriguez, R. F. Mattrey, A. C. Kummel, W. C. Trogler, Medchemcomm 2010, 1, 266.
E. Torres, F. Mainini, R. Napolitano, F. Fedeli, R. Cavalli, S. Aime, E. Terreno, J. Control. Release 2011, 154, 196.
X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987.
M. A. Malvindi, A. Greco, F. Conversano, A. Figuerola, M. Corti, M. Bonora, A. Lascialfari, H. A. Doumari, M. Moscardini, R. Cingolani, G. Gigli, S. Casciaro, T. Pellegrino, A. Ragusa, Adv. Funct. Mater. 2011, 21, 2548.
J. L. Vivero-Escoto, Slowing, II, B. G. Trewyn, V. S. Y. Lin, Small 2010, 6, 1952.
X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Adv. Mater. 2012, 24, 785.
Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590.
I. I. Slowing, C. W. Wu, J. L. Vivero-Escoto, V. S. Y. Lin, Small 2009, 5, 57.
A. Bernardos, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, P. Amoros, Angew. Chem. Int. Ed. 2009, 48, 5884.
X. Wang, H. R. Chen, Y. Chen, M. Ma, K. Zhang, F. Q. Li, Y. Y. Zheng, D. P. Zeng, Q. Wang, J. L. Shi, Adv. Mater. 2012, 24, 785.
J. Kim, J. E. Lee, J. Lee, J. H. Yu, B.
2011; 358
2004; 22
2002; 14
2007; 107
2006; 35
2008; 36
2004; 4
2008; 108
2009; 113
2012; 18
1998; 279
2012; 12
2009; 238
2010; 20
2010; 26
2012; 134
2010; 1
2006; 24
2008; 29
2010; 114
2005; 105
1992; 114
2010; 110
2011; 63
1992; 359
2008; 23
2009; 123
1998; 90
2007; 2
2000; 122
2008; 20
2007; 3
2012; 25
2012; 24
2009; 19
2012; 22
2010; 4
2003; 42
2010; 7
2010; 6
2011; 121
2007; 17
2007; 19
2010; 31
2006; 58
2005; 84
2005; 85
2008; 126
2011; 3
2011; 6
2011; 5
2012; 33
2011; 8
2011; 7
2011; 133
2005; 19
2010; 49
2012; 112
2010; 46
2009; 90A
2004; 56
2005; 127
2005; 5
2008; 47
2005; 4
2005; 7
2008; 41
2012; 116
2005; 17
2008; 130
2012; 41
2012; 161
2012; 163
2001; 101
2008; 9
2011; 10
2011; 98
2011; 14
2008; 4
2008; 2
2009; 48
2010; 62
2011; 154
2012; 51
1995; 68
2002; 221
2003; 2
2003; 3
1999; 99
2005; 307
2011; 21
2003; 5
2011; 23
2003; 125
2001; 13
2006; 128
2008; 60
2012; 64
2007; 25
2005; 34
2004; 104
2008; 84A
2009; 21
2009; 20
2006; 12
2008; 18
2006; 16
2008; 14
2008
2006; 18
2011; 32
2008; 10
2009; 250
2009; 131
2011; 39
2005; 44
2003; 76
2009; 30
2012; 3
2013; 34
2004; 14
2011; 50
2002; 167
2010; 132
2009; 9
2011; 44
2010; 131
2007; 40
2009; 5
2013
2011; 47
2012; 6
2009; 3
2012; 7
2009; 1
2012; 4
2003; 421
2007; 46
2012; 8
2012; 9
e_1_2_7_3_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_60_2
e_1_2_7_191_2
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_248_2
e_1_2_7_68_2
e_1_2_7_142_2
e_1_2_7_188_2
e_1_2_7_202_2
e_1_2_7_225_2
e_1_2_7_165_2
e_1_2_7_240_2
e_1_2_7_116_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_180_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_192_2
e_1_2_7_237_2
e_1_2_7_131_2
e_1_2_7_154_2
e_1_2_7_177_2
e_1_2_7_214_2
e_1_2_7_139_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_82_2
e_1_2_7_120_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_226_2
e_1_2_7_181_2
e_1_2_7_249_2
e_1_2_7_143_2
e_1_2_7_166_2
e_1_2_7_29_2
e_1_2_7_203_2
e_1_2_7_189_2
e_1_2_7_241_2
e_1_2_7_117_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_32_2
e_1_2_7_55_2
e_1_2_7_170_2
e_1_2_7_215_2
e_1_2_7_78_2
e_1_2_7_193_2
e_1_2_7_238_2
e_1_2_7_132_2
e_1_2_7_155_2
e_1_2_7_178_2
e_1_2_7_230_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_204_2
e_1_2_7_227_2
e_1_2_7_66_2
e_1_2_7_89_2
e_1_2_7_182_2
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_242_2
e_1_2_7_167_2
e_1_2_7_118_2
e_1_2_7_110_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_171_2
e_1_2_7_194_2
e_1_2_7_216_2
e_1_2_7_239_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_179_2
e_1_2_7_231_2
e_1_2_7_156_2
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_122_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_160_2
e_1_2_7_183_2
e_1_2_7_205_2
e_1_2_7_88_2
e_1_2_7_228_2
e_1_2_7_27_2
e_1_2_7_145_2
e_1_2_7_168_2
e_1_2_7_243_2
e_1_2_7_220_2
e_1_2_7_119_2
e_1_2_7_111_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_53_2
e_1_2_7_195_2
e_1_2_7_99_2
e_1_2_7_172_2
e_1_2_7_217_2
e_1_2_7_38_2
e_1_2_7_134_2
e_1_2_7_157_2
e_1_2_7_232_2
e_1_2_7_108_2
e_1_2_7_7_2
e_1_2_7_123_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_184_2
e_1_2_7_206_2
e_1_2_7_229_2
e_1_2_7_161_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_244_2
e_1_2_7_146_2
e_1_2_7_221_2
e_1_2_7_169_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_150_2
e_1_2_7_173_2
e_1_2_7_218_2
e_1_2_7_37_2
e_1_2_7_196_2
e_1_2_7_233_2
e_1_2_7_135_2
e_1_2_7_210_2
e_1_2_7_158_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_162_2
e_1_2_7_207_2
e_1_2_7_48_2
e_1_2_7_222_2
e_1_2_7_185_2
e_1_2_7_245_2
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_113_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_219_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_36_2
e_1_2_7_151_2
e_1_2_7_59_2
e_1_2_7_174_2
e_1_2_7_211_2
e_1_2_7_197_2
e_1_2_7_234_2
e_1_2_7_136_2
e_1_2_7_159_2
e_1_2_7_5_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_208_2
e_1_2_7_62_2
e_1_2_7_85_2
e_1_2_7_47_2
e_1_2_7_140_2
e_1_2_7_200_2
e_1_2_7_223_2
e_1_2_7_246_2
e_1_2_7_163_2
e_1_2_7_186_2
e_1_2_7_148_2
e_1_2_7_114_2
e_1_2_7_50_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
Chen Y. (e_1_2_7_57_2) 2013
e_1_2_7_152_2
e_1_2_7_175_2
e_1_2_7_212_2
e_1_2_7_235_2
Izquierdo‐Barba I. (e_1_2_7_198_2) 2008
e_1_2_7_137_2
e_1_2_7_250_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_190_2
e_1_2_7_209_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_141_2
e_1_2_7_164_2
e_1_2_7_187_2
e_1_2_7_201_2
e_1_2_7_224_2
e_1_2_7_149_2
e_1_2_7_115_2
Li S. A. (e_1_2_7_247_2) 2011; 98
e_1_2_7_72_2
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_130_2
e_1_2_7_153_2
e_1_2_7_199_2
e_1_2_7_236_2
e_1_2_7_176_2
e_1_2_7_213_2
e_1_2_7_138_2
References_xml – reference: Y. Chen, Q. Yin, X. F. Ji, S. J. Zhang, H. R. Chen, Y. Y. Zheng, Y. Sun, H. Y. Qu, Z. Wang, Y. P. Li, X. Wang, K. Zhang, L. L. Zhang, J. L. Shi, Biomaterials 2012, 33, 7126.
– reference: K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 872.
– reference: A. Pietroiusti, M. Massimiani, I. Fenoglio, M. Colonna, F. Valentini, G. Palleschi, A. Camaioni, A. Magrini, G. Siracusa, A. Bergamaschi, A. Sgambato, L. Campagnolo, ACS Nano 2011, 5, 4624.
– reference: J. K. Hsiao, C. P. Tsai, T. H. Chung, Y. Hung, M. Yao, H. M. Liu, C. Y. Mou, C. S. Yang, Y. C. Chen, D. M. Huang, Small 2008, 4, 1445.
– reference: S. H. Wu, Y. Hung, C. Y. Mou, Chem. Commun. 2011, 47, 9972.
– reference: J. P. Lai, X. Mu, Y. Y. Xu, X. L. Wu, C. L. Wu, C. Li, J. B. Chen, Y. B. Zhao, Chem. Commun. 2010, 46, 7370.
– reference: M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, J. Santamaria, Nano Today 2007, 2, 22.
– reference: Z. G. Feng, Y. S. Li, D. C. Niu, L. Li, W. R. Zhao, H. R. Chen, J. H. Gao, M. L. Ruan, J. L. Shi, Chem. Commun. 2008, 23, 2629.
– reference: V. Salgueirino-Maceira, M. A. Correa-Duarte, M. Spasova, L. M. Liz-Marzan, M. Farle, Adv. Funct. Mater. 2006, 16, 509.
– reference: F. Sharif, F. Porta, A. H. Meijer, A. Kros, M. K. Richardson, Int. J. Nanomed. 2012, 7, 1875.
– reference: I. Izquierdo-Barba, L. Ruiz-Gonzalez, J. C. Doadrio, J. M. Gonzalez-Calbet, M. Vallet-Regi, Solid State Sci. 2005, 7, 983.
– reference: M. Hossain, M. Su, J. Phy. Chem. C 2012, 116, 23047.
– reference: I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435-446.
– reference: W. R. Zhao, M. D. Lang, Y. S. Li, L. Li, J. L. Shi, J. Mater. Chem. 2009, 19, 2778.
– reference: D. Arcos, V. Fal-Miyar, E. Ruiz-Hernandez, M. Garcia-Hernandez, M. L. Ruiz-Gonzalez, J. Gonzalez-Calbet, M. Vallet-Regi, J. Mater. Chem. 2012, 22, 64.
– reference: S. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res. 2008, 41, 1842.
– reference: C. R. Hill, G. R. terHaar, Brit. J. Radiol. 1995, 68, 1296.
– reference: Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, Y. Li, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, L. Zhang, J. Shi, Adv. Mater. 2013, DOI: 10.1002/adma.201204685.
– reference: T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M. T. McMahon, A. Quinones-Hinojosa, J. W. M. Bulte, T. Hyeon, A. A. Gilad, J. Am. Chem. Soc. 2011, 133, 2955.
– reference: D. Peer, J. M. Karp, S. Hong, O. C. FaroKhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751.
– reference: T. L. Liu, L. L. Li, C. H. Fu, H. Y. Liu, D. Chen, F. Q. Tang, Biomaterials 2012, 33, 2399.
– reference: Y. Z. Shao, X. M. Tian, W. Y. Hu, Y. Y. Zhang, H. Liu, H. Q. He, Y. Y. Shen, F. K. Xie, L. Li, Biomaterials 2012, 33, 6438.
– reference: J. N. Liu, W. B. Bu, S. J. Zhang, F. Chen, H. Y. Xing, L. M. Pan, L. P. Zhou, W. J. Peng, J. L. Shi, Chem. Eur. J. 2012, 18, 2335.
– reference: H. A. Meng, M. Liong, T. A. Xia, Z. X. Li, Z. X. Ji, J. I. Zink, A. E. Nel, ACS Nano 2010, 4, 4539.
– reference: H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.
– reference: J. T. Robinson, S. M. Tabakman, Y. Y. Liang, H. L. Wang, H. S. Casalongue, D. Vinh, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 6825.
– reference: Q. J. He, J. L. Shi, F. Chen, M. Zhu, L. X. Zhang, Biomaterials 2010, 31, 3335.
– reference: K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev. 1999, 99, 3181.
– reference: H. Jaganathan, B. Godin, Adv. Drug Deliv. Rev. 2012, 64, 1800.
– reference: T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889.
– reference: O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, M. Q. Zhang, Nano Lett. 2005, 5, 1003.
– reference: C. T. Wu, W. Fan, Y. F. Zhu, M. Gelinsky, J. Chang, G. Cuniberti, V. Albrecht, T. Friis, Y. Xiao, Acta Biomater. 2011, 7, 3563.
– reference: J. Kobler, K. Moller, T. Bein, ACS Nano 2008, 2, 791.
– reference: Q. J. He, Z. W. Zhang, F. Gao, Y. P. Li, J. L. Shi, Small 2011, 7, 271.
– reference: K. M. L. Taylor, J. S. Kim, W. J. Rieter, H. An, W. L. Lin, W. B. Lin, J. Am. Chem. Soc. 2008, 130, 2154.
– reference: M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morere, M. Garcia, J. O. Durand, L. Raehm, Angew. Chem. Int. Ed. 2011, 50, 11425.
– reference: J. M. Harris, R. B. Chess, Nat. Rev. Drug Discov. 2003, 2, 214.
– reference: M. Elsabahy, K. L. Wooley, Chem. Soc. Rev. 2012, 41, 2545.
– reference: S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038.
– reference: H. Hu, H. Zhou, J. Du, Z. Q. Wang, L. An, H. Yang, F. H. Li, H. X. Wu, S. P. Yang, J. Mater. Chem. 2011, 21, 6576.
– reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692.
– reference: J. V. Jokerst, T. Lobovkina, R. N. Zare, S. S. Gambhir, Nanomedicine 2011, 6, 715.
– reference: P. L. Lin, R. J. Eckersley, E. A. H. Hall, Adv. Mater. 2009, 21, 3949.
– reference: C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
– reference: H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6267.
– reference: D. D. Schwert, J. A. Davies, N. Richardson, Contrast Agents I 2002, 221, 165.
– reference: H. Meng, M. Xue, T. Xia, Z. X. Ji, D. Y. Tarn, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 4131.
– reference: F. Stallmach, J. Karger, C. Krause, M. Jeschke, U. Oberhagemann, J. Am. Chem. Soc. 2000, 122, 9237.
– reference: Y. Chen, H. R. Chen, S. J. Zhang, F. Chen, L. X. Zhang, J. M. Zhang, M. Zhu, H. X. Wu, L. M. Guo, J. W. Feng, J. L. Shi, Adv. Funct. Mater. 2011, 21, 270.
– reference: P. Juzenas, W. Chen, Y. P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, Adv. Drug Deliv. Rev. 2008, 60, 1600.
– reference: L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, F. Y. Li, Biomaterials 2010, 31, 7078.
– reference: Q. Gao, Y. Xu, D. Wu, Y. H. Sun, X. A. Li, J. Phys. Chem. C 2009, 113, 12753-12758.
– reference: J. E. Kennedy, Nat. Rev. Cancer 2005, 5, 321.
– reference: S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, J. Control. Release 2008, 126, 187.
– reference: Y. N. Zhao, B. G. Trewyn, Slowing, II, V. S. Y. Lin, J. Am. Chem. Soc. 2009, 131, 8398.
– reference: L. M. Pan, Q. J. He, J. N. Liu, Y. Chen, M. Ma, L. L. Zhang, J. L. Shi, J. Am. Chem. Soc. 2012, 134, 5722.
– reference: X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Adv. Mater. 2012, 24, 2890.
– reference: K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382.
– reference: C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Adv. Drug Deliv. Rev. 2010, 62, 346.
– reference: B. G. Trewyn, Slowing, II, S. Giri, H. T. Chen, V. S. Y. Lin, Acc. Chem. Res. 2007, 40, 846.
– reference: C. D. H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 2005, 34, 276.
– reference: D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686.
– reference: S. M. Moghimi, A. C. Hunter, J. C. Murray, FASEB Journal 2005, 19, 311.
– reference: Y. S. Li, J. L. Shi, Z. L. Hua, H. R. Chen, M. L. Ruan, D. S. Yan, Nano Lett. 2003, 3, 609.
– reference: J. Lu, Z. X. Li, J. I. Zink, F. Tamanoi, Nanome-Nanotechnol. 2012, 8, 212.
– reference: J. Pan, D. Wan, J. L. Gong, Chem. Commun. 2011, 47, 3442.
– reference: M. Vallet-Regi, E. Ruiz-Hernandez, Adv. Mater. 2011, 23, 5177.
– reference: Y. Chen, C. Chu, Y. C. Zhou, Y. F. Ru, H. R. Chen, F. Chen, Q. J. He, Y. L. Zhang, L. L. Zhang, J. L. Shi, Small 2011, 7, 2935.
– reference: K. Glunde, D. Artemov, M. F. Penet, M. A. Jacobs, Z. M. Bhujwalla, Chem. Rev. 2010, 110, 3043.
– reference: F. G. Gao, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, L. F. Tan, H. B. Li, X. L. Huang, B. Peng, C. M. Yan, L. Q. Yang, X. L. Wu, D. Chen, F. Q. Tang, Nanoscale 2012, 4, 3365.
– reference: J. Lu, M. Liong, Z. X. Li, J. I. Zink, F. Tamanoi, Small 2010, 6, 1794.
– reference: D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
– reference: X. L. Huang, L. L. Li, T. L. Liu, N. J. Hao, H. Y. Liu, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 5390.
– reference: Q. J. He, J. L. Shi, M. Zhu, Y. Chen, F. Chen, Micro. Meso. Mater. 2010, 131, 314.
– reference: C. Wu, Y. Ramaswamy, Y. F. Zhu, R. Zheng, R. Appleyard, A. Howard, H. Zreiqat, Biomaterials 2009, 30, 2199.
– reference: M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084.
– reference: M. Ma, H. R. Chen, Y. Chen, X. Wang, F. Chen, X. Z. Cui, J. L. Shi, Biomaterials 2012, 33, 989.
– reference: Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 2008, 130, 28.
– reference: H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi, K. Kuroda, Chem. Mater. 2012, 24, 1462.
– reference: E. Climent, A. Bernardos, R. Martinez-Manez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenon, J. Soto, P. Amoros, J. Am. Chem. Soc. 2009, 131, 14075.
– reference: I. I. Slowing, C. W. Wu, J. L. Vivero-Escoto, V. S. Y. Lin, Small 2009, 5, 57.
– reference: M. Vallet-Regi, F. Balas, M. Colilla, M. Manzano, Prog. Solid State Chem. 2008, 36, 163.
– reference: C. C. Huang, C. Y. Tsai, H. S. Sheu, K. Y. Chuang, C. H. Su, U. S. Jeng, F. Y. Cheng, H. Y. Lei, C. S. Yeh, ACS Nano 2011, 5, 3905.
– reference: N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350.
– reference: A. H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 2007, 46, 1222.
– reference: Y. Chen, Y. Gao, H. R. Chen, D. P. Zeng, Y. P. Li, Y. Y. Zheng, F. Q. Li, X. F. Ji, X. Wang, F. Chen, Q. J. He, L. L. Zhang, J. L. Shi, Adv. Funct. Mater. 2012, 22, 1586-1597.
– reference: D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Deliv. Rev. 2008, 60, 1627.
– reference: J. Feng, S. Y. Song, R. P. Deng, W. Q. Fan, H. J. Zhang, Langmuir 2010, 26, 3596.
– reference: H. J. Kim, H. Matsuda, H. S. Zhou, I. Honma, Adv. Mater. 2006, 18, 3083.
– reference: A. Liberman, H. P. Martinez, C. N. Ta, C. V. Barback, R. F. Mattrey, Y. Kono, S. L. Blair, W. C. Trogler, A. C. Kummel, Z. Wu, Biomaterials 2012, 33, 5124.
– reference: A. Bernardos, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, P. Amoros, Angew. Chem. Int. Ed. 2009, 48, 5884.
– reference: Q. J. He, J. L. Shi, X. Z. Cui, C. Y. Wei, L. X. Zhang, W. Wu, W. B. Bu, H. R. Chen, H. X. Wu, Chem. Commun. 2011, 47, 7947.
– reference: M. Vallet-Regi, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548.
– reference: M. Ferrari, Nat. Rev. Cancer 2005, 5, 161.
– reference: F. Q. Tang, L. L. Li, D. Chen, Adv. Mater. 2012, 24, 1504.
– reference: K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
– reference: Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 84, 218.
– reference: S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, Y. N. Xia, Acc. Chem. Res. 2008, 41, 1587.
– reference: I. Izquierdo-Barba, M. Colilla, M. Vallet-Regi, J. Nanomater. 2008, DOI: 10.1155/2008/106970.
– reference: T. Kim, E. J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E. S. Lee, H. Baik, S. Haam, J. S. Suh, Y. M. Huh, K. Lee, Angew. Chem. Int. Ed. 2011, 50, 10589.
– reference: Y. F. Zhu, S. Kaskel, T. Ikoma, N. Hanagata, Micro. Meso. Mater. 2009, 123, 107.
– reference: H. Hu, H. Zhou, J. Liang, L. An, A. T. Dai, X. J. Li, H. Yang, S. P. Yang, H. X. Wu, J. Colloid Interface Sci. 2011, 358, 392.
– reference: C. Urata, H. Yamada, R. Wakabayashi, Y. Aoyama, S. Hirosawa, S. Arai, S. Takeoka, Y. Yamauchi, K. Kuroda, J. Am. Chem. Soc. 2011, 133, 8102.
– reference: M. Vallet-Regi, Chem. Eur. J. 2006, 12, 5934.
– reference: W. R. Zhao, H. R. Chen, Y. S. Li, L. Li, M. D. Lang, J. L. Shi, Adv. Funct. Mater. 2008, 18, 2780.
– reference: I. I. Slowing J. L. Vivero-Escoto, C. W. Wu, V. S. Y. Lin, Adv. Drug Deliv. Rev. 2008, 60, 1278.
– reference: S. A. Li, H. A. Liu, L. Li, N. Q. Luo, R. H. Cao, D. H. Chen, Y. Z. Shao, Appl. Phys. Lett. 2011, 98, DOI: DOI: 10.1155/2008/106970.
– reference: H. Y. Liu, T. L. Liu, X. L. Wu, L. L. Li, L. F. Tan, D. Chen, F. Q. Tang, Adv. Mater. 2012, 24, 755.
– reference: F. Qin, Y. C. Zhou, J. L. Shi, Y. L. Zhang, J. Biomed. Mater. Res. Part A 2009, 90A, 333.
– reference: J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
– reference: F. Torney, B. G. Trewyn, V. S. Y. Lin, K. Wang, Nat. Nanotechnol. 2007, 2, 295.
– reference: Y. Z. Zhang, J. C. Wang, X. Y. Bai, T. Y. Jiang, Q. Zhang, S. L. Wang, Mol. Pharm. 2012, 9, 505.
– reference: N. Lee, T. Hyeon, Chem. Soc. Rev. 2012, 41, 2575.
– reference: D. Schmaljohann, Adv. Drug Deliv. Rev. 2006, 58, 1655.
– reference: T. L. Liu, L. L. Li, X. Teng, X. L. Huang, H. Y. Liu, D. Chen, J. Ren, J. Q. He, F. Q. Tang, Biomaterials 2011, 32, 1657.
– reference: C. Y. Liu, J. Guo, W. L. Yang, J. H. Hu, C. C. Wang, S. K. Fu, J. Mater. Chem. 2009, 19, 4764.
– reference: M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
– reference: S. B. Hartono, W. Y. Gu, F. Kleitz, J. Liu, L. Z. He, A. P. J. Middelberg, C. Z. Yu, G. Q. Lu, S. Z. Qiao, ACS Nano 2012, 6, 2104.
– reference: E. Terreno, D. D. Castelli, A. Viale, S. Aime, Chem. Rev. 2010, 110, 3019.
– reference: Q. J. He, Z. W. Zhang, Y. Gao, J. L. Shi, Y. P. Li, Small 2009, 5, 2722.
– reference: A. Bernardos, L. Mondragon, E. Aznar, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J. M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, ACS Nano 2010, 4, 6353.
– reference: T. T. Wang, F. Chai, Q. Fu, L. Y. Zhang, H. Y. Liu, L. Li, Y. Liao, Z. M. Su, C. A. Wang, B. Y. Duan, D. X. Ren, J. Mater. Chem. 2011, 21, 5299.
– reference: C. E. Chen, F. Pu, Z. Z. Huang, Z. Liu, J. S. Ren, X. G. Qu, Nucleic Acids Res. 2011, 39, 1638.
– reference: M. Benezra, O. Penate-Medina, P. B. Zanzonico, D. Schaer, H. Ow, A. Burns, E. DeStanchina, V. Longo, E. Herz, S. Iyer, J. Wolchok, S. M. Larson, U. Wiesner, M. S. Bradbury, J. Clin. Invest. 2011, 121, 2768.
– reference: R. I. Nooney, D. Thirunavukkarasu, Y. M. Chen, R. Josephs, A. E. Ostafin, Chem. Mater. 2002, 14, 4721.
– reference: H. X. Wu, G. Liu, S. J. Zhang, J. L. Shi, L. X. Zhang, Y. Chen, F. Chen, H. R. Chen, J. Mater. Chem. 2011, 21, 3037.
– reference: U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434.
– reference: Slowing, II, B. G. Trewyn, S. Giri, V. S. Y. Lin, Adv. Funct. Mater. 2007, 17, 1225.
– reference: J. E. Kennedy, G. R. ter Haar, D. Cranston, Brit. J. Radiol. 2003, 76, 590.
– reference: E. Torres, F. Mainini, R. Napolitano, F. Fedeli, R. Cavalli, S. Aime, E. Terreno, J. Control. Release 2011, 154, 196.
– reference: V. Wagner, A. Dullaart, A. K. Bock, A. Zweck, Nat. Biotechnol. 2006, 24, 1211.
– reference: R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653.
– reference: T. Yu, K. Greish, L. D. McGill, A. Ray, H. Ghandehari, ACS Nano 2012, 6, 2289-2301.
– reference: G. Pasut, F. M. Veronese, J. Control. Release 2012, 161, 461.
– reference: W. Rima, L. Sancey, M.-T. Aloy, E. Armandy, G. B. Alcantara, T. Epicier, A. Malchère, L. Joly-Pottuz, P. Mowat, F. Lux, O. Tillement, B. Burdin, A. Rivoire, C. Boulé, I. Anselme-Bertrand, J. Pourchez, M. Cottier, S. Roux, C. Rodriguez-Lafrasse, P. Perriat, Biomaterials 2013, 34, 181.
– reference: Q. Yang, S. H. Wang, P. W. Fan, L. F. Wang, Y. Di, K. F. Lin, F. S. Xiao, Chem. Mater. 2005, 17, 5999.
– reference: J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small 2010, 6, 1234.
– reference: S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Chem. Rev. 2008, 108, 2064.
– reference: S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161.
– reference: C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. W. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. M. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, C. J. Brinker, Nat. Mater. 2011, 10, 389.
– reference: M. Vendrell, D. T. Zhai, J. C. Er, Y. T. Chang, Chem. Rev. 2012, 112, 4391.
– reference: L. L. Li, F. Q. Tang, H. Y. Liu, T. L. Liu, N. J. Hao, D. Chen, X. Teng, J. Q. He, ACS Nano 2010, 4, 6874.
– reference: X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat. Biotechnol. 2004, 22, 969.
– reference: A. Baeza, E. Guisasola, E. Ruiz-Hernandez, M. Vallet-Regi, Chem. Mater. 2012, 24, 517.
– reference: Q. J. He, J. L. Shi, J. Mater. Chem. 2011, 21, 5845.
– reference: C. G. Trejo, D. Lozano, M. Manzano, J. C. Doadrio, A. J. Salinas, S. Dapia, E. Gomez-Barrena, M. Vallet-Regi, N. Garcia-Honduvilla, J. Bujan, P. Esbrit, Biomaterials 2010, 31, 8564.
– reference: C. P. Tsai, C. Y. Chen, Y. Hung, F. H. Chang, C. Y. Mou, J. Mater. Chem. 2009, 19, 5737.
– reference: H. Yan, C. Teh, S. Sreejith, L. L. Zhu, A. Kwok, W. Q. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. L. Zhao, Angew. Chem. Int. Ed. 2012, 51, 8373.
– reference: D. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380.
– reference: W. R. Zhao, J. L. Gu, L. X. Zhang, H. R. Chen, J. L. Shi, J. Am. Chem. Soc. 2005, 127, 8916.
– reference: T. Yu, D. Hubbard, A. Ray, H. Ghandehari, J. Control. Release 2012, 163, 46.
– reference: X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
– reference: M. Mahkam, Curr. Drug Deliv. 2011, 8, 607.
– reference: S. H. Wu, Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang, C. Y. Mou, Chembiochem 2008, 9, 53.
– reference: J. L. Vivero-Escoto, Slowing, II, B. G. Trewyn, V. S. Y. Lin, Small 2010, 6, 1952.
– reference: J. G. Penfield, R. F. Reilly, Nat. Clin. Pract. Nephrol. 2007, 3, 654.
– reference: A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921.
– reference: C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009, 131, 16614.
– reference: H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon, D. H. Min, Small 2012, 8, 1752.
– reference: J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. R. Xing, G. Q. Lu, Chem. Commun. 2011, 47, 12578.
– reference: Y. Z. You, K. K. Kalebaila, S. L. Brock, D. Oupicky, Chem. Mater. 2008, 20, 3354.
– reference: X. L. Huang, F. Zhang, S. Lee, M. Swierczewska, D. O. Kiesewetter, L. X. Lang, G. F. Zhang, L. Zhu, H. K. Gao, H. S. Choi, G. Niu, X. Y. Chen, Biomaterials 2012, 33, 4370.
– reference: M. Mizutani, Y. Yamada, T. Nakamura, K. Yano, Chem. Mater. 2008, 20, 4777.
– reference: D. Chen, L. L. Li, F. Q. Tang, S. O. Qi, Adv. Mater. 2009, 21, 3804.
– reference: E. Climent, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, A. Maquieira, P. Amoros, Angew. Chem. Int. Ed. 2010, 49, 7281.
– reference: X. L. Huang, J. Zhuang, X. Teng, L. L. Li, D. Chen, X. Y. Yan, F. Q. Tang, Biomaterials 2010, 31, 6142.
– reference: X. Li, J. L. Shi, X. P. Dong, L. X. Zhang, H. Y. Zeng, J. Biomed. Mater. Res. Part A 2008, 84A, 84.
– reference: J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050.
– reference: J. L. Steinbacher, S. A. Lathrop, K. Cheng, J. M. Hillegass, K. Butnor, R. A. Kauppinen, B. T. Mossman, C. C. Landry, Small 2010, 6, 2678.
– reference: Y. Chen, H. R. Chen, D. P. Zeng, Y. B. Tian, F. Chen, J. W. Feng, J. L. Shi, ACS Nano 2010, 4, 6001.
– reference: M. A. Malvindi, A. Greco, F. Conversano, A. Figuerola, M. Corti, M. Bonora, A. Lascialfari, H. A. Doumari, M. Moscardini, R. Cingolani, G. Gigli, S. Casciaro, T. Pellegrino, A. Ragusa, Adv. Funct. Mater. 2011, 21, 2548.
– reference: Q. J. He, J. M. Zhang, J. L. Shi, Z. Y. Zhu, L. X. Zhang, W. B. Bu, L. M. Guo, Y. Chen, Biomaterials 2010, 31, 1085.
– reference: H. X. Wu, S. J. Zhang, J. M. Zhang, G. Liu, J. L. Shi, L. X. Zhang, X. Z. Cui, M. L. Ruan, Q. J. He, W. B. Bu, Adv. Funct. Mater. 2011, 21, 1850.
– reference: R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Chem. Soc. Rev. 2012, 41, 2943.
– reference: Y. Wan, D. Y. Zhao, Chem. Rev. 2007, 107, 2821.
– reference: A. Schlossbauer, S. Warncke, P. M. E. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein, Angew. Chem. Int. Ed. 2010, 49, 4734.
– reference: L. L. Li, Y. Q. Guan, H. Y. Liu, N. J. Hao, T. L. Liu, X. W. Meng, C. H. Fu, Y. Z. Li, Q. L. Qu, Y. G. Zhang, S. Y. Ji, L. Chen, D. Chen, F. Q. Tang, ACS Nano 2011, 5, 7462.
– reference: S. H. Cheng, C. H. Lee, M. C. Chen, J. S. Souris, F. G. Tseng, C. S. Yang, C. Y. Mou, C. T. Chen, L. W. Lo, J. Mater. Chem. 2010, 20, 6149.
– reference: J. H. Ryu, H. Koo, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Adv. Drug Deliv. Rev. 2012, 64, 1447.
– reference: S. H. Crayton, A. Tsourkas, ACS Nano 2011, 5, 9592.
– reference: N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, S. N. Bhatia, J. Am. Chem. Soc. 2011, 133, 19582.
– reference: J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc. 2010, 132, 552.
– reference: Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng, M. L. Ruan, Y. S. Li, Angew. Chem. Int. Ed. 2005, 44, 5083.
– reference: M. Kueny-Stotz, A. Garofalo, D. Felder-Flesch, Eur. J. Inorg. Chem. 2012, 12, 1987-2005.
– reference: T. Asefa, Z. Tao, Chem. Res. Toxicol. 2012, 25, 2265.
– reference: E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, M. Vallet-Regi, Chem. Mater. 2007, 19, 3455.
– reference: J. T. Sun, C. Y. Hong, C. Y. Pan, J. Phys. Chem. C 2010, 114, 12481.
– reference: X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Adv. Mater. 2012, 24, 785.
– reference: X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987.
– reference: F. Zhang, G. B. Braun, A. Pallaoro, Y. C. Zhang, Y. F. Shi, D. X. Cui, M. Moskovits, D. Y. Zhao, G. D. Stucky, Nano Lett. 2012, 12, 61.
– reference: Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Adv. Mater. 2012, 24, 1418.
– reference: P. A. Schornack, R. J. Gillies, Neoplasia 2003, 5, 135.
– reference: J. M. Rosenholm, E. Peuhu, J. E. Eriksson, C. Sahlgren, M. Linden, Nano Lett. 2009, 9, 3308.
– reference: J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren, M. Linden, ACS Nano 2009, 3, 197.
– reference: J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. A. Ho, C. Y. Mou, L. W. Lo, Biomaterials 2010, 31, 5564.
– reference: Y. S. Lin, C. L. Haynes, J. Am. Chem. Soc. 2010, 132, 4834.
– reference: S. P. Rigby, M. Fairhead, C. F. van der Walle, Curr. Pharm. Design 2008, 14, 1821.
– reference: H. Y. Liu, D. Chen, L. L. Li, T. L. Liu, L. F. Tan, X. L. Wu, F. Q. Tang, Angew. Chem. Int. Ed. 2011, 50, 891.
– reference: S. H. Cheng, C. C. Hsieh, N. T. Chen, C. H. Chu, C. M. Huang, P. T. Chou, F. G. Tseng, C. S. Yang, C. Y. Mou, L. W. Lo, Nano Today 2011, 6, 552.
– reference: Y. F. Zhu, J. L. Shi, Y. S. Li, H. R. Chen, W. H. Shen, X. P. Dong, Micro. Meso. Mater. 2005, 85, 75.
– reference: K. K. Coti, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab, J. F. Stoddart, Nanoscale 2009, 1, 16.
– reference: A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11.
– reference: C. F. van Nostrum, Adv. Drug Deliv. Rev. 2004, 56, 9.
– reference: J. L. Vivero-Escoto, Slowing, II, C. W. Wu, V. S. Y. Lin, J. Am. Chem. Soc. 2009, 131, 3462.
– reference: X. Wang, H. R. Chen, Y. Chen, M. Ma, K. Zhang, F. Q. Li, Y. Y. Zheng, D. P. Zeng, Q. Wang, J. L. Shi, Adv. Mater. 2012, 24, 785.
– reference: S. Mura, P. Couvreur, Adv. Drug Deliv. Rev. 2012, 64, 1394.
– reference: Y. Chen, H. R. Chen, L. M. Guo, Q. J. He, F. Chen, J. Zhou, J. W. Feng, J. L. Shi, ACS Nano 2010, 4, 529.
– reference: Y. S. Lin, K. R. Hurley, C. L. Haynes, J. Phy. Chem. Lett. 2012, 3, 364.
– reference: L. Xing, H. Q. Zheng, Y. Y. Cao, S. A. Che, Adv. Mater. 2012, 24, 6433.
– reference: S. P. Hudson, R. F. Padera, R. Langer, D. S. Kohane, Biomaterials 2008, 29, 4045.
– reference: H. P. Martinez, Y. Kono, S. L. Blair, S. Sandoval, J. Wang-Rodriguez, R. F. Mattrey, A. C. Kummel, W. C. Trogler, Medchemcomm 2010, 1, 266.
– reference: M. Zhu, H. X. Wang, J. Y. Liu, H. L. He, X. G. Hua, Q. J. He, L. X. Zhang, X. J. Ye, J. L. Shi, Biomaterials 2011, 32, 1986.
– reference: X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
– reference: C. Park, K. Oh, S. C. Lee, C. Kim, Angew. Chem. Int. Ed. 2007, 46, 1455.
– reference: Z. Liu, J. T. Robinson, S. M. Tabakman, K. Yang, H. J. Dai, Mater. Today 2011, 14, 316.
– reference: Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590.
– reference: C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451.
– reference: Q. He, M. Ma, C. Wei, J. Shi, Biomaterials 2012, 33, 4392.
– reference: M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308.
– reference: H. Koo, M. S. Huh, J. H. Ryu, D. E. Lee, I. C. Sun, K. Choi, K. Kim, I. C. Kwon, Nano Today 2011, 6, 204.
– reference: H. F. Bao, J. P. Yang, Y. Huang, Z. P. Xu, N. Hao, Z. X. Wu, G. Q. Lu, D. Y. Zhao, Nanoscale 2011, 3, 4069.
– reference: J. Zhou, Z. Liu, F. Y. Li, Chem. Soc. Rev. 2012, 41, 1323.
– reference: J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
– reference: C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou, L. W. Lo, Angew. Chem. Int. Ed. 2010, 49, 8214.
– reference: Y. Chen, H. R. Chen, Y. Sun, Y. Y. Zheng, D. P. Zeng, F. Q. Li, S. J. Zhang, X. Wang, K. Zhang, M. Ma, Q. J. He, L. L. Zhang, J. L. Shi, Angew. Chem. Int. Ed. 2011, 50, 12505.
– reference: P. P. Yang, S. L. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679.
– reference: E. Ruiz-Hernandez, A. Baeza, M. Vallet-Regi, ACS Nano 2011, 5, 1259.
– reference: S. Beg, M. Rizwan, A. M. Sheikh, M. S. Hasnain, K. Anwer, K. Kohli, J. Pharm. Pharm. 2011, 63, 141.
– reference: J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438.
– reference: Y. Chen, H. Chen, S. Zhang, F. Chen, S. Sun, Q. He, M. Ma, X. Wang, H. Wu, L. Zhang, L. Zhang, J. Shi, Biomaterials 2012, 33, 2388.
– reference: X. L. Huang, X. Teng, D. Chen, F. Q. Tang, J. Q. He, Biomaterials 2010, 31, 438.
– reference: R. Liu, X. Zhao, T. Wu, P. Y. Feng, J. Am. Chem. Soc. 2008, 130, 14418.
– reference: M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889.
– reference: B. A. Rzigalinski, J. S. Strobl, Toxicol. Appl. Pharm. 2009, 238, 280.
– reference: V. Cauda, A. Schlossbauer, T. Bein, Micro. Meso. Mater. 2010, 132, 60.
– reference: K. U. Kohrmann, M. S. Michel, J. Gaa, E. Marlinghaus, P. Alken, J. Urol. 2002, 167, 2397.
– reference: J. M. Rosenholm, V. Mamaeva, C. Sahlgren, M. Linden, Nanomedicine 2012, 7, 111.
– reference: C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, L. W. Lo, Adv. Funct. Mater. 2009, 19, 215.
– reference: M. J. Masarudin, K. Yusoff, R. A. Rahim, M. Z. Hussein, Nanotechnology 2009, 20, DOI: 10.1088/0957-4484/20/4/045602.
– reference: J. E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Acc. Chem. Res. 2011, 44, 893.
– reference: J. Perez-Rodriguez, S. Lai, B. D. Ehst, D. M. Fine, D. A. Bluemke, Radiology 2009, 250, 371.
– reference: C. R. Thomas, D. P. Ferris, J. H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J. S. Shin, J. Cheon, J. I. Zink, J. Am. Chem. Soc. 2010, 132, 10623.
– reference: J. L. Vivero-Escoto, K. M. L. Taylor-Pashow, R. C. Huxford, J. Della Rocca, C. Okoruwa, H. Y. An, W. L. Lin, W. B. Lin, Small 2011, 7, 3519.
– reference: C. Coll, L. Mondragon, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, P. Amoros, E. Perez-Paya, Angew. Chem. Int. Ed. 2011, 50, 2138.
– reference: J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. H. Shin, J. G. Park, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 688.
– reference: A. M. Chen, M. Zhang, D. G. Wei, D. Stueber, O. Taratula, T. Minko, H. X. He, Small 2009, 5, 2673.
– reference: M. H. Kim, H. K. Na, Y. K. Kim, S. R. Ryoo, H. S. Cho, K. E. Lee, H. Jeon, R. Ryoo, D. H. Min, ACS Nano 2011, 5, 3568.
– reference: E. Ruiz-Hernandez, A. Lopez-Noriega, D. Arcos, M. Vallet-Regi, Solid State Sci. 2008, 10, 421.
– reference: V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner, T. Bein, J. Am. Chem. Soc. 2009, 131, 11361.
– volume: 46
  start-page: 7548
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 3043
  year: 2010
  publication-title: Chem. Rev.
– volume: 46
  start-page: 1222
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 212
  year: 2012
  publication-title: Nanome‐Nanotechnol.
– volume: 84A
  start-page: 84
  year: 2008
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 112
  start-page: 4391
  year: 2012
  publication-title: Chem. Rev.
– volume: 23
  start-page: 5177
  year: 2011
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1225
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 22
  year: 2007
  publication-title: Nano Today
– volume: 9
  start-page: 505
  year: 2012
  publication-title: Mol. Pharm.
– volume: 132
  start-page: 552
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 2768
  year: 2011
  publication-title: J. Clin. Invest.
– volume: 24
  start-page: 2890
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 4045
  year: 2008
  publication-title: Biomaterials
– volume: 20
  start-page: 3987
  year: 2008
  publication-title: Adv. Mater.
– volume: 64
  start-page: 1447
  year: 2012
  publication-title: Adv. Drug Deliv. Rev.
– volume: 128
  start-page: 2115
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 271
  year: 2011
  publication-title: Small
– volume: 167
  start-page: 2397
  year: 2002
  publication-title: J. Urol.
– volume: 110
  start-page: 3019
  year: 2010
  publication-title: Chem. Rev.
– year: 2013
  publication-title: Adv. Mater.
– volume: 12
  start-page: 5934
  year: 2006
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 5884
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 1587
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 7370
  year: 2010
  publication-title: Chem. Commun.
– volume: 1
  start-page: 16
  year: 2009
  publication-title: Nanoscale
– volume: 10
  start-page: 421
  year: 2008
  publication-title: Solid State Sci.
– volume: 307
  start-page: 538
  year: 2005
  publication-title: Science
– volume: 132
  start-page: 10623
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3365
  year: 2012
  publication-title: Nanoscale
– volume: 131
  start-page: 16614
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 5845
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 110
  start-page: 2921
  year: 2010
  publication-title: Chem. Rev.
– volume: 12
  start-page: 1987
  year: 2012
  end-page: 2005
  publication-title: Eur. J. Inorg. Chem.
– volume: 24
  start-page: 1462
  year: 2012
  publication-title: Chem. Mater.
– volume: 3
  start-page: 654
  year: 2007
  publication-title: Nat. Clin. Pract. Nephrol.
– volume: 107
  start-page: 2821
  year: 2007
  publication-title: Chem. Rev.
– volume: 7
  start-page: 983
  year: 2005
  publication-title: Solid State Sci.
– volume: 5
  start-page: 135
  year: 2003
  publication-title: Neoplasia
– volume: 21
  start-page: 270
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 41
  start-page: 3679
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 3519
  year: 2011
  publication-title: Small
– volume: 44
  start-page: 5038
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 872
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 12505
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 111
  year: 2012
  publication-title: Nanomedicine
– year: 2008
  publication-title: J. Nanomater.
– volume: 131
  start-page: 314
  year: 2010
  publication-title: Micro. Meso. Mater.
– volume: 125
  start-page: 4451
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 688
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2780
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 3354
  year: 2008
  publication-title: Chem. Mater.
– volume: 131
  start-page: 11361
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 715
  year: 2011
  publication-title: Nanomedicine
– volume: 41
  start-page: 2943
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 221
  start-page: 165
  year: 2002
  publication-title: Contrast Agents I
– volume: 21
  start-page: 1850
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 215
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 12481
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 2335
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 154
  start-page: 196
  year: 2011
  publication-title: J. Control. Release
– volume: 50
  start-page: 2138
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 99
  start-page: 3181
  year: 1999
  publication-title: Chem. Rev.
– volume: 31
  start-page: 438
  year: 2010
  publication-title: Biomaterials
– volume: 8
  start-page: 1752
  year: 2012
  publication-title: Small
– volume: 132
  start-page: 60
  year: 2010
  publication-title: Micro. Meso. Mater.
– volume: 21
  start-page: 6576
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 25
  start-page: 2265
  year: 2012
  publication-title: Chem. Res. Toxicol.
– volume: 40
  start-page: 846
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 130
  start-page: 2154
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 5737
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 2935
  year: 2011
  publication-title: Small
– volume: 7
  start-page: 1875
  year: 2012
  publication-title: Int. J. Nanomed.
– volume: 104
  start-page: 293
  year: 2004
  publication-title: Chem. Rev.
– volume: 32
  start-page: 1986
  year: 2011
  publication-title: Biomaterials
– volume: 22
  start-page: 969
  year: 2004
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 53
  year: 2008
  publication-title: Chembiochem
– volume: 58
  start-page: 1655
  year: 2006
  publication-title: Adv. Drug Deliv. Rev.
– volume: 24
  start-page: 755
  year: 2012
  publication-title: Adv. Mater.
– volume: 14
  start-page: 316
  year: 2011
  publication-title: Mater. Today
– volume: 14
  start-page: 2161
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 101
  start-page: 1869
  year: 2001
  publication-title: Chem. Rev.
– volume: 132
  start-page: 4834
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1259
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 2673
  year: 2009
  publication-title: Small
– volume: 131
  start-page: 3462
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5390
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 9592
  year: 2011
  publication-title: ACS Nano
– volume: 76
  start-page: 590
  year: 2003
  publication-title: Brit. J. Radiol.
– volume: 16
  start-page: 509
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 197
  year: 2009
  publication-title: ACS Nano
– volume: 36
  start-page: 163
  year: 2008
  publication-title: Prog. Solid State Chem.
– volume: 14
  start-page: 4721
  year: 2002
  publication-title: Chem. Mater.
– volume: 19
  start-page: 3455
  year: 2007
  publication-title: Chem. Mater.
– volume: 134
  start-page: 5722
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 2778
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 30
  start-page: 2199
  year: 2009
  publication-title: Biomaterials
– volume: 20
  start-page: 6149
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 214
  year: 2003
  publication-title: Nat. Rev. Drug Discov.
– volume: 39
  start-page: 1638
  year: 2011
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 380
  year: 2003
  publication-title: Nat. Rev. Cancer
– volume: 133
  start-page: 8102
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 607
  year: 2011
  publication-title: Curr. Drug Deliv.
– volume: 13
  start-page: 308
  year: 2001
  publication-title: Chem. Mater.
– volume: 5
  start-page: 4131
  year: 2011
  publication-title: ACS Nano
– volume: 4
  start-page: 1445
  year: 2008
  publication-title: Small
– volume: 19
  start-page: 311
  year: 2005
  publication-title: FASEB Journal
– volume: 131
  start-page: 14075
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 6438
  year: 2012
  publication-title: Biomaterials
– volume: 44
  start-page: 1050
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 5124
  year: 2012
  publication-title: Biomaterials
– volume: 84
  start-page: 218
  year: 2005
  publication-title: Micro. Meso. Mater.
– volume: 50
  start-page: 11425
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 1003
  year: 2005
  publication-title: Nano Lett.
– volume: 4
  start-page: 435
  year: 2005
  end-page: 446
  publication-title: Nat. Mater.
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 20
  year: 2009
  publication-title: Nanotechnology
– volume: 90
  start-page: 889
  year: 1998
  publication-title: J. Natl. Cancer Inst.
– volume: 21
  start-page: 2548
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 6001
  year: 2010
  publication-title: ACS Nano
– volume: 6
  start-page: 204
  year: 2011
  publication-title: Nano Today
– volume: 6
  start-page: 552
  year: 2011
  publication-title: Nano Today
– volume: 31
  start-page: 3335
  year: 2010
  publication-title: Biomaterials
– volume: 123
  start-page: 107
  year: 2009
  publication-title: Micro. Meso. Mater.
– volume: 49
  start-page: 8214
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 1085
  year: 2010
  publication-title: Biomaterials
– volume: 21
  start-page: 3037
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 5299
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 33
  start-page: 4392
  year: 2012
  publication-title: Biomaterials
– volume: 68
  start-page: 1296
  year: 1995
  publication-title: Brit. J. Radiol.
– volume: 56
  start-page: 9
  year: 2004
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 2722
  year: 2009
  publication-title: Small
– volume: 421
  start-page: 350
  year: 2003
  publication-title: Nature
– volume: 105
  start-page: 1103
  year: 2005
  publication-title: Chem. Rev.
– volume: 49
  start-page: 4734
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 3568
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 4624
  year: 2011
  publication-title: ACS Nano
– volume: 12
  start-page: 61
  year: 2012
  publication-title: Nano Lett.
– volume: 10
  start-page: 389
  year: 2011
  publication-title: Nat. Mater.
– volume: 25
  start-page: 1165
  year: 2007
  publication-title: Nat. Biotechnol.
– volume: 44
  start-page: 893
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 3804
  year: 2009
  publication-title: Adv. Mater.
– volume: 44
  start-page: 5083
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 64
  start-page: 1394
  year: 2012
  publication-title: Adv. Drug Deliv. Rev.
– volume: 24
  start-page: 785
  year: 2012
  publication-title: Adv. Mater.
– volume: 85
  start-page: 75
  year: 2005
  publication-title: Micro. Meso. Mater.
– volume: 51
  start-page: 8373
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 1686
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 9237
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 1323
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 891
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 321
  year: 2005
  publication-title: Nat. Rev. Cancer
– volume: 9
  start-page: 4434
  year: 2009
  publication-title: Nano Lett.
– volume: 6
  start-page: 2289
  year: 2012
  end-page: 2301
  publication-title: ACS Nano
– volume: 5
  start-page: 57
  year: 2009
  publication-title: Small
– volume: 5
  start-page: 3905
  year: 2011
  publication-title: ACS Nano
– volume: 131
  start-page: 8398
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 653
  year: 2010
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 41
  start-page: 2575
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 90A
  start-page: 333
  year: 2009
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 31
  start-page: 8564
  year: 2010
  publication-title: Biomaterials
– volume: 31
  start-page: 6142
  year: 2010
  publication-title: Biomaterials
– volume: 24
  start-page: 1211
  year: 2006
  publication-title: Nat. Biotechnol.
– volume: 60
  start-page: 1278
  year: 2008
  publication-title: Adv. Drug Deliv. Rev.
– volume: 47
  start-page: 8438
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1234
  year: 2010
  publication-title: Small
– volume: 41
  start-page: 1842
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 529
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 6874
  year: 2010
  publication-title: ACS Nano
– volume: 46
  start-page: 1455
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 64
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 35
  start-page: 1084
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 1657
  year: 2011
  publication-title: Biomaterials
– volume: 3
  start-page: 364
  year: 2012
  publication-title: J. Phy. Chem. Lett.
– volume: 33
  start-page: 989
  year: 2012
  publication-title: Biomaterials
– volume: 60
  start-page: 1627
  year: 2008
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 161
  year: 2005
  publication-title: Nat. Rev. Cancer
– volume: 7
  start-page: 3563
  year: 2011
  publication-title: Acta Biomater.
– volume: 47
  start-page: 9972
  year: 2011
  publication-title: Chem. Commun.
– volume: 116
  start-page: 23047
  year: 2012
  publication-title: J. Phy. Chem. C
– volume: 5
  start-page: 7462
  year: 2011
  publication-title: ACS Nano
– volume: 133
  start-page: 6825
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 161
  start-page: 461
  year: 2012
  publication-title: J. Control. Release
– volume: 4
  start-page: 6353
  year: 2010
  publication-title: ACS Nano
– volume: 14
  start-page: 1821
  year: 2008
  publication-title: Curr. Pharm. Design
– volume: 47
  start-page: 7947
  year: 2011
  publication-title: Chem. Commun.
– volume: 24
  start-page: 1504
  year: 2012
  publication-title: Adv. Mater.
– volume: 42
  start-page: 1692
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 10834
  year: 1992
  publication-title: J. Am. Chem. Soc.
– volume: 279
  start-page: 548
  year: 1998
  publication-title: Science
– volume: 6
  start-page: 1794
  year: 2010
  publication-title: Small
– volume: 24
  start-page: 517
  year: 2012
  publication-title: Chem. Mater.
– volume: 358
  start-page: 392
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 2678
  year: 2010
  publication-title: Small
– volume: 127
  start-page: 8916
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 19582
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 14418
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 359
  start-page: 710
  year: 1992
  publication-title: Nature
– volume: 6
  start-page: 2104
  year: 2012
  publication-title: ACS Nano
– volume: 113
  start-page: 12753
  year: 2009
  end-page: 12758
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 266
  year: 2010
  publication-title: Medchemcomm
– volume: 21
  start-page: 3949
  year: 2009
  publication-title: Adv. Mater.
– volume: 3
  start-page: 609
  year: 2003
  publication-title: Nano Lett.
– volume: 47
  start-page: 3442
  year: 2011
  publication-title: Chem. Commun.
– volume: 4
  start-page: 11
  year: 2004
  publication-title: Nano Lett.
– volume: 2
  start-page: 791
  year: 2008
  publication-title: ACS Nano
– volume: 26
  start-page: 3596
  year: 2010
  publication-title: Langmuir
– volume: 63
  start-page: 141
  year: 2011
  publication-title: J. Pharm. Pharm.
– volume: 60
  start-page: 1600
  year: 2008
  publication-title: Adv. Drug Deliv. Rev.
– volume: 23
  start-page: 2629
  year: 2008
  publication-title: Chem. Commun.
– volume: 33
  start-page: 4370
  year: 2012
  publication-title: Biomaterials
– volume: 17
  start-page: 5999
  year: 2005
  publication-title: Chem. Mater.
– volume: 130
  start-page: 28
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 346
  year: 2010
  publication-title: Adv. Drug Deliv. Rev.
– volume: 19
  start-page: 6267
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 3083
  year: 2006
  publication-title: Adv. Mater.
– volume: 126
  start-page: 187
  year: 2008
  publication-title: J. Control. Release
– volume: 24
  start-page: 1418
  year: 2012
  publication-title: Adv. Mater.
– volume: 47
  start-page: 12578
  year: 2011
  publication-title: Chem. Commun.
– volume: 31
  start-page: 5564
  year: 2010
  publication-title: Biomaterials
– volume: 250
  start-page: 371
  year: 2009
  publication-title: Radiology
– volume: 133
  start-page: 2955
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 6433
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3308
  year: 2009
  publication-title: Nano Lett.
– volume: 20
  start-page: 4777
  year: 2008
  publication-title: Chem. Mater.
– volume: 163
  start-page: 46
  year: 2012
  publication-title: J. Control. Release
– volume: 6
  start-page: 1952
  year: 2010
  publication-title: Small
– volume: 34
  start-page: 276
  year: 2005
  publication-title: Chem. Soc. Rev.
– volume: 64
  start-page: 1800
  year: 2012
  publication-title: Adv. Drug Deliv. Rev.
– volume: 2
  start-page: 751
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 34
  start-page: 181
  year: 2013
  publication-title: Biomaterials
– volume: 49
  start-page: 7281
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 889
  year: 2008
  publication-title: ACS Nano
– volume: 3
  start-page: 4069
  year: 2011
  publication-title: Nanoscale
– volume: 33
  start-page: 2399
  year: 2012
  publication-title: Biomaterials
– volume: 4
  start-page: 4539
  year: 2010
  publication-title: ACS Nano
– volume: 50
  start-page: 10589
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 2590
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 1586
  year: 2012
  end-page: 1597
  publication-title: Adv. Funct. Mater.
– volume: 108
  start-page: 2064
  year: 2008
  publication-title: Chem. Rev.
– volume: 33
  start-page: 2388
  year: 2012
  publication-title: Biomaterials
– volume: 130
  start-page: 2382
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2545
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 7126
  year: 2012
  publication-title: Biomaterials
– volume: 31
  start-page: 7078
  year: 2010
  publication-title: Biomaterials
– volume: 19
  start-page: 4764
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 295
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 238
  start-page: 280
  year: 2009
  publication-title: Toxicol. Appl. Pharm.
– ident: e_1_2_7_226_2
  doi: 10.1016/j.taap.2009.04.010
– ident: e_1_2_7_119_2
  doi: 10.1002/smll.200900923
– ident: e_1_2_7_63_2
  doi: 10.1021/ja028650l
– ident: e_1_2_7_184_2
  doi: 10.1002/adma.201103343
– ident: e_1_2_7_26_2
  doi: 10.1021/cm0705789
– ident: e_1_2_7_30_2
  doi: 10.1038/nnano.2007.387
– ident: e_1_2_7_77_2
  doi: 10.1021/nn2039643
– ident: e_1_2_7_135_2
  doi: 10.1021/ja910846q
– ident: e_1_2_7_24_2
  doi: 10.1021/ja1022267
– ident: e_1_2_7_74_2
  doi: 10.1021/ja809346n
– ident: e_1_2_7_97_2
  doi: 10.1039/b905158a
– ident: e_1_2_7_160_2
  doi: 10.1038/nature01362
– ident: e_1_2_7_35_2
  doi: 10.1016/S1748-0132(07)70084-1
– ident: e_1_2_7_64_2
  doi: 10.1038/nmat2992
– ident: e_1_2_7_40_2
  doi: 10.1016/j.addr.2009.11.007
– ident: e_1_2_7_84_2
  doi: 10.1021/ja051113r
– ident: e_1_2_7_66_2
  doi: 10.1002/smll.201001459
– ident: e_1_2_7_164_2
  doi: 10.1002/anie.200501819
– ident: e_1_2_7_192_2
  doi: 10.1038/nrc1591
– ident: e_1_2_7_88_2
  doi: 10.1002/chem.201102599
– ident: e_1_2_7_222_2
  doi: 10.1016/j.addr.2012.06.006
– ident: e_1_2_7_25_2
  doi: 10.1002/adma.201101586
– ident: e_1_2_7_154_2
  doi: 10.1002/jbm.a.31923
– ident: e_1_2_7_232_2
  doi: 10.1039/c0jm03915b
– ident: e_1_2_7_103_2
  doi: 10.1002/smll.200901789
– ident: e_1_2_7_48_2
– ident: e_1_2_7_140_2
  doi: 10.1002/adfm.200701317
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.201106180
– ident: e_1_2_7_56_2
  doi: 10.1021/nn1029229
– ident: e_1_2_7_136_2
  doi: 10.1016/j.biomaterials.2011.12.008
– ident: e_1_2_7_108_2
  doi: 10.1021/ar600032u
– ident: e_1_2_7_171_2
  doi: 10.1021/jp9043978
– ident: e_1_2_7_9_2
  doi: 10.1002/anie.200604488
– ident: e_1_2_7_49_2
  doi: 10.2174/138161208784746671
– ident: e_1_2_7_7_2
  doi: 10.1096/fj.04-2747rev
– ident: e_1_2_7_197_2
  doi: 10.1016/j.biomaterials.2010.11.025
– ident: e_1_2_7_3_2
  doi: 10.1021/cr0300789
– ident: e_1_2_7_203_2
  doi: 10.1021/cr9004007
– ident: e_1_2_7_72_2
  doi: 10.1021/ja211035w
– ident: e_1_2_7_12_2
  doi: 10.1021/nl0502569
– ident: e_1_2_7_131_2
  doi: 10.1016/j.micromeso.2010.01.009
– ident: e_1_2_7_113_2
  doi: 10.1039/b9nr00162j
– ident: e_1_2_7_86_2
  doi: 10.1002/adma.201104797
– ident: e_1_2_7_193_2
  doi: 10.1259/bjr/17150274
– ident: e_1_2_7_4_2
  doi: 10.1038/nrc1566
– ident: e_1_2_7_180_2
  doi: 10.1016/j.micromeso.2009.03.031
– ident: e_1_2_7_241_2
  doi: 10.1002/adfm.201002337
– ident: e_1_2_7_208_2
  doi: 10.1021/nn200306g
– ident: e_1_2_7_244_2
  doi: 10.1016/j.biomaterials.2011.10.017
– ident: e_1_2_7_204_2
  doi: 10.1021/cr900232t
– ident: e_1_2_7_68_2
  doi: 10.1016/j.biomaterials.2009.10.046
– ident: e_1_2_7_114_2
  doi: 10.1016/j.addr.2012.05.008
– ident: e_1_2_7_248_2
  doi: 10.1002/smll.201100521
– ident: e_1_2_7_73_2
  doi: 10.1021/nn700008s
– ident: e_1_2_7_125_2
  doi: 10.1016/j.jconrel.2011.10.037
– ident: e_1_2_7_127_2
  doi: 10.1002/smll.201000538
– ident: e_1_2_7_87_2
  doi: 10.1002/adma.201104714
– ident: e_1_2_7_217_2
  doi: 10.1021/ja001106x
– ident: e_1_2_7_104_2
  doi: 10.1021/jz2013837
– ident: e_1_2_7_150_2
  doi: 10.1021/mp200287c
– ident: e_1_2_7_175_2
  doi: 10.1002/anie.201004133
– ident: e_1_2_7_21_2
  doi: 10.1016/j.addr.2008.08.003
– ident: e_1_2_7_109_2
  doi: 10.1002/adma.201104763
– ident: e_1_2_7_112_2
  doi: 10.1002/adfm.200601191
– ident: e_1_2_7_231_2
  doi: 10.1016/j.biomaterials.2012.02.056
– ident: e_1_2_7_27_2
  doi: 10.1016/j.solidstatesciences.2007.11.026
– ident: e_1_2_7_224_2
  doi: 10.1039/c0cc05520d
– ident: e_1_2_7_230_2
  doi: 10.1039/c1cc11479d
– ident: e_1_2_7_138_2
  doi: 10.1021/nn202399w
– ident: e_1_2_7_221_2
  doi: 10.1016/j.jconrel.2011.05.017
– ident: e_1_2_7_101_2
  doi: 10.1039/c2cs15308d
– ident: e_1_2_7_137_2
  doi: 10.1021/tx300166u
– ident: e_1_2_7_229_2
  doi: 10.1021/cr200355j
– ident: e_1_2_7_2_2
  doi: 10.1021/cr030698
– ident: e_1_2_7_246_2
  doi: 10.2147/IJN.S26547
– ident: e_1_2_7_155_2
  doi: 10.1002/anie.201203993
– ident: e_1_2_7_13_2
  doi: 10.1021/cr000108x
– ident: e_1_2_7_242_2
  doi: 10.1021/nl202949y
– ident: e_1_2_7_188_2
  doi: 10.1039/c0jm00645a
– ident: e_1_2_7_146_2
  doi: 10.1021/nn100918a
– ident: e_1_2_7_130_2
  doi: 10.1016/j.micromeso.2009.11.015
– ident: e_1_2_7_96_2
  doi: 10.1021/nl901589y
– ident: e_1_2_7_174_2
  doi: 10.1021/nn101499d
– ident: e_1_2_7_190_2
  doi: 10.1016/j.nantod.2011.10.003
– ident: e_1_2_7_205_2
  doi: 10.1039/b902685a
– ident: e_1_2_7_165_2
  doi: 10.1021/ja8060886
– ident: e_1_2_7_102_2
  doi: 10.1016/j.addr.2008.03.012
– ident: e_1_2_7_93_2
  doi: 10.1016/j.biomaterials.2012.06.059
– ident: e_1_2_7_194_2
  doi: 10.1259/0007-1285-68-816-1296
– ident: e_1_2_7_200_2
  doi: 10.1002/jbm.a.31371
– ident: e_1_2_7_50_2
  doi: 10.2174/156720111797635522
– ident: e_1_2_7_191_2
  doi: 10.1002/adma.201104033
– ident: e_1_2_7_75_2
  doi: 10.1021/cm702792e
– ident: e_1_2_7_82_2
  doi: 10.1021/ja0777584
– ident: e_1_2_7_215_2
  doi: 10.1002/anie.201103108
– ident: e_1_2_7_159_2
  doi: 10.1016/j.jconrel.2007.12.017
– ident: e_1_2_7_31_2
  doi: 10.1039/c2cs15327k
– ident: e_1_2_7_134_2
  doi: 10.1038/nbt1340
– ident: e_1_2_7_43_2
  doi: 10.1021/ja2010175
– ident: e_1_2_7_79_2
  doi: 10.1021/nl034134x
– ident: e_1_2_7_142_2
  doi: 10.1016/j.micromeso.2005.05.001
– ident: e_1_2_7_216_2
  doi: 10.1002/ejic.201101163
– ident: e_1_2_7_41_2
  doi: 10.1039/c2cs15355f
– ident: e_1_2_7_59_2
  doi: 10.1038/359710a0
– ident: e_1_2_7_106_2
  doi: 10.1039/c1cc11760b
– ident: e_1_2_7_167_2
  doi: 10.1002/anie.200603404
– ident: e_1_2_7_78_2
  doi: 10.1002/smll.201200028
– ident: e_1_2_7_81_2
  doi: 10.1002/adma.200900599
– ident: e_1_2_7_91_2
  doi: 10.1021/ja710193c
– ident: e_1_2_7_126_2
  doi: 10.1021/nn2043803
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.201201742
– ident: e_1_2_7_22_2
  doi: 10.1016/j.addr.2008.08.004
– ident: e_1_2_7_129_2
  doi: 10.1016/j.biomaterials.2010.10.035
– ident: e_1_2_7_144_2
  doi: 10.1039/b822444g
– ident: e_1_2_7_44_2
  doi: 10.1016/S1369-7021(11)70161-4
– ident: e_1_2_7_20_2
  doi: 10.1021/ja057254a
– ident: e_1_2_7_34_2
  doi: 10.1021/cr068445e
– ident: e_1_2_7_76_2
  doi: 10.1021/nn103130q
– ident: e_1_2_7_189_2
  doi: 10.1002/anie.201104765
– ident: e_1_2_7_179_2
  doi: 10.1039/b902985k
– ident: e_1_2_7_199_2
  doi: 10.1016/j.solidstatesciences.2005.04.003
– ident: e_1_2_7_177_2
  doi: 10.1021/ja9061085
– ident: e_1_2_7_28_2
  doi: 10.1016/j.actbio.2011.06.028
– ident: e_1_2_7_234_2
  doi: 10.1016/j.jcis.2011.03.051
– ident: e_1_2_7_95_2
  doi: 10.1002/smll.200902355
– ident: e_1_2_7_213_2
  doi: 10.1021/cr100025t
– ident: e_1_2_7_99_2
  doi: 10.1021/ja905793q
– year: 2013
  ident: e_1_2_7_57_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_36_2
  doi: 10.1126/science.1104274
– ident: e_1_2_7_58_2
  doi: 10.1021/ja00053a020
– ident: e_1_2_7_166_2
  doi: 10.1021/cm051198v
– year: 2008
  ident: e_1_2_7_198_2
  publication-title: J. Nanomater.
– ident: e_1_2_7_124_2
  doi: 10.2217/nnm.11.19
– ident: e_1_2_7_85_2
  doi: 10.1021/ja0565875
– ident: e_1_2_7_17_2
  doi: 10.1021/jp306543q
– ident: e_1_2_7_67_2
  doi: 10.1021/nn200809t
– ident: e_1_2_7_212_2
  doi: 10.1148/radiol.2502080498
– ident: e_1_2_7_46_2
  doi: 10.1088/0957-4484/20/4/045602
– ident: e_1_2_7_60_2
  doi: 10.1126/science.279.5350.548
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.201104033
– ident: e_1_2_7_65_2
  doi: 10.1002/cbic.200700509
– ident: e_1_2_7_223_2
  doi: 10.1016/j.biomaterials.2012.02.060
– ident: e_1_2_7_10_2
  doi: 10.1021/cr940351u
– ident: e_1_2_7_16_2
  doi: 10.1016/j.biomaterials.2012.09.029
– ident: e_1_2_7_172_2
  doi: 10.1002/adma.200600387
– ident: e_1_2_7_233_2
  doi: 10.1039/c0md00139b
– volume: 98
  year: 2011
  ident: e_1_2_7_247_2
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_245_2
  doi: 10.1021/nn200372g
– ident: e_1_2_7_8_2
  doi: 10.1038/nrclinonc.2010.139
– ident: e_1_2_7_169_2
  doi: 10.1002/anie.201002639
– ident: e_1_2_7_105_2
  doi: 10.1021/ar2000259
– ident: e_1_2_7_209_2
  doi: 10.1021/ja1084095
– ident: e_1_2_7_201_2
  doi: 10.1016/j.biomaterials.2009.01.029
– ident: e_1_2_7_214_2
  doi: 10.1007/3-540-45733-X_6
– ident: e_1_2_7_195_2
  doi: 10.1016/S0022-5347(05)64992-0
– ident: e_1_2_7_47_2
  doi: 10.2217/nnm.11.166
– ident: e_1_2_7_238_2
  doi: 10.1016/j.addr.2012.06.012
– ident: e_1_2_7_145_2
  doi: 10.1002/smll.201101055
– ident: e_1_2_7_219_2
  doi: 10.1021/nn202863x
– ident: e_1_2_7_152_2
  doi: 10.1021/nn100690m
– ident: e_1_2_7_39_2
  doi: 10.1021/ar800018v
– ident: e_1_2_7_123_2
  doi: 10.1038/nrd1033
– ident: e_1_2_7_115_2
  doi: 10.1002/smll.200800926
– ident: e_1_2_7_132_2
  doi: 10.1021/cm3001688
– ident: e_1_2_7_122_2
  doi: 10.1016/j.nano.2011.06.002
– ident: e_1_2_7_141_2
  doi: 10.1016/j.micromeso.2005.06.015
– ident: e_1_2_7_128_2
  doi: 10.1016/j.biomaterials.2008.07.007
– ident: e_1_2_7_23_2
  doi: 10.1016/j.addr.2003.07.013
– ident: e_1_2_7_227_2
  doi: 10.1016/j.biomaterials.2010.05.065
– ident: e_1_2_7_139_2
  doi: 10.1002/anie.200501500
– ident: e_1_2_7_173_2
  doi: 10.1002/anie.200900880
– ident: e_1_2_7_89_2
  doi: 10.1002/adfm.200800753
– ident: e_1_2_7_178_2
  doi: 10.1021/cm703363w
– ident: e_1_2_7_170_2
  doi: 10.1093/nar/gkq893
– ident: e_1_2_7_61_2
  doi: 10.1021/cr068020s
– ident: e_1_2_7_45_2
  doi: 10.1039/c1nr10718f
– ident: e_1_2_7_185_2
  doi: 10.1002/anie.201002820
– ident: e_1_2_7_1_2
  doi: 10.1002/anie.200802585
– ident: e_1_2_7_92_2
  doi: 10.1002/smll.200701316
– ident: e_1_2_7_116_2
  doi: 10.1021/ja201779d
– ident: e_1_2_7_181_2
  doi: 10.1021/ja904456d
– ident: e_1_2_7_147_2
  doi: 10.1039/c2nr12094a
– ident: e_1_2_7_149_2
  doi: 10.1039/c0jm04115g
– ident: e_1_2_7_240_2
  doi: 10.1021/nn800072t
– ident: e_1_2_7_19_2
  doi: 10.1039/b517615h
– ident: e_1_2_7_70_2
  doi: 10.1016/j.biomaterials.2009.09.060
– ident: e_1_2_7_71_2
  doi: 10.1021/nn901398j
– ident: e_1_2_7_225_2
  doi: 10.1021/nl0347334
– ident: e_1_2_7_163_2
  doi: 10.1021/ja807798g
– ident: e_1_2_7_211_2
  doi: 10.1021/nl902715v
– ident: e_1_2_7_29_2
  doi: 10.1039/C1JM13102H
– ident: e_1_2_7_120_2
  doi: 10.1021/nn200365a
– ident: e_1_2_7_210_2
  doi: 10.1038/ncpneph0660
– ident: e_1_2_7_33_2
  doi: 10.1039/b402025a
– ident: e_1_2_7_236_2
  doi: 10.1016/j.biomaterials.2012.03.066
– ident: e_1_2_7_207_2
  doi: 10.1002/anie.200602866
– ident: e_1_2_7_6_2
  doi: 10.1038/nbt1006-1211
– ident: e_1_2_7_239_2
  doi: 10.1002/adfm.201001495
– ident: e_1_2_7_100_2
  doi: 10.1039/c0jm03851b
– ident: e_1_2_7_182_2
  doi: 10.1021/ja901831u
– ident: e_1_2_7_32_2
  doi: 10.1002/adfm.201102052
– ident: e_1_2_7_220_2
  doi: 10.1016/S1476-5586(03)80005-2
– ident: e_1_2_7_157_2
  doi: 10.1016/j.addr.2006.09.020
– ident: e_1_2_7_162_2
  doi: 10.1039/c0cc02914a
– ident: e_1_2_7_202_2
  doi: 10.1016/j.biomaterials.2010.07.103
– ident: e_1_2_7_110_2
  doi: 10.1039/c1cs15246g
– ident: e_1_2_7_121_2
  doi: 10.1016/j.biomaterials.2010.04.055
– ident: e_1_2_7_51_2
  doi: 10.1172/JCI45600
– ident: e_1_2_7_94_2
  doi: 10.1016/j.biomaterials.2011.11.086
– ident: e_1_2_7_80_2
  doi: 10.1002/adma.200800854
– ident: e_1_2_7_161_2
  doi: 10.1021/ja900025f
– ident: e_1_2_7_156_2
  doi: 10.1021/ja206998x
– ident: e_1_2_7_228_2
  doi: 10.1039/C1CS15187H
– ident: e_1_2_7_38_2
  doi: 10.1038/nbt994
– ident: e_1_2_7_158_2
  doi: 10.1039/B406727D
– ident: e_1_2_7_168_2
  doi: 10.1021/jp103982a
– ident: e_1_2_7_176_2
  doi: 10.1021/ja0772086
– ident: e_1_2_7_218_2
  doi: 10.1016/j.biomaterials.2012.05.065
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.201001847
– ident: e_1_2_7_151_2
  doi: 10.1002/smll.200900621
– ident: e_1_2_7_183_2
  doi: 10.1021/ar200106e
– ident: e_1_2_7_186_2
  doi: 10.1093/jnci/90.12.889
– ident: e_1_2_7_237_2
  doi: 10.1002/adfm.201100031
– ident: e_1_2_7_243_2
  doi: 10.1002/adfm.200500565
– ident: e_1_2_7_206_2
  doi: 10.1039/C1CS15248C
– ident: e_1_2_7_117_2
  doi: 10.1016/j.jconrel.2012.05.046
– ident: e_1_2_7_98_2
  doi: 10.1021/nn800781r
– ident: e_1_2_7_90_2
  doi: 10.1021/la903008z
– ident: e_1_2_7_153_2
  doi: 10.1038/nnano.2007.108
– ident: e_1_2_7_118_2
  doi: 10.1016/j.biomaterials.2010.01.015
– ident: e_1_2_7_143_2
  doi: 10.1039/b804594a
– ident: e_1_2_7_11_2
  doi: 10.1016/j.nantod.2011.02.007
– ident: e_1_2_7_250_2
  doi: 10.1021/nn1015117
– ident: e_1_2_7_196_2
  doi: 10.1016/j.progsolidstchem.2007.10.002
– ident: e_1_2_7_111_2
  doi: 10.1039/c1cc13658e
– ident: e_1_2_7_69_2
  doi: 10.1021/cm0204371
– ident: e_1_2_7_52_2
  doi: 10.1021/cm203000u
– ident: e_1_2_7_62_2
  doi: 10.1021/cm0011559
– ident: e_1_2_7_235_2
  doi: 10.1002/adma.200901096
– ident: e_1_2_7_249_2
  doi: 10.1002/smll.201001447
– ident: e_1_2_7_133_2
  doi: 10.1016/j.biomaterials.2010.03.048
– ident: e_1_2_7_18_2
  doi: 10.1021/ar800150g
– ident: e_1_2_7_83_2
  doi: 10.1002/anie.200802469
– ident: e_1_2_7_187_2
  doi: 10.1038/nrc1071
– ident: e_1_2_7_37_2
  doi: 10.1038/nmat1390
– ident: e_1_2_7_54_2
  doi: 10.1002/anie.201000827
– ident: e_1_2_7_42_2
  doi: 10.1111/j.2042-7158.2010.01167.x
– ident: e_1_2_7_107_2
  doi: 10.1002/chem.200600226
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.200200546
– ident: e_1_2_7_148_2
  doi: 10.1039/c0jm02863k
SSID ssj0009606
Score 2.6060643
SecondaryResourceType review_article
Snippet The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3144
SubjectTerms Animals
Antineoplastic Agents - administration & dosage
Biocompatibility
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Contrast Media
diagnosis
Drug Carriers - chemistry
Humans
In vivo
In vivo testing
In vivo tests
Lipid Bilayers - metabolism
mesoporous silica
Nanocomposites
nanomedicine
Nanoparticles - chemistry
Nanostructure
Neoplasms - diagnosis
Neoplasms - diagnostic imaging
Neoplasms - drug therapy
Porosity
RNA, Small Interfering - administration & dosage
Silicon Dioxide - chemistry
Surgical implants
therapy
Tissue Engineering
Ultrasonography
Title In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-J850KQQH-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201205292
https://www.ncbi.nlm.nih.gov/pubmed/23681931
https://www.proquest.com/docview/1367877142
https://www.proquest.com/docview/1439757269
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNF7ggfulGyAjIXjyWjt27DwWuq0MddLYBnuzfJWqTcm0thPjhX2EfUY-CXbcpC3iIsFjpJPEPjm2_46Pfwbglcki5i4ELzW5RjS3DgmVcYQtJU4URidk_mgvHx7R3WN2vLSLP_Eh2h9usWXU_XVs4EpPugtoqLI1NwiTuFYVO-GYsBVV0ccFPyrK8xq2lzFU5FQ01MYe6a7evjIq3YwO_vIrybmqYOshaPsuUE3hU-bJyeZsqjfN15-4jv9Tu3vgzlyfwn4KqPvghisfgNtL1MKH4Nv7En4aX1Tw7bj6fnV9oLybXsKtFhs-gaq0cJBy-MJjuoeLPV6wv7RgDisPG2DB6SUc1MkkzsKRm1RhWlDNJvBgHK1hGAPC5H6ew_cIHG1vHb4bovk5DsgEdUcQFdQayoue8lxr54wljoWORTjGiPfWWMXCxM2SjBWF8hl3hAnvLMa5ZVir7DFYK6vSPQVQB4mmg6R1hQkTJ4u19th6a632iou86ADUfEdp5pDzeNbGqUx4ZiKjY2Xr2A5409qfJbzHby1f12HRmqnzk5gUx5n8vLcjdwXrfdjfH8qdDnjZxI0MTTWuv6jSBZfJSMcTnGNK_mATBSLjJFblSQq69o0ky4N-y3AHkDp0_lJi2R-M-u3V-r_ctAFukXT8B8LiGVibns_c8yDCpvpF3dB-AIsgKtg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQewAOUN4pLyMhOLmJveu195iStukjkUpT4Gb5KUWtdqsmQZQL_IT-xv4S7HV20yAeEhxXGu_aszP2N_b4GwBe6yTQ3HnjTXWmUJoZi7hMGMImJZbnWkXK_MEw6x-ne59onU0Y7sJEfohmwy14RjVfBwcPG9LtBWuoNBVxECbhsMrPwquhrHcVVb1fMEgFgF7R7SUU5VnKa97GDmkvt19al1aDir_8CnQuY9hqEdq-C1Td_Zh7crIxm6oN_fUnZsf_Gt8auDOHqLAbbeoeuGGL--D2NeLCB-DbbgE_jD-XcHNcXn2_PJLOTi_gVsMcPoGyMLAX0_j8a9qjxTUv2L12Zg5LB2vOgtML2KvySayBAzspfWRQzibwaBykoV8GfHw_T-N7CI63t0bv-mheygFpD_AISnlqdMryjnRMKWu1IZb6uYVbSolzRhtJfexmSELzXLqEWUK5swbjzFCsZPIIrBRlYZ8AqDxKUx7V2lz72MlgpRw2zhijnGQ8y1sA1T9S6DnPeSi3cSoiQzMRQbGiUWwLvG3kzyLDx28l31R20YjJ85OQF8eo-DjcEXucdvYPD_tipwVe1YYjvLeGIxhZWK8yEQjyOGM4JX-QCRiRMhKG8jhaXfNFkmQewiW4BUhlO3_psej2Bt3maf1fGr0EN_ujwYE42B3uPwW3SKwGgjB_Blam5zP73GOyqXpRed0PHogu8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMcttEkIHjbu6xhgJARPXmvHTpzHQtZ1G60Y22Bvlq9StSmZ1hYxXsZH4DPySbCTJm0RFwkeI50k9smx_Xd8_DMAL3QUMHc-eKmOFaKxsYjLKEHYUGJ5qlWFzB8M4_4J3T9lpwu7-Cs-RPPDLbSMsr8ODfzCuPYcGipNyQ3CJKxV-U54lcYdHuI6ez8HSAV9XtL2IobSmPIa29gh7eX7l4al1eDhz7_SnMsSthyDeutA1qWvUk_OtqcTta2__AR2_J_q3QFrM4EKu1VE3QU3bH4P3F7AFt4H13s5_DD6VMDXo-L7129H0tnJFdxpuOFjKHMDsyqJzz-mfTzf5AW7CyvmsHCwJhacX8GszCaxBg7suPDzgmI6hkejYA39IOBn97MkvgfgpLdz_KaPZgc5IO3lHUGUU6NpknakS5SyVhtime9ZuGWMOGe0kczP3AyJWJpKFyWWMO6swTg2DCsZPQQreZHbDQCV12jKa1qbaj9zMlgph40zxignEx6nLYDq7yj0jHIeDts4FxWfmYjgWNE4tgVeNfYXFd_jt5Yvy7BozOTlWciKS5j4ONwV-5x1Dg4P-2K3BZ7XcSN8Ww0LMDK33mUi4PF4kmBK_mATFCJLSKjKoyromjeSKPYCLsItQMrQ-UuJRTcbdJurzX-56Rm4-S7ribd7w4PH4BapjgJBmG-Blcnl1D7xgmyinpZt7geLki2r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+bio-safety+evaluations+and+diagnostic%2Ftherapeutic+applications+of+chemically+designed+mesoporous+silica+nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yu&rft.au=Chen%2C+Hangrong&rft.au=Shi%2C+Jianlin&rft.date=2013-06-18&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=25&rft.issue=23&rft.spage=3144&rft_id=info:doi/10.1002%2Fadma.201205292&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon