Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion

The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 17; pp. 302 - 314
Main Authors Lai, Hanjian, Chen, Hui, Zhou, Jiadong, Qu, Jianfei, Chao, Pengjie, Liu, Tao, Chang, Xiaoyong, Zheng, Nan, Xie, Zengqi, He, Feng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.07.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.06.033

Cover

Loading…
Abstract The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. [Display omitted] •Isomer-free: improved phase purity for high-performance non-fullerene acceptor•Chlorine-substitution fine-tuned the configurations and properties of molecules•Precise Cl-atom substitution induced 3D interpenetrating network charge transfer•ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability Energy Storage; Chemical Synthesis; Materials Characterization Techniques
AbstractList The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors ( ITIC-2Cl-δ and ITIC-2Cl-γ ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ . The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl- m -based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ -based device. In addition, the ITIC-2Cl-γ -based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. • Isomer-free: improved phase purity for high-performance non-fullerene acceptor • Chlorine-substitution fine-tuned the configurations and properties of molecules • Precise Cl-atom substitution induced 3D interpenetrating network charge transfer • ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability Energy Storage; Chemical Synthesis; Materials Characterization Techniques
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. [Display omitted] •Isomer-free: improved phase purity for high-performance non-fullerene acceptor•Chlorine-substitution fine-tuned the configurations and properties of molecules•Precise Cl-atom substitution induced 3D interpenetrating network charge transfer•ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability Energy Storage; Chemical Synthesis; Materials Characterization Techniques
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. : Energy Storage; Chemical Synthesis; Materials Characterization Techniques Subject Areas: Energy Storage, Chemical Synthesis, Materials Characterization Techniques
Author Zhou, Jiadong
Chen, Hui
Chang, Xiaoyong
Zheng, Nan
Chao, Pengjie
Lai, Hanjian
Xie, Zengqi
He, Feng
Qu, Jianfei
Liu, Tao
AuthorAffiliation 2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
3 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
1 Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
AuthorAffiliation_xml – name: 2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
– name: 3 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– name: 1 Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
Author_xml – sequence: 1
  givenname: Hanjian
  surname: Lai
  fullname: Lai, Hanjian
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 2
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 3
  givenname: Jiadong
  surname: Zhou
  fullname: Zhou, Jiadong
  organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 4
  givenname: Jianfei
  surname: Qu
  fullname: Qu, Jianfei
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 5
  givenname: Pengjie
  surname: Chao
  fullname: Chao, Pengjie
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 6
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 7
  givenname: Xiaoyong
  surname: Chang
  fullname: Chang, Xiaoyong
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 8
  givenname: Nan
  surname: Zheng
  fullname: Zheng, Nan
  organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 9
  givenname: Zengqi
  surname: Xie
  fullname: Xie, Zengqi
  organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
– sequence: 10
  givenname: Feng
  orcidid: 0000-0002-8596-1366
  surname: He
  fullname: He, Feng
  email: hef@sustech.edu.cn
  organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31323476$$D View this record in MEDLINE/PubMed
BookMark eNp9Ultr2zAYFaNjvax_YA_Dj3uxp4utWGMMRug6Q2GFdc9Clj8lCo6UfXIC-_eTm3a0eygIJKRzkXTOOTkJMQAh7xitGGXy46byyfqKU6YqKisqxCtyxptWlZTW_OTJ-pRcprShlPI8aiXfkFPBBBf1Qp6R1KW4BSwdAnwqbhGsT1DcxuQnH4MPqyK6YrkeI_oAZReGvYWh6MIEuIMAE5ppBi3XBldQ3KEJyQEWLmJxNcLBTBn9M44Gi2UMB8CUVd-S186MCS4f5gvy69vV3fJ7efPjult-vSltw9lUukFR5wZhXd3SplfW1gLA2F7WXLZ9K5ht1MIyMKa2fW8saxs3UCEXTQOWK3FBuqPuEM1G79BvDf7R0Xh9vxFxpQ1O3o6guePCNaw2g5S1UE4542h2NQDt0FqRtb4ctXb7fguDhZCfPj4TfX4S_Fqv4kFLKZRs5st8eBDA-HsPadLbHCCMowkQ90lzLpmSStzf-_1Tr38mj6llQHsEWIwpITht_WTmwLK1HzWjeu6I3ui5I3ruiKZS545kKv-P-qj-IunzkQQ5rYMH1BkBITfB58JM-Tv9S_S_eknYeQ
CitedBy_id crossref_primary_10_1002_anie_202010856
crossref_primary_10_1016_j_orgel_2021_106087
crossref_primary_10_1021_acs_jpclett_0c03260
crossref_primary_10_1039_D0QM00277A
crossref_primary_10_1021_acsami_2c09323
crossref_primary_10_1039_D0TA03128C
crossref_primary_10_1002_aenm_202002649
crossref_primary_10_1002_advs_201903259
crossref_primary_10_1002_adfm_202106524
crossref_primary_10_1021_acs_chemmater_3c02055
crossref_primary_10_1039_D1EE01832A
crossref_primary_10_1039_D1SC03908C
crossref_primary_10_1002_adma_202102778
crossref_primary_10_1039_D0EE02251A
crossref_primary_10_1007_s11426_023_1856_4
crossref_primary_10_1021_acs_jpcc_2c08984
crossref_primary_10_1002_advs_202104977
crossref_primary_10_1021_acsaem_0c02719
crossref_primary_10_1002_adfm_202103784
crossref_primary_10_1002_adma_202005348
crossref_primary_10_1016_j_cej_2024_157083
crossref_primary_10_1039_D0MA00458H
crossref_primary_10_1039_D3EE00908D
crossref_primary_10_1039_C9EE03710A
crossref_primary_10_1002_cjoc_202200683
crossref_primary_10_1002_aenm_202201338
crossref_primary_10_1016_j_dyepig_2020_108892
crossref_primary_10_1039_D0TC05261B
crossref_primary_10_1021_acs_macromol_2c00300
crossref_primary_10_1039_D0QM00778A
crossref_primary_10_1039_D2TA05817K
crossref_primary_10_1002_aenm_202002746
crossref_primary_10_1002_aenm_202406097
crossref_primary_10_1139_cjc_2021_0134
crossref_primary_10_1021_acs_jpclett_1c01077
crossref_primary_10_1039_D4TC00737A
crossref_primary_10_1021_acs_chemrev_2c00905
crossref_primary_10_1039_D0TC00587H
crossref_primary_10_1002_anie_202303476
crossref_primary_10_1016_j_cej_2023_141281
crossref_primary_10_1007_s00894_023_05799_8
crossref_primary_10_1002_adfm_202103445
crossref_primary_10_1002_sstr_202100055
crossref_primary_10_1021_acs_chemmater_3c00384
crossref_primary_10_1021_acsami_2c22292
crossref_primary_10_1038_s41467_020_19853_z
crossref_primary_10_1002_agt2_46
crossref_primary_10_1002_advs_201903784
crossref_primary_10_1016_j_xcrp_2022_100765
crossref_primary_10_1002_advs_202307569
crossref_primary_10_1038_s41570_022_00409_2
crossref_primary_10_1002_solr_202000286
crossref_primary_10_1039_D4TA01942C
crossref_primary_10_1021_acsami_1c03840
crossref_primary_10_1039_D1QM00027F
crossref_primary_10_1002_ange_202303476
crossref_primary_10_1016_j_xcrp_2023_101303
crossref_primary_10_1016_j_scib_2023_11_005
crossref_primary_10_1016_j_xcrp_2020_100292
crossref_primary_10_1039_D3TA01501G
crossref_primary_10_1039_D4EE02296C
crossref_primary_10_1002_adts_202200898
crossref_primary_10_1002_anie_202209316
crossref_primary_10_1016_j_cej_2022_135020
crossref_primary_10_1016_j_cej_2022_136472
crossref_primary_10_1016_j_joule_2020_02_004
crossref_primary_10_1021_acsaem_2c00008
crossref_primary_10_1039_D4SC00917G
crossref_primary_10_1021_acs_jpclett_9b01931
crossref_primary_10_1002_inf2_12370
crossref_primary_10_1021_acs_chemmater_3c01607
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1021_acsaem_9b01667
crossref_primary_10_1002_anie_202201844
crossref_primary_10_1002_adma_202005942
crossref_primary_10_1002_ange_202315625
crossref_primary_10_1002_aenm_202002678
crossref_primary_10_1002_adfm_202100877
crossref_primary_10_1002_smll_202403821
crossref_primary_10_1038_s41467_020_17867_1
crossref_primary_10_1039_C9TA14070K
crossref_primary_10_1021_acsami_0c17598
crossref_primary_10_1021_acsami_1c18952
crossref_primary_10_1021_acs_chemmater_2c03521
crossref_primary_10_1039_D4CC04053H
crossref_primary_10_1002_advs_202000509
crossref_primary_10_1002_anie_202209454
crossref_primary_10_1039_D0TA09707A
crossref_primary_10_1002_ange_202010856
crossref_primary_10_1016_j_nanoen_2023_108766
crossref_primary_10_1039_D4TA09019E
crossref_primary_10_6023_A23050245
crossref_primary_10_1039_D0TA09306H
crossref_primary_10_1002_ange_202013053
crossref_primary_10_1002_ange_202201844
crossref_primary_10_1021_acs_jpclett_4c02676
crossref_primary_10_1002_anie_202315625
crossref_primary_10_1021_acsami_0c13109
crossref_primary_10_1002_solr_202201076
crossref_primary_10_1002_ange_202209454
crossref_primary_10_1002_adfm_202204720
crossref_primary_10_1002_anie_202304127
crossref_primary_10_1002_agt2_567
crossref_primary_10_1039_D3TA03284A
crossref_primary_10_1016_j_nxener_2023_100085
crossref_primary_10_1039_D3EE01690K
crossref_primary_10_1002_adma_202401370
crossref_primary_10_1002_ange_202209316
crossref_primary_10_1039_D0TA03703F
crossref_primary_10_1002_anie_202013053
crossref_primary_10_1021_acsami_0c07856
crossref_primary_10_1002_ange_202304127
Cites_doi 10.1021/acsami.8b15923
10.1073/pnas.1807535115
10.1021/acs.accounts.5b00199
10.1021/jacs.7b01493
10.1002/adma.201800868
10.1038/s41566-018-0104-9
10.1002/adma.201707150
10.1038/ncomms6293
10.1002/adma.201707508
10.1021/jacs.7b01170
10.1002/aenm.201801203
10.1002/adma.201703527
10.1038/nenergy.2015.27
10.1038/nmat5063
10.1038/s41560-018-0134-z
10.1021/jacs.7b13239
10.1002/adma.201803045
10.1038/nphoton.2015.6
10.1002/solr.201700044
10.1021/jacs.7b11278
10.1021/acs.chemmater.6b04828
10.1021/jacs.6b09110
10.1021/acs.chemmater.7b02853
10.1021/ja508472j
10.1007/s11426-017-9199-1
10.1038/nphoton.2015.126
10.1002/adma.201700144
10.1007/s11426-018-9260-2
10.1021/acs.accounts.6b00576
10.1002/aenm.201702870
10.1016/j.nanoen.2018.04.002
10.1039/C8TA12465E
10.1016/j.scib.2017.10.017
10.1016/j.scib.2018.02.015
10.1039/C7QM00025A
10.1002/adma.201800052
10.1002/adma.201707170
10.1039/C7TA09837E
10.1002/aenm.201800204
10.1021/jacs.8b01463
10.1039/C7TA10461H
10.1002/adma.201702125
10.1002/adma.201701156
10.1021/jacs.8b13653
10.1038/ncomms11585
10.1021/jacs.8b04027
10.1002/adma.201404317
10.1002/adma.201703973
10.1002/adma.201703080
10.1039/C8TA03753A
10.1002/adma.201704904
10.1021/jacs.6b00853
10.1002/adma.201705209
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.06.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 314
ExternalDocumentID oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3
PMC6639659
31323476
10_1016_j_isci_2019_06_033
S2589004219302160
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-fd90ffd3cf4805b9cc43eeacb64268b831c597c1eaa4cbbac185fd036755ec293
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:30:48 EDT 2025
Thu Aug 21 14:04:06 EDT 2025
Fri Jul 11 13:33:55 EDT 2025
Wed Feb 19 02:33:31 EST 2025
Thu Apr 24 23:09:55 EDT 2025
Tue Jul 01 01:03:25 EDT 2025
Sun Apr 06 06:54:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy Storage
Chemical Synthesis
Materials Characterization Techniques
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-fd90ffd3cf4805b9cc43eeacb64268b831c597c1eaa4cbbac185fd036755ec293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
ORCID 0000-0002-8596-1366
OpenAccessLink https://doaj.org/article/2f23f514ad66439f9faf0805aee8d8c3
PMID 31323476
PQID 2261969329
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639659
proquest_miscellaneous_2261969329
pubmed_primary_31323476
crossref_citationtrail_10_1016_j_isci_2019_06_033
crossref_primary_10_1016_j_isci_2019_06_033
elsevier_sciencedirect_doi_10_1016_j_isci_2019_06_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-26
PublicationDateYYYYMMDD 2019-07-26
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cha, Wu, Wadsworth, Nagitta, Limbu, Pont, Li, Searle, Wyatt, Baran (bib3) 2017; 29
Li, Lin, Che, Qu, Liu, Liao, Forrest (bib24) 2017; 139
Shi, Zuo, Jo, Gao, Lin, Liu, Jen (bib37) 2017; 29
Li, Xiao, Ding, Wang (bib25) 2018; 63
Zhao, Li, Yang, Jiang, Lin, Ade, Ma, Yan (bib57) 2016; 1
Lin, He, Zhao, Huo, Mai, Lu, Su, Li, Wang, Zhu (bib31) 2016; 138
Zhao, Dai, Wu, Zhang, Wang, Jiang, Ling, Wei, Ma, You (bib58) 2017; 29
Gao, Yao, Jang, Zhu, Yu, Cui, Wang, Hou, Woo, Hou (bib15) 2018; 6
Cheng, Li, Zhan, Yang (bib7) 2018; 12
Kan, Feng, Wan, Liu, Ke, Wang, Wang, Zhang, Li, Hou, Chen (bib20) 2017; 139
Feng, Zhang, Liu, Bi, Zhang, Xu, Ma, Bo (bib13) 2017; 29
Yao, Liao, Gao, Lin, Xu, Shi, Zuo, Liu, Chen, Jen (bib52) 2018; 140
Cui, Yang, Yao, Zhu, Wang, Jia, Gao, Hou (bib9) 2017; 29
Fei, Eisner, Jiao, Azzouzi, Rohr, Han, Shahid, Chesman, Easton, McNeill (bib12) 2018; 30
Lin, Wang, Zhang, Bai, Li, Zhu, Zhan (bib30) 2015; 27
Li, Ye, Li, Yao, Ade, Hou (bib27) 2018; 30
Fan, Zhu, Xu, Su, Chen, Wu, Guo, Ma, Zhang, Li (bib10) 2018; 48
Xie, Liu, Gao, Zhong, Huo, Luo, Wu, Xiong, Liu, Sun, Yang (bib46) 2017; 1
Hou, Inganas, Friend, Gao (bib19) 2018; 17
Wadsworth, Moser, Marks, Little, Gasparini, Brabec, Baran, McCulloch (bib40) 2018
Che, Li, Qu, Forrest (bib5) 2018; 3
Wang, Zhang, Qiu, Feng, Gao, Kan, Ma, Li, Wan, Chen (bib42) 2018; 8
Qu, Chen, Zhou, Lai, Liu, Chao, Li, Xie, He, Ma (bib36) 2018; 10
Yang, Li, Lai, Zhang, Huang, Li (bib51) 2017; 1
Wang, Wang, Wang, Wu, Zhang, Yan, Ma, You, Zhan (bib41) 2017; 29
Yang, Zhang, Bin, Chen, Gao, Xue, Yang, Li (bib50) 2016; 138
Zhang, Yao, Zhang, Qin, Zhang, Yang, Li, Wei, Gao, Hou (bib55) 2018; 61
Gao, Zhang, Liu, Ming, An, Wu, Xie, Luo, Zhong, Liu (bib14) 2018; 30
Holliday, Ashraf, Wadsworth, Baran, Yousaf, Nielsen, Tan, Dimitrov, Shang, Gasparini, Alamoudi (bib18) 2016; 7
Cui, Yao, Gao, Qin, Zhang, Yang, He, Xu, Hou (bib8) 2017; 139
Fan, Su, Wang, Guo, Jiang, Guo, Liu, Russell, Zhang, Li (bib11) 2018; 61
Xu, Yu, Bi, Ma, Li, Peng (bib48) 2018; 30
Kan, Zhang, Liu, Wan, Li, Ke, Wang, Feng, Zhang, Long (bib21) 2017; 30
Swick, Zhu, Matta, Aldrich, Harbuzaru, Lopez Navarrete, Ponce Ortiz, Kohlstedt, Schatz, Facchetti, Marks (bib39) 2018; 115
Wang, Cao, Yu, Zhang, Geng, Yang, Tang (bib44) 2019; 7
Li, Ye, Zhao, Yan, Yang, Liu, Li, Ade, Hou (bib26) 2018; 30
Nielsen, Holliday, Chen, Cryer, McCulloch (bib34) 2015; 48
Ouyang, Peng, Ai, Zhang, Ge (bib35) 2015; 9
He, Xiao, Liu, Wu, Yang, Xiao, Wang, Russell, Cao (bib16) 2015; 9
Xiao, Jia, Li, Wang, Geng, Liu, Chen, Yang, Russell, Ding (bib45) 2017; 62
Wang, Zhang, Xiao, Xiao, Zhu, Yan, Fu, Lu, Lu, Marder, Zhan (bib43) 2018; 140
Zhang, Kan, Sun, Wang, Xia, Ke, Yi, Li, Yip, Wan (bib54) 2018; 30
Li, Earmme, Ren, Saeki, Yoshikawa, Murari, Subramaniyan, Crane, Seki, Jenekhe (bib23) 2014; 136
Chen, Liu, Hu, Ma, Lai, Zhang, Ade, Yan (bib6) 2018; 8
Cai, Xie, Zhang, Shi, Yan, Zhao (bib2) 2018; 140
Li, Zhan, Zhao, Zhang, Ali, Fu, Lau, Liu, Shi, Li (bib28) 2018; 6
Zhang, Yao, Hou, Zhu, Zhang, Li, Yu, Gao, Zhang, Hou (bib53) 2018; 30
Yan, Liu, Yao, Zhan (bib49) 2018; 8
Hestand, Spano (bib17) 2017; 50
Zhang, Qin, Zhu, Hou (bib56) 2018; 30
Liu, Zhao, Li, Mu, Ma, Hu, Jiang, Lin, Ade, Yan (bib32) 2014; 5
Sun, Ma, Zhang, Yu, Zhou, Yin, Yang, Geng, Zhu, Zhang, Tang (bib38) 2018; 30
Mo, Wang, Chen, Qu, Chao, Yang, Tian, Su, Gao, Yang (bib33) 2017; 29
Aldrich, Matta, Zhu, Swick, Stern, Schatz, Facchetti, Melkonyan, Marks (bib1) 2019; 141
Xie, Yang, Li, Uddin, Bi, Fan, Cai, Hao, Woo, Li (bib47) 2018; 30
Chao, Wang, Mo, Meng, Chen, He (bib4) 2018; 6
He (10.1016/j.isci.2019.06.033_bib16) 2015; 9
Kan (10.1016/j.isci.2019.06.033_bib20) 2017; 139
Zhao (10.1016/j.isci.2019.06.033_bib58) 2017; 29
Zhang (10.1016/j.isci.2019.06.033_bib56) 2018; 30
Che (10.1016/j.isci.2019.06.033_bib5) 2018; 3
Feng (10.1016/j.isci.2019.06.033_bib13) 2017; 29
Qu (10.1016/j.isci.2019.06.033_bib36) 2018; 10
Lin (10.1016/j.isci.2019.06.033_bib31) 2016; 138
Kan (10.1016/j.isci.2019.06.033_bib21) 2017; 30
Wang (10.1016/j.isci.2019.06.033_bib44) 2019; 7
Sun (10.1016/j.isci.2019.06.033_bib38) 2018; 30
Li (10.1016/j.isci.2019.06.033_bib25) 2018; 63
Xie (10.1016/j.isci.2019.06.033_bib47) 2018; 30
Shi (10.1016/j.isci.2019.06.033_bib37) 2017; 29
Hestand (10.1016/j.isci.2019.06.033_bib17) 2017; 50
Yao (10.1016/j.isci.2019.06.033_bib52) 2018; 140
Ouyang (10.1016/j.isci.2019.06.033_bib35) 2015; 9
Li (10.1016/j.isci.2019.06.033_bib28) 2018; 6
Gao (10.1016/j.isci.2019.06.033_bib15) 2018; 6
Wang (10.1016/j.isci.2019.06.033_bib42) 2018; 8
Fei (10.1016/j.isci.2019.06.033_bib12) 2018; 30
Yang (10.1016/j.isci.2019.06.033_bib50) 2016; 138
Li (10.1016/j.isci.2019.06.033_bib27) 2018; 30
Gao (10.1016/j.isci.2019.06.033_bib14) 2018; 30
Zhang (10.1016/j.isci.2019.06.033_bib55) 2018; 61
Lin (10.1016/j.isci.2019.06.033_bib30) 2015; 27
Zhang (10.1016/j.isci.2019.06.033_bib54) 2018; 30
Xie (10.1016/j.isci.2019.06.033_bib46) 2017; 1
Cai (10.1016/j.isci.2019.06.033_bib2) 2018; 140
Li (10.1016/j.isci.2019.06.033_bib23) 2014; 136
Cui (10.1016/j.isci.2019.06.033_bib9) 2017; 29
Swick (10.1016/j.isci.2019.06.033_bib39) 2018; 115
Fan (10.1016/j.isci.2019.06.033_bib11) 2018; 61
Liu (10.1016/j.isci.2019.06.033_bib32) 2014; 5
Chen (10.1016/j.isci.2019.06.033_bib6) 2018; 8
Mo (10.1016/j.isci.2019.06.033_bib33) 2017; 29
Xiao (10.1016/j.isci.2019.06.033_bib45) 2017; 62
Yan (10.1016/j.isci.2019.06.033_bib49) 2018; 8
Chao (10.1016/j.isci.2019.06.033_bib4) 2018; 6
Li (10.1016/j.isci.2019.06.033_bib24) 2017; 139
Xu (10.1016/j.isci.2019.06.033_bib48) 2018; 30
Wang (10.1016/j.isci.2019.06.033_bib41) 2017; 29
Zhang (10.1016/j.isci.2019.06.033_bib53) 2018; 30
Cheng (10.1016/j.isci.2019.06.033_bib7) 2018; 12
Hou (10.1016/j.isci.2019.06.033_bib19) 2018; 17
Holliday (10.1016/j.isci.2019.06.033_bib18) 2016; 7
Fan (10.1016/j.isci.2019.06.033_bib10) 2018; 48
Cui (10.1016/j.isci.2019.06.033_bib8) 2017; 139
Wang (10.1016/j.isci.2019.06.033_bib43) 2018; 140
Zhao (10.1016/j.isci.2019.06.033_bib57) 2016; 1
Aldrich (10.1016/j.isci.2019.06.033_bib1) 2019; 141
Li (10.1016/j.isci.2019.06.033_bib26) 2018; 30
Nielsen (10.1016/j.isci.2019.06.033_bib34) 2015; 48
Cha (10.1016/j.isci.2019.06.033_bib3) 2017; 29
Yang (10.1016/j.isci.2019.06.033_bib51) 2017; 1
Wadsworth (10.1016/j.isci.2019.06.033_bib40) 2018
References_xml – volume: 7
  start-page: 4313
  year: 2019
  end-page: 4333
  ident: bib44
  article-title: Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1700044
  year: 2017
  ident: bib46
  article-title: A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency
  publication-title: Solar RRL
– volume: 138
  start-page: 15011
  year: 2016
  end-page: 15018
  ident: bib50
  article-title: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1701156
  year: 2017
  ident: bib3
  article-title: An efficient, “Burn in” free organic solar cell employing a nonfullerene electron acceptor
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1702125
  year: 2017
  ident: bib41
  article-title: Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy
  publication-title: Adv. Mater.
– volume: 140
  start-page: 5764
  year: 2018
  end-page: 5773
  ident: bib2
  article-title: Concurrent cooperative J-aggregates and anticooperative H-aggregates
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 3274
  year: 2019
  end-page: 3287
  ident: bib1
  article-title: Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1707508
  year: 2018
  ident: bib54
  article-title: Nonfullerene tandem organic solar cells with high performance of 14.11
  publication-title: Adv. Mater.
– volume: 139
  start-page: 7302
  year: 2017
  end-page: 7309
  ident: bib8
  article-title: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5293
  year: 2014
  ident: bib32
  article-title: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells
  publication-title: Nat. Commun.
– volume: 63
  start-page: 340
  year: 2018
  end-page: 342
  ident: bib25
  article-title: Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%
  publication-title: Sci. Bull.
– volume: 140
  start-page: 2054
  year: 2018
  end-page: 2057
  ident: bib52
  article-title: Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1801203
  year: 2018
  ident: bib6
  article-title: Modulation of end groups for low-bandgap nonfullerene acceptors enabling high-performance organic solar cells
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2664
  year: 2018
  end-page: 2670
  ident: bib15
  article-title: The crucial role of intermolecular π–π interactions in A–D–A-type electron acceptors and their effective modulation
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1700144
  year: 2017
  ident: bib58
  article-title: Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1703527
  year: 2017
  ident: bib13
  article-title: Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells
  publication-title: Adv. Mater.
– volume: 50
  start-page: 341
  year: 2017
  end-page: 350
  ident: bib17
  article-title: Molecular aggregate photophysics beyond the Kasha Model: novel design principles for organic materials
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 9140
  year: 2018
  end-page: 9147
  ident: bib43
  article-title: Effect of isomerization on high-performance nonfullerene electron acceptors
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1704904
  year: 2017
  ident: bib21
  article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2942
  year: 2018
  end-page: 2951
  ident: bib4
  article-title: Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  ident: bib19
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1800868
  year: 2018
  ident: bib56
  article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1800052
  year: 2018
  ident: bib14
  article-title: Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells
  publication-title: Adv. Mater.
– volume: 139
  start-page: 4929
  year: 2017
  end-page: 4934
  ident: bib20
  article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 520
  year: 2015
  end-page: 524
  ident: bib35
  article-title: Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte
  publication-title: Nat. Photonics
– volume: 136
  start-page: 14589
  year: 2014
  end-page: 14597
  ident: bib23
  article-title: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1702870
  year: 2018
  ident: bib42
  article-title: A halogenation strategy for over 12% efficiency nonfullerene organic solar cells
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  ident: bib30
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv. Mater.
– volume: 10
  start-page: 39992
  year: 2018
  end-page: 40000
  ident: bib36
  article-title: Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 2819
  year: 2017
  end-page: 2830
  ident: bib33
  article-title: Chlorination of low-band-gap polymers: toward high-performance polymer solar cells
  publication-title: Chem. Mater.
– volume: 29
  start-page: 8369
  year: 2017
  end-page: 8376
  ident: bib37
  article-title: Design of a highly crystalline low-band gap fused-ring electron acceptor for high-efficiency solar cells with low energy loss
  publication-title: Chem. Mater.
– volume: 61
  start-page: 531
  year: 2018
  end-page: 537
  ident: bib11
  article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency
  publication-title: Sci. China Chem.
– volume: 139
  start-page: 17114
  year: 2017
  end-page: 17119
  ident: bib24
  article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1707150
  year: 2018
  ident: bib38
  article-title: Dithieno[3,2-b:2',3'-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells
  publication-title: Adv. Mater.
– volume: 61
  start-page: 1328
  year: 2018
  end-page: 1337
  ident: bib55
  article-title: Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials
  publication-title: Sci. China Chem.
– volume: 29
  start-page: 1703080
  year: 2017
  ident: bib9
  article-title: Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11585
  year: 2016
  ident: bib18
  article-title: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1707508
  year: 2018
  ident: bib26
  article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1800204
  year: 2018
  ident: bib49
  article-title: Fused-ring nonfullerene acceptor forming interpenetrating J-architecture for fullerene-free polymer solar cells
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 174
  year: 2015
  end-page: 179
  ident: bib16
  article-title: Single-junction polymer solar cells with high efficiency and photovoltage
  publication-title: Nat. Photonics
– volume: 115
  start-page: E8341
  year: 2018
  end-page: E8348
  ident: bib39
  article-title: Closely packed, low reorganization energy pi-extended postfullerene acceptors for efficient polymer solar cells
  publication-title: Proc. Natl. Acad. Sci. U S A
– year: 2018
  ident: bib40
  article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  ident: bib7
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: Nat. Photonics
– volume: 30
  start-page: 1703973
  year: 2018
  ident: bib48
  article-title: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap copolymers
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1707170
  year: 2018
  ident: bib27
  article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor
  publication-title: Adv. Mater.
– volume: 48
  start-page: 2803
  year: 2015
  end-page: 2812
  ident: bib34
  article-title: Non-fullerene electron acceptors for use in organic solar cells
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 2973
  year: 2016
  end-page: 2976
  ident: bib31
  article-title: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1800868
  year: 2018
  ident: bib53
  article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors
  publication-title: Adv. Mater.
– volume: 6
  start-page: 12132
  year: 2018
  end-page: 12141
  ident: bib28
  article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 413
  year: 2018
  end-page: 420
  ident: bib10
  article-title: Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing
  publication-title: Nano Energy
– volume: 30
  start-page: 1803045
  year: 2018
  ident: bib47
  article-title: Morphology control enables efficient ternary organic solar cells
  publication-title: Adv. Mater.
– volume: 1
  start-page: 15027
  year: 2016
  ident: bib57
  article-title: Efficient organic solar cells processed from hydrocarbon solvents
  publication-title: Nat. Energy
– volume: 3
  start-page: 422
  year: 2018
  end-page: 427
  ident: bib5
  article-title: High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency
  publication-title: Nat. Energy
– volume: 62
  start-page: 1494
  year: 2017
  end-page: 1496
  ident: bib45
  article-title: 26 mA cm
  publication-title: Sci. Bull.
– volume: 1
  start-page: 1389
  year: 2017
  end-page: 1395
  ident: bib51
  article-title: Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells
  publication-title: Mater. Chem. Front.
– volume: 30
  start-page: 1705209
  year: 2018
  ident: bib12
  article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses
  publication-title: Adv. Mater.
– volume: 10
  start-page: 39992
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib36
  article-title: Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15923
– volume: 115
  start-page: E8341
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib39
  article-title: Closely packed, low reorganization energy pi-extended postfullerene acceptors for efficient polymer solar cells
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1807535115
– volume: 30
  start-page: 1707508
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib26
  article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2803
  year: 2015
  ident: 10.1016/j.isci.2019.06.033_bib34
  article-title: Non-fullerene electron acceptors for use in organic solar cells
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00199
– volume: 139
  start-page: 7302
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib8
  article-title: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01493
– volume: 30
  start-page: 1800868
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib56
  article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 12
  start-page: 131
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib7
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0104-9
– volume: 30
  start-page: 1707150
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib38
  article-title: Dithieno[3,2-b:2',3'-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707150
– volume: 5
  start-page: 5293
  year: 2014
  ident: 10.1016/j.isci.2019.06.033_bib32
  article-title: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6293
– volume: 30
  start-page: 1707508
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib54
  article-title: Nonfullerene tandem organic solar cells with high performance of 14.11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707508
– volume: 139
  start-page: 4929
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib20
  article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01170
– volume: 8
  start-page: 1801203
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib6
  article-title: Modulation of end groups for low-bandgap nonfullerene acceptors enabling high-performance organic solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801203
– volume: 29
  start-page: 1703527
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib13
  article-title: Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703527
– volume: 1
  start-page: 15027
  year: 2016
  ident: 10.1016/j.isci.2019.06.033_bib57
  article-title: Efficient organic solar cells processed from hydrocarbon solvents
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 17
  start-page: 119
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib19
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 3
  start-page: 422
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib5
  article-title: High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0134-z
– volume: 140
  start-page: 2054
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib52
  article-title: Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13239
– volume: 30
  start-page: 1803045
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib47
  article-title: Morphology control enables efficient ternary organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803045
– volume: 9
  start-page: 174
  year: 2015
  ident: 10.1016/j.isci.2019.06.033_bib16
  article-title: Single-junction polymer solar cells with high efficiency and photovoltage
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.6
– volume: 1
  start-page: 1700044
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib46
  article-title: A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency
  publication-title: Solar RRL
  doi: 10.1002/solr.201700044
– volume: 139
  start-page: 17114
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib24
  article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11278
– volume: 29
  start-page: 2819
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib33
  article-title: Chlorination of low-band-gap polymers: toward high-performance polymer solar cells
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04828
– volume: 30
  start-page: 1800868
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib53
  article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 138
  start-page: 15011
  year: 2016
  ident: 10.1016/j.isci.2019.06.033_bib50
  article-title: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09110
– volume: 29
  start-page: 8369
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib37
  article-title: Design of a highly crystalline low-band gap fused-ring electron acceptor for high-efficiency solar cells with low energy loss
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02853
– volume: 136
  start-page: 14589
  year: 2014
  ident: 10.1016/j.isci.2019.06.033_bib23
  article-title: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508472j
– volume: 61
  start-page: 531
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib11
  article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-017-9199-1
– volume: 9
  start-page: 520
  year: 2015
  ident: 10.1016/j.isci.2019.06.033_bib35
  article-title: Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.126
– volume: 29
  start-page: 1700144
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib58
  article-title: Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700144
– volume: 61
  start-page: 1328
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib55
  article-title: Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-018-9260-2
– volume: 50
  start-page: 341
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib17
  article-title: Molecular aggregate photophysics beyond the Kasha Model: novel design principles for organic materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00576
– volume: 8
  start-page: 1702870
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib42
  article-title: A halogenation strategy for over 12% efficiency nonfullerene organic solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702870
– volume: 48
  start-page: 413
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib10
  article-title: Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.002
– volume: 7
  start-page: 4313
  year: 2019
  ident: 10.1016/j.isci.2019.06.033_bib44
  article-title: Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12465E
– volume: 62
  start-page: 1494
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib45
  article-title: 26 mA cm−2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.10.017
– volume: 63
  start-page: 340
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib25
  article-title: Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.02.015
– volume: 1
  start-page: 1389
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib51
  article-title: Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00025A
– volume: 30
  start-page: 1800052
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib14
  article-title: Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800052
– volume: 30
  start-page: 1707170
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib27
  article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707170
– volume: 6
  start-page: 2942
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib4
  article-title: Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09837E
– volume: 8
  start-page: 1800204
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib49
  article-title: Fused-ring nonfullerene acceptor forming interpenetrating J-architecture for fullerene-free polymer solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800204
– volume: 140
  start-page: 5764
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib2
  article-title: Concurrent cooperative J-aggregates and anticooperative H-aggregates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01463
– volume: 6
  start-page: 2664
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib15
  article-title: The crucial role of intermolecular π–π interactions in A–D–A-type electron acceptors and their effective modulation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10461H
– year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib40
  article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1702125
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib41
  article-title: Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702125
– volume: 29
  start-page: 1701156
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib3
  article-title: An efficient, “Burn in” free organic solar cell employing a nonfullerene electron acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701156
– volume: 141
  start-page: 3274
  year: 2019
  ident: 10.1016/j.isci.2019.06.033_bib1
  article-title: Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13653
– volume: 7
  start-page: 11585
  year: 2016
  ident: 10.1016/j.isci.2019.06.033_bib18
  article-title: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11585
– volume: 140
  start-page: 9140
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib43
  article-title: Effect of isomerization on high-performance nonfullerene electron acceptors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04027
– volume: 27
  start-page: 1170
  year: 2015
  ident: 10.1016/j.isci.2019.06.033_bib30
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– volume: 30
  start-page: 1703973
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib48
  article-title: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap copolymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703973
– volume: 29
  start-page: 1703080
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib9
  article-title: Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703080
– volume: 6
  start-page: 12132
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib28
  article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03753A
– volume: 30
  start-page: 1704904
  year: 2017
  ident: 10.1016/j.isci.2019.06.033_bib21
  article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704904
– volume: 138
  start-page: 2973
  year: 2016
  ident: 10.1016/j.isci.2019.06.033_bib31
  article-title: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00853
– volume: 30
  start-page: 1705209
  year: 2018
  ident: 10.1016/j.isci.2019.06.033_bib12
  article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705209
SSID ssj0002002496
Score 2.443882
Snippet The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated....
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors ( ITIC-2Cl-δ and ITIC-2Cl-γ ) was intensely...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 302
SubjectTerms Chemical Synthesis
Energy Storage
Materials Characterization Techniques
Title Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion
URI https://dx.doi.org/10.1016/j.isci.2019.06.033
https://www.ncbi.nlm.nih.gov/pubmed/31323476
https://www.proquest.com/docview/2261969329
https://pubmed.ncbi.nlm.nih.gov/PMC6639659
https://doaj.org/article/2f23f514ad66439f9faf0805aee8d8c3
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQJy4INDY6NmSk3SaLJo4dZzeoQDBpE9JA4mY59jNtxVLUwn7_3nPSqgEJLlwbJ6ntZ3-f7S_fY-ybLl0lY1AiK00QRSULYULUQgYTvMNZ03nah_z1W1_cFD9v1e1aqi_ShLX2wG3DHecxlxFR3QVN4Bmr6CKyHOUATDA--Xwi5q0tpqbpeI2s8FJmOUWaIAzN7ouZVtxFX7ySrqtK5p1S9lApmff3wOkl-XyuoVwDpfMdtt2xSX7S1mKXbUDzgS0uF7O_MBdxDvCDX5F9xQL4VafOQqjis8hH4yS9A0G5OzwE3qoPceZLPrpYiA7i74AnMIsw58hu-dk9_ENyGvgfWhHzEUnW037bHrs5P7seXYgut4LwlMJAxFANYwzSxwIbs668LyTgJFzjekSb2sjM41LDZ-Bc4evaecT1GBDuSqXAI0f4yDabWQP7jHsfMqckOIVjGwrjhto4p0PMIRh89IBly7a1vjMep_wX93apMJta6g9L_WFJZiflgH1f3fPQ2m68WvqUumxVkiyz0w8YSLYLJPtWIA2YWna47dhHyyrwUZNXX360jA6LQ5POW1wDs6eFzWl1qpEgYxN8aqNl9RfJMVMWpR6wshdHvTr0rzSTcbL_Ro5ILpCf36PSB2yLqkKb1bn-wjYf50_wFVnWY32YBtR_HfwoHw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isomer-free%3A+Precise+Positioning+of+Chlorine-Induced+Interpenetrating+Charge+Transfer+for+Elevated+Solar+Conversion&rft.jtitle=iScience&rft.au=Hanjian+Lai&rft.au=Hui+Chen&rft.au=Jiadong+Zhou&rft.au=Jianfei+Qu&rft.date=2019-07-26&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=17&rft.spage=302&rft.epage=314&rft_id=info:doi/10.1016%2Fj.isci.2019.06.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon