The heterogeneity among subgroups of haplogroup J influencing Alzheimer’s disease risk
[Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups...
Saved in:
Published in | Journal of advanced research Vol. 33; pp. 117 - 126 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau.
The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level.
The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level.
In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.
The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups.
Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk. |
---|---|
AbstractList | Introduction: The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. Objectives: The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. Methods: In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. Results: The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Conclusion: Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk. • There is heterogeneity among subgroups of haplogroup J which influences AD risk. • The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk. • The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk. The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level.IntroductionThe impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level.The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level.ObjectivesThe aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level.In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.MethodsIn total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements.The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups.ResultsThe frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups.Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.ConclusionHeterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk. [Display omitted] •There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the MCI-to-AD conversion risk.•The heterogeneity among subgroups of haplogroup J is independent of Aβ and p-tau. The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk. |
Author | Zhao, Huimin Liu, XiaoQuan Du, Yanan Liu, HaoChen Zhang, Yixuan |
Author_xml | – sequence: 1 givenname: HaoChen surname: Liu fullname: Liu, HaoChen email: haochenliu@cpu.edu.cn – sequence: 2 givenname: Yixuan orcidid: 0000-0001-9781-6281 surname: Zhang fullname: Zhang, Yixuan email: yxzhang@stu.cpu.edu.cn – sequence: 3 givenname: Huimin surname: Zhao fullname: Zhao, Huimin – sequence: 4 givenname: Yanan surname: Du fullname: Du, Yanan – sequence: 5 givenname: XiaoQuan surname: Liu fullname: Liu, XiaoQuan email: lxq@cpu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34603783$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1URMuhL8ACZcnmBF9ysSWEVFVciiqxKRI7a-JMEockPthJpbLiNXg9ngTnnLaiLOqNPZ7__0aamefkaHITEvKS0ZRRVrzp0x48ppxyllKeUiqekBNOFd0yzrOj-7fgx-Q0hJ7GI6RUjD0jxyIrqCilOCHfrjpMOpzRuxYntPNNAqOb2iQsVevdsguJa5IOdoPbh8nnxE7NsOBkbFSdDT87tCP6P79-h6S2ASFg4m34_oI8bWAIeHp7b8jXD--vzj9tL798vDg_u9yanLN525TKVEWNrFYCMsMRoGGmogpYLWSJJVCpMsiFiGk0ORWsygQTNKdYADZiQy4O3NpBr3fejuBvtAOr9x_Otxr8bM2AOs-gqjNTywzKrBAKsqZgBqSgqpJ5xG7IuwNrt1Qj1gan2cPwAPowM9lOt-5ayxVXiAh4fQvw7seCYdajDQaHASZ0S9A8LxVVPDY_Sl_9W-u-yN1ookAeBMa7EDw22tgZZuvW0nbQjOp1EXSv10XQ6yJoyjXds_l_1jv6o6a3BxPGaV1b9DoYG8eMtfVo5thO-5j9L3BNzpg |
CitedBy_id | crossref_primary_10_1016_j_mito_2022_06_008 crossref_primary_10_3390_genes13101789 crossref_primary_10_1002_alz_13449 crossref_primary_10_1111_acel_13601 crossref_primary_10_3233_JAD_220298 |
Cites_doi | 10.1093/bioinformatics/btp352 10.1016/S0006-291X(05)80136-6 10.3233/JAD-2011-110710 10.1046/j.1475-1313.2002.00020.x 10.1073/pnas.0508254102 10.3233/JAD-2012-120466 10.1038/s41582-019-0158-4 10.1007/s00439-005-0123-8 10.1016/j.neurobiolaging.2020.04.024 10.1016/j.tins.2019.08.003 10.1016/j.neuroimage.2011.01.049 10.1007/s40142-018-0132-2 10.1214/009053604000000067 10.1002/alz.12119 10.1002/0471250953.bi0123s44 10.1212/WNL.47.1.254 10.1007/978-3-642-24091-1_51 10.1002/wrna.1128 10.1007/s11011-017-9960-0 10.1002/(SICI)1096-8628(19960122)61:3<283::AID-AJMG15>3.0.CO;2-P 10.1111/j.2517-6161.1996.tb02080.x 10.1523/JNEUROSCI.0116-19.2019 10.1093/bioinformatics/btp324 10.1073/pnas.90.5.1977 10.1016/S0006-3223(97)00461-7 10.1212/WNL.55.2.302 10.1016/j.brainresbull.2017.04.001 10.1007/978-94-007-2869-1_2 10.1016/j.jchemneu.2020.101804 10.1016/j.neurobiolaging.2020.04.025 10.1016/j.neulet.2004.04.051 10.1006/geno.1993.1299 10.1073/pnas.92.15.6892 10.1373/clinchem.2004.039347 10.1093/bioinformatics/btu825 10.1002/humu.20921 10.1016/j.cmet.2014.07.001 10.1016/0304-3940(95)12146-3 |
ContentType | Journal Article |
Copyright | 2021 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2021 |
Copyright_xml | – notice: 2021 – notice: 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). – notice: 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2021 |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2021.02.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine |
EISSN | 2090-1224 |
EndPage | 126 |
ExternalDocumentID | oai_doaj_org_article_54abd4cd84a74639a4f61ca8309b85b4 PMC8463963 34603783 10_1016_j_jare_2021_02_003 S2090123221000291 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-f79cb6de1d93a4c2eaaf1cb09a1d387e7a0894a5333a4ec5031b4313050e6aef3 |
IEDL.DBID | DOA |
ISSN | 2090-1232 2090-1224 |
IngestDate | Wed Aug 27 01:18:01 EDT 2025 Thu Aug 21 14:16:58 EDT 2025 Fri Jul 11 04:06:01 EDT 2025 Thu Jan 02 22:56:37 EST 2025 Tue Jul 01 03:01:30 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 23 02:44:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneity Subgroup Alzheimer’s disease risk Mitochondrial haplogroups |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-f79cb6de1d93a4c2eaaf1cb09a1d387e7a0894a5333a4ec5031b4313050e6aef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. |
ORCID | 0000-0001-9781-6281 |
OpenAccessLink | https://doaj.org/article/54abd4cd84a74639a4f61ca8309b85b4 |
PMID | 34603783 |
PQID | 2579092603 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54abd4cd84a74639a4f61ca8309b85b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463963 proquest_miscellaneous_2579092603 pubmed_primary_34603783 crossref_citationtrail_10_1016_j_jare_2021_02_003 crossref_primary_10_1016_j_jare_2021_02_003 elsevier_sciencedirect_doi_10_1016_j_jare_2021_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ramezani, Komaki, Hashemi-Firouzi, Mortezaee, Faraji, Golipoor (b0010) 2020; 108 Garrison E and Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2012; 2012(1):arXiv:1207.3907. Andrews, Fulton-Howard, Patterson, McFall, Gross, Michaelis (b0180) 2020; 87 Armstrong, Eperjesi, Gilmartin (b0165) 2002; 22 Maruszak, Safranow, Branicki, Gaweda-Walerych, Pospiech, Gabryelewicz (b0110) 2011; 27 Bellou, Baker, Leonenko, Bracher-Smith, Daunt, Menzies (b0020) 2020; 93 Strittmatter, Saunders, Schmechel, Pericakvance, Enghild, Salvesen (b0030) 1993; 90 Lott, Leipzig, Derbeneva, Xie, Chalkia, Sarmady (b0155) 2013; 44 Edland, Silverman, Peskind, Tsuang, Wijsman, Morris (b0070) 1996; 47 Hutchin, Cortopassi (b0080) 1995; 92 Rackham, Mercer, Filipovska (b0065) 2012; 3 Hallberg, Larsson (b0060) 2014; 20 Asadbegi, Yaghmaei, Salehi, Komaki, Ebrahim-Habibi (b0005) 2017; 32 Chang, Ma, Miranda, Balestra, Mahley, Huang (b0045) 2005; 102 Shahidi, Zargooshnia, Asl, Komaki, Sarihi (b0015) 2017; 131 Zsurka, Kálmán, Juhász, Császár, Raskó, Janka (b0205) 1998; 44 Shoffner, Brown, Torroni, Lott, Cabell, Mirra (b0090) 1993; 17 van der Walt, Dementieva, Martin, Scott, Nicodemus, Kroner (b0105) 2004; 365 Wang, Yang, Schneider, De Jager, Bennett, Zhang (b0025) 2020; 93 Brown, Shoffner, Kim, Jun, Graham, Cabell (b0075) 1996; 61 Ridge, Kauwe (b0095) 2018; 6 Swerdlow, Hui, Chalise, Sharma, Wang, Andrews (b0040) 2020; 16 Li, Durbin (b0140) 2009; 25 Lin, Lin, Wisniewski, Hwang, Grundkeiqbal, Healylouie (b0085) 1992; 182 Li, Handsaker, Wysoker, Fennell, Ruan, Homer (b0145) 2009; 25 Fleck, Phu, Verschueren, Hinkle, Reichelt, Bhangale (b0050) 2019; 39 Tranah, Nalls, Katzman, Yokoyama, Lam, Zhao (b0115) 2012; 32 Li HZ, Liu DH, Lu JX and Bai YD. Physiology and Pathophysiology of Mitochondrial DNA. In: Scatena R, Bottoni P, Giardina B, editors. Advances In Mitochondrial Medicine; 2012. pp. 39-51. Elson, Herrnstadt, Preston, Thal, Morris, Edwardson (b0190) 2006; 119 Hu Z, Pan Z, Lu H and Li W. Classification of Alzheimer’s Disease Based on Cortical Thickness Using AdaBoost and Combination Feature Selection Method. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. pp. 392-401. Olsson, Vanderstichele, Andreasen, De Meyer, Wallin, Holmberg (b0135) 2005; 51 Tibshirani (b0170) 1996; 58 Bertram, Tanzi (b0035) 2019; 15 Navarro-Gomez, Leipzig, Shen, Lott, Stassen, Wallace (b0160) 2015; 31 Wragg, Talbot, Morris, Lendon, Goate (b0200) 1995; 201 ADNI. ADNI General Procedures Manual; 2010. Efron, Hastie, Johnstone, Tibshirani (b0175) 2004; 32 Chinnery, Taylor, Howell, Andrews, Morris, Taylor (b0185) 2000; 55 Pa, Andrews, Swerdlow (b0055) 2019; 42 Chen, Ayutyanont, Langbaum, Fleisher, Reschke, Lee (b0130) 2011; 56 van Oven, Kayser (b0195) 2009; 30 Ridge (10.1016/j.jare.2021.02.003_b0095) 2018; 6 Shahidi (10.1016/j.jare.2021.02.003_b0015) 2017; 131 Chang (10.1016/j.jare.2021.02.003_b0045) 2005; 102 Ramezani (10.1016/j.jare.2021.02.003_b0010) 2020; 108 Andrews (10.1016/j.jare.2021.02.003_b0180) 2020; 87 10.1016/j.jare.2021.02.003_b0120 Tranah (10.1016/j.jare.2021.02.003_b0115) 2012; 32 Chinnery (10.1016/j.jare.2021.02.003_b0185) 2000; 55 10.1016/j.jare.2021.02.003_b0100 10.1016/j.jare.2021.02.003_b0125 Elson (10.1016/j.jare.2021.02.003_b0190) 2006; 119 Navarro-Gomez (10.1016/j.jare.2021.02.003_b0160) 2015; 31 Hutchin (10.1016/j.jare.2021.02.003_b0080) 1995; 92 Chen (10.1016/j.jare.2021.02.003_b0130) 2011; 56 Tibshirani (10.1016/j.jare.2021.02.003_b0170) 1996; 58 Maruszak (10.1016/j.jare.2021.02.003_b0110) 2011; 27 Strittmatter (10.1016/j.jare.2021.02.003_b0030) 1993; 90 Efron (10.1016/j.jare.2021.02.003_b0175) 2004; 32 Bertram (10.1016/j.jare.2021.02.003_b0035) 2019; 15 Wragg (10.1016/j.jare.2021.02.003_b0200) 1995; 201 Shoffner (10.1016/j.jare.2021.02.003_b0090) 1993; 17 Li (10.1016/j.jare.2021.02.003_b0145) 2009; 25 Lin (10.1016/j.jare.2021.02.003_b0085) 1992; 182 Li (10.1016/j.jare.2021.02.003_b0140) 2009; 25 Lott (10.1016/j.jare.2021.02.003_b0155) 2013; 44 10.1016/j.jare.2021.02.003_b0150 Pa (10.1016/j.jare.2021.02.003_b0055) 2019; 42 Rackham (10.1016/j.jare.2021.02.003_b0065) 2012; 3 van der Walt (10.1016/j.jare.2021.02.003_b0105) 2004; 365 Bellou (10.1016/j.jare.2021.02.003_b0020) 2020; 93 Swerdlow (10.1016/j.jare.2021.02.003_b0040) 2020; 16 Olsson (10.1016/j.jare.2021.02.003_b0135) 2005; 51 Edland (10.1016/j.jare.2021.02.003_b0070) 1996; 47 Hallberg (10.1016/j.jare.2021.02.003_b0060) 2014; 20 van Oven (10.1016/j.jare.2021.02.003_b0195) 2009; 30 Asadbegi (10.1016/j.jare.2021.02.003_b0005) 2017; 32 Wang (10.1016/j.jare.2021.02.003_b0025) 2020; 93 Zsurka (10.1016/j.jare.2021.02.003_b0205) 1998; 44 Brown (10.1016/j.jare.2021.02.003_b0075) 1996; 61 Fleck (10.1016/j.jare.2021.02.003_b0050) 2019; 39 Armstrong (10.1016/j.jare.2021.02.003_b0165) 2002; 22 |
References_xml | – volume: 42 start-page: 759 year: 2019 end-page: 762 ident: b0055 article-title: Mitochondria and Alzheimer's: Is PTCD1 the smoking gun? publication-title: Trends Neurosci – volume: 32 start-page: 357 year: 2012 end-page: 372 ident: b0115 article-title: Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly publication-title: J Alzheimers Dis – volume: 182 start-page: 238 year: 1992 end-page: 246 ident: b0085 article-title: DETECTION OF POINT MUTATIONS IN CODON-331 OF MITOCHONDRIAL NADH DEHYDROGENASE SUBUNIT-2 IN ALZHEIMER BRAINS publication-title: Biochem Biophys Res Commun – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: b0145 article-title: Durbin R and Genome Project Data P. The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 15 start-page: 191 year: 2019 end-page: 192 ident: b0035 article-title: Alzheimer disease risk genes: 29 and counting publication-title: Nat Rev Neurol – volume: 44 year: 2013 ident: b0155 article-title: Procaccio V and Wallace DC. mtDNA variation and analysis using mitomap and mitomaster publication-title: Curr Protocols Bioinformatics – volume: 92 start-page: 6892 year: 1995 end-page: 6895 ident: b0080 article-title: A MITOCHONDRIAL-DNA CLONE IS ASSOCIATED WITH INCREASED RISK FOR ALZHEIMER-DISEASE publication-title: PNAS – volume: 32 start-page: 407 year: 2004 end-page: 451 ident: b0175 article-title: Least angle regression publication-title: Ann Stat – volume: 61 start-page: 283 year: 1996 end-page: 289 ident: b0075 article-title: Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients publication-title: Am J Med Genet – volume: 30 start-page: E386 year: 2009 end-page: E394 ident: b0195 article-title: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation publication-title: Hum Mutat – volume: 3 start-page: 675 year: 2012 end-page: 695 ident: b0065 article-title: The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression publication-title: Wiley Interdisciplinary Reviews-Rna – volume: 16 start-page: 1164 year: 2020 end-page: 1172 ident: b0040 article-title: Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts publication-title: Alzheimer's & dementia: J Alzheimer's Assoc – volume: 27 start-page: 197 year: 2011 end-page: 210 ident: b0110 article-title: The impact of mitochondrial and nuclear DNA variants on late-onset alzheimer's disease risk publication-title: J Alzheimers Dis – volume: 51 start-page: 336 year: 2005 end-page: 345 ident: b0135 article-title: Simultaneous measurement of beta-amyloid((1–42)), total tau, and phosphorylated tau (Thr(181)) in cerebrospinal fluid by the xMAP technology publication-title: Clin Chem – volume: 32 start-page: 827 year: 2017 end-page: 839 ident: b0005 article-title: Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats publication-title: Metab Brain Dis – volume: 119 start-page: 241 year: 2006 end-page: 254 ident: b0190 article-title: Does the mitochondrial genome play a role in the etiology of Alzheimer's disease? publication-title: Hum Genet – volume: 102 start-page: 18694 year: 2005 end-page: 18699 ident: b0045 article-title: Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity publication-title: PNAS – volume: 90 start-page: 1977 year: 1993 end-page: 1981 ident: b0030 article-title: APOLIPOPROTEIN-E - HIGH-AVIDITY BINDING TO BETA-AMYLOID AND INCREASED FREQUENCY OF TYPE-4 ALLELE IN LATE-ONSET FAMILIAL ALZHEIMER-DISEASE publication-title: PNAS – volume: 87 year: 2020 ident: b0180 article-title: Pa J and Alzheimers Dis Neuroimaging I. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiology Of publication-title: Aging. – volume: 131 start-page: 142 year: 2017 end-page: 149 ident: b0015 article-title: Influence of N-acetyl cysteine on beta-amyloid-induced Alzheimer's disease in a rat model: a behavioral and electrophysiological study publication-title: Brain Res Bull – volume: 6 start-page: 1 year: 2018 end-page: 10 ident: b0095 article-title: Mitochondria and Alzheimer's disease: the role of mitochondrial genetic variation publication-title: Curr Genetic Med Rep – reference: Li HZ, Liu DH, Lu JX and Bai YD. Physiology and Pathophysiology of Mitochondrial DNA. In: Scatena R, Bottoni P, Giardina B, editors. Advances In Mitochondrial Medicine; 2012. pp. 39-51. – volume: 31 start-page: 1310 year: 2015 end-page: 1312 ident: b0160 article-title: Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier publication-title: Bioinformatics – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: b0140 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – reference: ADNI. ADNI General Procedures Manual; 2010. – reference: Hu Z, Pan Z, Lu H and Li W. Classification of Alzheimer’s Disease Based on Cortical Thickness Using AdaBoost and Combination Feature Selection Method. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. pp. 392-401. – volume: 56 start-page: 52 year: 2011 end-page: 60 ident: b0130 article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index publication-title: NeuroImage – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0170 article-title: Regression shrinkage and selection via the Lasso publication-title: J Royal Statistical Soc Ser B-Methodol – volume: 47 start-page: 254 year: 1996 end-page: 256 ident: b0070 article-title: Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance publication-title: Neurology. – volume: 44 start-page: 371 year: 1998 end-page: 373 ident: b0205 article-title: No mitochondrial haplotype was found to increase risk for alzheimer’s disease publication-title: Biol Psychiatry – volume: 55 start-page: 302 year: 2000 ident: b0185 article-title: Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies publication-title: Neurology – volume: 365 start-page: 28 year: 2004 end-page: 32 ident: b0105 article-title: Analysis of European mitochondrial haplogroups with Alzheimer disease risk publication-title: Neurosci Lett – volume: 201 start-page: 107 year: 1995 end-page: 110 ident: b0200 article-title: No association found between Alzheimer's disease and a mitochondrial tRNA glutamine gene variant publication-title: Neurosci Lett – volume: 20 start-page: 226 year: 2014 end-page: 240 ident: b0060 article-title: Making proteins in the powerhouse publication-title: Cell Metab – volume: 108 start-page: 101804 year: 2020 ident: b0010 article-title: Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease publication-title: J Chem Neuroanat – volume: 93 start-page: 69 year: 2020 end-page: 77 ident: b0020 article-title: Age-dependent effect of APOE and polygenic component on Alzheimer's disease publication-title: Neurobiol Aging – volume: 93 start-page: 61 year: 2020 end-page: 68 ident: b0025 article-title: Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease publication-title: Neurobiol Aging – reference: Garrison E and Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2012; 2012(1):arXiv:1207.3907. – volume: 22 start-page: 248 year: 2002 end-page: 256 ident: b0165 article-title: The application of analysis of variance (ANOVA) to different experimental designs in optometry publication-title: Ophthalmic Physiol Opt – volume: 39 start-page: 4636 year: 2019 end-page: 4656 ident: b0050 article-title: PTCD1 is required for mitochondrial oxidative-phosphorylation: possible genetic association with Alzheimer's Disease publication-title: J Neurosci – volume: 17 start-page: 171 year: 1993 end-page: 184 ident: b0090 article-title: Mitochondrial DNA variants observed in alzheimer disease and parkinson disease patients publication-title: Genomics – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 10.1016/j.jare.2021.02.003_b0145 article-title: Durbin R and Genome Project Data P. The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 182 start-page: 238 issue: 1 year: 1992 ident: 10.1016/j.jare.2021.02.003_b0085 article-title: DETECTION OF POINT MUTATIONS IN CODON-331 OF MITOCHONDRIAL NADH DEHYDROGENASE SUBUNIT-2 IN ALZHEIMER BRAINS publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(05)80136-6 – volume: 27 start-page: 197 issue: 1 year: 2011 ident: 10.1016/j.jare.2021.02.003_b0110 article-title: The impact of mitochondrial and nuclear DNA variants on late-onset alzheimer's disease risk publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-110710 – volume: 22 start-page: 248 issue: 3 year: 2002 ident: 10.1016/j.jare.2021.02.003_b0165 article-title: The application of analysis of variance (ANOVA) to different experimental designs in optometry publication-title: Ophthalmic Physiol Opt doi: 10.1046/j.1475-1313.2002.00020.x – volume: 102 start-page: 18694 issue: 51 year: 2005 ident: 10.1016/j.jare.2021.02.003_b0045 article-title: Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity publication-title: PNAS doi: 10.1073/pnas.0508254102 – volume: 32 start-page: 357 issue: 2 year: 2012 ident: 10.1016/j.jare.2021.02.003_b0115 article-title: Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly publication-title: J Alzheimers Dis doi: 10.3233/JAD-2012-120466 – volume: 15 start-page: 191 issue: 4 year: 2019 ident: 10.1016/j.jare.2021.02.003_b0035 article-title: Alzheimer disease risk genes: 29 and counting publication-title: Nat Rev Neurol doi: 10.1038/s41582-019-0158-4 – volume: 119 start-page: 241 issue: 3 year: 2006 ident: 10.1016/j.jare.2021.02.003_b0190 article-title: Does the mitochondrial genome play a role in the etiology of Alzheimer's disease? publication-title: Hum Genet doi: 10.1007/s00439-005-0123-8 – volume: 93 start-page: 69 year: 2020 ident: 10.1016/j.jare.2021.02.003_b0020 article-title: Age-dependent effect of APOE and polygenic component on Alzheimer's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.04.024 – volume: 42 start-page: 759 issue: 11 year: 2019 ident: 10.1016/j.jare.2021.02.003_b0055 article-title: Mitochondria and Alzheimer's: Is PTCD1 the smoking gun? publication-title: Trends Neurosci doi: 10.1016/j.tins.2019.08.003 – volume: 56 start-page: 52 issue: 1 year: 2011 ident: 10.1016/j.jare.2021.02.003_b0130 article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.049 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jare.2021.02.003_b0095 article-title: Mitochondria and Alzheimer's disease: the role of mitochondrial genetic variation publication-title: Curr Genetic Med Rep doi: 10.1007/s40142-018-0132-2 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 10.1016/j.jare.2021.02.003_b0175 article-title: Least angle regression publication-title: Ann Stat doi: 10.1214/009053604000000067 – volume: 16 start-page: 1164 issue: 8 year: 2020 ident: 10.1016/j.jare.2021.02.003_b0040 article-title: Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts publication-title: Alzheimer's & dementia: J Alzheimer's Assoc doi: 10.1002/alz.12119 – volume: 44 issue: 1 year: 2013 ident: 10.1016/j.jare.2021.02.003_b0155 article-title: Procaccio V and Wallace DC. mtDNA variation and analysis using mitomap and mitomaster publication-title: Curr Protocols Bioinformatics doi: 10.1002/0471250953.bi0123s44 – volume: 47 start-page: 254 issue: 1 year: 1996 ident: 10.1016/j.jare.2021.02.003_b0070 article-title: Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance publication-title: Neurology. doi: 10.1212/WNL.47.1.254 – ident: 10.1016/j.jare.2021.02.003_b0125 doi: 10.1007/978-3-642-24091-1_51 – volume: 87 year: 2020 ident: 10.1016/j.jare.2021.02.003_b0180 article-title: Pa J and Alzheimers Dis Neuroimaging I. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiology Of publication-title: Aging. – volume: 3 start-page: 675 issue: 5 year: 2012 ident: 10.1016/j.jare.2021.02.003_b0065 article-title: The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression publication-title: Wiley Interdisciplinary Reviews-Rna doi: 10.1002/wrna.1128 – volume: 32 start-page: 827 issue: 3 year: 2017 ident: 10.1016/j.jare.2021.02.003_b0005 article-title: Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats publication-title: Metab Brain Dis doi: 10.1007/s11011-017-9960-0 – volume: 61 start-page: 283 issue: 3 year: 1996 ident: 10.1016/j.jare.2021.02.003_b0075 article-title: Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients publication-title: Am J Med Genet doi: 10.1002/(SICI)1096-8628(19960122)61:3<283::AID-AJMG15>3.0.CO;2-P – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.jare.2021.02.003_b0170 article-title: Regression shrinkage and selection via the Lasso publication-title: J Royal Statistical Soc Ser B-Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 39 start-page: 4636 issue: 24 year: 2019 ident: 10.1016/j.jare.2021.02.003_b0050 article-title: PTCD1 is required for mitochondrial oxidative-phosphorylation: possible genetic association with Alzheimer's Disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0116-19.2019 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 10.1016/j.jare.2021.02.003_b0140 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 90 start-page: 1977 issue: 5 year: 1993 ident: 10.1016/j.jare.2021.02.003_b0030 article-title: APOLIPOPROTEIN-E - HIGH-AVIDITY BINDING TO BETA-AMYLOID AND INCREASED FREQUENCY OF TYPE-4 ALLELE IN LATE-ONSET FAMILIAL ALZHEIMER-DISEASE publication-title: PNAS doi: 10.1073/pnas.90.5.1977 – volume: 44 start-page: 371 issue: 5 year: 1998 ident: 10.1016/j.jare.2021.02.003_b0205 article-title: No mitochondrial haplotype was found to increase risk for alzheimer’s disease publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(97)00461-7 – volume: 55 start-page: 302 issue: 2 year: 2000 ident: 10.1016/j.jare.2021.02.003_b0185 article-title: Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies publication-title: Neurology doi: 10.1212/WNL.55.2.302 – volume: 131 start-page: 142 year: 2017 ident: 10.1016/j.jare.2021.02.003_b0015 article-title: Influence of N-acetyl cysteine on beta-amyloid-induced Alzheimer's disease in a rat model: a behavioral and electrophysiological study publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2017.04.001 – ident: 10.1016/j.jare.2021.02.003_b0100 doi: 10.1007/978-94-007-2869-1_2 – volume: 108 start-page: 101804 year: 2020 ident: 10.1016/j.jare.2021.02.003_b0010 article-title: Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease publication-title: J Chem Neuroanat doi: 10.1016/j.jchemneu.2020.101804 – ident: 10.1016/j.jare.2021.02.003_b0120 – volume: 93 start-page: 61 year: 2020 ident: 10.1016/j.jare.2021.02.003_b0025 article-title: Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.04.025 – volume: 365 start-page: 28 issue: 1 year: 2004 ident: 10.1016/j.jare.2021.02.003_b0105 article-title: Analysis of European mitochondrial haplogroups with Alzheimer disease risk publication-title: Neurosci Lett doi: 10.1016/j.neulet.2004.04.051 – volume: 17 start-page: 171 issue: 1 year: 1993 ident: 10.1016/j.jare.2021.02.003_b0090 article-title: Mitochondrial DNA variants observed in alzheimer disease and parkinson disease patients publication-title: Genomics doi: 10.1006/geno.1993.1299 – ident: 10.1016/j.jare.2021.02.003_b0150 – volume: 92 start-page: 6892 issue: 15 year: 1995 ident: 10.1016/j.jare.2021.02.003_b0080 article-title: A MITOCHONDRIAL-DNA CLONE IS ASSOCIATED WITH INCREASED RISK FOR ALZHEIMER-DISEASE publication-title: PNAS doi: 10.1073/pnas.92.15.6892 – volume: 51 start-page: 336 issue: 2 year: 2005 ident: 10.1016/j.jare.2021.02.003_b0135 article-title: Simultaneous measurement of beta-amyloid((1–42)), total tau, and phosphorylated tau (Thr(181)) in cerebrospinal fluid by the xMAP technology publication-title: Clin Chem doi: 10.1373/clinchem.2004.039347 – volume: 31 start-page: 1310 issue: 8 year: 2015 ident: 10.1016/j.jare.2021.02.003_b0160 article-title: Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu825 – volume: 30 start-page: E386 issue: 2 year: 2009 ident: 10.1016/j.jare.2021.02.003_b0195 article-title: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation publication-title: Hum Mutat doi: 10.1002/humu.20921 – volume: 20 start-page: 226 issue: 2 year: 2014 ident: 10.1016/j.jare.2021.02.003_b0060 article-title: Making proteins in the powerhouse publication-title: Cell Metab doi: 10.1016/j.cmet.2014.07.001 – volume: 201 start-page: 107 issue: 2 year: 1995 ident: 10.1016/j.jare.2021.02.003_b0200 article-title: No association found between Alzheimer's disease and a mitochondrial tRNA glutamine gene variant publication-title: Neurosci Lett doi: 10.1016/0304-3940(95)12146-3 |
SSID | ssj0000388911 |
Score | 2.256772 |
Snippet | [Display omitted]
•There is heterogeneity among subgroups of haplogroup J which influences AD risk.•The heterogeneity among haplogroup J influences the... The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup... • There is heterogeneity among subgroups of haplogroup J which influences AD risk. • The heterogeneity among haplogroup J influences the MCI-to-AD conversion... Introduction: The impact of mitochondrial haplogroups on Alzheimer’s disease (AD) risk has not been fully elucidated and warrants further investigation at the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | Alzheimer Disease - genetics Alzheimer’s disease risk DNA, Mitochondrial - genetics Heterogeneity Humans Medicine Mitochondrial haplogroups Polymorphism, Single Nucleotide - genetics Subgroup |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqnrggym8pICNxAKFok9hx7GNbUVWV4AKV9mZNHIdNVZLVpnvhxGv09fokzDjOioDUA8f4J5lkxjMTe-Ybxt6JRjnthUi0KptE5qlPAM1uArpWXgGdIdJ-x-cv6vxSXiyL5R47nXJhKKwy6v5RpwdtHVsW8Wsu1m27-JqnJjgEOW1R5yGDXUgdkviWJ7t9FkI7MaEML41PaELMnRnDvK5gQ2iZeYTuFDP7FGD8Z2bqXzf072jKP8zT2SP2MPqV_Hgk_YDt-e4xO4grd-DvI7z0hydsiZLBVxQF06PwePTCeag4xIdtFXI8Bt43fAVrQrPGS37B21jJBM0cP77-ufLtD7-5-3U78Hi-wylC_Sm7PPv07fQ8ifUVEkdlDJKmNK5Stc9qI0C63AM0matSA1ktdOlLSLWRgA4hdntX4Pqv0N9ADZEiG30jnrH9ru_8C8YdgEdHJKNJ9EtoSod3Mk2ufFb4Wh6ybPqq1kXwcaqBcW2nKLMrS5ywxAmb5gRZesg-7uasR-iNe0efELN2Iwk2OzT0m-82yo0tJFS1dLWWUEr0zUA2KnOgRWoqXVRIZjGx2s6kEG_V3vvwt5NcWFyedOYCne-3g0WNaFKDP4045vkoJzsShcTmUmNPOZOg2TvMe7p2FSDANVGvxMv_pPeIPaCrMafyFdu_2Wz9a3Subqo3YfX8BtBXI5U priority: 102 providerName: Elsevier |
Title | The heterogeneity among subgroups of haplogroup J influencing Alzheimer’s disease risk |
URI | https://dx.doi.org/10.1016/j.jare.2021.02.003 https://www.ncbi.nlm.nih.gov/pubmed/34603783 https://www.proquest.com/docview/2579092603 https://pubmed.ncbi.nlm.nih.gov/PMC8463963 https://doaj.org/article/54abd4cd84a74639a4f61ca8309b85b4 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXBBlN_lpzISBxCKSGInsY9bRFVawQFRsTdr4ky0W7XZatO9cOI1eD2ehBnHu9qAVC5cIiW2E9sz9nyOx98I8Uq1pTeoVGLKqk10nmICZHYTME2JJfAeIv_v-PS5PD7TJ7NithPqi33CBnrgoePeFRrqRvvGaKg0mVPQbZl5MCq1tSnqwARKNm9nMRXmYGWMDcF3KZHdD1QeT8wMzl3nsGKOzDwSdqqRVQrk_SPj9Df4_NOHcscoHd0TdyOalNOhFfviFnb3xX4cr718HUml3zwQM9IHOWfflyWpDBL2liHOkOzXdTjZ0ctlK-dwxRzWdCtP5CLGLyHjJqcX3-e4uMTVrx8_exl3dST7pT8UZ0cfvr4_TmJUhcRz8IKkrayvywazxirQPkeANvN1aiFrlKmwgtRYDQQDKRl9QaO-JpRB80JKwsNWPRJ73bLDJ0J6ACT4kXEhXgjaytObbJuXmBXY6InINr3qfKQc58gXF27jW3buWBKOJeHSnIlKJ-LttszVQLhxY-5DFtY2J5NlhwekQi6qkPuXCk1EsRG1i7hjwBP0qsWNH3-50QtHg5J3WqDD5bp3NA_a1NJSkfI8HvRkW0Wl6XFlKKUaadCoDeOUbjEPxN-Ga1-qp_-j0c_EHW7KcKzyudi7Xq3xBeGr6_pA3J6efvl2ehCGFF0_zg5_A1cyJhw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPbSXCvoE-nClHlpV0SaxE9tHQEULBS4FaW-W4zjdIJqsNuyFU_9G_x6_hBnHWTWtxKHH-JFMMuOZiT3zDSEfWZVb6RiLZC6qiKexiwyY3cjIMne5wTNE3O84O8-nl_xkls02yOGQC4NhlUH39zrda-vQMglfc7Ko68n3NFbeIUhxizrFDPZH4A0IrN9wPDtYb7Qg3InydXhxQoQzQvJMH-d1ZZYIl5kG7E42MlAex39kp_71Q_8Op_zDPh1tkafBsaT7Pe3bZMM1z8h2WLod_RTwpT8_JzMQDTrHMJgWpMeBG059ySHarQqf5NHRtqJzs0A4a7ikJ7QOpUzAztH969u5q3-65d2v3x0NBzwUQ9RfkMujrxeH0ygUWIgs1jGIKqFskZcuKRUz3KbOmCqxRaxMUjIpnDCxVNyARwjdzmagAApwOEBFxMBHV7GXZLNpG_eaUGuMA08kwUn4T6iEhTupKs1dkrmS75Bk-KraBvRxLIJxrYcwsyuNnNDICR2niFm6Q76s5yx67I0HRx8gs9YjETfbN7TLHzoIjs64KUpuS8mN4OCcGV7liTWSxaqQWQFkZgOr9UgM4Vb1gw__MMiFhvWJhy6mce2q06ASVazgrxHGvOrlZE0i49AsJPSIkQSN3mHc09RzjwEukfqc7f4nve_J4-nF2ak-PT7_tkeeYE-fYPmGbN4sV-4teFo3xTu_ku4Bb7smtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+heterogeneity+among+subgroups+of+haplogroup+J+influencing+Alzheimer%E2%80%99s+disease+risk&rft.jtitle=Journal+of+advanced+research&rft.au=Liu%2C+HaoChen&rft.au=Zhang%2C+Yixuan&rft.au=Zhao%2C+Huimin&rft.au=Du%2C+Yanan&rft.date=2021-11-01&rft.issn=2090-1232&rft.volume=33&rft.spage=117&rft.epage=126&rft_id=info:doi/10.1016%2Fj.jare.2021.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jare_2021_02_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |