Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performan...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 4238 - 15
Main Authors Schulz, Marc-Andre, Yeo, B. T. Thomas, Vogelstein, Joshua T., Mourao-Miranada, Janaina, Kather, Jakob N., Kording, Konrad, Richards, Blake, Bzdok, Danilo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.08.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods. Schulz et al . systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans.
AbstractList Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods. Schulz et al . systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans.
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans.
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.
Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans.
ArticleNumber 4238
Author Kording, Konrad
Bzdok, Danilo
Kather, Jakob N.
Mourao-Miranada, Janaina
Richards, Blake
Yeo, B. T. Thomas
Schulz, Marc-Andre
Vogelstein, Joshua T.
Author_xml – sequence: 1
  givenname: Marc-Andre
  orcidid: 0000-0002-1140-1841
  surname: Schulz
  fullname: Schulz, Marc-Andre
  organization: Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University
– sequence: 2
  givenname: B. T. Thomas
  orcidid: 0000-0002-0119-3276
  surname: Yeo
  fullname: Yeo, B. T. Thomas
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Centre for Sleep and Cognition (CSC) and Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore
– sequence: 3
  givenname: Joshua T.
  orcidid: 0000-0003-2487-6237
  surname: Vogelstein
  fullname: Vogelstein, Joshua T.
  organization: Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Kavli Neuroscience Discovery Institute, Johns Hopkins University
– sequence: 4
  givenname: Janaina
  surname: Mourao-Miranada
  fullname: Mourao-Miranada, Janaina
  organization: Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, Centre for Medical Image Computing, Department of Computer Science, University College London
– sequence: 5
  givenname: Jakob N.
  surname: Kather
  fullname: Kather, Jakob N.
  organization: Department of Medicine III, University Hospital RWTH Aachen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Applied Tumor Immunity, German Cancer Research Center (DKFZ)
– sequence: 6
  givenname: Konrad
  orcidid: 0000-0001-8408-4499
  surname: Kording
  fullname: Kording, Konrad
  organization: Department of Neuroscience and Department of Bioengineering, University of Pennsylvania
– sequence: 7
  givenname: Blake
  orcidid: 0000-0001-9662-2151
  surname: Richards
  fullname: Richards, Blake
  organization: Department of Neurology and Neurosurgery, McGill University, School of Computer Science, McGill University, Canadian Institute for Advanced Research, Mila - Quebec Artificial Intelligence Institute
– sequence: 8
  givenname: Danilo
  orcidid: 0000-0003-3466-6620
  surname: Bzdok
  fullname: Bzdok, Danilo
  email: danilo.bzdok@mcgill.ca
  organization: Mila - Quebec Artificial Intelligence Institute, Neurospin, Commissariat à l’Energie Atomique (CEA) Saclay, Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Faculty of Medicine, Department of Biomedical Engineering, McConnell Brain imaging Centre, Montreal Neurological Institute (MNI), McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32843633$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNURB_0D7BAltiwCfiVxNkg0VKgohIburYm9iT1JbEvdm4l7q_H6W1L20W9GXv8naMjew6LPR88FsUbRj8wKtTHJJmsm5JyWjJFRVNuXxQHnEpWsoaLvQf7_eI4pRXNS7RMSfmq2BdcSVELcVCEL67vMaKfSTIwOj-Q0JNcESKZgsUxEfCWWMQ1GXPTL4jz5PLHiQsd-N-ki5DPboIBE7nGmDaJTGCuskd5r7AwQ8I5vS5e9jAmPL6tR8Xl17Nfp9_Li5_fzk8_X5Sm4mxbNhWTfcdtD42A1mLHW0MZSNNabqjqkVtlBFR1VXGjupZyBEsFSlZzW8leHBXnO18bYKXXMceLf3UAp28aIQ4a4uzMiLpjiNQyi4wZSa1Sddvwqqpq0-ZTu3h92nmtN92E1uTHijA-Mn18492VHsK1bqRsFKuzwftbgxj-bDDNenLJ4DiCx7BJmkvRSMookxl99wRdhU30-akWKifLpMrU24eJ7qPc_WsG1A4wMaQUsdfGzTC7sAR0o2ZUL1Okd1Ok8xTpmynS2yzlT6R37s-KxE6UMuwHjP9jP6P6B80v20g
CitedBy_id crossref_primary_10_1016_j_dscb_2021_100005
crossref_primary_10_1016_j_biopsych_2022_10_006
crossref_primary_10_1002_bco2_217
crossref_primary_10_1016_j_compstruct_2022_115707
crossref_primary_10_1038_s41531_023_00522_z
crossref_primary_10_1016_j_neuroimage_2022_119521
crossref_primary_10_1038_s41467_022_33578_1
crossref_primary_10_1016_j_neunet_2022_06_014
crossref_primary_10_1016_j_neuroimage_2023_119926
crossref_primary_10_1038_s41551_023_01117_y
crossref_primary_10_1038_s42003_021_02451_0
crossref_primary_10_1016_j_csda_2023_107914
crossref_primary_10_1016_j_ymssp_2023_110721
crossref_primary_10_1016_j_aap_2025_107942
crossref_primary_10_1515_jisys_2024_0077
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_1016_j_celrep_2023_113597
crossref_primary_10_3390_diagnostics12081850
crossref_primary_10_1016_j_neuroimage_2023_120109
crossref_primary_10_1007_s10439_024_03459_3
crossref_primary_10_1093_cercor_bhac060
crossref_primary_10_1162_imag_a_00416
crossref_primary_10_3389_fradi_2024_1283392
crossref_primary_10_1016_j_media_2021_102304
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1111_ejn_15889
crossref_primary_10_1007_s10765_022_03141_7
crossref_primary_10_1007_s13131_023_2203_9
crossref_primary_10_1038_s42256_023_00698_2
crossref_primary_10_1016_j_neuroimage_2022_119637
crossref_primary_10_1080_24725854_2022_2157912
crossref_primary_10_1162_imag_a_00251
crossref_primary_10_1016_j_patter_2023_100712
crossref_primary_10_1016_j_bspc_2023_105869
crossref_primary_10_3934_mbe_2023351
crossref_primary_10_7554_eLife_88173_4
crossref_primary_10_1016_j_ejmp_2021_03_026
crossref_primary_10_1016_j_neuroimage_2023_120115
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_1016_j_cortex_2021_12_015
crossref_primary_10_1038_s41551_024_01242_2
crossref_primary_10_1002_hbm_26144
crossref_primary_10_1038_s41746_021_00524_2
crossref_primary_10_1055_a_2415_8408
crossref_primary_10_1162_imag_a_00228
crossref_primary_10_1177_20539517231155060
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_1007_s11571_023_09946_y
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1038_s41598_021_83315_9
crossref_primary_10_1162_imag_a_00064
crossref_primary_10_1177_10732748241286749
crossref_primary_10_1016_j_jneumeth_2022_109744
crossref_primary_10_1038_s42003_024_05869_4
crossref_primary_10_1016_j_neuroimage_2024_120600
crossref_primary_10_1162_imag_a_00222
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_1038_s41591_023_02296_6
crossref_primary_10_7554_eLife_88173
crossref_primary_10_1038_s43856_024_00541_8
crossref_primary_10_1016_j_engappai_2024_107908
crossref_primary_10_1016_j_compmedimag_2024_102400
crossref_primary_10_1016_j_egyr_2024_10_048
crossref_primary_10_1371_journal_pone_0308329
crossref_primary_10_3390_diagnostics14232634
crossref_primary_10_1016_j_aap_2024_107695
crossref_primary_10_3390_rs14235939
crossref_primary_10_1109_TPAMI_2023_3257846
crossref_primary_10_1093_texcom_tgac020
crossref_primary_10_1038_s41593_022_01059_9
crossref_primary_10_1002_hbm_26768
crossref_primary_10_1016_j_neurobiolaging_2022_06_008
crossref_primary_10_3389_fnins_2023_1175690
crossref_primary_10_1038_s42003_022_03903_x
crossref_primary_10_1162_imag_a_00233
crossref_primary_10_1016_j_xcrm_2024_101784
crossref_primary_10_1177_17474930211051531
crossref_primary_10_1016_j_bpsc_2023_04_007
crossref_primary_10_1038_s42003_023_04843_w
crossref_primary_10_1016_j_slast_2024_100129
crossref_primary_10_1016_j_biopsych_2023_11_012
crossref_primary_10_1016_j_bpsc_2020_12_002
crossref_primary_10_3389_fpsyt_2020_604478
crossref_primary_10_1002_admt_202301462
crossref_primary_10_1016_j_istruc_2023_105559
crossref_primary_10_1016_j_jpsychires_2022_12_037
crossref_primary_10_1016_j_cobeha_2021_04_016
crossref_primary_10_1038_s41598_024_75370_9
crossref_primary_10_1371_journal_pdig_0000276
crossref_primary_10_3390_electronics12010098
crossref_primary_10_1002_cbf_3870
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_1038_s41593_022_01070_0
crossref_primary_10_1038_s42003_024_06438_5
crossref_primary_10_1001_jamapsychiatry_2023_1419
crossref_primary_10_7554_eLife_68980
crossref_primary_10_1016_j_jhydrol_2020_125734
crossref_primary_10_1089_neu_2024_0128
crossref_primary_10_17816_DD634885
crossref_primary_10_1007_s42452_024_06295_1
crossref_primary_10_1016_j_neuroimage_2024_120665
crossref_primary_10_1126_sciadv_adn1862
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_3233_JCM_247185
crossref_primary_10_1038_s41380_024_02767_3
crossref_primary_10_1038_s41467_022_31347_8
crossref_primary_10_5435_JAAOS_D_23_00831
crossref_primary_10_1093_gigascience_giab071
crossref_primary_10_1016_j_ccr_2023_215112
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_3233_JAD_215244
crossref_primary_10_1016_j_tins_2024_02_001
crossref_primary_10_1002_mco2_778
crossref_primary_10_1016_j_compbiomed_2023_107893
crossref_primary_10_1016_j_conbuildmat_2024_138791
crossref_primary_10_1007_s41347_023_00343_0
crossref_primary_10_1109_TMI_2022_3218720
crossref_primary_10_1016_j_crmeth_2022_100227
crossref_primary_10_1109_ACCESS_2022_3217478
crossref_primary_10_1016_j_neuroimage_2023_119986
crossref_primary_10_1002_hbm_26182
crossref_primary_10_1038_s41598_023_47934_8
crossref_primary_10_1016_j_ynirp_2021_100024
crossref_primary_10_3389_fpsyt_2021_710932
crossref_primary_10_1016_j_jssas_2022_07_006
crossref_primary_10_1126_science_adi5199
crossref_primary_10_1016_j_patcog_2021_108434
crossref_primary_10_1093_braincomms_fcae007
crossref_primary_10_1109_JBHI_2023_3304974
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_3390_electronics10232891
crossref_primary_10_1016_j_ipm_2024_103961
crossref_primary_10_1016_j_jwpe_2023_104041
crossref_primary_10_1161_JAHA_121_023175
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_1080_00224065_2024_2435870
crossref_primary_10_1093_jamia_ocac141
crossref_primary_10_1371_journal_pbio_3001627
crossref_primary_10_1016_j_nicl_2024_103650
crossref_primary_10_1016_j_imu_2021_100538
crossref_primary_10_1097_MNM_0000000000001786
crossref_primary_10_3934_mbe_2024191
crossref_primary_10_1109_TNSRE_2022_3190467
crossref_primary_10_3389_fnagi_2023_1249415
crossref_primary_10_1007_s00521_022_08187_0
crossref_primary_10_3389_fnins_2022_928841
crossref_primary_10_1016_j_ins_2021_08_093
crossref_primary_10_1016_j_bpsc_2021_02_001
Cites_doi 10.1016/j.neubiorev.2017.01.002
10.1016/j.neuroimage.2017.07.008
10.1038/nn.4393
10.1016/j.neuron.2017.06.038
10.1016/j.neuron.2017.12.018
10.1016/j.neuroimage.2016.02.079
10.1016/j.media.2010.12.003
10.1038/nature14539
10.1016/j.biopsych.2015.12.023
10.1038/nature17637
10.1016/j.neuroimage.2018.01.018
10.1371/journal.pbio.3000678
10.1016/j.neuroimage.2017.04.061
10.1109/TSP.2016.2546221
10.1109/CVPR.2018.00964
10.1016/j.neuroimage.2016.10.038
10.1038/s42256-019-0069-5
10.1038/539467b
10.1214/15-AOAS837
10.1109/CVPR.2016.90
10.1038/nn.4135
10.1609/aaai.v31i1.10913
10.1023/A:1012487302797
10.1007/978-3-030-31901-4_16
10.3389/fnins.2014.00229
10.1016/j.neuroimage.2019.116276
10.1101/2020.04.14.041582
10.7551/mitpress/9780262015967.001.0001
10.1016/j.neuroimage.2016.10.045
10.1038/s41591-019-0462-y
10.1016/j.neuron.2015.05.025
10.1126/science.1194144
10.7551/mitpress/4175.001.0001
10.1101/2019.12.17.879346
10.1016/j.commatsci.2018.07.052
10.1017/CBO9781316576533
10.1016/j.neuroimage.2018.07.005
10.1109/CVPR.2019.00065
10.1145/502512.502546
10.1016/j.media.2016.10.004
10.2139/ssrn.360300
10.1016/j.jneumeth.2016.10.007
10.1016/j.neuron.2017.07.011
10.1016/j.tins.2019.02.001
10.1038/nn.4478
10.1016/j.neuroimage.2017.07.059
10.1007/978-3-540-68158-8
10.3389/fnins.2017.00543
10.1109/5.726791
10.1007/978-3-540-28647-9_85
10.1016/S1053-8119(03)00049-1
10.3389/fncom.2016.00094
10.1145/1015330.1015415
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-18037-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_b1ee0d1de11c40d8869725556c90d89f
PMC7447816
32843633
10_1038_s41467_020_18037_z
Genre Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG068563
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c521z-7514fb2dfa73a9deb29c01a4c9d2c08fe2d8c3a56552c8b902ead03e4162d54f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:59 EDT 2025
Thu Aug 21 13:56:24 EDT 2025
Fri Jul 11 12:30:59 EDT 2025
Wed Aug 13 08:19:04 EDT 2025
Mon Jul 21 05:51:29 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 04:09:02 EDT 2025
Fri Feb 21 02:40:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521z-7514fb2dfa73a9deb29c01a4c9d2c08fe2d8c3a56552c8b902ead03e4162d54f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-8408-4499
0000-0002-1140-1841
0000-0002-0119-3276
0000-0003-3466-6620
0000-0003-2487-6237
0000-0001-9662-2151
OpenAccessLink https://www.nature.com/articles/s41467-020-18037-z
PMID 32843633
PQID 2436973748
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_b1ee0d1de11c40d8869725556c90d89f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447816
proquest_miscellaneous_2437401014
proquest_journals_2436973748
pubmed_primary_32843633
crossref_citationtrail_10_1038_s41467_020_18037_z
crossref_primary_10_1038_s41467_020_18037_z
springer_journals_10_1038_s41467_020_18037_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200825
PublicationDateYYYYMMDD 2020-08-25
PublicationDate_xml – month: 8
  year: 2020
  text: 20200825
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv:1412.6980 (2014).
BragaRMBucknerRLParallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivityNeuron201795457471.e51:CAS:528:DC%2BC2sXht1SmtbzN10.1016/j.neuron.2017.06.038
McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, 2005).
Collobert, R. & Bengio, S. Links between perceptrons, MLPs and SVMs. In Proc. 21st Int. Conf. on Machine Learning 23 (ACM, 2004).
MarblestoneAHWayneGKordingKPToward an integration of deep learning and neuroscienceFront. Comput. Neurosci.2016109410.3389/fncom.2016.00094
Bingham, E. & Mannila, H. Random projection in dimensionality reduction: applications to image and text data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Disovery and Data Mining. 245–250 (ACM, 2001).
CortesCVapnikVSupport-vector networksMach. Learn.1995202732970831.68098
LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
Gliozzo, A. & Strapparava, C. Semantic Domains in Computational Linguistics. (Springer Science & Business Media, 2009).
DosenbachNUFPrediction of individual brain maturity using fMRIScience2010329135813612010Sci...329.1358D1:CAS:528:DC%2BC3cXhtFajs7vO10.1126/science.1194144
Peng, H. et al. Accurate brain age prediction with lightweight deep neural networks. Preprint at bioRxiv (2020).
Mihalik, A. et al. ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. Preprint at arXiv:1905.10831 (2019).
Schölkopf, B., Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002).
VaroquauxGAssessing and tuning brain decoders: cross-validation, caveats, and guidelinesNeuroimage201714516617910.1016/j.neuroimage.2016.10.038
HeTDo deep neural networks outperform kernel regression for functional connectivity prediction of behavior?Neuroimage202020611627610.1016/j.neuroimage.2019.116276
FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI10.1038/nn.4135
Mhaskar, H., Liao, Q. & Poggio, T. When and why are deep networks better than shallow ones? In 31st AAAI Conf. Artificial Intelligence (aaai.org, 2017).
BzdokDYeoBTTInference in the age of big data: future perspectives on neuroscienceNeuroimage201715554956410.1016/j.neuroimage.2017.04.061
Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to explain: an information-theoretic perspective on model interpretation. Preprint at arXiv:1802.07814 (2018).
Brendel, W. & Bethge, M. Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. Preprint at arXiv:1904.00760 (2019).
LiHFully convolutional network ensembles for white matter hyperintensities segmentation in MR imagesNeuroimage201818365066510.1016/j.neuroimage.2018.07.005
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv:1611.03530 (2016).
HamidiehKA data-driven statistical model for predicting the critical temperature of a superconductorComput. Mater. Sci.20181543463541:CAS:528:DC%2BC1cXhsFWgs7zJ10.1016/j.commatsci.2018.07.052
LecunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE1998862278232410.1109/5.726791
KatherJNDeep learning can predict microsatellite instability directly from histology in gastrointestinal cancerNat. Med.201925105410561:CAS:528:DC%2BC1MXhtV2it7bF10.1038/s41591-019-0462-y
BzdokDNicholsTESmithSMTowards algorithmic analytics for large-scale datasetsNat. Mach. Intell.2019129630610.1038/s42256-019-0069-5
Tikhonov, A. N. in Doklady Akademii Nauk Vol. 151, p. 501–504 (Russian Academy of Sciences, 1963).
Lundberg, S. M. & Lee, S. -I. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774 (Curran Associates, Inc., 2017).
LinH-TLinC-JA study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methodsNeural Comput.200331322003phco.conf....1P
Giryes, R., Sapiro, G. & Bronstein, A. M. Deep neural networks with random Gaussian weights: a universal classification strategy? Preprint at arXiv:1504.08291 (2015).
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
Daunting data. Nature539, 467–468 (2016).
Wang, J., Chen, Q. & Chen, Y. in Advances inNeural Networks – ISNN 2004 512–517 (Springer, Berlin, 2004).
KamnitsasKEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Anal.201736617810.1016/j.media.2016.10.004
KruschwitzJDWallerLDaedelowLSWalterHVeerIMGeneral, crystallized and fluid intelligence are not associated with functional global network efficiency: a replication study with the Human Connectome Project 1200 data setNeuroimage20181713233311:STN:280:DC%2BC1Mvht1Gqsw%3D%3D10.1016/j.neuroimage.2018.01.018
ShahMEvaluating intensity normalization on MRIs of human brain with multiple sclerosisMed. Image Anal.20111526728210.1016/j.media.2010.12.003
ChoiHJinKHFast and robust segmentation of the striatum using deep convolutional neural networksJ. Neurosci. Methods201627414615310.1016/j.jneumeth.2016.10.007
VieiraSPinayaWHLMechelliAUsing deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applicationsNeurosci. Biobehav. Rev.201774587510.1016/j.neubiorev.2017.01.002
Efron, B. & Hastie, T. Computer Age Statistical Inference (Cambridge Univ. Press, 2016).
SmithSMNicholsTEStatistical challenges in ‘Big Data’ human neuroimagingNeuron2018972632681:CAS:528:DC%2BC1cXis1amtrs%3D10.1016/j.neuron.2017.12.018
ColeJHPredicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarkerNeuroimage201716311512410.1016/j.neuroimage.2017.07.059
Marinescu, R. V. et al. TADPOLE challenge: prediction of longitudinal evolution in Alzheimer’s disease. Preprint at arXiv:1805.03909 (2018).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
WagstylKBigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678
GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn20024638942210.1023/A:1012487302797
ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079
Uttal, W. R. Mind and Brain: A Critical Appraisal of Cognitive Neuroscience (MIT Press, 2011).
MarquandAFRezekIBuitelaarJBeckmannCFUnderstanding heterogeneity in clinical cohorts using normative models: beyond case-control studiesBiol. Psychiatry20168055256110.1016/j.biopsych.2015.12.023
Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. Preprint at arXiv:1706.02515 (2017).
HaynesJ-DA primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectivesNeuron2015872572701:CAS:528:DC%2BC2MXht1GrtLzK10.1016/j.neuron.2015.05.025
Abrol, A. et al. Hype versus hope: Deep learning encodes more predictive and robust brain imaging representations than standard machine learning. Preprint at bioRxiv (2020).
Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at arXiv:1708.07747 (2017).
Bengio, Y. & Lecun, Y. in Large-Scale Kernel Machines. 34, 1–41 (MIT Press, 2007).
MillerKLMultimodal population brain imaging in the UK Biobank prospective epidemiological studyNat. Neurosci.201619152315361:CAS:528:DC%2BC28XhsFenu7nE10.1038/nn.4393
GordonEMPrecision functional mapping of individual human brainsNeuron201795791807.e71:CAS:528:DC%2BC2sXht1CmsLjF10.1016/j.neuron.2017.07.011
Cramer, J. S. The Origins of Logistic Regressionhttps://doi.org/10.2139/ssrn.360300 (2002).
WooC-WChangLJLindquistMAWagerTDBuilding better biomarkers: brain models in translational neuroimagingNat. Neurosci.2017203653771:CAS:528:DC%2BC2sXjsVSmsr8%3D10.1038/nn.4478
He, T. et al. Bag of Tricks for image classification with convolutional neural networks. Preprint at arXiv:1812.01187 (2018).
LeCun, Y. & Cortes, C. MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/ (2010).
BzdokDClassical statistics and statistical learning in imaging neuroscienceFront. Neurosci.20171154310.3389/fnins.2017.00543
Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at arXiv:1312.4400 (2013).
HuthAGde HeerWAGriffithsTLTheunissenFEGallantJLNatural speech reveals the semantic maps that tile human cerebral cortexNature20165324534582016Natur.532..453H10.1038/nature17637
Wehbe, L., Ramdas, A. & Steorts, R. C. Regularized brain reading with shrinkage and smoothing. Ann. Appl. Stat. 9, 1997–2022 (2015).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn (Springer Science & Business Media, 2009).
CoxDDSavoyRfMRI Brain Reading: detecting and classifying distributed patterns of fMRI activity in human visual cortexNeuroimage20031926127010.1016/S1053-8119(03)00049-1
BzdokDIoannidisJPAExploration, inference, and prediction in neuroscience and biomedicineTrends Neurosci.2019422512621:CAS:528:DC%2BC1MXjtFOjt74%3D10.1016/j.tins.2019.02.001
Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. & Dalca, A. V. An unsupervised learning model for deformable medical image registration. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 9252–9260 (openaccess.thecvf.com, 2018).
PlisSMDeep learning for neuroimaging: a validation studyFront. Neurosci.2014822910.3389/fnins.2014.00229
YangXKwittRS
SM Smith (18037_CR2) 2018; 97
AF Marquand (18037_CR6) 2016; 80
I Guyon (18037_CR56) 2002; 46
MR Arbabshirani (18037_CR43) 2017; 145
H-T Lin (18037_CR63) 2003; 3
JD Kruschwitz (18037_CR24) 2018; 171
18037_CR64
T He (18037_CR13) 2020; 206
S Vieira (18037_CR25) 2017; 74
18037_CR61
18037_CR62
18037_CR12
EM Gordon (18037_CR50) 2017; 95
18037_CR57
18037_CR10
18037_CR54
18037_CR11
18037_CR55
18037_CR16
18037_CR17
18037_CR14
18037_CR58
18037_CR59
18037_CR19
JN Kather (18037_CR18) 2019; 25
DD Cox (18037_CR28) 2003; 19
D Bzdok (18037_CR3) 2017; 155
18037_CR31
K Hamidieh (18037_CR53) 2018; 154
18037_CR1
Y LeCun (18037_CR33) 2015; 521
18037_CR67
C-W Woo (18037_CR21) 2017; 20
18037_CR68
18037_CR65
18037_CR22
18037_CR66
18037_CR27
G Varoquaux (18037_CR29) 2017; 145
18037_CR9
C Cortes (18037_CR60) 1995; 20
JH Cole (18037_CR40) 2017; 163
ES Finn (18037_CR23) 2015; 18
D Bzdok (18037_CR8) 2019; 42
18037_CR41
18037_CR42
Y Lecun (18037_CR15) 1998; 86
18037_CR32
H Li (18037_CR36) 2018; 183
18037_CR38
M Shah (18037_CR49) 2011; 15
AG Huth (18037_CR52) 2016; 532
NUF Dosenbach (18037_CR70) 2010; 329
D Bzdok (18037_CR5) 2017; 11
J-D Haynes (18037_CR20) 2015; 87
SM Plis (18037_CR26) 2014; 8
H Choi (18037_CR34) 2016; 274
A Abraham (18037_CR69) 2017; 147
AH Marblestone (18037_CR7) 2016; 10
18037_CR45
RM Braga (18037_CR51) 2017; 95
18037_CR46
D Bzdok (18037_CR30) 2019; 1
18037_CR44
18037_CR47
18037_CR48
KL Miller (18037_CR4) 2016; 19
K Kamnitsas (18037_CR35) 2017; 36
K Wagstyl (18037_CR37) 2020; 18
X Yang (18037_CR39) 2017; 158
References_xml – reference: WagstylKBigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678
– reference: Bengio, Y. & Lecun, Y. in Large-Scale Kernel Machines. 34, 1–41 (MIT Press, 2007).
– reference: Efron, B. & Hastie, T. Computer Age Statistical Inference (Cambridge Univ. Press, 2016).
– reference: ShahMEvaluating intensity normalization on MRIs of human brain with multiple sclerosisMed. Image Anal.20111526728210.1016/j.media.2010.12.003
– reference: Tikhonov, A. N. in Doklady Akademii Nauk Vol. 151, p. 501–504 (Russian Academy of Sciences, 1963).
– reference: Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at arXiv:1708.07747 (2017).
– reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: Mihalik, A. et al. ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. Preprint at arXiv:1905.10831 (2019).
– reference: Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv:1611.03530 (2016).
– reference: Uttal, W. R. Mind and Brain: A Critical Appraisal of Cognitive Neuroscience (MIT Press, 2011).
– reference: ChoiHJinKHFast and robust segmentation of the striatum using deep convolutional neural networksJ. Neurosci. Methods201627414615310.1016/j.jneumeth.2016.10.007
– reference: Bingham, E. & Mannila, H. Random projection in dimensionality reduction: applications to image and text data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Disovery and Data Mining. 245–250 (ACM, 2001).
– reference: Peng, H. et al. Accurate brain age prediction with lightweight deep neural networks. Preprint at bioRxiv (2020).
– reference: Brendel, W. & Bethge, M. Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. Preprint at arXiv:1904.00760 (2019).
– reference: Daunting data. Nature539, 467–468 (2016).
– reference: BzdokDIoannidisJPAExploration, inference, and prediction in neuroscience and biomedicineTrends Neurosci.2019422512621:CAS:528:DC%2BC1MXjtFOjt74%3D10.1016/j.tins.2019.02.001
– reference: MarblestoneAHWayneGKordingKPToward an integration of deep learning and neuroscienceFront. Comput. Neurosci.2016109410.3389/fncom.2016.00094
– reference: AbrahamADeriving reproducible biomarkers from multi-site resting-state data: an autism-based exampleNeuroimage201714773674510.1016/j.neuroimage.2016.10.045
– reference: KruschwitzJDWallerLDaedelowLSWalterHVeerIMGeneral, crystallized and fluid intelligence are not associated with functional global network efficiency: a replication study with the Human Connectome Project 1200 data setNeuroimage20181713233311:STN:280:DC%2BC1Mvht1Gqsw%3D%3D10.1016/j.neuroimage.2018.01.018
– reference: VaroquauxGAssessing and tuning brain decoders: cross-validation, caveats, and guidelinesNeuroimage201714516617910.1016/j.neuroimage.2016.10.038
– reference: Wang, J., Chen, Q. & Chen, Y. in Advances inNeural Networks – ISNN 2004 512–517 (Springer, Berlin, 2004).
– reference: Giryes, R., Sapiro, G. & Bronstein, A. M. Deep neural networks with random Gaussian weights: a universal classification strategy? Preprint at arXiv:1504.08291 (2015).
– reference: Marinescu, R. V. et al. TADPOLE challenge: prediction of longitudinal evolution in Alzheimer’s disease. Preprint at arXiv:1805.03909 (2018).
– reference: MarquandAFRezekIBuitelaarJBeckmannCFUnderstanding heterogeneity in clinical cohorts using normative models: beyond case-control studiesBiol. Psychiatry20168055256110.1016/j.biopsych.2015.12.023
– reference: LiHFully convolutional network ensembles for white matter hyperintensities segmentation in MR imagesNeuroimage201818365066510.1016/j.neuroimage.2018.07.005
– reference: Schölkopf, B., Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002).
– reference: Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. Preprint at arXiv:1706.02515 (2017).
– reference: CortesCVapnikVSupport-vector networksMach. Learn.1995202732970831.68098
– reference: BzdokDClassical statistics and statistical learning in imaging neuroscienceFront. Neurosci.20171154310.3389/fnins.2017.00543
– reference: He, T. et al. Bag of Tricks for image classification with convolutional neural networks. Preprint at arXiv:1812.01187 (2018).
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
– reference: HaynesJ-DA primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectivesNeuron2015872572701:CAS:528:DC%2BC2MXht1GrtLzK10.1016/j.neuron.2015.05.025
– reference: BzdokDYeoBTTInference in the age of big data: future perspectives on neuroscienceNeuroimage201715554956410.1016/j.neuroimage.2017.04.061
– reference: Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to explain: an information-theoretic perspective on model interpretation. Preprint at arXiv:1802.07814 (2018).
– reference: ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079
– reference: Wehbe, L., Ramdas, A. & Steorts, R. C. Regularized brain reading with shrinkage and smoothing. Ann. Appl. Stat. 9, 1997–2022 (2015).
– reference: Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv:1412.6980 (2014).
– reference: PlisSMDeep learning for neuroimaging: a validation studyFront. Neurosci.2014822910.3389/fnins.2014.00229
– reference: BzdokDNicholsTESmithSMTowards algorithmic analytics for large-scale datasetsNat. Mach. Intell.2019129630610.1038/s42256-019-0069-5
– reference: GordonEMPrecision functional mapping of individual human brainsNeuron201795791807.e71:CAS:528:DC%2BC2sXht1CmsLjF10.1016/j.neuron.2017.07.011
– reference: LecunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE1998862278232410.1109/5.726791
– reference: VieiraSPinayaWHLMechelliAUsing deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applicationsNeurosci. Biobehav. Rev.201774587510.1016/j.neubiorev.2017.01.002
– reference: McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, 2005).
– reference: LinH-TLinC-JA study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methodsNeural Comput.200331322003phco.conf....1P
– reference: YangXKwittRStynerMNiethammerMQuicksilver: fast predictive image registration–a deep learning approachNeuroimage201715837839610.1016/j.neuroimage.2017.07.008
– reference: Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn (Springer Science & Business Media, 2009).
– reference: LeCun, Y. & Cortes, C. MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/ (2010).
– reference: KamnitsasKEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Anal.201736617810.1016/j.media.2016.10.004
– reference: Cramer, J. S. The Origins of Logistic Regressionhttps://doi.org/10.2139/ssrn.360300 (2002).
– reference: Abrol, A. et al. Hype versus hope: Deep learning encodes more predictive and robust brain imaging representations than standard machine learning. Preprint at bioRxiv (2020).
– reference: CoxDDSavoyRfMRI Brain Reading: detecting and classifying distributed patterns of fMRI activity in human visual cortexNeuroimage20031926127010.1016/S1053-8119(03)00049-1
– reference: Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. & Dalca, A. V. An unsupervised learning model for deformable medical image registration. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 9252–9260 (openaccess.thecvf.com, 2018).
– reference: Gliozzo, A. & Strapparava, C. Semantic Domains in Computational Linguistics. (Springer Science & Business Media, 2009).
– reference: ColeJHPredicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarkerNeuroimage201716311512410.1016/j.neuroimage.2017.07.059
– reference: SmithSMNicholsTEStatistical challenges in ‘Big Data’ human neuroimagingNeuron2018972632681:CAS:528:DC%2BC1cXis1amtrs%3D10.1016/j.neuron.2017.12.018
– reference: HeTDo deep neural networks outperform kernel regression for functional connectivity prediction of behavior?Neuroimage202020611627610.1016/j.neuroimage.2019.116276
– reference: WooC-WChangLJLindquistMAWagerTDBuilding better biomarkers: brain models in translational neuroimagingNat. Neurosci.2017203653771:CAS:528:DC%2BC2sXjsVSmsr8%3D10.1038/nn.4478
– reference: KatherJNDeep learning can predict microsatellite instability directly from histology in gastrointestinal cancerNat. Med.201925105410561:CAS:528:DC%2BC1MXhtV2it7bF10.1038/s41591-019-0462-y
– reference: MillerKLMultimodal population brain imaging in the UK Biobank prospective epidemiological studyNat. Neurosci.201619152315361:CAS:528:DC%2BC28XhsFenu7nE10.1038/nn.4393
– reference: HuthAGde HeerWAGriffithsTLTheunissenFEGallantJLNatural speech reveals the semantic maps that tile human cerebral cortexNature20165324534582016Natur.532..453H10.1038/nature17637
– reference: FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI10.1038/nn.4135
– reference: BragaRMBucknerRLParallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivityNeuron201795457471.e51:CAS:528:DC%2BC2sXht1SmtbzN10.1016/j.neuron.2017.06.038
– reference: Collobert, R. & Bengio, S. Links between perceptrons, MLPs and SVMs. In Proc. 21st Int. Conf. on Machine Learning 23 (ACM, 2004).
– reference: Mhaskar, H., Liao, Q. & Poggio, T. When and why are deep networks better than shallow ones? In 31st AAAI Conf. Artificial Intelligence (aaai.org, 2017).
– reference: Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
– reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn20024638942210.1023/A:1012487302797
– reference: DosenbachNUFPrediction of individual brain maturity using fMRIScience2010329135813612010Sci...329.1358D1:CAS:528:DC%2BC3cXhtFajs7vO10.1126/science.1194144
– reference: HamidiehKA data-driven statistical model for predicting the critical temperature of a superconductorComput. Mater. Sci.20181543463541:CAS:528:DC%2BC1cXhsFWgs7zJ10.1016/j.commatsci.2018.07.052
– reference: Lundberg, S. M. & Lee, S. -I. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774 (Curran Associates, Inc., 2017).
– reference: Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at arXiv:1312.4400 (2013).
– ident: 18037_CR11
– volume: 74
  start-page: 58
  year: 2017
  ident: 18037_CR25
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– volume: 158
  start-page: 378
  year: 2017
  ident: 18037_CR39
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 19
  start-page: 1523
  year: 2016
  ident: 18037_CR4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 95
  start-page: 457
  year: 2017
  ident: 18037_CR51
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.038
– volume: 97
  start-page: 263
  year: 2018
  ident: 18037_CR2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.12.018
– volume: 145
  start-page: 137
  year: 2017
  ident: 18037_CR43
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 15
  start-page: 267
  year: 2011
  ident: 18037_CR49
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.12.003
– volume: 521
  start-page: 436
  year: 2015
  ident: 18037_CR33
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 18037_CR48
– ident: 18037_CR44
– volume: 80
  start-page: 552
  year: 2016
  ident: 18037_CR6
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.12.023
– volume: 532
  start-page: 453
  year: 2016
  ident: 18037_CR52
  publication-title: Nature
  doi: 10.1038/nature17637
– volume: 171
  start-page: 323
  year: 2018
  ident: 18037_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.018
– ident: 18037_CR67
– volume: 18
  start-page: e3000678
  year: 2020
  ident: 18037_CR37
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000678
– volume: 155
  start-page: 549
  year: 2017
  ident: 18037_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.061
– ident: 18037_CR12
  doi: 10.1109/TSP.2016.2546221
– ident: 18037_CR14
– ident: 18037_CR31
– ident: 18037_CR38
  doi: 10.1109/CVPR.2018.00964
– volume: 145
  start-page: 166
  year: 2017
  ident: 18037_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 1
  start-page: 296
  year: 2019
  ident: 18037_CR30
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0069-5
– ident: 18037_CR1
  doi: 10.1038/539467b
– ident: 18037_CR27
  doi: 10.1214/15-AOAS837
– ident: 18037_CR66
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 1664
  year: 2015
  ident: 18037_CR23
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– ident: 18037_CR45
  doi: 10.1609/aaai.v31i1.10913
– volume: 3
  start-page: 1
  year: 2003
  ident: 18037_CR63
  publication-title: Neural Comput.
– volume: 46
  start-page: 389
  year: 2002
  ident: 18037_CR56
  publication-title: Mach. Learn
  doi: 10.1023/A:1012487302797
– ident: 18037_CR41
  doi: 10.1007/978-3-030-31901-4_16
– volume: 8
  start-page: 229
  year: 2014
  ident: 18037_CR26
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 20
  start-page: 273
  year: 1995
  ident: 18037_CR60
  publication-title: Mach. Learn.
– volume: 206
  start-page: 116276
  year: 2020
  ident: 18037_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116276
– ident: 18037_CR68
  doi: 10.1101/2020.04.14.041582
– ident: 18037_CR32
– ident: 18037_CR22
  doi: 10.7551/mitpress/9780262015967.001.0001
– volume: 147
  start-page: 736
  year: 2017
  ident: 18037_CR69
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: 18037_CR17
– volume: 25
  start-page: 1054
  year: 2019
  ident: 18037_CR18
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0462-y
– ident: 18037_CR55
– volume: 87
  start-page: 257
  year: 2015
  ident: 18037_CR20
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.025
– volume: 329
  start-page: 1358
  year: 2010
  ident: 18037_CR70
  publication-title: Science
  doi: 10.1126/science.1194144
– ident: 18037_CR46
– ident: 18037_CR10
  doi: 10.7551/mitpress/4175.001.0001
– ident: 18037_CR19
  doi: 10.1101/2019.12.17.879346
– volume: 154
  start-page: 346
  year: 2018
  ident: 18037_CR53
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.07.052
– ident: 18037_CR9
  doi: 10.1017/CBO9781316576533
– ident: 18037_CR65
– ident: 18037_CR42
– volume: 183
  start-page: 650
  year: 2018
  ident: 18037_CR36
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.005
– ident: 18037_CR54
  doi: 10.1109/CVPR.2019.00065
– ident: 18037_CR57
  doi: 10.1145/502512.502546
– volume: 36
  start-page: 61
  year: 2017
  ident: 18037_CR35
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– ident: 18037_CR58
– ident: 18037_CR59
  doi: 10.2139/ssrn.360300
– volume: 274
  start-page: 146
  year: 2016
  ident: 18037_CR34
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.10.007
– volume: 95
  start-page: 791
  year: 2017
  ident: 18037_CR50
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.011
– volume: 42
  start-page: 251
  year: 2019
  ident: 18037_CR8
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2019.02.001
– ident: 18037_CR16
– volume: 20
  start-page: 365
  year: 2017
  ident: 18037_CR21
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– volume: 163
  start-page: 115
  year: 2017
  ident: 18037_CR40
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: 18037_CR62
  doi: 10.1007/978-3-540-68158-8
– volume: 11
  start-page: 543
  year: 2017
  ident: 18037_CR5
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00543
– volume: 86
  start-page: 2278
  year: 1998
  ident: 18037_CR15
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 18037_CR47
– ident: 18037_CR61
  doi: 10.1007/978-3-540-28647-9_85
– volume: 19
  start-page: 261
  year: 2003
  ident: 18037_CR28
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 10
  start-page: 94
  year: 2016
  ident: 18037_CR7
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2016.00094
– ident: 18037_CR64
  doi: 10.1145/1015330.1015415
SSID ssj0000391844
Score 2.6584668
Snippet Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only...
Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4238
SubjectTerms 49
59/36
59/57
631/378/116/2394
706/648/697/129/2043
Algorithms
Biological Specimen Banks
Brain
Brain - diagnostic imaging
Datasets
Deep Learning
Depth profiling
Humanities and Social Sciences
Humans
Kernels
Learning algorithms
Linear Models
Machine Learning
multidisciplinary
Neuroimaging - methods
Phenotype
Phenotypes
Predictions
Sample Size
Science
Science (multidisciplinary)
Structure-function relationships
United Kingdom
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaL6lcQ-8qoqEJxYqTdr_IIVNFs1uwf21zN2sqHL88IxiW1Z8_wmHs8Q8lREpRvvEypSYLVqgdeuAV-b1ndCBmDO518D7z-0Jwv19rQ5vdTqK-eEjeWBR8IdOR4jCzxEzr1iQevWdAiDm9YbfDIpW1_0eZeCqWKDpcHQRU23ZJjUR4MqNiFHS1znu3HbPU9UCvb_DmX-miz504lpcUTHN8j1CUHSF-POb5Irsb9Fro49Jb_dJqvXU8uTNR2Q_rgEXSWawSRc0NL3ZqDQBxpiPKdTz4hPdNnTxTtcw0H_hbrcNoIuz9DUDDSnbWwGelaSLmM9z8ippUNcD3fI4vjNx1cn9dRVofboqrd1hxApORESdBJMwMjaeMZBeROEZzpFEbSXgECvEV47wwQKG5MRkZsIjUryLjnoV328TyhiSZ-UAQ4S0BYYAEjeQYO4IDAvdEX4jsLWTyXHc-eLr7YcfUttR65Y5IotXLHbijyb55yPBTf-OvplZtw8MhfLLi9QhOwkQvZfIlSRwx3b7aTBgxVK4rBcnKciT-bPqHv5QAX6uNqUMbmhIUaZFbk3Ssm8E4l-X7ZSVqTbk5-9re5_6ZefS33vTuX7v21Fnu8k7ce2_kyKB_-DFA_JNZFVhKH5bA7JwfpiEx8h6lq7x0XBvgM7Xyl_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bj9QgFCa6xsQX492uq8HEN22WAm3hyXjbbDT65CTzRijQdbJuO05nHnZ-vedQppvxso9tgVDOhQ84nI-QVzxIVTrXgiF5lsvKFnlTWpfrytVceMsah1sDX79VpzP5eV7O04bbkMIqdz4xOmrfO9wjP-ZSVLrGZClvl79yZI3C09VEoXGT3MLUZRjSVc_raY8Fs58rKdNdGSbU8SCjZ8A1U6Hwhtx2bz6Kafv_hTX_Dpn849w0Tkcn98jdhCPpu1Hw98mN0D0gt0dmycuHpP-YiE_WdAApQBO0bylCSruikf1moLbz1IewpIk54owuOjr7Am00tjunDZJH0MUFOJyBYvDGZqAXMfQy5FMNDDAdwnp4RGYnn75_OM0Tt0LuYMLe5jUApbbhvrW1sNrD-lo7VljptOeOqTZwr5ywAPdK7lSjGQeVYyIAfuO-lK14TA66vgtPCQVE6VqpbWGFBY-grbWta2wJ6MAzx1VGit0IG5cSjyP_xU8TD8CFMqNUDEjFRKmYbUZeT3WWY9qNa0u_R8FNJTFldnzRr85MskDTFCEwX_hQFE4yrxSoE6ynysppeNJtRo52YjfJjgdzpXUZeTl9BgvEYxXbhX4TyyCtIaw1M_Jk1JKpJwJmf1EJkZF6T3_2urr_pVv8iFm-a4m3gKuMvNlp2lW3_j8Uh9f_xTNyh6PyM3CP5RE5WK824TmgqnXzIprOb4vMIUw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDehBRmJG0T4lcQ-wkJVgeDESr1Zju2UFTSpNrsH9td37DzQQkHimHhsWZ4Z-7M9_gbgJQ9SFc416Eie5rK0LK8L63JduooLb2nt4tHA5y_l6VJ-PCvODoBPb2FS0H6itEzT9BQd9qaXyaXjZoep-LRtdwNuRur2aNWLcjGfq0TGcyXl-D6GCnVN1b01KFH1X4cv_wyT_O2uNC1BJ3fhzogdyduht_fgILT34daQTfLnA-jej8lONqTHkccmSNeQCCPtmqSMNz2xrSc-hEsyZos4J6uWLD9hG7Vtv5M6JowgqwucZHoSAza2PblI4ZYhn2vEoNI-bPqHsDz58HVxmo_5FHKHi_QurxAcNTX3ja2E1R731NpRZqXTnjuqmsC9csIixCu4U7WmHM2MioCYjftCNuIRHLZdG54AQRTpGqkts8LiLKCttY2rbYGIwFPHVQZsGmHjRrLxmPPih0mX3kKZQSsGtWKSVswug1dzncuBauOf0u-i4mbJSJOdfnTrczOajalZCNQzHxhzknqlSl3hHqooncYv3WRwPKndjL7bGy4FikVangxezMXodfEqxbah2yaZmMoQ95cZPB6sZO6JwBVflEJkUO3Zz15X90va1bfE7I32XClWZvB6srRf3fr7UDz9P_EjuM2jM1CcIotjONyst-EZIqtN_Ty50hWU-h-A
  priority: 102
  providerName: Springer Nature
Title Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
URI https://link.springer.com/article/10.1038/s41467-020-18037-z
https://www.ncbi.nlm.nih.gov/pubmed/32843633
https://www.proquest.com/docview/2436973748
https://www.proquest.com/docview/2437401014
https://pubmed.ncbi.nlm.nih.gov/PMC7447816
https://doaj.org/article/b1ee0d1de11c40d8869725556c90d89f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JjMpIvEHAsZ3EfkCoKytT0SYEVNpb5NjOqNjS0bQS61_P2UmLCgWJl0RJHMvy3fl-54_7ATxnTsjUmAoNydJYZDqJy1SbWGUmZ9xqWho_NXBymh2PxegsPduBFd1R14HN1tDO80mNZxevfny_fosG_6Y9Mi5fNyKYuw-EEumPvS13YR89U-4N9aSD-2Fk5goDGr_QzKhIYvTdvDtHs72aDV8VUvpvw6F_bqf8bU01uKrhbbjVYUzSb5XiDuy4-i7caFknr-_B9F1HijInDUoIqyDTini4qWckMOM0RNeWWOeuSMcqcU4mNRl_wDpKXX8jpSeWIJNLHIwa4jd2LBpyGbZlunj9h9982rh5cx_Gw6Mvg-O4412IDTrzZZwjiKpKZiudc60sxt7K0EQLoywzVFaOWWm4RiiYMiNLRRmqI-UOsR2zqaj4A9irp7V7BATRpqmE0onmGkcLpbWuTKlTRA6WGiYjSFY9XJguKbnnxrgowuI4l0UrlQKlUgSpFMsIXqz_uWpTcvyz9KEX3LqkT6cdXkxn50VnnUWZOEdtYl2SGEGtlJnKMdZKM6PwSVURHKzEXqxUtGCCYzGfvieCZ-vPaJ1-yUXXbroIZTzlIcahETxstWTdEo7IgGecR5Bv6M9GUze_1JOvIQN4LvwJ4SyClytN-9Wsv3fF4__quCdwk3lboDiSpgewN58t3FMEYPOyB7v5WY5XOXzfg_1-f_R5hPfDo9OPn_DtIBv0wtRGL1jfT9T3MUU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThDVsZ3EOSAElKpl25660t6CYztlBU2Wza5Q90fxGxk7j2p59NbjbhzL8Tz8jT2eD-Als0LGWpdoSIaGIlFRWMRKh1miU8aNooV2WwNHx8n-WHyexJMN-NXfhXFplb1P9I7a1Nrtke8wwZMsdcVS3s1-hI41yp2u9hQarVqM7PlPDNmatwe7KN9XjO19Ovm4H3asAqHGpWoVpggRyoKZUqVcZQYjy0zTSAmdGaapLC0zUnOFQCdmWhYZZTjZlFtELszEouTY7zW4jgsvdRaVTtJhT8dVW5dCdHdzKJc7jfCeyMVokXQ38lZr65-nCfgXtv07RfOPc1q__O3dgdsdbiXvW0W7Cxu2ugc3WibL8_tQ73ZEKwvSoNSxC1KXxEFYNSeebachqjLEWDsjHVPFKZlWZDzCPgpVfSOFI6sg0zN0cA1xySLLhpz5VE8bDm-4hNbGLpoHML6SWX8Im1Vd2UdAEMHqUmQqUlyhB8qUUqUuVIxoxFDNZABRP8O57gqdO76N77k_cOcyb6WSo1RyL5V8FcDr4Z1ZW-bj0tYfnOCGlq5Et_-jnp_mncXnRWQtNZGxUaQFNVKi-mL8Fic6w19ZGcB2L_a88xtNfqHlAbwYHqPFu2McVdl66ds4GkWMbQPYarVkGAlHtMETzgNI1_RnbajrT6rpV19VPBXu1nESwJte0y6G9f-peHz5VzyHm_snR4f54cHx6AncYs4QKLrmeBs2F_OlfYqIblE882ZE4MtV2-1vBlte8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti0BcEM8lsICR4ARRHdt5HRACSrVLYcWBSr0Zx3aWCjYpTSu0_Wn8OsZO0lV57G2PbRzL8Tz8jT2eD-ApsyKLtS7RkAwNRaKisIiVDvNEp4wbRQvttgY-HiUHE_F-Gk934Fd_F8alVfY-0TtqU2u3Rz5ggid56oqlDMouLeLTcPRq_iN0DFLupLWn02hVZGxPf2L41rw8HKKsnzE2evf57UHYMQyEGpetdZgiXCgLZkqVcpUbjDJzTSMldG6Ypllpmck0Vwh6YqazIqcMJ55yiyiGmViUHPu9BJdTHkfOxtJputnfcZXXMyG6ezqUZ4NGeK_k4rUoc7fz1ltroacM-BfO_Ttd848zW78Ujm7A9Q7Dktet0t2EHVvdgistq-XpbaiHHenKkjSoAdgFqUvi4KxaEM-80xBVGWKsnZOOteKYzCoyGWMfhaq-kcIRV5DZCTq7hrjEkVVDTnzapw03b7jk1sYumzswuZBZvwu7VV3Ze0AQzepS5CpSXKE3ypVSpS5UjMjEUM2yAKJ-hqXuip477o3v0h--80y2UpEoFemlItcBPN-8M29Lfpzb-o0T3KalK9ft_6gXx7KzfllE1lITGRtFWlCTZajKGMvFic7xV14GsN-LXXY-pJFnGh_Ak81jtH53pKMqW698G0epiHFuAHutlmxGwhF58ITzANIt_dka6vaTavbVVxhPhbuBnATwote0s2H9fyrun_8Vj-EqWqz8cHg0fgDXmLMDil463ofd5WJlHyK4WxaPvBUR-HLRZvsbWqRjKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+scaling+of+linear+models+and+deep+learning+in+UKBiobank+brain+images+versus+machine-learning+datasets&rft.jtitle=Nature+communications&rft.au=Schulz%2C+Marc-Andre&rft.au=Yeo%2C+B.+T.+Thomas&rft.au=Vogelstein%2C+Joshua+T.&rft.au=Mourao-Miranada%2C+Janaina&rft.date=2020-08-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-18037-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_020_18037_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon