Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a...
Saved in:
Published in | iScience Vol. 17; pp. 302 - 314 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.07.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2019.06.033 |
Cover
Loading…
Abstract | The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.
[Display omitted]
•Isomer-free: improved phase purity for high-performance non-fullerene acceptor•Chlorine-substitution fine-tuned the configurations and properties of molecules•Precise Cl-atom substitution induced 3D interpenetrating network charge transfer•ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability
Energy Storage; Chemical Synthesis; Materials Characterization Techniques |
---|---|
AbstractList | The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors ( ITIC-2Cl-δ and ITIC-2Cl-γ ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ . The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl- m -based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ -based device. In addition, the ITIC-2Cl-γ -based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. • Isomer-free: improved phase purity for high-performance non-fullerene acceptor • Chlorine-substitution fine-tuned the configurations and properties of molecules • Precise Cl-atom substitution induced 3D interpenetrating network charge transfer • ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability Energy Storage; Chemical Synthesis; Materials Characterization Techniques The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. [Display omitted] •Isomer-free: improved phase purity for high-performance non-fullerene acceptor•Chlorine-substitution fine-tuned the configurations and properties of molecules•Precise Cl-atom substitution induced 3D interpenetrating network charge transfer•ITIC-2Cl-γ exhibited higher PCE of 13.03% and better stability Energy Storage; Chemical Synthesis; Materials Characterization Techniques The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells. : Energy Storage; Chemical Synthesis; Materials Characterization Techniques Subject Areas: Energy Storage, Chemical Synthesis, Materials Characterization Techniques |
Author | Zhou, Jiadong Chen, Hui Chang, Xiaoyong Zheng, Nan Chao, Pengjie Lai, Hanjian Xie, Zengqi He, Feng Qu, Jianfei Liu, Tao |
AuthorAffiliation | 2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China 3 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China 1 Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China |
AuthorAffiliation_xml | – name: 2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China – name: 3 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – name: 1 Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China |
Author_xml | – sequence: 1 givenname: Hanjian surname: Lai fullname: Lai, Hanjian organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 2 givenname: Hui surname: Chen fullname: Chen, Hui organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 3 givenname: Jiadong surname: Zhou fullname: Zhou, Jiadong organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 4 givenname: Jianfei surname: Qu fullname: Qu, Jianfei organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 5 givenname: Pengjie surname: Chao fullname: Chao, Pengjie organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 6 givenname: Tao surname: Liu fullname: Liu, Tao organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 7 givenname: Xiaoyong surname: Chang fullname: Chang, Xiaoyong organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 8 givenname: Nan surname: Zheng fullname: Zheng, Nan organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 9 givenname: Zengqi surname: Xie fullname: Xie, Zengqi organization: Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China – sequence: 10 givenname: Feng orcidid: 0000-0002-8596-1366 surname: He fullname: He, Feng email: hef@sustech.edu.cn organization: Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31323476$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ultr2zAYFaNjvax_YA_Dj3uxp4utWGMMRug6Q2GFdc9Clj8lCo6UfXIC-_eTm3a0eygIJKRzkXTOOTkJMQAh7xitGGXy46byyfqKU6YqKisqxCtyxptWlZTW_OTJ-pRcprShlPI8aiXfkFPBBBf1Qp6R1KW4BSwdAnwqbhGsT1DcxuQnH4MPqyK6YrkeI_oAZReGvYWh6MIEuIMAE5ppBi3XBldQ3KEJyQEWLmJxNcLBTBn9M44Gi2UMB8CUVd-S186MCS4f5gvy69vV3fJ7efPjult-vSltw9lUukFR5wZhXd3SplfW1gLA2F7WXLZ9K5ht1MIyMKa2fW8saxs3UCEXTQOWK3FBuqPuEM1G79BvDf7R0Xh9vxFxpQ1O3o6guePCNaw2g5S1UE4542h2NQDt0FqRtb4ctXb7fguDhZCfPj4TfX4S_Fqv4kFLKZRs5st8eBDA-HsPadLbHCCMowkQ90lzLpmSStzf-_1Tr38mj6llQHsEWIwpITht_WTmwLK1HzWjeu6I3ui5I3ruiKZS545kKv-P-qj-IunzkQQ5rYMH1BkBITfB58JM-Tv9S_S_eknYeQ |
CitedBy_id | crossref_primary_10_1002_anie_202010856 crossref_primary_10_1016_j_orgel_2021_106087 crossref_primary_10_1021_acs_jpclett_0c03260 crossref_primary_10_1039_D0QM00277A crossref_primary_10_1021_acsami_2c09323 crossref_primary_10_1039_D0TA03128C crossref_primary_10_1002_aenm_202002649 crossref_primary_10_1002_advs_201903259 crossref_primary_10_1002_adfm_202106524 crossref_primary_10_1021_acs_chemmater_3c02055 crossref_primary_10_1039_D1EE01832A crossref_primary_10_1039_D1SC03908C crossref_primary_10_1002_adma_202102778 crossref_primary_10_1039_D0EE02251A crossref_primary_10_1007_s11426_023_1856_4 crossref_primary_10_1021_acs_jpcc_2c08984 crossref_primary_10_1002_advs_202104977 crossref_primary_10_1021_acsaem_0c02719 crossref_primary_10_1002_adfm_202103784 crossref_primary_10_1002_adma_202005348 crossref_primary_10_1016_j_cej_2024_157083 crossref_primary_10_1039_D0MA00458H crossref_primary_10_1039_D3EE00908D crossref_primary_10_1039_C9EE03710A crossref_primary_10_1002_cjoc_202200683 crossref_primary_10_1002_aenm_202201338 crossref_primary_10_1016_j_dyepig_2020_108892 crossref_primary_10_1039_D0TC05261B crossref_primary_10_1021_acs_macromol_2c00300 crossref_primary_10_1039_D0QM00778A crossref_primary_10_1039_D2TA05817K crossref_primary_10_1002_aenm_202002746 crossref_primary_10_1002_aenm_202406097 crossref_primary_10_1139_cjc_2021_0134 crossref_primary_10_1021_acs_jpclett_1c01077 crossref_primary_10_1039_D4TC00737A crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1039_D0TC00587H crossref_primary_10_1002_anie_202303476 crossref_primary_10_1016_j_cej_2023_141281 crossref_primary_10_1007_s00894_023_05799_8 crossref_primary_10_1002_adfm_202103445 crossref_primary_10_1002_sstr_202100055 crossref_primary_10_1021_acs_chemmater_3c00384 crossref_primary_10_1021_acsami_2c22292 crossref_primary_10_1038_s41467_020_19853_z crossref_primary_10_1002_agt2_46 crossref_primary_10_1002_advs_201903784 crossref_primary_10_1016_j_xcrp_2022_100765 crossref_primary_10_1002_advs_202307569 crossref_primary_10_1038_s41570_022_00409_2 crossref_primary_10_1002_solr_202000286 crossref_primary_10_1039_D4TA01942C crossref_primary_10_1021_acsami_1c03840 crossref_primary_10_1039_D1QM00027F crossref_primary_10_1002_ange_202303476 crossref_primary_10_1016_j_xcrp_2023_101303 crossref_primary_10_1016_j_scib_2023_11_005 crossref_primary_10_1016_j_xcrp_2020_100292 crossref_primary_10_1039_D3TA01501G crossref_primary_10_1039_D4EE02296C crossref_primary_10_1002_adts_202200898 crossref_primary_10_1002_anie_202209316 crossref_primary_10_1016_j_cej_2022_135020 crossref_primary_10_1016_j_cej_2022_136472 crossref_primary_10_1016_j_joule_2020_02_004 crossref_primary_10_1021_acsaem_2c00008 crossref_primary_10_1039_D4SC00917G crossref_primary_10_1021_acs_jpclett_9b01931 crossref_primary_10_1002_inf2_12370 crossref_primary_10_1021_acs_chemmater_3c01607 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1021_acsaem_9b01667 crossref_primary_10_1002_anie_202201844 crossref_primary_10_1002_adma_202005942 crossref_primary_10_1002_ange_202315625 crossref_primary_10_1002_aenm_202002678 crossref_primary_10_1002_adfm_202100877 crossref_primary_10_1002_smll_202403821 crossref_primary_10_1038_s41467_020_17867_1 crossref_primary_10_1039_C9TA14070K crossref_primary_10_1021_acsami_0c17598 crossref_primary_10_1021_acsami_1c18952 crossref_primary_10_1021_acs_chemmater_2c03521 crossref_primary_10_1039_D4CC04053H crossref_primary_10_1002_advs_202000509 crossref_primary_10_1002_anie_202209454 crossref_primary_10_1039_D0TA09707A crossref_primary_10_1002_ange_202010856 crossref_primary_10_1016_j_nanoen_2023_108766 crossref_primary_10_1039_D4TA09019E crossref_primary_10_6023_A23050245 crossref_primary_10_1039_D0TA09306H crossref_primary_10_1002_ange_202013053 crossref_primary_10_1002_ange_202201844 crossref_primary_10_1021_acs_jpclett_4c02676 crossref_primary_10_1002_anie_202315625 crossref_primary_10_1021_acsami_0c13109 crossref_primary_10_1002_solr_202201076 crossref_primary_10_1002_ange_202209454 crossref_primary_10_1002_adfm_202204720 crossref_primary_10_1002_anie_202304127 crossref_primary_10_1002_agt2_567 crossref_primary_10_1039_D3TA03284A crossref_primary_10_1016_j_nxener_2023_100085 crossref_primary_10_1039_D3EE01690K crossref_primary_10_1002_adma_202401370 crossref_primary_10_1002_ange_202209316 crossref_primary_10_1039_D0TA03703F crossref_primary_10_1002_anie_202013053 crossref_primary_10_1021_acsami_0c07856 crossref_primary_10_1002_ange_202304127 |
Cites_doi | 10.1021/acsami.8b15923 10.1073/pnas.1807535115 10.1021/acs.accounts.5b00199 10.1021/jacs.7b01493 10.1002/adma.201800868 10.1038/s41566-018-0104-9 10.1002/adma.201707150 10.1038/ncomms6293 10.1002/adma.201707508 10.1021/jacs.7b01170 10.1002/aenm.201801203 10.1002/adma.201703527 10.1038/nenergy.2015.27 10.1038/nmat5063 10.1038/s41560-018-0134-z 10.1021/jacs.7b13239 10.1002/adma.201803045 10.1038/nphoton.2015.6 10.1002/solr.201700044 10.1021/jacs.7b11278 10.1021/acs.chemmater.6b04828 10.1021/jacs.6b09110 10.1021/acs.chemmater.7b02853 10.1021/ja508472j 10.1007/s11426-017-9199-1 10.1038/nphoton.2015.126 10.1002/adma.201700144 10.1007/s11426-018-9260-2 10.1021/acs.accounts.6b00576 10.1002/aenm.201702870 10.1016/j.nanoen.2018.04.002 10.1039/C8TA12465E 10.1016/j.scib.2017.10.017 10.1016/j.scib.2018.02.015 10.1039/C7QM00025A 10.1002/adma.201800052 10.1002/adma.201707170 10.1039/C7TA09837E 10.1002/aenm.201800204 10.1021/jacs.8b01463 10.1039/C7TA10461H 10.1002/adma.201702125 10.1002/adma.201701156 10.1021/jacs.8b13653 10.1038/ncomms11585 10.1021/jacs.8b04027 10.1002/adma.201404317 10.1002/adma.201703973 10.1002/adma.201703080 10.1039/C8TA03753A 10.1002/adma.201704904 10.1021/jacs.6b00853 10.1002/adma.201705209 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.06.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 314 |
ExternalDocumentID | oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3 PMC6639659 31323476 10_1016_j_isci_2019_06_033 S2589004219302160 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AACTN AAEDW AAFTH AALRI AAMRU AAXUO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NCXOZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-fd90ffd3cf4805b9cc43eeacb64268b831c597c1eaa4cbbac185fd036755ec293 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:30:48 EDT 2025 Thu Aug 21 14:04:06 EDT 2025 Fri Jul 11 13:33:55 EDT 2025 Wed Feb 19 02:33:31 EST 2025 Thu Apr 24 23:09:55 EDT 2025 Tue Jul 01 01:03:25 EDT 2025 Sun Apr 06 06:54:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy Storage Chemical Synthesis Materials Characterization Techniques |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-fd90ffd3cf4805b9cc43eeacb64268b831c597c1eaa4cbbac185fd036755ec293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0002-8596-1366 |
OpenAccessLink | https://doaj.org/article/2f23f514ad66439f9faf0805aee8d8c3 |
PMID | 31323476 |
PQID | 2261969329 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639659 proquest_miscellaneous_2261969329 pubmed_primary_31323476 crossref_citationtrail_10_1016_j_isci_2019_06_033 crossref_primary_10_1016_j_isci_2019_06_033 elsevier_sciencedirect_doi_10_1016_j_isci_2019_06_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-26 |
PublicationDateYYYYMMDD | 2019-07-26 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cha, Wu, Wadsworth, Nagitta, Limbu, Pont, Li, Searle, Wyatt, Baran (bib3) 2017; 29 Li, Lin, Che, Qu, Liu, Liao, Forrest (bib24) 2017; 139 Shi, Zuo, Jo, Gao, Lin, Liu, Jen (bib37) 2017; 29 Li, Xiao, Ding, Wang (bib25) 2018; 63 Zhao, Li, Yang, Jiang, Lin, Ade, Ma, Yan (bib57) 2016; 1 Lin, He, Zhao, Huo, Mai, Lu, Su, Li, Wang, Zhu (bib31) 2016; 138 Zhao, Dai, Wu, Zhang, Wang, Jiang, Ling, Wei, Ma, You (bib58) 2017; 29 Gao, Yao, Jang, Zhu, Yu, Cui, Wang, Hou, Woo, Hou (bib15) 2018; 6 Cheng, Li, Zhan, Yang (bib7) 2018; 12 Kan, Feng, Wan, Liu, Ke, Wang, Wang, Zhang, Li, Hou, Chen (bib20) 2017; 139 Feng, Zhang, Liu, Bi, Zhang, Xu, Ma, Bo (bib13) 2017; 29 Yao, Liao, Gao, Lin, Xu, Shi, Zuo, Liu, Chen, Jen (bib52) 2018; 140 Cui, Yang, Yao, Zhu, Wang, Jia, Gao, Hou (bib9) 2017; 29 Fei, Eisner, Jiao, Azzouzi, Rohr, Han, Shahid, Chesman, Easton, McNeill (bib12) 2018; 30 Lin, Wang, Zhang, Bai, Li, Zhu, Zhan (bib30) 2015; 27 Li, Ye, Li, Yao, Ade, Hou (bib27) 2018; 30 Fan, Zhu, Xu, Su, Chen, Wu, Guo, Ma, Zhang, Li (bib10) 2018; 48 Xie, Liu, Gao, Zhong, Huo, Luo, Wu, Xiong, Liu, Sun, Yang (bib46) 2017; 1 Hou, Inganas, Friend, Gao (bib19) 2018; 17 Wadsworth, Moser, Marks, Little, Gasparini, Brabec, Baran, McCulloch (bib40) 2018 Che, Li, Qu, Forrest (bib5) 2018; 3 Wang, Zhang, Qiu, Feng, Gao, Kan, Ma, Li, Wan, Chen (bib42) 2018; 8 Qu, Chen, Zhou, Lai, Liu, Chao, Li, Xie, He, Ma (bib36) 2018; 10 Yang, Li, Lai, Zhang, Huang, Li (bib51) 2017; 1 Wang, Wang, Wang, Wu, Zhang, Yan, Ma, You, Zhan (bib41) 2017; 29 Yang, Zhang, Bin, Chen, Gao, Xue, Yang, Li (bib50) 2016; 138 Zhang, Yao, Zhang, Qin, Zhang, Yang, Li, Wei, Gao, Hou (bib55) 2018; 61 Gao, Zhang, Liu, Ming, An, Wu, Xie, Luo, Zhong, Liu (bib14) 2018; 30 Holliday, Ashraf, Wadsworth, Baran, Yousaf, Nielsen, Tan, Dimitrov, Shang, Gasparini, Alamoudi (bib18) 2016; 7 Cui, Yao, Gao, Qin, Zhang, Yang, He, Xu, Hou (bib8) 2017; 139 Fan, Su, Wang, Guo, Jiang, Guo, Liu, Russell, Zhang, Li (bib11) 2018; 61 Xu, Yu, Bi, Ma, Li, Peng (bib48) 2018; 30 Kan, Zhang, Liu, Wan, Li, Ke, Wang, Feng, Zhang, Long (bib21) 2017; 30 Swick, Zhu, Matta, Aldrich, Harbuzaru, Lopez Navarrete, Ponce Ortiz, Kohlstedt, Schatz, Facchetti, Marks (bib39) 2018; 115 Wang, Cao, Yu, Zhang, Geng, Yang, Tang (bib44) 2019; 7 Li, Ye, Zhao, Yan, Yang, Liu, Li, Ade, Hou (bib26) 2018; 30 Nielsen, Holliday, Chen, Cryer, McCulloch (bib34) 2015; 48 Ouyang, Peng, Ai, Zhang, Ge (bib35) 2015; 9 He, Xiao, Liu, Wu, Yang, Xiao, Wang, Russell, Cao (bib16) 2015; 9 Xiao, Jia, Li, Wang, Geng, Liu, Chen, Yang, Russell, Ding (bib45) 2017; 62 Wang, Zhang, Xiao, Xiao, Zhu, Yan, Fu, Lu, Lu, Marder, Zhan (bib43) 2018; 140 Zhang, Kan, Sun, Wang, Xia, Ke, Yi, Li, Yip, Wan (bib54) 2018; 30 Li, Earmme, Ren, Saeki, Yoshikawa, Murari, Subramaniyan, Crane, Seki, Jenekhe (bib23) 2014; 136 Chen, Liu, Hu, Ma, Lai, Zhang, Ade, Yan (bib6) 2018; 8 Cai, Xie, Zhang, Shi, Yan, Zhao (bib2) 2018; 140 Li, Zhan, Zhao, Zhang, Ali, Fu, Lau, Liu, Shi, Li (bib28) 2018; 6 Zhang, Yao, Hou, Zhu, Zhang, Li, Yu, Gao, Zhang, Hou (bib53) 2018; 30 Yan, Liu, Yao, Zhan (bib49) 2018; 8 Hestand, Spano (bib17) 2017; 50 Zhang, Qin, Zhu, Hou (bib56) 2018; 30 Liu, Zhao, Li, Mu, Ma, Hu, Jiang, Lin, Ade, Yan (bib32) 2014; 5 Sun, Ma, Zhang, Yu, Zhou, Yin, Yang, Geng, Zhu, Zhang, Tang (bib38) 2018; 30 Mo, Wang, Chen, Qu, Chao, Yang, Tian, Su, Gao, Yang (bib33) 2017; 29 Aldrich, Matta, Zhu, Swick, Stern, Schatz, Facchetti, Melkonyan, Marks (bib1) 2019; 141 Xie, Yang, Li, Uddin, Bi, Fan, Cai, Hao, Woo, Li (bib47) 2018; 30 Chao, Wang, Mo, Meng, Chen, He (bib4) 2018; 6 He (10.1016/j.isci.2019.06.033_bib16) 2015; 9 Kan (10.1016/j.isci.2019.06.033_bib20) 2017; 139 Zhao (10.1016/j.isci.2019.06.033_bib58) 2017; 29 Zhang (10.1016/j.isci.2019.06.033_bib56) 2018; 30 Che (10.1016/j.isci.2019.06.033_bib5) 2018; 3 Feng (10.1016/j.isci.2019.06.033_bib13) 2017; 29 Qu (10.1016/j.isci.2019.06.033_bib36) 2018; 10 Lin (10.1016/j.isci.2019.06.033_bib31) 2016; 138 Kan (10.1016/j.isci.2019.06.033_bib21) 2017; 30 Wang (10.1016/j.isci.2019.06.033_bib44) 2019; 7 Sun (10.1016/j.isci.2019.06.033_bib38) 2018; 30 Li (10.1016/j.isci.2019.06.033_bib25) 2018; 63 Xie (10.1016/j.isci.2019.06.033_bib47) 2018; 30 Shi (10.1016/j.isci.2019.06.033_bib37) 2017; 29 Hestand (10.1016/j.isci.2019.06.033_bib17) 2017; 50 Yao (10.1016/j.isci.2019.06.033_bib52) 2018; 140 Ouyang (10.1016/j.isci.2019.06.033_bib35) 2015; 9 Li (10.1016/j.isci.2019.06.033_bib28) 2018; 6 Gao (10.1016/j.isci.2019.06.033_bib15) 2018; 6 Wang (10.1016/j.isci.2019.06.033_bib42) 2018; 8 Fei (10.1016/j.isci.2019.06.033_bib12) 2018; 30 Yang (10.1016/j.isci.2019.06.033_bib50) 2016; 138 Li (10.1016/j.isci.2019.06.033_bib27) 2018; 30 Gao (10.1016/j.isci.2019.06.033_bib14) 2018; 30 Zhang (10.1016/j.isci.2019.06.033_bib55) 2018; 61 Lin (10.1016/j.isci.2019.06.033_bib30) 2015; 27 Zhang (10.1016/j.isci.2019.06.033_bib54) 2018; 30 Xie (10.1016/j.isci.2019.06.033_bib46) 2017; 1 Cai (10.1016/j.isci.2019.06.033_bib2) 2018; 140 Li (10.1016/j.isci.2019.06.033_bib23) 2014; 136 Cui (10.1016/j.isci.2019.06.033_bib9) 2017; 29 Swick (10.1016/j.isci.2019.06.033_bib39) 2018; 115 Fan (10.1016/j.isci.2019.06.033_bib11) 2018; 61 Liu (10.1016/j.isci.2019.06.033_bib32) 2014; 5 Chen (10.1016/j.isci.2019.06.033_bib6) 2018; 8 Mo (10.1016/j.isci.2019.06.033_bib33) 2017; 29 Xiao (10.1016/j.isci.2019.06.033_bib45) 2017; 62 Yan (10.1016/j.isci.2019.06.033_bib49) 2018; 8 Chao (10.1016/j.isci.2019.06.033_bib4) 2018; 6 Li (10.1016/j.isci.2019.06.033_bib24) 2017; 139 Xu (10.1016/j.isci.2019.06.033_bib48) 2018; 30 Wang (10.1016/j.isci.2019.06.033_bib41) 2017; 29 Zhang (10.1016/j.isci.2019.06.033_bib53) 2018; 30 Cheng (10.1016/j.isci.2019.06.033_bib7) 2018; 12 Hou (10.1016/j.isci.2019.06.033_bib19) 2018; 17 Holliday (10.1016/j.isci.2019.06.033_bib18) 2016; 7 Fan (10.1016/j.isci.2019.06.033_bib10) 2018; 48 Cui (10.1016/j.isci.2019.06.033_bib8) 2017; 139 Wang (10.1016/j.isci.2019.06.033_bib43) 2018; 140 Zhao (10.1016/j.isci.2019.06.033_bib57) 2016; 1 Aldrich (10.1016/j.isci.2019.06.033_bib1) 2019; 141 Li (10.1016/j.isci.2019.06.033_bib26) 2018; 30 Nielsen (10.1016/j.isci.2019.06.033_bib34) 2015; 48 Cha (10.1016/j.isci.2019.06.033_bib3) 2017; 29 Yang (10.1016/j.isci.2019.06.033_bib51) 2017; 1 Wadsworth (10.1016/j.isci.2019.06.033_bib40) 2018 |
References_xml | – volume: 7 start-page: 4313 year: 2019 end-page: 4333 ident: bib44 article-title: Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells publication-title: J. Mater. Chem. A – volume: 1 start-page: 1700044 year: 2017 ident: bib46 article-title: A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency publication-title: Solar RRL – volume: 138 start-page: 15011 year: 2016 end-page: 15018 ident: bib50 article-title: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1701156 year: 2017 ident: bib3 article-title: An efficient, “Burn in” free organic solar cell employing a nonfullerene electron acceptor publication-title: Adv. Mater. – volume: 29 start-page: 1702125 year: 2017 ident: bib41 article-title: Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy publication-title: Adv. Mater. – volume: 140 start-page: 5764 year: 2018 end-page: 5773 ident: bib2 article-title: Concurrent cooperative J-aggregates and anticooperative H-aggregates publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 3274 year: 2019 end-page: 3287 ident: bib1 article-title: Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1707508 year: 2018 ident: bib54 article-title: Nonfullerene tandem organic solar cells with high performance of 14.11 publication-title: Adv. Mater. – volume: 139 start-page: 7302 year: 2017 end-page: 7309 ident: bib8 article-title: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5293 year: 2014 ident: bib32 article-title: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells publication-title: Nat. Commun. – volume: 63 start-page: 340 year: 2018 end-page: 342 ident: bib25 article-title: Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62% publication-title: Sci. Bull. – volume: 140 start-page: 2054 year: 2018 end-page: 2057 ident: bib52 article-title: Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1801203 year: 2018 ident: bib6 article-title: Modulation of end groups for low-bandgap nonfullerene acceptors enabling high-performance organic solar cells publication-title: Adv. Energy Mater. – volume: 6 start-page: 2664 year: 2018 end-page: 2670 ident: bib15 article-title: The crucial role of intermolecular π–π interactions in A–D–A-type electron acceptors and their effective modulation publication-title: J. Mater. Chem. A – volume: 29 start-page: 1700144 year: 2017 ident: bib58 article-title: Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency publication-title: Adv. Mater. – volume: 29 start-page: 1703527 year: 2017 ident: bib13 article-title: Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells publication-title: Adv. Mater. – volume: 50 start-page: 341 year: 2017 end-page: 350 ident: bib17 article-title: Molecular aggregate photophysics beyond the Kasha Model: novel design principles for organic materials publication-title: Acc. Chem. Res. – volume: 140 start-page: 9140 year: 2018 end-page: 9147 ident: bib43 article-title: Effect of isomerization on high-performance nonfullerene electron acceptors publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1704904 year: 2017 ident: bib21 article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells publication-title: Adv. Mater. – volume: 6 start-page: 2942 year: 2018 end-page: 2951 ident: bib4 article-title: Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics publication-title: J. Mater. Chem. A – volume: 17 start-page: 119 year: 2018 end-page: 128 ident: bib19 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. – volume: 30 start-page: 1800868 year: 2018 ident: bib56 article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. – volume: 30 start-page: 1800052 year: 2018 ident: bib14 article-title: Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells publication-title: Adv. Mater. – volume: 139 start-page: 4929 year: 2017 end-page: 4934 ident: bib20 article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 520 year: 2015 end-page: 524 ident: bib35 article-title: Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte publication-title: Nat. Photonics – volume: 136 start-page: 14589 year: 2014 end-page: 14597 ident: bib23 article-title: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1702870 year: 2018 ident: bib42 article-title: A halogenation strategy for over 12% efficiency nonfullerene organic solar cells publication-title: Adv. Energy Mater. – volume: 27 start-page: 1170 year: 2015 end-page: 1174 ident: bib30 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. – volume: 10 start-page: 39992 year: 2018 end-page: 40000 ident: bib36 article-title: Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 2819 year: 2017 end-page: 2830 ident: bib33 article-title: Chlorination of low-band-gap polymers: toward high-performance polymer solar cells publication-title: Chem. Mater. – volume: 29 start-page: 8369 year: 2017 end-page: 8376 ident: bib37 article-title: Design of a highly crystalline low-band gap fused-ring electron acceptor for high-efficiency solar cells with low energy loss publication-title: Chem. Mater. – volume: 61 start-page: 531 year: 2018 end-page: 537 ident: bib11 article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency publication-title: Sci. China Chem. – volume: 139 start-page: 17114 year: 2017 end-page: 17119 ident: bib24 article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1707150 year: 2018 ident: bib38 article-title: Dithieno[3,2-b:2',3'-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells publication-title: Adv. Mater. – volume: 61 start-page: 1328 year: 2018 end-page: 1337 ident: bib55 article-title: Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials publication-title: Sci. China Chem. – volume: 29 start-page: 1703080 year: 2017 ident: bib9 article-title: Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor publication-title: Adv. Mater. – volume: 7 start-page: 11585 year: 2016 ident: bib18 article-title: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor publication-title: Nat. Commun. – volume: 30 start-page: 1707508 year: 2018 ident: bib26 article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1800204 year: 2018 ident: bib49 article-title: Fused-ring nonfullerene acceptor forming interpenetrating J-architecture for fullerene-free polymer solar cells publication-title: Adv. Energy Mater. – volume: 9 start-page: 174 year: 2015 end-page: 179 ident: bib16 article-title: Single-junction polymer solar cells with high efficiency and photovoltage publication-title: Nat. Photonics – volume: 115 start-page: E8341 year: 2018 end-page: E8348 ident: bib39 article-title: Closely packed, low reorganization energy pi-extended postfullerene acceptors for efficient polymer solar cells publication-title: Proc. Natl. Acad. Sci. U S A – year: 2018 ident: bib40 article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells publication-title: Chem. Soc. Rev. – volume: 12 start-page: 131 year: 2018 end-page: 142 ident: bib7 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: Nat. Photonics – volume: 30 start-page: 1703973 year: 2018 ident: bib48 article-title: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap copolymers publication-title: Adv. Mater. – volume: 30 start-page: 1707170 year: 2018 ident: bib27 article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor publication-title: Adv. Mater. – volume: 48 start-page: 2803 year: 2015 end-page: 2812 ident: bib34 article-title: Non-fullerene electron acceptors for use in organic solar cells publication-title: Acc. Chem. Res. – volume: 138 start-page: 2973 year: 2016 end-page: 2976 ident: bib31 article-title: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1800868 year: 2018 ident: bib53 article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors publication-title: Adv. Mater. – volume: 6 start-page: 12132 year: 2018 end-page: 12141 ident: bib28 article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors publication-title: J. Mater. Chem. A – volume: 48 start-page: 413 year: 2018 end-page: 420 ident: bib10 article-title: Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing publication-title: Nano Energy – volume: 30 start-page: 1803045 year: 2018 ident: bib47 article-title: Morphology control enables efficient ternary organic solar cells publication-title: Adv. Mater. – volume: 1 start-page: 15027 year: 2016 ident: bib57 article-title: Efficient organic solar cells processed from hydrocarbon solvents publication-title: Nat. Energy – volume: 3 start-page: 422 year: 2018 end-page: 427 ident: bib5 article-title: High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency publication-title: Nat. Energy – volume: 62 start-page: 1494 year: 2017 end-page: 1496 ident: bib45 article-title: 26 mA cm publication-title: Sci. Bull. – volume: 1 start-page: 1389 year: 2017 end-page: 1395 ident: bib51 article-title: Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells publication-title: Mater. Chem. Front. – volume: 30 start-page: 1705209 year: 2018 ident: bib12 article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses publication-title: Adv. Mater. – volume: 10 start-page: 39992 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib36 article-title: Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15923 – volume: 115 start-page: E8341 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib39 article-title: Closely packed, low reorganization energy pi-extended postfullerene acceptors for efficient polymer solar cells publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1807535115 – volume: 30 start-page: 1707508 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib26 article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2803 year: 2015 ident: 10.1016/j.isci.2019.06.033_bib34 article-title: Non-fullerene electron acceptors for use in organic solar cells publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00199 – volume: 139 start-page: 7302 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib8 article-title: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01493 – volume: 30 start-page: 1800868 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib56 article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. doi: 10.1002/adma.201800868 – volume: 12 start-page: 131 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib7 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: Nat. Photonics doi: 10.1038/s41566-018-0104-9 – volume: 30 start-page: 1707150 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib38 article-title: Dithieno[3,2-b:2',3'-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201707150 – volume: 5 start-page: 5293 year: 2014 ident: 10.1016/j.isci.2019.06.033_bib32 article-title: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms6293 – volume: 30 start-page: 1707508 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib54 article-title: Nonfullerene tandem organic solar cells with high performance of 14.11 publication-title: Adv. Mater. doi: 10.1002/adma.201707508 – volume: 139 start-page: 4929 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib20 article-title: Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01170 – volume: 8 start-page: 1801203 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib6 article-title: Modulation of end groups for low-bandgap nonfullerene acceptors enabling high-performance organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801203 – volume: 29 start-page: 1703527 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib13 article-title: Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201703527 – volume: 1 start-page: 15027 year: 2016 ident: 10.1016/j.isci.2019.06.033_bib57 article-title: Efficient organic solar cells processed from hydrocarbon solvents publication-title: Nat. Energy doi: 10.1038/nenergy.2015.27 – volume: 17 start-page: 119 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib19 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 3 start-page: 422 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib5 article-title: High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency publication-title: Nat. Energy doi: 10.1038/s41560-018-0134-z – volume: 140 start-page: 2054 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib52 article-title: Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13239 – volume: 30 start-page: 1803045 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib47 article-title: Morphology control enables efficient ternary organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201803045 – volume: 9 start-page: 174 year: 2015 ident: 10.1016/j.isci.2019.06.033_bib16 article-title: Single-junction polymer solar cells with high efficiency and photovoltage publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.6 – volume: 1 start-page: 1700044 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib46 article-title: A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency publication-title: Solar RRL doi: 10.1002/solr.201700044 – volume: 139 start-page: 17114 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib24 article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11278 – volume: 29 start-page: 2819 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib33 article-title: Chlorination of low-band-gap polymers: toward high-performance polymer solar cells publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04828 – volume: 30 start-page: 1800868 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib53 article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors publication-title: Adv. Mater. doi: 10.1002/adma.201800868 – volume: 138 start-page: 15011 year: 2016 ident: 10.1016/j.isci.2019.06.033_bib50 article-title: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09110 – volume: 29 start-page: 8369 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib37 article-title: Design of a highly crystalline low-band gap fused-ring electron acceptor for high-efficiency solar cells with low energy loss publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02853 – volume: 136 start-page: 14589 year: 2014 ident: 10.1016/j.isci.2019.06.033_bib23 article-title: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508472j – volume: 61 start-page: 531 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib11 article-title: Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency publication-title: Sci. China Chem. doi: 10.1007/s11426-017-9199-1 – volume: 9 start-page: 520 year: 2015 ident: 10.1016/j.isci.2019.06.033_bib35 article-title: Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.126 – volume: 29 start-page: 1700144 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib58 article-title: Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201700144 – volume: 61 start-page: 1328 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib55 article-title: Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9260-2 – volume: 50 start-page: 341 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib17 article-title: Molecular aggregate photophysics beyond the Kasha Model: novel design principles for organic materials publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00576 – volume: 8 start-page: 1702870 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib42 article-title: A halogenation strategy for over 12% efficiency nonfullerene organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702870 – volume: 48 start-page: 413 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib10 article-title: Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.002 – volume: 7 start-page: 4313 year: 2019 ident: 10.1016/j.isci.2019.06.033_bib44 article-title: Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12465E – volume: 62 start-page: 1494 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib45 article-title: 26 mA cm−2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.10.017 – volume: 63 start-page: 340 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib25 article-title: Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62% publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.02.015 – volume: 1 start-page: 1389 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib51 article-title: Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00025A – volume: 30 start-page: 1800052 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib14 article-title: Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201800052 – volume: 30 start-page: 1707170 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib27 article-title: A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201707170 – volume: 6 start-page: 2942 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib4 article-title: Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09837E – volume: 8 start-page: 1800204 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib49 article-title: Fused-ring nonfullerene acceptor forming interpenetrating J-architecture for fullerene-free polymer solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800204 – volume: 140 start-page: 5764 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib2 article-title: Concurrent cooperative J-aggregates and anticooperative H-aggregates publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01463 – volume: 6 start-page: 2664 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib15 article-title: The crucial role of intermolecular π–π interactions in A–D–A-type electron acceptors and their effective modulation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10461H – year: 2018 ident: 10.1016/j.isci.2019.06.033_bib40 article-title: Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1702125 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib41 article-title: Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy publication-title: Adv. Mater. doi: 10.1002/adma.201702125 – volume: 29 start-page: 1701156 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib3 article-title: An efficient, “Burn in” free organic solar cell employing a nonfullerene electron acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201701156 – volume: 141 start-page: 3274 year: 2019 ident: 10.1016/j.isci.2019.06.033_bib1 article-title: Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13653 – volume: 7 start-page: 11585 year: 2016 ident: 10.1016/j.isci.2019.06.033_bib18 article-title: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor publication-title: Nat. Commun. doi: 10.1038/ncomms11585 – volume: 140 start-page: 9140 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib43 article-title: Effect of isomerization on high-performance nonfullerene electron acceptors publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04027 – volume: 27 start-page: 1170 year: 2015 ident: 10.1016/j.isci.2019.06.033_bib30 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 30 start-page: 1703973 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib48 article-title: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap copolymers publication-title: Adv. Mater. doi: 10.1002/adma.201703973 – volume: 29 start-page: 1703080 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib9 article-title: Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201703080 – volume: 6 start-page: 12132 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib28 article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03753A – volume: 30 start-page: 1704904 year: 2017 ident: 10.1016/j.isci.2019.06.033_bib21 article-title: Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201704904 – volume: 138 start-page: 2973 year: 2016 ident: 10.1016/j.isci.2019.06.033_bib31 article-title: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00853 – volume: 30 start-page: 1705209 year: 2018 ident: 10.1016/j.isci.2019.06.033_bib12 article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses publication-title: Adv. Mater. doi: 10.1002/adma.201705209 |
SSID | ssj0002002496 |
Score | 2.443882 |
Snippet | The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated.... The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors ( ITIC-2Cl-δ and ITIC-2Cl-γ ) was intensely... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 302 |
SubjectTerms | Chemical Synthesis Energy Storage Materials Characterization Techniques |
Title | Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion |
URI | https://dx.doi.org/10.1016/j.isci.2019.06.033 https://www.ncbi.nlm.nih.gov/pubmed/31323476 https://www.proquest.com/docview/2261969329 https://pubmed.ncbi.nlm.nih.gov/PMC6639659 https://doaj.org/article/2f23f514ad66439f9faf0805aee8d8c3 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYQJy4INDY6NmSk3SaLJo4dZzeoQDBpE9JA4mY59jNtxVLUwn7_3nPSqgEJLlwbJ6ntZ3-f7S_fY-ybLl0lY1AiK00QRSULYULUQgYTvMNZ03nah_z1W1_cFD9v1e1aqi_ShLX2wG3DHecxlxFR3QVN4Bmr6CKyHOUATDA--Xwi5q0tpqbpeI2s8FJmOUWaIAzN7ouZVtxFX7ySrqtK5p1S9lApmff3wOkl-XyuoVwDpfMdtt2xSX7S1mKXbUDzgS0uF7O_MBdxDvCDX5F9xQL4VafOQqjis8hH4yS9A0G5OzwE3qoPceZLPrpYiA7i74AnMIsw58hu-dk9_ENyGvgfWhHzEUnW037bHrs5P7seXYgut4LwlMJAxFANYwzSxwIbs668LyTgJFzjekSb2sjM41LDZ-Bc4evaecT1GBDuSqXAI0f4yDabWQP7jHsfMqckOIVjGwrjhto4p0PMIRh89IBly7a1vjMep_wX93apMJta6g9L_WFJZiflgH1f3fPQ2m68WvqUumxVkiyz0w8YSLYLJPtWIA2YWna47dhHyyrwUZNXX360jA6LQ5POW1wDs6eFzWl1qpEgYxN8aqNl9RfJMVMWpR6wshdHvTr0rzSTcbL_Ro5ILpCf36PSB2yLqkKb1bn-wjYf50_wFVnWY32YBtR_HfwoHw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isomer-free%3A+Precise+Positioning+of+Chlorine-Induced+Interpenetrating+Charge+Transfer+for+Elevated+Solar+Conversion&rft.jtitle=iScience&rft.au=Hanjian+Lai&rft.au=Hui+Chen&rft.au=Jiadong+Zhou&rft.au=Jianfei+Qu&rft.date=2019-07-26&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=17&rft.spage=302&rft.epage=314&rft_id=info:doi/10.1016%2Fj.isci.2019.06.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2f23f514ad66439f9faf0805aee8d8c3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |