Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performan...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 4238 - 15 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.08.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.
Schulz
et al
. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans. |
---|---|
AbstractList | Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.
Schulz
et al
. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans. Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans. Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods.Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods. Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only beneficial if the data have nonlinear relationships and if they are exploitable at available sample sizes. We systematically profiled the performance of deep, kernel, and linear models as a function of sample size on UKBiobank brain images against established machine learning references. On MNIST and Zalando Fashion, prediction accuracy consistently improves when escalating from linear models to shallow-nonlinear models, and further improves with deep-nonlinear models. In contrast, using structural or functional brain scans, simple linear models perform on par with more complex, highly parameterized models in age/sex prediction across increasing sample sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely inaccessible to the examined kernel and deep learning methods. Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans. |
ArticleNumber | 4238 |
Author | Kording, Konrad Bzdok, Danilo Kather, Jakob N. Mourao-Miranada, Janaina Richards, Blake Yeo, B. T. Thomas Schulz, Marc-Andre Vogelstein, Joshua T. |
Author_xml | – sequence: 1 givenname: Marc-Andre orcidid: 0000-0002-1140-1841 surname: Schulz fullname: Schulz, Marc-Andre organization: Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University – sequence: 2 givenname: B. T. Thomas orcidid: 0000-0002-0119-3276 surname: Yeo fullname: Yeo, B. T. Thomas organization: Department of Electrical and Computer Engineering, National University of Singapore, Centre for Sleep and Cognition (CSC) and Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore – sequence: 3 givenname: Joshua T. orcidid: 0000-0003-2487-6237 surname: Vogelstein fullname: Vogelstein, Joshua T. organization: Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Kavli Neuroscience Discovery Institute, Johns Hopkins University – sequence: 4 givenname: Janaina surname: Mourao-Miranada fullname: Mourao-Miranada, Janaina organization: Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, Centre for Medical Image Computing, Department of Computer Science, University College London – sequence: 5 givenname: Jakob N. surname: Kather fullname: Kather, Jakob N. organization: Department of Medicine III, University Hospital RWTH Aachen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Applied Tumor Immunity, German Cancer Research Center (DKFZ) – sequence: 6 givenname: Konrad orcidid: 0000-0001-8408-4499 surname: Kording fullname: Kording, Konrad organization: Department of Neuroscience and Department of Bioengineering, University of Pennsylvania – sequence: 7 givenname: Blake orcidid: 0000-0001-9662-2151 surname: Richards fullname: Richards, Blake organization: Department of Neurology and Neurosurgery, McGill University, School of Computer Science, McGill University, Canadian Institute for Advanced Research, Mila - Quebec Artificial Intelligence Institute – sequence: 8 givenname: Danilo orcidid: 0000-0003-3466-6620 surname: Bzdok fullname: Bzdok, Danilo email: danilo.bzdok@mcgill.ca organization: Mila - Quebec Artificial Intelligence Institute, Neurospin, Commissariat à l’Energie Atomique (CEA) Saclay, Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Faculty of Medicine, Department of Biomedical Engineering, McConnell Brain imaging Centre, Montreal Neurological Institute (MNI), McGill University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32843633$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNURB_0D7BAltiwCfiVxNkg0VKgohIburYm9iT1JbEvdm4l7q_H6W1L20W9GXv8naMjew6LPR88FsUbRj8wKtTHJJmsm5JyWjJFRVNuXxQHnEpWsoaLvQf7_eI4pRXNS7RMSfmq2BdcSVELcVCEL67vMaKfSTIwOj-Q0JNcESKZgsUxEfCWWMQ1GXPTL4jz5PLHiQsd-N-ki5DPboIBE7nGmDaJTGCuskd5r7AwQ8I5vS5e9jAmPL6tR8Xl17Nfp9_Li5_fzk8_X5Sm4mxbNhWTfcdtD42A1mLHW0MZSNNabqjqkVtlBFR1VXGjupZyBEsFSlZzW8leHBXnO18bYKXXMceLf3UAp28aIQ4a4uzMiLpjiNQyi4wZSa1Sddvwqqpq0-ZTu3h92nmtN92E1uTHijA-Mn18492VHsK1bqRsFKuzwftbgxj-bDDNenLJ4DiCx7BJmkvRSMookxl99wRdhU30-akWKifLpMrU24eJ7qPc_WsG1A4wMaQUsdfGzTC7sAR0o2ZUL1Okd1Ok8xTpmynS2yzlT6R37s-KxE6UMuwHjP9jP6P6B80v20g |
CitedBy_id | crossref_primary_10_1016_j_dscb_2021_100005 crossref_primary_10_1016_j_biopsych_2022_10_006 crossref_primary_10_1002_bco2_217 crossref_primary_10_1016_j_compstruct_2022_115707 crossref_primary_10_1038_s41531_023_00522_z crossref_primary_10_1016_j_neuroimage_2022_119521 crossref_primary_10_1038_s41467_022_33578_1 crossref_primary_10_1016_j_neunet_2022_06_014 crossref_primary_10_1016_j_neuroimage_2023_119926 crossref_primary_10_1038_s41551_023_01117_y crossref_primary_10_1038_s42003_021_02451_0 crossref_primary_10_1016_j_csda_2023_107914 crossref_primary_10_1016_j_ymssp_2023_110721 crossref_primary_10_1016_j_aap_2025_107942 crossref_primary_10_1515_jisys_2024_0077 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_1016_j_celrep_2023_113597 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_1016_j_neuroimage_2023_120109 crossref_primary_10_1007_s10439_024_03459_3 crossref_primary_10_1093_cercor_bhac060 crossref_primary_10_1162_imag_a_00416 crossref_primary_10_3389_fradi_2024_1283392 crossref_primary_10_1016_j_media_2021_102304 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1111_ejn_15889 crossref_primary_10_1007_s10765_022_03141_7 crossref_primary_10_1007_s13131_023_2203_9 crossref_primary_10_1038_s42256_023_00698_2 crossref_primary_10_1016_j_neuroimage_2022_119637 crossref_primary_10_1080_24725854_2022_2157912 crossref_primary_10_1162_imag_a_00251 crossref_primary_10_1016_j_patter_2023_100712 crossref_primary_10_1016_j_bspc_2023_105869 crossref_primary_10_3934_mbe_2023351 crossref_primary_10_7554_eLife_88173_4 crossref_primary_10_1016_j_ejmp_2021_03_026 crossref_primary_10_1016_j_neuroimage_2023_120115 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_1016_j_cortex_2021_12_015 crossref_primary_10_1038_s41551_024_01242_2 crossref_primary_10_1002_hbm_26144 crossref_primary_10_1038_s41746_021_00524_2 crossref_primary_10_1055_a_2415_8408 crossref_primary_10_1162_imag_a_00228 crossref_primary_10_1177_20539517231155060 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_1007_s11571_023_09946_y crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1038_s41598_021_83315_9 crossref_primary_10_1162_imag_a_00064 crossref_primary_10_1177_10732748241286749 crossref_primary_10_1016_j_jneumeth_2022_109744 crossref_primary_10_1038_s42003_024_05869_4 crossref_primary_10_1016_j_neuroimage_2024_120600 crossref_primary_10_1162_imag_a_00222 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_1038_s41591_023_02296_6 crossref_primary_10_7554_eLife_88173 crossref_primary_10_1038_s43856_024_00541_8 crossref_primary_10_1016_j_engappai_2024_107908 crossref_primary_10_1016_j_compmedimag_2024_102400 crossref_primary_10_1016_j_egyr_2024_10_048 crossref_primary_10_1371_journal_pone_0308329 crossref_primary_10_3390_diagnostics14232634 crossref_primary_10_1016_j_aap_2024_107695 crossref_primary_10_3390_rs14235939 crossref_primary_10_1109_TPAMI_2023_3257846 crossref_primary_10_1093_texcom_tgac020 crossref_primary_10_1038_s41593_022_01059_9 crossref_primary_10_1002_hbm_26768 crossref_primary_10_1016_j_neurobiolaging_2022_06_008 crossref_primary_10_3389_fnins_2023_1175690 crossref_primary_10_1038_s42003_022_03903_x crossref_primary_10_1162_imag_a_00233 crossref_primary_10_1016_j_xcrm_2024_101784 crossref_primary_10_1177_17474930211051531 crossref_primary_10_1016_j_bpsc_2023_04_007 crossref_primary_10_1038_s42003_023_04843_w crossref_primary_10_1016_j_slast_2024_100129 crossref_primary_10_1016_j_biopsych_2023_11_012 crossref_primary_10_1016_j_bpsc_2020_12_002 crossref_primary_10_3389_fpsyt_2020_604478 crossref_primary_10_1002_admt_202301462 crossref_primary_10_1016_j_istruc_2023_105559 crossref_primary_10_1016_j_jpsychires_2022_12_037 crossref_primary_10_1016_j_cobeha_2021_04_016 crossref_primary_10_1038_s41598_024_75370_9 crossref_primary_10_1371_journal_pdig_0000276 crossref_primary_10_3390_electronics12010098 crossref_primary_10_1002_cbf_3870 crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_1038_s41593_022_01070_0 crossref_primary_10_1038_s42003_024_06438_5 crossref_primary_10_1001_jamapsychiatry_2023_1419 crossref_primary_10_7554_eLife_68980 crossref_primary_10_1016_j_jhydrol_2020_125734 crossref_primary_10_1089_neu_2024_0128 crossref_primary_10_17816_DD634885 crossref_primary_10_1007_s42452_024_06295_1 crossref_primary_10_1016_j_neuroimage_2024_120665 crossref_primary_10_1126_sciadv_adn1862 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_3233_JCM_247185 crossref_primary_10_1038_s41380_024_02767_3 crossref_primary_10_1038_s41467_022_31347_8 crossref_primary_10_5435_JAAOS_D_23_00831 crossref_primary_10_1093_gigascience_giab071 crossref_primary_10_1016_j_ccr_2023_215112 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_3233_JAD_215244 crossref_primary_10_1016_j_tins_2024_02_001 crossref_primary_10_1002_mco2_778 crossref_primary_10_1016_j_compbiomed_2023_107893 crossref_primary_10_1016_j_conbuildmat_2024_138791 crossref_primary_10_1007_s41347_023_00343_0 crossref_primary_10_1109_TMI_2022_3218720 crossref_primary_10_1016_j_crmeth_2022_100227 crossref_primary_10_1109_ACCESS_2022_3217478 crossref_primary_10_1016_j_neuroimage_2023_119986 crossref_primary_10_1002_hbm_26182 crossref_primary_10_1038_s41598_023_47934_8 crossref_primary_10_1016_j_ynirp_2021_100024 crossref_primary_10_3389_fpsyt_2021_710932 crossref_primary_10_1016_j_jssas_2022_07_006 crossref_primary_10_1126_science_adi5199 crossref_primary_10_1016_j_patcog_2021_108434 crossref_primary_10_1093_braincomms_fcae007 crossref_primary_10_1109_JBHI_2023_3304974 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_3390_electronics10232891 crossref_primary_10_1016_j_ipm_2024_103961 crossref_primary_10_1016_j_jwpe_2023_104041 crossref_primary_10_1161_JAHA_121_023175 crossref_primary_10_1038_s41467_022_29766_8 crossref_primary_10_1080_00224065_2024_2435870 crossref_primary_10_1093_jamia_ocac141 crossref_primary_10_1371_journal_pbio_3001627 crossref_primary_10_1016_j_nicl_2024_103650 crossref_primary_10_1016_j_imu_2021_100538 crossref_primary_10_1097_MNM_0000000000001786 crossref_primary_10_3934_mbe_2024191 crossref_primary_10_1109_TNSRE_2022_3190467 crossref_primary_10_3389_fnagi_2023_1249415 crossref_primary_10_1007_s00521_022_08187_0 crossref_primary_10_3389_fnins_2022_928841 crossref_primary_10_1016_j_ins_2021_08_093 crossref_primary_10_1016_j_bpsc_2021_02_001 |
Cites_doi | 10.1016/j.neubiorev.2017.01.002 10.1016/j.neuroimage.2017.07.008 10.1038/nn.4393 10.1016/j.neuron.2017.06.038 10.1016/j.neuron.2017.12.018 10.1016/j.neuroimage.2016.02.079 10.1016/j.media.2010.12.003 10.1038/nature14539 10.1016/j.biopsych.2015.12.023 10.1038/nature17637 10.1016/j.neuroimage.2018.01.018 10.1371/journal.pbio.3000678 10.1016/j.neuroimage.2017.04.061 10.1109/TSP.2016.2546221 10.1109/CVPR.2018.00964 10.1016/j.neuroimage.2016.10.038 10.1038/s42256-019-0069-5 10.1038/539467b 10.1214/15-AOAS837 10.1109/CVPR.2016.90 10.1038/nn.4135 10.1609/aaai.v31i1.10913 10.1023/A:1012487302797 10.1007/978-3-030-31901-4_16 10.3389/fnins.2014.00229 10.1016/j.neuroimage.2019.116276 10.1101/2020.04.14.041582 10.7551/mitpress/9780262015967.001.0001 10.1016/j.neuroimage.2016.10.045 10.1038/s41591-019-0462-y 10.1016/j.neuron.2015.05.025 10.1126/science.1194144 10.7551/mitpress/4175.001.0001 10.1101/2019.12.17.879346 10.1016/j.commatsci.2018.07.052 10.1017/CBO9781316576533 10.1016/j.neuroimage.2018.07.005 10.1109/CVPR.2019.00065 10.1145/502512.502546 10.1016/j.media.2016.10.004 10.2139/ssrn.360300 10.1016/j.jneumeth.2016.10.007 10.1016/j.neuron.2017.07.011 10.1016/j.tins.2019.02.001 10.1038/nn.4478 10.1016/j.neuroimage.2017.07.059 10.1007/978-3-540-68158-8 10.3389/fnins.2017.00543 10.1109/5.726791 10.1007/978-3-540-28647-9_85 10.1016/S1053-8119(03)00049-1 10.3389/fncom.2016.00094 10.1145/1015330.1015415 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-18037-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_b1ee0d1de11c40d8869725556c90d89f PMC7447816 32843633 10_1038_s41467_020_18037_z |
Genre | Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG068563 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c521z-7514fb2dfa73a9deb29c01a4c9d2c08fe2d8c3a56552c8b902ead03e4162d54f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:59 EDT 2025 Thu Aug 21 13:56:24 EDT 2025 Fri Jul 11 12:30:59 EDT 2025 Wed Aug 13 08:19:04 EDT 2025 Mon Jul 21 05:51:29 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 04:09:02 EDT 2025 Fri Feb 21 02:40:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521z-7514fb2dfa73a9deb29c01a4c9d2c08fe2d8c3a56552c8b902ead03e4162d54f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-8408-4499 0000-0002-1140-1841 0000-0002-0119-3276 0000-0003-3466-6620 0000-0003-2487-6237 0000-0001-9662-2151 |
OpenAccessLink | https://www.nature.com/articles/s41467-020-18037-z |
PMID | 32843633 |
PQID | 2436973748 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b1ee0d1de11c40d8869725556c90d89f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447816 proquest_miscellaneous_2437401014 proquest_journals_2436973748 pubmed_primary_32843633 crossref_citationtrail_10_1038_s41467_020_18037_z crossref_primary_10_1038_s41467_020_18037_z springer_journals_10_1038_s41467_020_18037_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200825 |
PublicationDateYYYYMMDD | 2020-08-25 |
PublicationDate_xml | – month: 8 year: 2020 text: 20200825 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv:1412.6980 (2014). BragaRMBucknerRLParallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivityNeuron201795457471.e51:CAS:528:DC%2BC2sXht1SmtbzN10.1016/j.neuron.2017.06.038 McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, 2005). Collobert, R. & Bengio, S. Links between perceptrons, MLPs and SVMs. In Proc. 21st Int. Conf. on Machine Learning 23 (ACM, 2004). MarblestoneAHWayneGKordingKPToward an integration of deep learning and neuroscienceFront. Comput. Neurosci.2016109410.3389/fncom.2016.00094 Bingham, E. & Mannila, H. Random projection in dimensionality reduction: applications to image and text data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Disovery and Data Mining. 245–250 (ACM, 2001). CortesCVapnikVSupport-vector networksMach. Learn.1995202732970831.68098 LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 Gliozzo, A. & Strapparava, C. Semantic Domains in Computational Linguistics. (Springer Science & Business Media, 2009). DosenbachNUFPrediction of individual brain maturity using fMRIScience2010329135813612010Sci...329.1358D1:CAS:528:DC%2BC3cXhtFajs7vO10.1126/science.1194144 Peng, H. et al. Accurate brain age prediction with lightweight deep neural networks. Preprint at bioRxiv (2020). Mihalik, A. et al. ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. Preprint at arXiv:1905.10831 (2019). Schölkopf, B., Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002). VaroquauxGAssessing and tuning brain decoders: cross-validation, caveats, and guidelinesNeuroimage201714516617910.1016/j.neuroimage.2016.10.038 HeTDo deep neural networks outperform kernel regression for functional connectivity prediction of behavior?Neuroimage202020611627610.1016/j.neuroimage.2019.116276 FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI10.1038/nn.4135 Mhaskar, H., Liao, Q. & Poggio, T. When and why are deep networks better than shallow ones? In 31st AAAI Conf. Artificial Intelligence (aaai.org, 2017). BzdokDYeoBTTInference in the age of big data: future perspectives on neuroscienceNeuroimage201715554956410.1016/j.neuroimage.2017.04.061 Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to explain: an information-theoretic perspective on model interpretation. Preprint at arXiv:1802.07814 (2018). Brendel, W. & Bethge, M. Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. Preprint at arXiv:1904.00760 (2019). LiHFully convolutional network ensembles for white matter hyperintensities segmentation in MR imagesNeuroimage201818365066510.1016/j.neuroimage.2018.07.005 Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv:1611.03530 (2016). HamidiehKA data-driven statistical model for predicting the critical temperature of a superconductorComput. Mater. Sci.20181543463541:CAS:528:DC%2BC1cXhsFWgs7zJ10.1016/j.commatsci.2018.07.052 LecunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE1998862278232410.1109/5.726791 KatherJNDeep learning can predict microsatellite instability directly from histology in gastrointestinal cancerNat. Med.201925105410561:CAS:528:DC%2BC1MXhtV2it7bF10.1038/s41591-019-0462-y BzdokDNicholsTESmithSMTowards algorithmic analytics for large-scale datasetsNat. Mach. Intell.2019129630610.1038/s42256-019-0069-5 Tikhonov, A. N. in Doklady Akademii Nauk Vol. 151, p. 501–504 (Russian Academy of Sciences, 1963). Lundberg, S. M. & Lee, S. -I. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774 (Curran Associates, Inc., 2017). LinH-TLinC-JA study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methodsNeural Comput.200331322003phco.conf....1P Giryes, R., Sapiro, G. & Bronstein, A. M. Deep neural networks with random Gaussian weights: a universal classification strategy? Preprint at arXiv:1504.08291 (2015). Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). Daunting data. Nature539, 467–468 (2016). Wang, J., Chen, Q. & Chen, Y. in Advances inNeural Networks – ISNN 2004 512–517 (Springer, Berlin, 2004). KamnitsasKEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Anal.201736617810.1016/j.media.2016.10.004 KruschwitzJDWallerLDaedelowLSWalterHVeerIMGeneral, crystallized and fluid intelligence are not associated with functional global network efficiency: a replication study with the Human Connectome Project 1200 data setNeuroimage20181713233311:STN:280:DC%2BC1Mvht1Gqsw%3D%3D10.1016/j.neuroimage.2018.01.018 ShahMEvaluating intensity normalization on MRIs of human brain with multiple sclerosisMed. Image Anal.20111526728210.1016/j.media.2010.12.003 ChoiHJinKHFast and robust segmentation of the striatum using deep convolutional neural networksJ. Neurosci. Methods201627414615310.1016/j.jneumeth.2016.10.007 VieiraSPinayaWHLMechelliAUsing deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applicationsNeurosci. Biobehav. Rev.201774587510.1016/j.neubiorev.2017.01.002 Efron, B. & Hastie, T. Computer Age Statistical Inference (Cambridge Univ. Press, 2016). SmithSMNicholsTEStatistical challenges in ‘Big Data’ human neuroimagingNeuron2018972632681:CAS:528:DC%2BC1cXis1amtrs%3D10.1016/j.neuron.2017.12.018 ColeJHPredicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarkerNeuroimage201716311512410.1016/j.neuroimage.2017.07.059 Marinescu, R. V. et al. TADPOLE challenge: prediction of longitudinal evolution in Alzheimer’s disease. Preprint at arXiv:1805.03909 (2018). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). WagstylKBigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678 GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn20024638942210.1023/A:1012487302797 ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079 Uttal, W. R. Mind and Brain: A Critical Appraisal of Cognitive Neuroscience (MIT Press, 2011). MarquandAFRezekIBuitelaarJBeckmannCFUnderstanding heterogeneity in clinical cohorts using normative models: beyond case-control studiesBiol. Psychiatry20168055256110.1016/j.biopsych.2015.12.023 Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. Preprint at arXiv:1706.02515 (2017). HaynesJ-DA primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectivesNeuron2015872572701:CAS:528:DC%2BC2MXht1GrtLzK10.1016/j.neuron.2015.05.025 Abrol, A. et al. Hype versus hope: Deep learning encodes more predictive and robust brain imaging representations than standard machine learning. Preprint at bioRxiv (2020). Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at arXiv:1708.07747 (2017). Bengio, Y. & Lecun, Y. in Large-Scale Kernel Machines. 34, 1–41 (MIT Press, 2007). MillerKLMultimodal population brain imaging in the UK Biobank prospective epidemiological studyNat. Neurosci.201619152315361:CAS:528:DC%2BC28XhsFenu7nE10.1038/nn.4393 GordonEMPrecision functional mapping of individual human brainsNeuron201795791807.e71:CAS:528:DC%2BC2sXht1CmsLjF10.1016/j.neuron.2017.07.011 Cramer, J. S. The Origins of Logistic Regressionhttps://doi.org/10.2139/ssrn.360300 (2002). WooC-WChangLJLindquistMAWagerTDBuilding better biomarkers: brain models in translational neuroimagingNat. Neurosci.2017203653771:CAS:528:DC%2BC2sXjsVSmsr8%3D10.1038/nn.4478 He, T. et al. Bag of Tricks for image classification with convolutional neural networks. Preprint at arXiv:1812.01187 (2018). LeCun, Y. & Cortes, C. MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/ (2010). BzdokDClassical statistics and statistical learning in imaging neuroscienceFront. Neurosci.20171154310.3389/fnins.2017.00543 Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at arXiv:1312.4400 (2013). HuthAGde HeerWAGriffithsTLTheunissenFEGallantJLNatural speech reveals the semantic maps that tile human cerebral cortexNature20165324534582016Natur.532..453H10.1038/nature17637 Wehbe, L., Ramdas, A. & Steorts, R. C. Regularized brain reading with shrinkage and smoothing. Ann. Appl. Stat. 9, 1997–2022 (2015). Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn (Springer Science & Business Media, 2009). CoxDDSavoyRfMRI Brain Reading: detecting and classifying distributed patterns of fMRI activity in human visual cortexNeuroimage20031926127010.1016/S1053-8119(03)00049-1 BzdokDIoannidisJPAExploration, inference, and prediction in neuroscience and biomedicineTrends Neurosci.2019422512621:CAS:528:DC%2BC1MXjtFOjt74%3D10.1016/j.tins.2019.02.001 Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. & Dalca, A. V. An unsupervised learning model for deformable medical image registration. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 9252–9260 (openaccess.thecvf.com, 2018). PlisSMDeep learning for neuroimaging: a validation studyFront. Neurosci.2014822910.3389/fnins.2014.00229 YangXKwittRS SM Smith (18037_CR2) 2018; 97 AF Marquand (18037_CR6) 2016; 80 I Guyon (18037_CR56) 2002; 46 MR Arbabshirani (18037_CR43) 2017; 145 H-T Lin (18037_CR63) 2003; 3 JD Kruschwitz (18037_CR24) 2018; 171 18037_CR64 T He (18037_CR13) 2020; 206 S Vieira (18037_CR25) 2017; 74 18037_CR61 18037_CR62 18037_CR12 EM Gordon (18037_CR50) 2017; 95 18037_CR57 18037_CR10 18037_CR54 18037_CR11 18037_CR55 18037_CR16 18037_CR17 18037_CR14 18037_CR58 18037_CR59 18037_CR19 JN Kather (18037_CR18) 2019; 25 DD Cox (18037_CR28) 2003; 19 D Bzdok (18037_CR3) 2017; 155 18037_CR31 K Hamidieh (18037_CR53) 2018; 154 18037_CR1 Y LeCun (18037_CR33) 2015; 521 18037_CR67 C-W Woo (18037_CR21) 2017; 20 18037_CR68 18037_CR65 18037_CR22 18037_CR66 18037_CR27 G Varoquaux (18037_CR29) 2017; 145 18037_CR9 C Cortes (18037_CR60) 1995; 20 JH Cole (18037_CR40) 2017; 163 ES Finn (18037_CR23) 2015; 18 D Bzdok (18037_CR8) 2019; 42 18037_CR41 18037_CR42 Y Lecun (18037_CR15) 1998; 86 18037_CR32 H Li (18037_CR36) 2018; 183 18037_CR38 M Shah (18037_CR49) 2011; 15 AG Huth (18037_CR52) 2016; 532 NUF Dosenbach (18037_CR70) 2010; 329 D Bzdok (18037_CR5) 2017; 11 J-D Haynes (18037_CR20) 2015; 87 SM Plis (18037_CR26) 2014; 8 H Choi (18037_CR34) 2016; 274 A Abraham (18037_CR69) 2017; 147 AH Marblestone (18037_CR7) 2016; 10 18037_CR45 RM Braga (18037_CR51) 2017; 95 18037_CR46 D Bzdok (18037_CR30) 2019; 1 18037_CR44 18037_CR47 18037_CR48 KL Miller (18037_CR4) 2016; 19 K Kamnitsas (18037_CR35) 2017; 36 K Wagstyl (18037_CR37) 2020; 18 X Yang (18037_CR39) 2017; 158 |
References_xml | – reference: WagstylKBigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678 – reference: Bengio, Y. & Lecun, Y. in Large-Scale Kernel Machines. 34, 1–41 (MIT Press, 2007). – reference: Efron, B. & Hastie, T. Computer Age Statistical Inference (Cambridge Univ. Press, 2016). – reference: ShahMEvaluating intensity normalization on MRIs of human brain with multiple sclerosisMed. Image Anal.20111526728210.1016/j.media.2010.12.003 – reference: Tikhonov, A. N. in Doklady Akademii Nauk Vol. 151, p. 501–504 (Russian Academy of Sciences, 1963). – reference: Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at arXiv:1708.07747 (2017). – reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: Mihalik, A. et al. ABCD Neurocognitive Prediction Challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. Preprint at arXiv:1905.10831 (2019). – reference: Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv:1611.03530 (2016). – reference: Uttal, W. R. Mind and Brain: A Critical Appraisal of Cognitive Neuroscience (MIT Press, 2011). – reference: ChoiHJinKHFast and robust segmentation of the striatum using deep convolutional neural networksJ. Neurosci. Methods201627414615310.1016/j.jneumeth.2016.10.007 – reference: Bingham, E. & Mannila, H. Random projection in dimensionality reduction: applications to image and text data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Disovery and Data Mining. 245–250 (ACM, 2001). – reference: Peng, H. et al. Accurate brain age prediction with lightweight deep neural networks. Preprint at bioRxiv (2020). – reference: Brendel, W. & Bethge, M. Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. Preprint at arXiv:1904.00760 (2019). – reference: Daunting data. Nature539, 467–468 (2016). – reference: BzdokDIoannidisJPAExploration, inference, and prediction in neuroscience and biomedicineTrends Neurosci.2019422512621:CAS:528:DC%2BC1MXjtFOjt74%3D10.1016/j.tins.2019.02.001 – reference: MarblestoneAHWayneGKordingKPToward an integration of deep learning and neuroscienceFront. Comput. Neurosci.2016109410.3389/fncom.2016.00094 – reference: AbrahamADeriving reproducible biomarkers from multi-site resting-state data: an autism-based exampleNeuroimage201714773674510.1016/j.neuroimage.2016.10.045 – reference: KruschwitzJDWallerLDaedelowLSWalterHVeerIMGeneral, crystallized and fluid intelligence are not associated with functional global network efficiency: a replication study with the Human Connectome Project 1200 data setNeuroimage20181713233311:STN:280:DC%2BC1Mvht1Gqsw%3D%3D10.1016/j.neuroimage.2018.01.018 – reference: VaroquauxGAssessing and tuning brain decoders: cross-validation, caveats, and guidelinesNeuroimage201714516617910.1016/j.neuroimage.2016.10.038 – reference: Wang, J., Chen, Q. & Chen, Y. in Advances inNeural Networks – ISNN 2004 512–517 (Springer, Berlin, 2004). – reference: Giryes, R., Sapiro, G. & Bronstein, A. M. Deep neural networks with random Gaussian weights: a universal classification strategy? Preprint at arXiv:1504.08291 (2015). – reference: Marinescu, R. V. et al. TADPOLE challenge: prediction of longitudinal evolution in Alzheimer’s disease. Preprint at arXiv:1805.03909 (2018). – reference: MarquandAFRezekIBuitelaarJBeckmannCFUnderstanding heterogeneity in clinical cohorts using normative models: beyond case-control studiesBiol. Psychiatry20168055256110.1016/j.biopsych.2015.12.023 – reference: LiHFully convolutional network ensembles for white matter hyperintensities segmentation in MR imagesNeuroimage201818365066510.1016/j.neuroimage.2018.07.005 – reference: Schölkopf, B., Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002). – reference: Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. Preprint at arXiv:1706.02515 (2017). – reference: CortesCVapnikVSupport-vector networksMach. Learn.1995202732970831.68098 – reference: BzdokDClassical statistics and statistical learning in imaging neuroscienceFront. Neurosci.20171154310.3389/fnins.2017.00543 – reference: He, T. et al. Bag of Tricks for image classification with convolutional neural networks. Preprint at arXiv:1812.01187 (2018). – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). – reference: HaynesJ-DA primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectivesNeuron2015872572701:CAS:528:DC%2BC2MXht1GrtLzK10.1016/j.neuron.2015.05.025 – reference: BzdokDYeoBTTInference in the age of big data: future perspectives on neuroscienceNeuroimage201715554956410.1016/j.neuroimage.2017.04.061 – reference: Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to explain: an information-theoretic perspective on model interpretation. Preprint at arXiv:1802.07814 (2018). – reference: ArbabshiraniMRPlisSSuiJCalhounVDSingle subject prediction of brain disorders in neuroimaging: promises and pitfallsNeuroimage201714513716510.1016/j.neuroimage.2016.02.079 – reference: Wehbe, L., Ramdas, A. & Steorts, R. C. Regularized brain reading with shrinkage and smoothing. Ann. Appl. Stat. 9, 1997–2022 (2015). – reference: Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv:1412.6980 (2014). – reference: PlisSMDeep learning for neuroimaging: a validation studyFront. Neurosci.2014822910.3389/fnins.2014.00229 – reference: BzdokDNicholsTESmithSMTowards algorithmic analytics for large-scale datasetsNat. Mach. Intell.2019129630610.1038/s42256-019-0069-5 – reference: GordonEMPrecision functional mapping of individual human brainsNeuron201795791807.e71:CAS:528:DC%2BC2sXht1CmsLjF10.1016/j.neuron.2017.07.011 – reference: LecunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE1998862278232410.1109/5.726791 – reference: VieiraSPinayaWHLMechelliAUsing deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applicationsNeurosci. Biobehav. Rev.201774587510.1016/j.neubiorev.2017.01.002 – reference: McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, 2005). – reference: LinH-TLinC-JA study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methodsNeural Comput.200331322003phco.conf....1P – reference: YangXKwittRStynerMNiethammerMQuicksilver: fast predictive image registration–a deep learning approachNeuroimage201715837839610.1016/j.neuroimage.2017.07.008 – reference: Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn (Springer Science & Business Media, 2009). – reference: LeCun, Y. & Cortes, C. MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/ (2010). – reference: KamnitsasKEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Anal.201736617810.1016/j.media.2016.10.004 – reference: Cramer, J. S. The Origins of Logistic Regressionhttps://doi.org/10.2139/ssrn.360300 (2002). – reference: Abrol, A. et al. Hype versus hope: Deep learning encodes more predictive and robust brain imaging representations than standard machine learning. Preprint at bioRxiv (2020). – reference: CoxDDSavoyRfMRI Brain Reading: detecting and classifying distributed patterns of fMRI activity in human visual cortexNeuroimage20031926127010.1016/S1053-8119(03)00049-1 – reference: Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. & Dalca, A. V. An unsupervised learning model for deformable medical image registration. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 9252–9260 (openaccess.thecvf.com, 2018). – reference: Gliozzo, A. & Strapparava, C. Semantic Domains in Computational Linguistics. (Springer Science & Business Media, 2009). – reference: ColeJHPredicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarkerNeuroimage201716311512410.1016/j.neuroimage.2017.07.059 – reference: SmithSMNicholsTEStatistical challenges in ‘Big Data’ human neuroimagingNeuron2018972632681:CAS:528:DC%2BC1cXis1amtrs%3D10.1016/j.neuron.2017.12.018 – reference: HeTDo deep neural networks outperform kernel regression for functional connectivity prediction of behavior?Neuroimage202020611627610.1016/j.neuroimage.2019.116276 – reference: WooC-WChangLJLindquistMAWagerTDBuilding better biomarkers: brain models in translational neuroimagingNat. Neurosci.2017203653771:CAS:528:DC%2BC2sXjsVSmsr8%3D10.1038/nn.4478 – reference: KatherJNDeep learning can predict microsatellite instability directly from histology in gastrointestinal cancerNat. Med.201925105410561:CAS:528:DC%2BC1MXhtV2it7bF10.1038/s41591-019-0462-y – reference: MillerKLMultimodal population brain imaging in the UK Biobank prospective epidemiological studyNat. Neurosci.201619152315361:CAS:528:DC%2BC28XhsFenu7nE10.1038/nn.4393 – reference: HuthAGde HeerWAGriffithsTLTheunissenFEGallantJLNatural speech reveals the semantic maps that tile human cerebral cortexNature20165324534582016Natur.532..453H10.1038/nature17637 – reference: FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI10.1038/nn.4135 – reference: BragaRMBucknerRLParallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivityNeuron201795457471.e51:CAS:528:DC%2BC2sXht1SmtbzN10.1016/j.neuron.2017.06.038 – reference: Collobert, R. & Bengio, S. Links between perceptrons, MLPs and SVMs. In Proc. 21st Int. Conf. on Machine Learning 23 (ACM, 2004). – reference: Mhaskar, H., Liao, Q. & Poggio, T. When and why are deep networks better than shallow ones? In 31st AAAI Conf. Artificial Intelligence (aaai.org, 2017). – reference: Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). – reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn20024638942210.1023/A:1012487302797 – reference: DosenbachNUFPrediction of individual brain maturity using fMRIScience2010329135813612010Sci...329.1358D1:CAS:528:DC%2BC3cXhtFajs7vO10.1126/science.1194144 – reference: HamidiehKA data-driven statistical model for predicting the critical temperature of a superconductorComput. Mater. Sci.20181543463541:CAS:528:DC%2BC1cXhsFWgs7zJ10.1016/j.commatsci.2018.07.052 – reference: Lundberg, S. M. & Lee, S. -I. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774 (Curran Associates, Inc., 2017). – reference: Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at arXiv:1312.4400 (2013). – ident: 18037_CR11 – volume: 74 start-page: 58 year: 2017 ident: 18037_CR25 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – volume: 158 start-page: 378 year: 2017 ident: 18037_CR39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 19 start-page: 1523 year: 2016 ident: 18037_CR4 publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 95 start-page: 457 year: 2017 ident: 18037_CR51 publication-title: Neuron doi: 10.1016/j.neuron.2017.06.038 – volume: 97 start-page: 263 year: 2018 ident: 18037_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2017.12.018 – volume: 145 start-page: 137 year: 2017 ident: 18037_CR43 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 15 start-page: 267 year: 2011 ident: 18037_CR49 publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.12.003 – volume: 521 start-page: 436 year: 2015 ident: 18037_CR33 publication-title: Nature doi: 10.1038/nature14539 – ident: 18037_CR48 – ident: 18037_CR44 – volume: 80 start-page: 552 year: 2016 ident: 18037_CR6 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.12.023 – volume: 532 start-page: 453 year: 2016 ident: 18037_CR52 publication-title: Nature doi: 10.1038/nature17637 – volume: 171 start-page: 323 year: 2018 ident: 18037_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.018 – ident: 18037_CR67 – volume: 18 start-page: e3000678 year: 2020 ident: 18037_CR37 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000678 – volume: 155 start-page: 549 year: 2017 ident: 18037_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.061 – ident: 18037_CR12 doi: 10.1109/TSP.2016.2546221 – ident: 18037_CR14 – ident: 18037_CR31 – ident: 18037_CR38 doi: 10.1109/CVPR.2018.00964 – volume: 145 start-page: 166 year: 2017 ident: 18037_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 1 start-page: 296 year: 2019 ident: 18037_CR30 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0069-5 – ident: 18037_CR1 doi: 10.1038/539467b – ident: 18037_CR27 doi: 10.1214/15-AOAS837 – ident: 18037_CR66 doi: 10.1109/CVPR.2016.90 – volume: 18 start-page: 1664 year: 2015 ident: 18037_CR23 publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – ident: 18037_CR45 doi: 10.1609/aaai.v31i1.10913 – volume: 3 start-page: 1 year: 2003 ident: 18037_CR63 publication-title: Neural Comput. – volume: 46 start-page: 389 year: 2002 ident: 18037_CR56 publication-title: Mach. Learn doi: 10.1023/A:1012487302797 – ident: 18037_CR41 doi: 10.1007/978-3-030-31901-4_16 – volume: 8 start-page: 229 year: 2014 ident: 18037_CR26 publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 20 start-page: 273 year: 1995 ident: 18037_CR60 publication-title: Mach. Learn. – volume: 206 start-page: 116276 year: 2020 ident: 18037_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116276 – ident: 18037_CR68 doi: 10.1101/2020.04.14.041582 – ident: 18037_CR32 – ident: 18037_CR22 doi: 10.7551/mitpress/9780262015967.001.0001 – volume: 147 start-page: 736 year: 2017 ident: 18037_CR69 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.045 – ident: 18037_CR17 – volume: 25 start-page: 1054 year: 2019 ident: 18037_CR18 publication-title: Nat. Med. doi: 10.1038/s41591-019-0462-y – ident: 18037_CR55 – volume: 87 start-page: 257 year: 2015 ident: 18037_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2015.05.025 – volume: 329 start-page: 1358 year: 2010 ident: 18037_CR70 publication-title: Science doi: 10.1126/science.1194144 – ident: 18037_CR46 – ident: 18037_CR10 doi: 10.7551/mitpress/4175.001.0001 – ident: 18037_CR19 doi: 10.1101/2019.12.17.879346 – volume: 154 start-page: 346 year: 2018 ident: 18037_CR53 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.07.052 – ident: 18037_CR9 doi: 10.1017/CBO9781316576533 – ident: 18037_CR65 – ident: 18037_CR42 – volume: 183 start-page: 650 year: 2018 ident: 18037_CR36 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.005 – ident: 18037_CR54 doi: 10.1109/CVPR.2019.00065 – ident: 18037_CR57 doi: 10.1145/502512.502546 – volume: 36 start-page: 61 year: 2017 ident: 18037_CR35 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – ident: 18037_CR58 – ident: 18037_CR59 doi: 10.2139/ssrn.360300 – volume: 274 start-page: 146 year: 2016 ident: 18037_CR34 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.10.007 – volume: 95 start-page: 791 year: 2017 ident: 18037_CR50 publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – volume: 42 start-page: 251 year: 2019 ident: 18037_CR8 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2019.02.001 – ident: 18037_CR16 – volume: 20 start-page: 365 year: 2017 ident: 18037_CR21 publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – volume: 163 start-page: 115 year: 2017 ident: 18037_CR40 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.059 – ident: 18037_CR62 doi: 10.1007/978-3-540-68158-8 – volume: 11 start-page: 543 year: 2017 ident: 18037_CR5 publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00543 – volume: 86 start-page: 2278 year: 1998 ident: 18037_CR15 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 18037_CR47 – ident: 18037_CR61 doi: 10.1007/978-3-540-28647-9_85 – volume: 19 start-page: 261 year: 2003 ident: 18037_CR28 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – volume: 10 start-page: 94 year: 2016 ident: 18037_CR7 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2016.00094 – ident: 18037_CR64 doi: 10.1145/1015330.1015415 |
SSID | ssj0000391844 |
Score | 2.6584668 |
Snippet | Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, deep learning is only... Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4238 |
SubjectTerms | 49 59/36 59/57 631/378/116/2394 706/648/697/129/2043 Algorithms Biological Specimen Banks Brain Brain - diagnostic imaging Datasets Deep Learning Depth profiling Humanities and Social Sciences Humans Kernels Learning algorithms Linear Models Machine Learning multidisciplinary Neuroimaging - methods Phenotype Phenotypes Predictions Sample Size Science Science (multidisciplinary) Structure-function relationships United Kingdom |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaL6lcQ-8qoqEJxYqTdr_IIVNFs1uwf21zN2sqHL88IxiW1Z8_wmHs8Q8lREpRvvEypSYLVqgdeuAV-b1ndCBmDO518D7z-0Jwv19rQ5vdTqK-eEjeWBR8IdOR4jCzxEzr1iQevWdAiDm9YbfDIpW1_0eZeCqWKDpcHQRU23ZJjUR4MqNiFHS1znu3HbPU9UCvb_DmX-miz504lpcUTHN8j1CUHSF-POb5Irsb9Fro49Jb_dJqvXU8uTNR2Q_rgEXSWawSRc0NL3ZqDQBxpiPKdTz4hPdNnTxTtcw0H_hbrcNoIuz9DUDDSnbWwGelaSLmM9z8ippUNcD3fI4vjNx1cn9dRVofboqrd1hxApORESdBJMwMjaeMZBeROEZzpFEbSXgECvEV47wwQKG5MRkZsIjUryLjnoV328TyhiSZ-UAQ4S0BYYAEjeQYO4IDAvdEX4jsLWTyXHc-eLr7YcfUttR65Y5IotXLHbijyb55yPBTf-OvplZtw8MhfLLi9QhOwkQvZfIlSRwx3b7aTBgxVK4rBcnKciT-bPqHv5QAX6uNqUMbmhIUaZFbk3Ssm8E4l-X7ZSVqTbk5-9re5_6ZefS33vTuX7v21Fnu8k7ce2_kyKB_-DFA_JNZFVhKH5bA7JwfpiEx8h6lq7x0XBvgM7Xyl_ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bj9QgFCa6xsQX492uq8HEN22WAm3hyXjbbDT65CTzRijQdbJuO05nHnZ-vedQppvxso9tgVDOhQ84nI-QVzxIVTrXgiF5lsvKFnlTWpfrytVceMsah1sDX79VpzP5eV7O04bbkMIqdz4xOmrfO9wjP-ZSVLrGZClvl79yZI3C09VEoXGT3MLUZRjSVc_raY8Fs58rKdNdGSbU8SCjZ8A1U6Hwhtx2bz6Kafv_hTX_Dpn849w0Tkcn98jdhCPpu1Hw98mN0D0gt0dmycuHpP-YiE_WdAApQBO0bylCSruikf1moLbz1IewpIk54owuOjr7Am00tjunDZJH0MUFOJyBYvDGZqAXMfQy5FMNDDAdwnp4RGYnn75_OM0Tt0LuYMLe5jUApbbhvrW1sNrD-lo7VljptOeOqTZwr5ywAPdK7lSjGQeVYyIAfuO-lK14TA66vgtPCQVE6VqpbWGFBY-grbWta2wJ6MAzx1VGit0IG5cSjyP_xU8TD8CFMqNUDEjFRKmYbUZeT3WWY9qNa0u_R8FNJTFldnzRr85MskDTFCEwX_hQFE4yrxSoE6ynysppeNJtRo52YjfJjgdzpXUZeTl9BgvEYxXbhX4TyyCtIaw1M_Jk1JKpJwJmf1EJkZF6T3_2urr_pVv8iFm-a4m3gKuMvNlp2lW3_j8Uh9f_xTNyh6PyM3CP5RE5WK824TmgqnXzIprOb4vMIUw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDehBRmJG0T4lcQ-wkJVgeDESr1Zju2UFTSpNrsH9td37DzQQkHimHhsWZ4Z-7M9_gbgJQ9SFc416Eie5rK0LK8L63JduooLb2nt4tHA5y_l6VJ-PCvODoBPb2FS0H6itEzT9BQd9qaXyaXjZoep-LRtdwNuRur2aNWLcjGfq0TGcyXl-D6GCnVN1b01KFH1X4cv_wyT_O2uNC1BJ3fhzogdyduht_fgILT34daQTfLnA-jej8lONqTHkccmSNeQCCPtmqSMNz2xrSc-hEsyZos4J6uWLD9hG7Vtv5M6JowgqwucZHoSAza2PblI4ZYhn2vEoNI-bPqHsDz58HVxmo_5FHKHi_QurxAcNTX3ja2E1R731NpRZqXTnjuqmsC9csIixCu4U7WmHM2MioCYjftCNuIRHLZdG54AQRTpGqkts8LiLKCttY2rbYGIwFPHVQZsGmHjRrLxmPPih0mX3kKZQSsGtWKSVswug1dzncuBauOf0u-i4mbJSJOdfnTrczOajalZCNQzHxhzknqlSl3hHqooncYv3WRwPKndjL7bGy4FikVangxezMXodfEqxbah2yaZmMoQ95cZPB6sZO6JwBVflEJkUO3Zz15X90va1bfE7I32XClWZvB6srRf3fr7UDz9P_EjuM2jM1CcIotjONyst-EZIqtN_Ty50hWU-h-A priority: 102 providerName: Springer Nature |
Title | Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets |
URI | https://link.springer.com/article/10.1038/s41467-020-18037-z https://www.ncbi.nlm.nih.gov/pubmed/32843633 https://www.proquest.com/docview/2436973748 https://www.proquest.com/docview/2437401014 https://pubmed.ncbi.nlm.nih.gov/PMC7447816 https://doaj.org/article/b1ee0d1de11c40d8869725556c90d89f |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL4JjMpIvEHAsZ3EfkCoKytT0SYEVNpb5NjOqNjS0bQS61_P2UmLCgWJl0RJHMvy3fl-54_7ATxnTsjUmAoNydJYZDqJy1SbWGUmZ9xqWho_NXBymh2PxegsPduBFd1R14HN1tDO80mNZxevfny_fosG_6Y9Mi5fNyKYuw-EEumPvS13YR89U-4N9aSD-2Fk5goDGr_QzKhIYvTdvDtHs72aDV8VUvpvw6F_bqf8bU01uKrhbbjVYUzSb5XiDuy4-i7caFknr-_B9F1HijInDUoIqyDTini4qWckMOM0RNeWWOeuSMcqcU4mNRl_wDpKXX8jpSeWIJNLHIwa4jd2LBpyGbZlunj9h9982rh5cx_Gw6Mvg-O4412IDTrzZZwjiKpKZiudc60sxt7K0EQLoywzVFaOWWm4RiiYMiNLRRmqI-UOsR2zqaj4A9irp7V7BATRpqmE0onmGkcLpbWuTKlTRA6WGiYjSFY9XJguKbnnxrgowuI4l0UrlQKlUgSpFMsIXqz_uWpTcvyz9KEX3LqkT6cdXkxn50VnnUWZOEdtYl2SGEGtlJnKMdZKM6PwSVURHKzEXqxUtGCCYzGfvieCZ-vPaJ1-yUXXbroIZTzlIcahETxstWTdEo7IgGecR5Bv6M9GUze_1JOvIQN4LvwJ4SyClytN-9Wsv3fF4__quCdwk3lboDiSpgewN58t3FMEYPOyB7v5WY5XOXzfg_1-f_R5hPfDo9OPn_DtIBv0wtRGL1jfT9T3MUU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThDVsZ3EOSAElKpl25660t6CYztlBU2Wza5Q90fxGxk7j2p59NbjbhzL8Tz8jT2eD-Als0LGWpdoSIaGIlFRWMRKh1miU8aNooV2WwNHx8n-WHyexJMN-NXfhXFplb1P9I7a1Nrtke8wwZMsdcVS3s1-hI41yp2u9hQarVqM7PlPDNmatwe7KN9XjO19Ovm4H3asAqHGpWoVpggRyoKZUqVcZQYjy0zTSAmdGaapLC0zUnOFQCdmWhYZZTjZlFtELszEouTY7zW4jgsvdRaVTtJhT8dVW5dCdHdzKJc7jfCeyMVokXQ38lZr65-nCfgXtv07RfOPc1q__O3dgdsdbiXvW0W7Cxu2ugc3WibL8_tQ73ZEKwvSoNSxC1KXxEFYNSeebachqjLEWDsjHVPFKZlWZDzCPgpVfSOFI6sg0zN0cA1xySLLhpz5VE8bDm-4hNbGLpoHML6SWX8Im1Vd2UdAEMHqUmQqUlyhB8qUUqUuVIxoxFDNZABRP8O57gqdO76N77k_cOcyb6WSo1RyL5V8FcDr4Z1ZW-bj0tYfnOCGlq5Et_-jnp_mncXnRWQtNZGxUaQFNVKi-mL8Fic6w19ZGcB2L_a88xtNfqHlAbwYHqPFu2McVdl66ds4GkWMbQPYarVkGAlHtMETzgNI1_RnbajrT6rpV19VPBXu1nESwJte0y6G9f-peHz5VzyHm_snR4f54cHx6AncYs4QKLrmeBs2F_OlfYqIblE882ZE4MtV2-1vBlte8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti0BcEM8lsICR4ARRHdt5HRACSrVLYcWBSr0Zx3aWCjYpTSu0_Wn8OsZO0lV57G2PbRzL8Tz8jT2eD-ApsyKLtS7RkAwNRaKisIiVDvNEp4wbRQvttgY-HiUHE_F-Gk934Fd_F8alVfY-0TtqU2u3Rz5ggid56oqlDMouLeLTcPRq_iN0DFLupLWn02hVZGxPf2L41rw8HKKsnzE2evf57UHYMQyEGpetdZgiXCgLZkqVcpUbjDJzTSMldG6Ypllpmck0Vwh6YqazIqcMJ55yiyiGmViUHPu9BJdTHkfOxtJputnfcZXXMyG6ezqUZ4NGeK_k4rUoc7fz1ltroacM-BfO_Ttd848zW78Ujm7A9Q7Dktet0t2EHVvdgistq-XpbaiHHenKkjSoAdgFqUvi4KxaEM-80xBVGWKsnZOOteKYzCoyGWMfhaq-kcIRV5DZCTq7hrjEkVVDTnzapw03b7jk1sYumzswuZBZvwu7VV3Ze0AQzepS5CpSXKE3ypVSpS5UjMjEUM2yAKJ-hqXuip477o3v0h--80y2UpEoFemlItcBPN-8M29Lfpzb-o0T3KalK9ft_6gXx7KzfllE1lITGRtFWlCTZajKGMvFic7xV14GsN-LXXY-pJFnGh_Ak81jtH53pKMqW698G0epiHFuAHutlmxGwhF58ITzANIt_dka6vaTavbVVxhPhbuBnATwote0s2H9fyrun_8Vj-EqWqz8cHg0fgDXmLMDil463ofd5WJlHyK4WxaPvBUR-HLRZvsbWqRjKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+scaling+of+linear+models+and+deep+learning+in+UKBiobank+brain+images+versus+machine-learning+datasets&rft.jtitle=Nature+communications&rft.au=Schulz%2C+Marc-Andre&rft.au=Yeo%2C+B.+T.+Thomas&rft.au=Vogelstein%2C+Joshua+T.&rft.au=Mourao-Miranada%2C+Janaina&rft.date=2020-08-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-18037-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_020_18037_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |