Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry

Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provid...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 2; no. 1; p. 100235
Main Authors Hsieh, Wei-Yuan, Williams, Kevin J., Su, Baolong, Bensinger, Steven J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020). [Display omitted] •Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry•Provides quantitative measurements of immune cell lipid composition•Includes cell culture, cell imaging, sample preparation, and data output analysis•Can be adapted for different lipidomics-mass spectrometry platforms Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.
AbstractList Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).
Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020).
Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020). [Display omitted] •Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry•Provides quantitative measurements of immune cell lipid composition•Includes cell culture, cell imaging, sample preparation, and data output analysis•Can be adapted for different lipidomics-mass spectrometry platforms Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.
Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2020 ). • Protocol for profiling mouse macrophage lipidome with direct infusion mass spectrometry • Provides quantitative measurements of immune cell lipid composition • Includes cell culture, cell imaging, sample preparation, and data output analysis • Can be adapted for different lipidomics-mass spectrometry platforms Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and cytokine receptors (e.g., interferons, interleukins). Profiling these changes can be achieved with shotgun mass spectrometry. This protocol provides step-by-step instructions on the generation and stimulation of bone marrow-derived macrophages (BMDMs), sample collection, and lipid extraction for profiling the macrophage lipidome.
ArticleNumber 100235
Author Su, Baolong
Bensinger, Steven J.
Hsieh, Wei-Yuan
Williams, Kevin J.
Author_xml – sequence: 1
  givenname: Wei-Yuan
  surname: Hsieh
  fullname: Hsieh, Wei-Yuan
  email: waynehsieh@ucla.edu
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Kevin J.
  surname: Williams
  fullname: Williams, Kevin J.
  organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Baolong
  surname: Su
  fullname: Su, Baolong
  organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Steven J.
  surname: Bensinger
  fullname: Bensinger, Steven J.
  email: sbensinger@mednet.ucla.edu
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33364623$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQtFAr-kH_AAeUI5f38HcSCSGhCkqlSu2hcLUcZ53np8QOdlK1_x6HtKjl0JPt3ZlZa2dO0IEPHhB6T_CWYCI_7bf3YwxbiulSwJSJN-iYSik3RMry4Nn9CJ2ltMcZIwjlpHqLjhhjkkvKjtGvmxis653vimCLIcwJikGbGMad7qDo3ejaMEAxpwXSughmKpy3-R18kXZh6mafGSkVacy9mMFTfHiHDq3uE5w9nqfo5_dvt-c_NlfXF5fnX682RlAybazRBtfCtE3TYjCCE8Ilb2rMTdVQTAxmFnNbtmC4tPkUFDeYg9ZGVho4O0WXq24b9F6N0Q06PqignfpbCLFTOk7O9KCqpiUW101TccZrLSpSsZILWhMMQrI2a31Ztca5GaA14Keo-xeiLzve7VQX7lRZClbz5TMfHwVi-D1DmtTgkoG-1x7yYhXlJeOLVWWGfng-69-QJ2MyoFoB2YqUIlhl3KSnvPQ82vWKYLXEQO3VEgO1xECtMchU-h_1Sf1V0ueVBNmtOwdRJePAG1gtz-t0r9H_AFgbzXU
CitedBy_id crossref_primary_10_1016_j_jlr_2021_100153
crossref_primary_10_1126_sciadv_adj7481
crossref_primary_10_3389_fphys_2024_1431847
crossref_primary_10_7717_peerj_19039
crossref_primary_10_1016_j_cmet_2021_06_012
crossref_primary_10_1016_j_str_2023_02_005
crossref_primary_10_15252_embr_202256380
crossref_primary_10_1111_cts_13745
crossref_primary_10_1158_2767_9764_CRC_24_0082
crossref_primary_10_1126_sciadv_adg6262
crossref_primary_10_1016_j_celrep_2024_114102
crossref_primary_10_1038_s41467_023_39403_7
crossref_primary_10_1038_s44319_024_00351_y
crossref_primary_10_1126_scitranslmed_abq6288
crossref_primary_10_1016_j_chembiol_2022_06_004
crossref_primary_10_3390_metabo11080468
crossref_primary_10_1096_fj_202400210RR
crossref_primary_10_3390_antibiotics12071083
crossref_primary_10_14814_phy2_70193
crossref_primary_10_3390_children11020141
crossref_primary_10_1016_j_ccell_2023_05_001
crossref_primary_10_1021_jasms_1c00203
crossref_primary_10_1186_s12944_021_01526_5
crossref_primary_10_1167_iovs_65_10_29
crossref_primary_10_1186_s12935_023_03079_2
crossref_primary_10_3389_fnagi_2024_1415072
crossref_primary_10_1038_s41586_024_07098_5
Cites_doi 10.1194/jlr.M067025
10.1139/y59-099
10.1007/978-1-4939-7592-1_15
10.1007/s11306-016-1081-y
10.1016/j.cmet.2020.05.003
10.1007/s00216-018-1252-y
10.1194/jlr.M093534
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2020.100235
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_8bd1f09bb84349a581837452910e563d
PMC7753944
33364623
10_1016_j_xpro_2020_100235
S2666166720302227
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P01 HL146358
GroupedDBID 53G
6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-fcac095cdbbd0ec5411464b904c8b201c03f04f7dec46ff7d520b04eaac68ae43
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 01:29:26 EDT 2025
Thu Aug 21 14:34:27 EDT 2025
Fri Jul 11 09:11:14 EDT 2025
Mon Jul 21 05:55:30 EDT 2025
Tue Jul 01 01:14:21 EDT 2025
Thu Apr 24 22:57:35 EDT 2025
Fri Feb 23 02:45:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High Throughput Screening
Cell culture
Model Organisms
Immunology
Metabolism
Mass Spectrometry
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-fcac095cdbbd0ec5411464b904c8b201c03f04f7dec46ff7d520b04eaac68ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Technical Contact
OpenAccessLink https://doaj.org/article/8bd1f09bb84349a581837452910e563d
PMID 33364623
PQID 2473400237
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8bd1f09bb84349a581837452910e563d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753944
proquest_miscellaneous_2473400237
pubmed_primary_33364623
crossref_citationtrail_10_1016_j_xpro_2020_100235
crossref_primary_10_1016_j_xpro_2020_100235
elsevier_sciencedirect_doi_10_1016_j_xpro_2020_100235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hsu (bib3) 2018; 410
Ubhi (bib7) 2018; 1730
Hsieh, Zhou, York, Williams, Scumpia, Kronenberger, Hoi, Su, Chi, Bui (bib2) 2020; 32
Tsui, Pham, Amer, Bradley, Gosschalk, Gallagher-Jones, Ibarra, Clubb, Blaby-Haas, Clarke (bib6) 2019; 60
Meriwether, Sulaiman, Wagner, Grijalva, Kaji, Williams, Yu, Fogelman, Volpe, Bensinger (bib4) 2016; 57
Sciex (bib5) 2016
Bligh, Dyer (bib1) 1959; 37
Yao, Liu, Yang, Gross, Patti (bib8) 2016; 12
Meriwether (10.1016/j.xpro.2020.100235_bib4) 2016; 57
Bligh (10.1016/j.xpro.2020.100235_bib1) 1959; 37
Hsieh (10.1016/j.xpro.2020.100235_bib2) 2020; 32
Ubhi (10.1016/j.xpro.2020.100235_bib7) 2018; 1730
Hsu (10.1016/j.xpro.2020.100235_bib3) 2018; 410
Tsui (10.1016/j.xpro.2020.100235_bib6) 2019; 60
Yao (10.1016/j.xpro.2020.100235_bib8) 2016; 12
Sciex (10.1016/j.xpro.2020.100235_bib5) 2016
References_xml – volume: 57
  start-page: 1175
  year: 2016
  end-page: 1193
  ident: bib4
  article-title: Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux
  publication-title: J. Lipid Res.
– volume: 12
  start-page: 143
  year: 2016
  ident: bib8
  article-title: Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics
  publication-title: Metabolomics
– volume: 410
  start-page: 6387
  year: 2018
  end-page: 6409
  ident: bib3
  article-title: ‘Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view’
  publication-title: Anal. Bioanal. Chem.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bib1
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
– volume: 32
  start-page: 128
  year: 2020
  end-page: 143.e5
  ident: bib2
  article-title: Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome
  publication-title: Cell Metab.
– volume: 60
  start-page: 1293
  year: 2019
  end-page: 1310
  ident: bib6
  article-title: Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function
  publication-title: J. Lipid Res.
– volume: 1730
  start-page: 227
  year: 2018
  end-page: 236
  ident: bib7
  article-title: Direct infusion-tandem mass spectrometry (DI-MS/MS) analysis of complex lipids in human plasma and serum using the lipidyzer
  publication-title: Methods Mol. Biol.
– year: 2016
  ident: bib5
  article-title: Lipidyzer
– volume: 57
  start-page: 1175
  year: 2016
  ident: 10.1016/j.xpro.2020.100235_bib4
  article-title: Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M067025
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.xpro.2020.100235_bib1
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/y59-099
– year: 2016
  ident: 10.1016/j.xpro.2020.100235_bib5
– volume: 1730
  start-page: 227
  year: 2018
  ident: 10.1016/j.xpro.2020.100235_bib7
  article-title: Direct infusion-tandem mass spectrometry (DI-MS/MS) analysis of complex lipids in human plasma and serum using the lipidyzerTM platform
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7592-1_15
– volume: 12
  start-page: 143
  year: 2016
  ident: 10.1016/j.xpro.2020.100235_bib8
  article-title: Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1081-y
– volume: 32
  start-page: 128
  year: 2020
  ident: 10.1016/j.xpro.2020.100235_bib2
  article-title: Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.05.003
– volume: 410
  start-page: 6387
  year: 2018
  ident: 10.1016/j.xpro.2020.100235_bib3
  article-title: ‘Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view’
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-018-1252-y
– volume: 60
  start-page: 1293
  year: 2019
  ident: 10.1016/j.xpro.2020.100235_bib6
  article-title: Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M093534
SSID ssj0002512418
Score 2.3033156
Snippet Immune cells, such as macrophages, reprogram their lipid metabolism in response to the activation of pattern recognition receptors (e.g., TLRs, NLRs) and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100235
SubjectTerms Animals
Cell culture
High Throughput Screening
Immunology
Lipid Metabolism
Lipidomics
Macrophages - metabolism
Mass Spectrometry
Metabolism
Mice
Model Organisms
Protocol
Title Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry
URI https://dx.doi.org/10.1016/j.xpro.2020.100235
https://www.ncbi.nlm.nih.gov/pubmed/33364623
https://www.proquest.com/docview/2473400237
https://pubmed.ncbi.nlm.nih.gov/PMC7753944
https://doaj.org/article/8bd1f09bb84349a581837452910e563d
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnrhUIKAESmUkbiiqE4_t5FgQVYXUigNFvVm243QXtdmquyu1_74zdnbZBalcOEVK7CQej-ebsefB2MdgKmdiH8o6RFOCV6Z0bUclAVGTEx2urhTlenauTy_g26W63Cj1RT5hOT1wJtxR47uqF633DUhonUKAkYZOCysRlZYdSV_EvA1jimQwoTakzT0EIF1WWpsxYiY7d92jeELjsM4pSFOtt9-olJL3b4HT38rnnz6UG6B08pztjdokP86jeMF24vCS_fye6nAjJvFZz8m0j_zGUamuCQoPfj29nXazm8jJ5f2KZ0zjyGhL2jjj88lscbUcsMd8zlMcJiU0WNw9vGIXJ19_fDktx_IJZaAqBWUfXEAFKnTedyIGBRSADL4VEBqPuB-E7AX0posBdI9XVQsvIDoXdOMiyNdsd5gN8Q3jqvUA0TTCVR6Ucq6uRXDgddObCEoWrFqRz4YxtziVuLi2KyeyX5ZIbonkNpO8YJ_WfW5zZo0nW3-mWVm3pKzY6Qbyih15xf6LVwqmVnNqRwUjExlfNX3y4x9WDGBx9dGRihsiTp-twUigNqZg-5kh1r8opdSA2mXBzBarbI1h-8kwnaQM3waNyBbg7f8Y9Dv2rCY_HPJBbA_Y7uJuGd-jIrXwh2nNHKYdrke2uBsq
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profiling+of+mouse+macrophage+lipidome+using+direct+infusion+shotgun+mass+spectrometry&rft.jtitle=STAR+protocols&rft.au=Hsieh%2C+Wei-Yuan&rft.au=Williams%2C+Kevin+J&rft.au=Su%2C+Baolong&rft.au=Bensinger%2C+Steven+J&rft.date=2021-03-19&rft.eissn=2666-1667&rft.volume=2&rft.issue=1&rft.spage=100235&rft_id=info:doi/10.1016%2Fj.xpro.2020.100235&rft_id=info%3Apmid%2F33364623&rft.externalDocID=33364623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon