The heterogeneity among subgroups of haplogroup J influencing Alzheimer’s disease risk

[Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 33; pp. 117 - 126
Main Authors Liu, HaoChen, Zhang, Yixuan, Zhao, Huimin, Du, Yanan, Liu, XiaoQuan
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.
AbstractList Introduction: The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. Objectives: The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. Methods: In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. Results: The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Conclusion: Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.
• There is heterogeneity among subgroups of haplogroup J which influences AD risk. • The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk. • The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau.
The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.
The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level.IntroductionThe impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level.The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level.ObjectivesThe aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level.In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.MethodsIn total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups.ResultsThe frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups.Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.ConclusionHeterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.
[Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.
Author Zhao, Huimin
Liu, XiaoQuan
Du, Yanan
Liu, HaoChen
Zhang, Yixuan
Author_xml – sequence: 1
  givenname: HaoChen
  surname: Liu
  fullname: Liu, HaoChen
  email: haochenliu@cpu.edu.cn
– sequence: 2
  givenname: Yixuan
  orcidid: 0000-0001-9781-6281
  surname: Zhang
  fullname: Zhang, Yixuan
  email: yxzhang@stu.cpu.edu.cn
– sequence: 3
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
– sequence: 4
  givenname: Yanan
  surname: Du
  fullname: Du, Yanan
– sequence: 5
  givenname: XiaoQuan
  surname: Liu
  fullname: Liu, XiaoQuan
  email: lxq@cpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34603783$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1URMuhL8ACZcnmBF9ysSWEVFVciiqxKRI7a-JMEockPthJpbLiNXg9ngTnnLaiLOqNPZ7__0aamefkaHITEvKS0ZRRVrzp0x48ppxyllKeUiqekBNOFd0yzrOj-7fgx-Q0hJ7GI6RUjD0jxyIrqCilOCHfrjpMOpzRuxYntPNNAqOb2iQsVevdsguJa5IOdoPbh8nnxE7NsOBkbFSdDT87tCP6P79-h6S2ASFg4m34_oI8bWAIeHp7b8jXD--vzj9tL798vDg_u9yanLN525TKVEWNrFYCMsMRoGGmogpYLWSJJVCpMsiFiGk0ORWsygQTNKdYADZiQy4O3NpBr3fejuBvtAOr9x_Otxr8bM2AOs-gqjNTywzKrBAKsqZgBqSgqpJ5xG7IuwNrt1Qj1gan2cPwAPowM9lOt-5ayxVXiAh4fQvw7seCYdajDQaHASZ0S9A8LxVVPDY_Sl_9W-u-yN1ookAeBMa7EDw22tgZZuvW0nbQjOp1EXSv10XQ6yJoyjXds_l_1jv6o6a3BxPGaV1b9DoYG8eMtfVo5thO-5j9L3BNzpg
CitedBy_id crossref_primary_10_1016_j_mito_2022_06_008
crossref_primary_10_3390_genes13101789
crossref_primary_10_1002_alz_13449
crossref_primary_10_1111_acel_13601
crossref_primary_10_3233_JAD_220298
Cites_doi 10.1093/bioinformatics/btp352
10.1016/S0006-291X(05)80136-6
10.3233/JAD-2011-110710
10.1046/j.1475-1313.2002.00020.x
10.1073/pnas.0508254102
10.3233/JAD-2012-120466
10.1038/s41582-019-0158-4
10.1007/s00439-005-0123-8
10.1016/j.neurobiolaging.2020.04.024
10.1016/j.tins.2019.08.003
10.1016/j.neuroimage.2011.01.049
10.1007/s40142-018-0132-2
10.1214/009053604000000067
10.1002/alz.12119
10.1002/0471250953.bi0123s44
10.1212/WNL.47.1.254
10.1007/978-3-642-24091-1_51
10.1002/wrna.1128
10.1007/s11011-017-9960-0
10.1002/(SICI)1096-8628(19960122)61:3<283::AID-AJMG15>3.0.CO;2-P
10.1111/j.2517-6161.1996.tb02080.x
10.1523/JNEUROSCI.0116-19.2019
10.1093/bioinformatics/btp324
10.1073/pnas.90.5.1977
10.1016/S0006-3223(97)00461-7
10.1212/WNL.55.2.302
10.1016/j.brainresbull.2017.04.001
10.1007/978-94-007-2869-1_2
10.1016/j.jchemneu.2020.101804
10.1016/j.neurobiolaging.2020.04.025
10.1016/j.neulet.2004.04.051
10.1006/geno.1993.1299
10.1073/pnas.92.15.6892
10.1373/clinchem.2004.039347
10.1093/bioinformatics/btu825
10.1002/humu.20921
10.1016/j.cmet.2014.07.001
10.1016/0304-3940(95)12146-3
ContentType Journal Article
Copyright 2021
2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2021
Copyright_xml – notice: 2021
– notice: 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
– notice: 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2021
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.jare.2021.02.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
EISSN 2090-1224
EndPage 126
ExternalDocumentID oai_doaj_org_article_54abd4cd84a74639a4f61ca8309b85b4
PMC8463963
34603783
10_1016_j_jare_2021_02_003
S2090123221000291
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-f79cb6de1d93a4c2eaaf1cb09a1d387e7a0894a5333a4ec5031b4313050e6aef3
IEDL.DBID DOA
ISSN 2090-1232
2090-1224
IngestDate Wed Aug 27 01:18:01 EDT 2025
Thu Aug 21 14:16:58 EDT 2025
Fri Jul 11 04:06:01 EDT 2025
Thu Jan 02 22:56:37 EST 2025
Tue Jul 01 03:01:30 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 23 02:44:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneity
Subgroup
Alzheimer’s disease risk
Mitochondrial haplogroups
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-f79cb6de1d93a4c2eaaf1cb09a1d387e7a0894a5333a4ec5031b4313050e6aef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
ORCID 0000-0001-9781-6281
OpenAccessLink https://doaj.org/article/54abd4cd84a74639a4f61ca8309b85b4
PMID 34603783
PQID 2579092603
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_54abd4cd84a74639a4f61ca8309b85b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463963
proquest_miscellaneous_2579092603
pubmed_primary_34603783
crossref_citationtrail_10_1016_j_jare_2021_02_003
crossref_primary_10_1016_j_jare_2021_02_003
elsevier_sciencedirect_doi_10_1016_j_jare_2021_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ramezani, Komaki, Hashemi-Firouzi, Mortezaee, Faraji, Golipoor (b0010) 2020; 108
Garrison E and Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2012; 2012(1):arXiv:1207.3907.
Andrews, Fulton-Howard, Patterson, McFall, Gross, Michaelis (b0180) 2020; 87
Armstrong, Eperjesi, Gilmartin (b0165) 2002; 22
Maruszak, Safranow, Branicki, Gaweda-Walerych, Pospiech, Gabryelewicz (b0110) 2011; 27
Bellou, Baker, Leonenko, Bracher-Smith, Daunt, Menzies (b0020) 2020; 93
Strittmatter, Saunders, Schmechel, Pericakvance, Enghild, Salvesen (b0030) 1993; 90
Lott, Leipzig, Derbeneva, Xie, Chalkia, Sarmady (b0155) 2013; 44
Edland, Silverman, Peskind, Tsuang, Wijsman, Morris (b0070) 1996; 47
Hutchin, Cortopassi (b0080) 1995; 92
Rackham, Mercer, Filipovska (b0065) 2012; 3
Hallberg, Larsson (b0060) 2014; 20
Asadbegi, Yaghmaei, Salehi, Komaki, Ebrahim-Habibi (b0005) 2017; 32
Chang, Ma, Miranda, Balestra, Mahley, Huang (b0045) 2005; 102
Shahidi, Zargooshnia, Asl, Komaki, Sarihi (b0015) 2017; 131
Zsurka, Kálmán, Juhász, Császár, Raskó, Janka (b0205) 1998; 44
Shoffner, Brown, Torroni, Lott, Cabell, Mirra (b0090) 1993; 17
van der Walt, Dementieva, Martin, Scott, Nicodemus, Kroner (b0105) 2004; 365
Wang, Yang, Schneider, De Jager, Bennett, Zhang (b0025) 2020; 93
Brown, Shoffner, Kim, Jun, Graham, Cabell (b0075) 1996; 61
Ridge, Kauwe (b0095) 2018; 6
Swerdlow, Hui, Chalise, Sharma, Wang, Andrews (b0040) 2020; 16
Li, Durbin (b0140) 2009; 25
Lin, Lin, Wisniewski, Hwang, Grundkeiqbal, Healylouie (b0085) 1992; 182
Li, Handsaker, Wysoker, Fennell, Ruan, Homer (b0145) 2009; 25
Fleck, Phu, Verschueren, Hinkle, Reichelt, Bhangale (b0050) 2019; 39
Tranah, Nalls, Katzman, Yokoyama, Lam, Zhao (b0115) 2012; 32
Li HZ, Liu DH, Lu JX and Bai YD. Physiology and Pathophysiology of Mitochondrial DNA. In: Scatena R, Bottoni P, Giardina B, editors. Advances In Mitochondrial Medicine; 2012. pp. 39-51.
Elson, Herrnstadt, Preston, Thal, Morris, Edwardson (b0190) 2006; 119
Hu Z, Pan Z, Lu H and Li W. Classification of Alzheimer’s Disease Based on Cortical Thickness Using AdaBoost and Combination Feature Selection Method. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. pp. 392-401.
Olsson, Vanderstichele, Andreasen, De Meyer, Wallin, Holmberg (b0135) 2005; 51
Tibshirani (b0170) 1996; 58
Bertram, Tanzi (b0035) 2019; 15
Navarro-Gomez, Leipzig, Shen, Lott, Stassen, Wallace (b0160) 2015; 31
Wragg, Talbot, Morris, Lendon, Goate (b0200) 1995; 201
ADNI. ADNI General Procedures Manual; 2010.
Efron, Hastie, Johnstone, Tibshirani (b0175) 2004; 32
Chinnery, Taylor, Howell, Andrews, Morris, Taylor (b0185) 2000; 55
Pa, Andrews, Swerdlow (b0055) 2019; 42
Chen, Ayutyanont, Langbaum, Fleisher, Reschke, Lee (b0130) 2011; 56
van Oven, Kayser (b0195) 2009; 30
Ridge (10.1016/j.jare.2021.02.003_b0095) 2018; 6
Shahidi (10.1016/j.jare.2021.02.003_b0015) 2017; 131
Chang (10.1016/j.jare.2021.02.003_b0045) 2005; 102
Ramezani (10.1016/j.jare.2021.02.003_b0010) 2020; 108
Andrews (10.1016/j.jare.2021.02.003_b0180) 2020; 87
10.1016/j.jare.2021.02.003_b0120
Tranah (10.1016/j.jare.2021.02.003_b0115) 2012; 32
Chinnery (10.1016/j.jare.2021.02.003_b0185) 2000; 55
10.1016/j.jare.2021.02.003_b0100
10.1016/j.jare.2021.02.003_b0125
Elson (10.1016/j.jare.2021.02.003_b0190) 2006; 119
Navarro-Gomez (10.1016/j.jare.2021.02.003_b0160) 2015; 31
Hutchin (10.1016/j.jare.2021.02.003_b0080) 1995; 92
Chen (10.1016/j.jare.2021.02.003_b0130) 2011; 56
Tibshirani (10.1016/j.jare.2021.02.003_b0170) 1996; 58
Maruszak (10.1016/j.jare.2021.02.003_b0110) 2011; 27
Strittmatter (10.1016/j.jare.2021.02.003_b0030) 1993; 90
Efron (10.1016/j.jare.2021.02.003_b0175) 2004; 32
Bertram (10.1016/j.jare.2021.02.003_b0035) 2019; 15
Wragg (10.1016/j.jare.2021.02.003_b0200) 1995; 201
Shoffner (10.1016/j.jare.2021.02.003_b0090) 1993; 17
Li (10.1016/j.jare.2021.02.003_b0145) 2009; 25
Lin (10.1016/j.jare.2021.02.003_b0085) 1992; 182
Li (10.1016/j.jare.2021.02.003_b0140) 2009; 25
Lott (10.1016/j.jare.2021.02.003_b0155) 2013; 44
10.1016/j.jare.2021.02.003_b0150
Pa (10.1016/j.jare.2021.02.003_b0055) 2019; 42
Rackham (10.1016/j.jare.2021.02.003_b0065) 2012; 3
van der Walt (10.1016/j.jare.2021.02.003_b0105) 2004; 365
Bellou (10.1016/j.jare.2021.02.003_b0020) 2020; 93
Swerdlow (10.1016/j.jare.2021.02.003_b0040) 2020; 16
Olsson (10.1016/j.jare.2021.02.003_b0135) 2005; 51
Edland (10.1016/j.jare.2021.02.003_b0070) 1996; 47
Hallberg (10.1016/j.jare.2021.02.003_b0060) 2014; 20
van Oven (10.1016/j.jare.2021.02.003_b0195) 2009; 30
Asadbegi (10.1016/j.jare.2021.02.003_b0005) 2017; 32
Wang (10.1016/j.jare.2021.02.003_b0025) 2020; 93
Zsurka (10.1016/j.jare.2021.02.003_b0205) 1998; 44
Brown (10.1016/j.jare.2021.02.003_b0075) 1996; 61
Fleck (10.1016/j.jare.2021.02.003_b0050) 2019; 39
Armstrong (10.1016/j.jare.2021.02.003_b0165) 2002; 22
References_xml – volume: 42
  start-page: 759
  year: 2019
  end-page: 762
  ident: b0055
  article-title: Mitochondria and Alzheimer's: Is PTCD1 the smoking gun?
  publication-title: Trends Neurosci
– volume: 32
  start-page: 357
  year: 2012
  end-page: 372
  ident: b0115
  article-title: Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly
  publication-title: J Alzheimers Dis
– volume: 182
  start-page: 238
  year: 1992
  end-page: 246
  ident: b0085
  article-title: DETECTION OF POINT MUTATIONS IN CODON-331 OF MITOCHONDRIAL NADH DEHYDROGENASE SUBUNIT-2 IN ALZHEIMER BRAINS
  publication-title: Biochem Biophys Res Commun
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: b0145
  article-title: Durbin R and Genome Project Data P. The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 15
  start-page: 191
  year: 2019
  end-page: 192
  ident: b0035
  article-title: Alzheimer disease risk genes: 29 and counting
  publication-title: Nat Rev Neurol
– volume: 44
  year: 2013
  ident: b0155
  article-title: Procaccio V and Wallace DC. mtDNA variation and analysis using mitomap and mitomaster
  publication-title: Curr Protocols Bioinformatics
– volume: 92
  start-page: 6892
  year: 1995
  end-page: 6895
  ident: b0080
  article-title: A MITOCHONDRIAL-DNA CLONE IS ASSOCIATED WITH INCREASED RISK FOR ALZHEIMER-DISEASE
  publication-title: PNAS
– volume: 32
  start-page: 407
  year: 2004
  end-page: 451
  ident: b0175
  article-title: Least angle regression
  publication-title: Ann Stat
– volume: 61
  start-page: 283
  year: 1996
  end-page: 289
  ident: b0075
  article-title: Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients
  publication-title: Am J Med Genet
– volume: 30
  start-page: E386
  year: 2009
  end-page: E394
  ident: b0195
  article-title: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation
  publication-title: Hum Mutat
– volume: 3
  start-page: 675
  year: 2012
  end-page: 695
  ident: b0065
  article-title: The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression
  publication-title: Wiley Interdisciplinary Reviews-Rna
– volume: 16
  start-page: 1164
  year: 2020
  end-page: 1172
  ident: b0040
  article-title: Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts
  publication-title: Alzheimer's & dementia: J Alzheimer's Assoc
– volume: 27
  start-page: 197
  year: 2011
  end-page: 210
  ident: b0110
  article-title: The impact of mitochondrial and nuclear DNA variants on late-onset alzheimer's disease risk
  publication-title: J Alzheimers Dis
– volume: 51
  start-page: 336
  year: 2005
  end-page: 345
  ident: b0135
  article-title: Simultaneous measurement of beta-amyloid((1–42)), total tau, and phosphorylated tau (Thr(181)) in cerebrospinal fluid by the xMAP technology
  publication-title: Clin Chem
– volume: 32
  start-page: 827
  year: 2017
  end-page: 839
  ident: b0005
  article-title: Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats
  publication-title: Metab Brain Dis
– volume: 119
  start-page: 241
  year: 2006
  end-page: 254
  ident: b0190
  article-title: Does the mitochondrial genome play a role in the etiology of Alzheimer's disease?
  publication-title: Hum Genet
– volume: 102
  start-page: 18694
  year: 2005
  end-page: 18699
  ident: b0045
  article-title: Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity
  publication-title: PNAS
– volume: 90
  start-page: 1977
  year: 1993
  end-page: 1981
  ident: b0030
  article-title: APOLIPOPROTEIN-E - HIGH-AVIDITY BINDING TO BETA-AMYLOID AND INCREASED FREQUENCY OF TYPE-4 ALLELE IN LATE-ONSET FAMILIAL ALZHEIMER-DISEASE
  publication-title: PNAS
– volume: 87
  year: 2020
  ident: b0180
  article-title: Pa J and Alzheimers Dis Neuroimaging I. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiology Of
  publication-title: Aging.
– volume: 131
  start-page: 142
  year: 2017
  end-page: 149
  ident: b0015
  article-title: Influence of N-acetyl cysteine on beta-amyloid-induced Alzheimer's disease in a rat model: a behavioral and electrophysiological study
  publication-title: Brain Res Bull
– volume: 6
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0095
  article-title: Mitochondria and Alzheimer's disease: the role of mitochondrial genetic variation
  publication-title: Curr Genetic Med Rep
– reference: Li HZ, Liu DH, Lu JX and Bai YD. Physiology and Pathophysiology of Mitochondrial DNA. In: Scatena R, Bottoni P, Giardina B, editors. Advances In Mitochondrial Medicine; 2012. pp. 39-51.
– volume: 31
  start-page: 1310
  year: 2015
  end-page: 1312
  ident: b0160
  article-title: Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier
  publication-title: Bioinformatics
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: b0140
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– reference: ADNI. ADNI General Procedures Manual; 2010.
– reference: Hu Z, Pan Z, Lu H and Li W. Classification of Alzheimer’s Disease Based on Cortical Thickness Using AdaBoost and Combination Feature Selection Method. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. pp. 392-401.
– volume: 56
  start-page: 52
  year: 2011
  end-page: 60
  ident: b0130
  article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index
  publication-title: NeuroImage
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0170
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J Royal Statistical Soc Ser B-Methodol
– volume: 47
  start-page: 254
  year: 1996
  end-page: 256
  ident: b0070
  article-title: Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance
  publication-title: Neurology.
– volume: 44
  start-page: 371
  year: 1998
  end-page: 373
  ident: b0205
  article-title: No mitochondrial haplotype was found to increase risk for alzheimer’s disease
  publication-title: Biol Psychiatry
– volume: 55
  start-page: 302
  year: 2000
  ident: b0185
  article-title: Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies
  publication-title: Neurology
– volume: 365
  start-page: 28
  year: 2004
  end-page: 32
  ident: b0105
  article-title: Analysis of European mitochondrial haplogroups with Alzheimer disease risk
  publication-title: Neurosci Lett
– volume: 201
  start-page: 107
  year: 1995
  end-page: 110
  ident: b0200
  article-title: No association found between Alzheimer's disease and a mitochondrial tRNA glutamine gene variant
  publication-title: Neurosci Lett
– volume: 20
  start-page: 226
  year: 2014
  end-page: 240
  ident: b0060
  article-title: Making proteins in the powerhouse
  publication-title: Cell Metab
– volume: 108
  start-page: 101804
  year: 2020
  ident: b0010
  article-title: Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease
  publication-title: J Chem Neuroanat
– volume: 93
  start-page: 69
  year: 2020
  end-page: 77
  ident: b0020
  article-title: Age-dependent effect of APOE and polygenic component on Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 93
  start-page: 61
  year: 2020
  end-page: 68
  ident: b0025
  article-title: Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease
  publication-title: Neurobiol Aging
– reference: Garrison E and Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2012; 2012(1):arXiv:1207.3907.
– volume: 22
  start-page: 248
  year: 2002
  end-page: 256
  ident: b0165
  article-title: The application of analysis of variance (ANOVA) to different experimental designs in optometry
  publication-title: Ophthalmic Physiol Opt
– volume: 39
  start-page: 4636
  year: 2019
  end-page: 4656
  ident: b0050
  article-title: PTCD1 is required for mitochondrial oxidative-phosphorylation: possible genetic association with Alzheimer's Disease
  publication-title: J Neurosci
– volume: 17
  start-page: 171
  year: 1993
  end-page: 184
  ident: b0090
  article-title: Mitochondrial DNA variants observed in alzheimer disease and parkinson disease patients
  publication-title: Genomics
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 10.1016/j.jare.2021.02.003_b0145
  article-title: Durbin R and Genome Project Data P. The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 182
  start-page: 238
  issue: 1
  year: 1992
  ident: 10.1016/j.jare.2021.02.003_b0085
  article-title: DETECTION OF POINT MUTATIONS IN CODON-331 OF MITOCHONDRIAL NADH DEHYDROGENASE SUBUNIT-2 IN ALZHEIMER BRAINS
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/S0006-291X(05)80136-6
– volume: 27
  start-page: 197
  issue: 1
  year: 2011
  ident: 10.1016/j.jare.2021.02.003_b0110
  article-title: The impact of mitochondrial and nuclear DNA variants on late-onset alzheimer's disease risk
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-110710
– volume: 22
  start-page: 248
  issue: 3
  year: 2002
  ident: 10.1016/j.jare.2021.02.003_b0165
  article-title: The application of analysis of variance (ANOVA) to different experimental designs in optometry
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1046/j.1475-1313.2002.00020.x
– volume: 102
  start-page: 18694
  issue: 51
  year: 2005
  ident: 10.1016/j.jare.2021.02.003_b0045
  article-title: Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity
  publication-title: PNAS
  doi: 10.1073/pnas.0508254102
– volume: 32
  start-page: 357
  issue: 2
  year: 2012
  ident: 10.1016/j.jare.2021.02.003_b0115
  article-title: Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2012-120466
– volume: 15
  start-page: 191
  issue: 4
  year: 2019
  ident: 10.1016/j.jare.2021.02.003_b0035
  article-title: Alzheimer disease risk genes: 29 and counting
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-019-0158-4
– volume: 119
  start-page: 241
  issue: 3
  year: 2006
  ident: 10.1016/j.jare.2021.02.003_b0190
  article-title: Does the mitochondrial genome play a role in the etiology of Alzheimer's disease?
  publication-title: Hum Genet
  doi: 10.1007/s00439-005-0123-8
– volume: 93
  start-page: 69
  year: 2020
  ident: 10.1016/j.jare.2021.02.003_b0020
  article-title: Age-dependent effect of APOE and polygenic component on Alzheimer's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.04.024
– volume: 42
  start-page: 759
  issue: 11
  year: 2019
  ident: 10.1016/j.jare.2021.02.003_b0055
  article-title: Mitochondria and Alzheimer's: Is PTCD1 the smoking gun?
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2019.08.003
– volume: 56
  start-page: 52
  issue: 1
  year: 2011
  ident: 10.1016/j.jare.2021.02.003_b0130
  article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.049
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jare.2021.02.003_b0095
  article-title: Mitochondria and Alzheimer's disease: the role of mitochondrial genetic variation
  publication-title: Curr Genetic Med Rep
  doi: 10.1007/s40142-018-0132-2
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 10.1016/j.jare.2021.02.003_b0175
  article-title: Least angle regression
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– volume: 16
  start-page: 1164
  issue: 8
  year: 2020
  ident: 10.1016/j.jare.2021.02.003_b0040
  article-title: Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts
  publication-title: Alzheimer's & dementia: J Alzheimer's Assoc
  doi: 10.1002/alz.12119
– volume: 44
  issue: 1
  year: 2013
  ident: 10.1016/j.jare.2021.02.003_b0155
  article-title: Procaccio V and Wallace DC. mtDNA variation and analysis using mitomap and mitomaster
  publication-title: Curr Protocols Bioinformatics
  doi: 10.1002/0471250953.bi0123s44
– volume: 47
  start-page: 254
  issue: 1
  year: 1996
  ident: 10.1016/j.jare.2021.02.003_b0070
  article-title: Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance
  publication-title: Neurology.
  doi: 10.1212/WNL.47.1.254
– ident: 10.1016/j.jare.2021.02.003_b0125
  doi: 10.1007/978-3-642-24091-1_51
– volume: 87
  year: 2020
  ident: 10.1016/j.jare.2021.02.003_b0180
  article-title: Pa J and Alzheimers Dis Neuroimaging I. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiology Of
  publication-title: Aging.
– volume: 3
  start-page: 675
  issue: 5
  year: 2012
  ident: 10.1016/j.jare.2021.02.003_b0065
  article-title: The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression
  publication-title: Wiley Interdisciplinary Reviews-Rna
  doi: 10.1002/wrna.1128
– volume: 32
  start-page: 827
  issue: 3
  year: 2017
  ident: 10.1016/j.jare.2021.02.003_b0005
  article-title: Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats
  publication-title: Metab Brain Dis
  doi: 10.1007/s11011-017-9960-0
– volume: 61
  start-page: 283
  issue: 3
  year: 1996
  ident: 10.1016/j.jare.2021.02.003_b0075
  article-title: Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients
  publication-title: Am J Med Genet
  doi: 10.1002/(SICI)1096-8628(19960122)61:3<283::AID-AJMG15>3.0.CO;2-P
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.jare.2021.02.003_b0170
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J Royal Statistical Soc Ser B-Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 39
  start-page: 4636
  issue: 24
  year: 2019
  ident: 10.1016/j.jare.2021.02.003_b0050
  article-title: PTCD1 is required for mitochondrial oxidative-phosphorylation: possible genetic association with Alzheimer's Disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0116-19.2019
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: 10.1016/j.jare.2021.02.003_b0140
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 90
  start-page: 1977
  issue: 5
  year: 1993
  ident: 10.1016/j.jare.2021.02.003_b0030
  article-title: APOLIPOPROTEIN-E - HIGH-AVIDITY BINDING TO BETA-AMYLOID AND INCREASED FREQUENCY OF TYPE-4 ALLELE IN LATE-ONSET FAMILIAL ALZHEIMER-DISEASE
  publication-title: PNAS
  doi: 10.1073/pnas.90.5.1977
– volume: 44
  start-page: 371
  issue: 5
  year: 1998
  ident: 10.1016/j.jare.2021.02.003_b0205
  article-title: No mitochondrial haplotype was found to increase risk for alzheimer’s disease
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(97)00461-7
– volume: 55
  start-page: 302
  issue: 2
  year: 2000
  ident: 10.1016/j.jare.2021.02.003_b0185
  article-title: Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies
  publication-title: Neurology
  doi: 10.1212/WNL.55.2.302
– volume: 131
  start-page: 142
  year: 2017
  ident: 10.1016/j.jare.2021.02.003_b0015
  article-title: Influence of N-acetyl cysteine on beta-amyloid-induced Alzheimer's disease in a rat model: a behavioral and electrophysiological study
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2017.04.001
– ident: 10.1016/j.jare.2021.02.003_b0100
  doi: 10.1007/978-94-007-2869-1_2
– volume: 108
  start-page: 101804
  year: 2020
  ident: 10.1016/j.jare.2021.02.003_b0010
  article-title: Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease
  publication-title: J Chem Neuroanat
  doi: 10.1016/j.jchemneu.2020.101804
– ident: 10.1016/j.jare.2021.02.003_b0120
– volume: 93
  start-page: 61
  year: 2020
  ident: 10.1016/j.jare.2021.02.003_b0025
  article-title: Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.04.025
– volume: 365
  start-page: 28
  issue: 1
  year: 2004
  ident: 10.1016/j.jare.2021.02.003_b0105
  article-title: Analysis of European mitochondrial haplogroups with Alzheimer disease risk
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2004.04.051
– volume: 17
  start-page: 171
  issue: 1
  year: 1993
  ident: 10.1016/j.jare.2021.02.003_b0090
  article-title: Mitochondrial DNA variants observed in alzheimer disease and parkinson disease patients
  publication-title: Genomics
  doi: 10.1006/geno.1993.1299
– ident: 10.1016/j.jare.2021.02.003_b0150
– volume: 92
  start-page: 6892
  issue: 15
  year: 1995
  ident: 10.1016/j.jare.2021.02.003_b0080
  article-title: A MITOCHONDRIAL-DNA CLONE IS ASSOCIATED WITH INCREASED RISK FOR ALZHEIMER-DISEASE
  publication-title: PNAS
  doi: 10.1073/pnas.92.15.6892
– volume: 51
  start-page: 336
  issue: 2
  year: 2005
  ident: 10.1016/j.jare.2021.02.003_b0135
  article-title: Simultaneous measurement of beta-amyloid((1–42)), total tau, and phosphorylated tau (Thr(181)) in cerebrospinal fluid by the xMAP technology
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2004.039347
– volume: 31
  start-page: 1310
  issue: 8
  year: 2015
  ident: 10.1016/j.jare.2021.02.003_b0160
  article-title: Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu825
– volume: 30
  start-page: E386
  issue: 2
  year: 2009
  ident: 10.1016/j.jare.2021.02.003_b0195
  article-title: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation
  publication-title: Hum Mutat
  doi: 10.1002/humu.20921
– volume: 20
  start-page: 226
  issue: 2
  year: 2014
  ident: 10.1016/j.jare.2021.02.003_b0060
  article-title: Making proteins in the powerhouse
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.07.001
– volume: 201
  start-page: 107
  issue: 2
  year: 1995
  ident: 10.1016/j.jare.2021.02.003_b0200
  article-title: No association found between Alzheimer's disease and a mitochondrial tRNA glutamine gene variant
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(95)12146-3
SSID ssj0000388911
Score 2.256772
Snippet [Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the...
The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup...
• There is heterogeneity among subgroups of haplogroup J which influences AD risk. • The heterogeneity among haplogroup J influences the MCI-to-AD conversion...
Introduction: The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Alzheimer Disease - genetics
Alzheimer’s disease risk
DNA, Mitochondrial - genetics
Heterogeneity
Humans
Medicine
Mitochondrial haplogroups
Polymorphism, Single Nucleotide - genetics
Subgroup
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqnrggym8pICNxAKFok9hx7GNbUVWV4AKV9mZNHIdNVZLVpnvhxGv09fokzDjOioDUA8f4J5lkxjMTe-Ybxt6JRjnthUi0KptE5qlPAM1uArpWXgGdIdJ-x-cv6vxSXiyL5R47nXJhKKwy6v5RpwdtHVsW8Wsu1m27-JqnJjgEOW1R5yGDXUgdkviWJ7t9FkI7MaEML41PaELMnRnDvK5gQ2iZeYTuFDP7FGD8Z2bqXzf072jKP8zT2SP2MPqV_Hgk_YDt-e4xO4grd-DvI7z0hydsiZLBVxQF06PwePTCeag4xIdtFXI8Bt43fAVrQrPGS37B21jJBM0cP77-ufLtD7-5-3U78Hi-wylC_Sm7PPv07fQ8ifUVEkdlDJKmNK5Stc9qI0C63AM0matSA1ktdOlLSLWRgA4hdntX4Pqv0N9ADZEiG30jnrH9ru_8C8YdgEdHJKNJ9EtoSod3Mk2ufFb4Wh6ybPqq1kXwcaqBcW2nKLMrS5ywxAmb5gRZesg-7uasR-iNe0efELN2Iwk2OzT0m-82yo0tJFS1dLWWUEr0zUA2KnOgRWoqXVRIZjGx2s6kEG_V3vvwt5NcWFyedOYCne-3g0WNaFKDP4045vkoJzsShcTmUmNPOZOg2TvMe7p2FSDANVGvxMv_pPeIPaCrMafyFdu_2Wz9a3Subqo3YfX8BtBXI5U
  priority: 102
  providerName: Elsevier
Title The heterogeneity among subgroups of haplogroup J influencing Alzheimer’s disease risk
URI https://dx.doi.org/10.1016/j.jare.2021.02.003
https://www.ncbi.nlm.nih.gov/pubmed/34603783
https://www.proquest.com/docview/2579092603
https://pubmed.ncbi.nlm.nih.gov/PMC8463963
https://doaj.org/article/54abd4cd84a74639a4f61ca8309b85b4
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXBBlN_lpzISBxCKSGInsY9bRFVawQFRsTdr4ky0W7XZatO9cOI1eD2ehBnHu9qAVC5cIiW2E9sz9nyOx98I8Uq1pTeoVGLKqk10nmICZHYTME2JJfAeIv_v-PS5PD7TJ7NithPqi33CBnrgoePeFRrqRvvGaKg0mVPQbZl5MCq1tSnqwARKNm9nMRXmYGWMDcF3KZHdD1QeT8wMzl3nsGKOzDwSdqqRVQrk_SPj9Df4_NOHcscoHd0TdyOalNOhFfviFnb3xX4cr718HUml3zwQM9IHOWfflyWpDBL2liHOkOzXdTjZ0ctlK-dwxRzWdCtP5CLGLyHjJqcX3-e4uMTVrx8_exl3dST7pT8UZ0cfvr4_TmJUhcRz8IKkrayvywazxirQPkeANvN1aiFrlKmwgtRYDQQDKRl9QaO-JpRB80JKwsNWPRJ73bLDJ0J6ACT4kXEhXgjaytObbJuXmBXY6InINr3qfKQc58gXF27jW3buWBKOJeHSnIlKJ-LttszVQLhxY-5DFtY2J5NlhwekQi6qkPuXCk1EsRG1i7hjwBP0qsWNH3-50QtHg5J3WqDD5bp3NA_a1NJSkfI8HvRkW0Wl6XFlKKUaadCoDeOUbjEPxN-Ga1-qp_-j0c_EHW7KcKzyudi7Xq3xBeGr6_pA3J6efvl2ehCGFF0_zg5_A1cyJhw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPbSXCvoE-nClHlpV0SaxE9tHQEULBS4FaW-W4zjdIJqsNuyFU_9G_x6_hBnHWTWtxKHH-JFMMuOZiT3zDSEfWZVb6RiLZC6qiKexiwyY3cjIMne5wTNE3O84O8-nl_xkls02yOGQC4NhlUH39zrda-vQMglfc7Ko68n3NFbeIUhxizrFDPZH4A0IrN9wPDtYb7Qg3InydXhxQoQzQvJMH-d1ZZYIl5kG7E42MlAex39kp_71Q_8Op_zDPh1tkafBsaT7Pe3bZMM1z8h2WLod_RTwpT8_JzMQDTrHMJgWpMeBG059ySHarQqf5NHRtqJzs0A4a7ikJ7QOpUzAztH969u5q3-65d2v3x0NBzwUQ9RfkMujrxeH0ygUWIgs1jGIKqFskZcuKRUz3KbOmCqxRaxMUjIpnDCxVNyARwjdzmagAApwOEBFxMBHV7GXZLNpG_eaUGuMA08kwUn4T6iEhTupKs1dkrmS75Bk-KraBvRxLIJxrYcwsyuNnNDICR2niFm6Q76s5yx67I0HRx8gs9YjETfbN7TLHzoIjs64KUpuS8mN4OCcGV7liTWSxaqQWQFkZgOr9UgM4Vb1gw__MMiFhvWJhy6mce2q06ASVazgrxHGvOrlZE0i49AsJPSIkQSN3mHc09RzjwEukfqc7f4nve_J4-nF2ak-PT7_tkeeYE-fYPmGbN4sV-4teFo3xTu_ku4Bb7smtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+heterogeneity+among+subgroups+of+haplogroup+J+influencing+Alzheimer%E2%80%99s+disease+risk&rft.jtitle=Journal+of+advanced+research&rft.au=Liu%2C+HaoChen&rft.au=Zhang%2C+Yixuan&rft.au=Zhao%2C+Huimin&rft.au=Du%2C+Yanan&rft.date=2021-11-01&rft.issn=2090-1232&rft.volume=33&rft.spage=117&rft.epage=126&rft_id=info:doi/10.1016%2Fj.jare.2021.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jare_2021_02_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon