Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry
Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provid...
Saved in:
Published in | STAR protocols Vol. 2; no. 1; p. 100235 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.
For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).
[Display omitted]
•Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry•Provides quantitative measurements of immune cell lipid composition•Includes cell culture, cell imaging, sample preparation, and data output analysis•Can be adapted for different lipidomics-mass spectrometry platforms
Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. |
---|---|
AbstractList | Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020). Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020). Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020). [Display omitted] •Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry•Provides quantitative measurements of immune cell lipid composition•Includes cell culture, cell imaging, sample preparation, and data output analysis•Can be adapted for different lipidomics-mass spectrometry platforms Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020 ). • Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry • Provides quantitative measurements of immune cell lipid composition • Includes cell culture, cell imaging, sample preparation, and data output analysis • Can be adapted for different lipidomics-mass spectrometry platforms Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. |
ArticleNumber | 100235 |
Author | Su, Baolong Bensinger, Steven J. Hsieh, Wei-Yuan Williams, Kevin J. |
Author_xml | – sequence: 1 givenname: Wei-Yuan surname: Hsieh fullname: Hsieh, Wei-Yuan email: waynehsieh@ucla.edu organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 2 givenname: Kevin J. surname: Williams fullname: Williams, Kevin J. organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Baolong surname: Su fullname: Su, Baolong organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 4 givenname: Steven J. surname: Bensinger fullname: Bensinger, Steven J. email: sbensinger@mednet.ucla.edu organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33364623$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQtFAr-kH_AAeUI5f38HcSCSGhCkqlSu2hcLUcZ53np8QOdlK1_x6HtKjl0JPt3ZlZa2dO0IEPHhB6T_CWYCI_7bf3YwxbiulSwJSJN-iYSik3RMry4Nn9CJ2ltMcZIwjlpHqLjhhjkkvKjtGvmxis653vimCLIcwJikGbGMad7qDo3ejaMEAxpwXSughmKpy3-R18kXZh6mafGSkVacy9mMFTfHiHDq3uE5w9nqfo5_dvt-c_NlfXF5fnX682RlAybazRBtfCtE3TYjCCE8Ilb2rMTdVQTAxmFnNbtmC4tPkUFDeYg9ZGVho4O0WXq24b9F6N0Q06PqignfpbCLFTOk7O9KCqpiUW101TccZrLSpSsZILWhMMQrI2a31Ztca5GaA14Keo-xeiLzve7VQX7lRZClbz5TMfHwVi-D1DmtTgkoG-1x7yYhXlJeOLVWWGfng-69-QJ2MyoFoB2YqUIlhl3KSnvPQ82vWKYLXEQO3VEgO1xECtMchU-h_1Sf1V0ueVBNmtOwdRJePAG1gtz-t0r9H_AFgbzXU |
CitedBy_id | crossref_primary_10_1016_j_jlr_2021_100153 crossref_primary_10_1126_sciadv_adj7481 crossref_primary_10_3389_fphys_2024_1431847 crossref_primary_10_7717_peerj_19039 crossref_primary_10_1016_j_cmet_2021_06_012 crossref_primary_10_1016_j_str_2023_02_005 crossref_primary_10_15252_embr_202256380 crossref_primary_10_1111_cts_13745 crossref_primary_10_1158_2767_9764_CRC_24_0082 crossref_primary_10_1126_sciadv_adg6262 crossref_primary_10_1016_j_celrep_2024_114102 crossref_primary_10_1038_s41467_023_39403_7 crossref_primary_10_1038_s44319_024_00351_y crossref_primary_10_1126_scitranslmed_abq6288 crossref_primary_10_1016_j_chembiol_2022_06_004 crossref_primary_10_3390_metabo11080468 crossref_primary_10_1096_fj_202400210RR crossref_primary_10_3390_antibiotics12071083 crossref_primary_10_14814_phy2_70193 crossref_primary_10_3390_children11020141 crossref_primary_10_1016_j_ccell_2023_05_001 crossref_primary_10_1021_jasms_1c00203 crossref_primary_10_1186_s12944_021_01526_5 crossref_primary_10_1167_iovs_65_10_29 crossref_primary_10_1186_s12935_023_03079_2 crossref_primary_10_3389_fnagi_2024_1415072 crossref_primary_10_1038_s41586_024_07098_5 |
Cites_doi | 10.1194/jlr.M067025 10.1139/y59-099 10.1007/978-1-4939-7592-1_15 10.1007/s11306-016-1081-y 10.1016/j.cmet.2020.05.003 10.1007/s00216-018-1252-y 10.1194/jlr.M093534 |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.xpro.2020.100235 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1667 |
ExternalDocumentID | oai_doaj_org_article_8bd1f09bb84349a581837452910e563d PMC7753944 33364623 10_1016_j_xpro_2020_100235 S2666166720302227 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P01 HL146358 |
GroupedDBID | 53G 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-fcac095cdbbd0ec5411464b904c8b201c03f04f7dec46ff7d520b04eaac68ae43 |
IEDL.DBID | DOA |
ISSN | 2666-1667 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Thu Aug 21 14:34:27 EDT 2025 Fri Jul 11 09:11:14 EDT 2025 Mon Jul 21 05:55:30 EDT 2025 Tue Jul 01 01:14:21 EDT 2025 Thu Apr 24 22:57:35 EDT 2025 Fri Feb 23 02:45:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High Throughput Screening Cell culture Model Organisms Immunology Metabolism Mass Spectrometry |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-fcac095cdbbd0ec5411464b904c8b201c03f04f7dec46ff7d520b04eaac68ae43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Technical Contact |
OpenAccessLink | https://doaj.org/article/8bd1f09bb84349a581837452910e563d |
PMID | 33364623 |
PQID | 2473400237 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8bd1f09bb84349a581837452910e563d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753944 proquest_miscellaneous_2473400237 pubmed_primary_33364623 crossref_citationtrail_10_1016_j_xpro_2020_100235 crossref_primary_10_1016_j_xpro_2020_100235 elsevier_sciencedirect_doi_10_1016_j_xpro_2020_100235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-19 |
PublicationDateYYYYMMDD | 2021-03-19 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | STAR protocols |
PublicationTitleAlternate | STAR Protoc |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Hsu (bib3) 2018; 410 Ubhi (bib7) 2018; 1730 Hsieh, Zhou, York, Williams, Scumpia, Kronenberger, Hoi, Su, Chi, Bui (bib2) 2020; 32 Tsui, Pham, Amer, Bradley, Gosschalk, Gallagher-Jones, Ibarra, Clubb, Blaby-Haas, Clarke (bib6) 2019; 60 Meriwether, Sulaiman, Wagner, Grijalva, Kaji, Williams, Yu, Fogelman, Volpe, Bensinger (bib4) 2016; 57 Sciex (bib5) 2016 Bligh, Dyer (bib1) 1959; 37 Yao, Liu, Yang, Gross, Patti (bib8) 2016; 12 Meriwether (10.1016/j.xpro.2020.100235_bib4) 2016; 57 Bligh (10.1016/j.xpro.2020.100235_bib1) 1959; 37 Hsieh (10.1016/j.xpro.2020.100235_bib2) 2020; 32 Ubhi (10.1016/j.xpro.2020.100235_bib7) 2018; 1730 Hsu (10.1016/j.xpro.2020.100235_bib3) 2018; 410 Tsui (10.1016/j.xpro.2020.100235_bib6) 2019; 60 Yao (10.1016/j.xpro.2020.100235_bib8) 2016; 12 Sciex (10.1016/j.xpro.2020.100235_bib5) 2016 |
References_xml | – volume: 57 start-page: 1175 year: 2016 end-page: 1193 ident: bib4 article-title: Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux publication-title: J. Lipid Res. – volume: 12 start-page: 143 year: 2016 ident: bib8 article-title: Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics publication-title: Metabolomics – volume: 410 start-page: 6387 year: 2018 end-page: 6409 ident: bib3 article-title: ‘Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view’ publication-title: Anal. Bioanal. Chem. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: bib1 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 32 start-page: 128 year: 2020 end-page: 143.e5 ident: bib2 article-title: Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome publication-title: Cell Metab. – volume: 60 start-page: 1293 year: 2019 end-page: 1310 ident: bib6 article-title: Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function publication-title: J. Lipid Res. – volume: 1730 start-page: 227 year: 2018 end-page: 236 ident: bib7 article-title: Direct infusion-tandem mass spectrometry (DI-MS/MS) analysis of complex lipids in human plasma and serum using the lipidyzer publication-title: Methods Mol. Biol. – year: 2016 ident: bib5 article-title: Lipidyzer – volume: 57 start-page: 1175 year: 2016 ident: 10.1016/j.xpro.2020.100235_bib4 article-title: Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux publication-title: J. Lipid Res. doi: 10.1194/jlr.M067025 – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.xpro.2020.100235_bib1 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/y59-099 – year: 2016 ident: 10.1016/j.xpro.2020.100235_bib5 – volume: 1730 start-page: 227 year: 2018 ident: 10.1016/j.xpro.2020.100235_bib7 article-title: Direct infusion-tandem mass spectrometry (DI-MS/MS) analysis of complex lipids in human plasma and serum using the lipidyzerTM platform publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7592-1_15 – volume: 12 start-page: 143 year: 2016 ident: 10.1016/j.xpro.2020.100235_bib8 article-title: Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics publication-title: Metabolomics doi: 10.1007/s11306-016-1081-y – volume: 32 start-page: 128 year: 2020 ident: 10.1016/j.xpro.2020.100235_bib2 article-title: Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.05.003 – volume: 410 start-page: 6387 year: 2018 ident: 10.1016/j.xpro.2020.100235_bib3 article-title: ‘Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view’ publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-018-1252-y – volume: 60 start-page: 1293 year: 2019 ident: 10.1016/j.xpro.2020.100235_bib6 article-title: Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function publication-title: J. Lipid Res. doi: 10.1194/jlr.M093534 |
SSID | ssj0002512418 |
Score | 2.3033156 |
Snippet | Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100235 |
SubjectTerms | Animals Cell culture High Throughput Screening Immunology Lipid Metabolism Lipidomics Macrophages - metabolism Mass Spectrometry Metabolism Mice Model Organisms Protocol |
Title | Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry |
URI | https://dx.doi.org/10.1016/j.xpro.2020.100235 https://www.ncbi.nlm.nih.gov/pubmed/33364623 https://www.proquest.com/docview/2473400237 https://pubmed.ncbi.nlm.nih.gov/PMC7753944 https://doaj.org/article/8bd1f09bb84349a581837452910e563d |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUIKAESmUkbiiqE4_t5FgQVYXUigNFvVm243QXtdmquyu1_74zdnbZBalcOEVK7CQej-ebsefB2MdgKmdiH8o6RFOCV6Z0bUclAVGTEx2urhTlenauTy_g26W63Cj1RT5hOT1wJtxR47uqF633DUhonUKAkYZOCysRlZYdSV_EvA1jimQwoTakzT0EIF1WWpsxYiY7d92jeELjsM4pSFOtt9-olJL3b4HT38rnnz6UG6B08pztjdokP86jeMF24vCS_fye6nAjJvFZz8m0j_zGUamuCQoPfj29nXazm8jJ5f2KZ0zjyGhL2jjj88lscbUcsMd8zlMcJiU0WNw9vGIXJ19_fDktx_IJZaAqBWUfXEAFKnTedyIGBRSADL4VEBqPuB-E7AX0posBdI9XVQsvIDoXdOMiyNdsd5gN8Q3jqvUA0TTCVR6Ucq6uRXDgddObCEoWrFqRz4YxtziVuLi2KyeyX5ZIbonkNpO8YJ_WfW5zZo0nW3-mWVm3pKzY6Qbyih15xf6LVwqmVnNqRwUjExlfNX3y4x9WDGBx9dGRihsiTp-twUigNqZg-5kh1r8opdSA2mXBzBarbI1h-8kwnaQM3waNyBbg7f8Y9Dv2rCY_HPJBbA_Y7uJuGd-jIrXwh2nNHKYdrke2uBsq |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profiling+of+mouse+macrophage+lipidome+using+direct+infusion+shotgun+mass+spectrometry&rft.jtitle=STAR+protocols&rft.au=Hsieh%2C+Wei-Yuan&rft.au=Williams%2C+Kevin+J&rft.au=Su%2C+Baolong&rft.au=Bensinger%2C+Steven+J&rft.date=2021-03-19&rft.eissn=2666-1667&rft.volume=2&rft.issue=1&rft.spage=100235&rft_id=info:doi/10.1016%2Fj.xpro.2020.100235&rft_id=info%3Apmid%2F33364623&rft.externalDocID=33364623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon |