Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC–MS and multivariate statistical analysis
Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be...
Saved in:
Published in | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Vol. 878; no. 28; pp. 2817 - 2825 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1
mmol/L and FPG <7.0
mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry (GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes. |
---|---|
AbstractList | Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes. Isolated post-challenge diabetes (IPD, 2h-PG >=11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and alpha -linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes. Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes. Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry (GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes. |
Author | Guan, Chunmei Li, Ying Li, Kang Sun, Changhao Wang, Cheng Liu, Liyan Feng, Rennan |
Author_xml | – sequence: 1 givenname: Liyan surname: Liu fullname: Liu, Liyan – sequence: 2 givenname: Ying surname: Li fullname: Li, Ying – sequence: 3 givenname: Chunmei surname: Guan fullname: Guan, Chunmei – sequence: 4 givenname: Kang surname: Li fullname: Li, Kang – sequence: 5 givenname: Cheng surname: Wang fullname: Wang, Cheng – sequence: 6 givenname: Rennan surname: Feng fullname: Feng, Rennan – sequence: 7 givenname: Changhao surname: Sun fullname: Sun, Changhao email: Sun2002changhao@yahoo.com |
BackLink | https://cir.nii.ac.jp/crid/1572824500681873792$$DView record in CiNii http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23378203$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20846914$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks-OFCEQxjtmjftHH0HDQeOpRxpoYOLBmIm7mqzxoCbeSDVduIzdzQjMJnPzHXwJn8snkd6ZzSZe9gKk-H1VVPGdVkdTmLCqnjZ00dBGvlov1vYqhrFbMFpiVC8obx9UJ41WvOZKfjsq51bRmjLOjqvTlNaUNooq_qg6ZlQLuWzESfXnPCISBznvCFjfkxEzdGHwlmxicH5AAlNPOh9GiD8wJhIc8SkMkLEnm5Byba9gGHD6jqT30GHGdCPJuw0SdhcbcRh83ibSQSrSMJGL1d9fvz9-vqHH7ZD9NURf8pKUIfuUvYWhXMKwSz49rh46GBI-Oexn1dfzd19W7-vLTxcfVm8va9uyJtdOLcH1opWNEE5L6AVlWvUgOiFboI63EoRuhZUClhT4EplzEhroNXKnLT-rXu7zlvZ_bjFlM_pky9thwrBNRquWaskFu5dUrZRSKzmTzw7kthuxN5voyzR35vYbCvDiAEAqTbsIk_XpjuNcaUZ54V7vORtDShGdsX6eVZhyBD-YhprZHGZtDuYwszkM1aaYo6jb_9S3Be7TPd_rJu9LwXktzmKaiZZSqWfHqeXc5Zs9huV7rj1Gk6zHyWLvI9ps-uDvKfQP7zXkHg |
CitedBy_id | crossref_primary_10_1016_j_cca_2014_07_001 crossref_primary_10_1039_C6RA01344A crossref_primary_10_18097_PBMC20166202206 crossref_primary_10_1002_mas_21848 crossref_primary_10_1007_s11356_023_26018_0 crossref_primary_10_1016_j_lfs_2025_123532 crossref_primary_10_1039_C3AN02130K crossref_primary_10_31083_j_fbl2808181 crossref_primary_10_1016_j_addr_2020_06_009 crossref_primary_10_2337_db20_1079 crossref_primary_10_1016_j_clinbiochem_2011_10_011 crossref_primary_10_1016_j_diabres_2015_01_014 crossref_primary_10_1038_srep10344 crossref_primary_10_3389_fphar_2021_735410 crossref_primary_10_3390_metabo12040357 crossref_primary_10_1111_acel_13199 crossref_primary_10_1016_j_jchromb_2018_09_004 crossref_primary_10_1021_ac202602u crossref_primary_10_1097_NEN_0000000000000116 crossref_primary_10_1002_glia_23983 crossref_primary_10_1002_bmc_3321 crossref_primary_10_1186_s12967_024_04922_4 crossref_primary_10_1515_enr_2016_0020 crossref_primary_10_1007_s10517_023_05915_x crossref_primary_10_1186_s13287_020_02102_x crossref_primary_10_14341_omet12938 crossref_primary_10_1016_j_ijdevneu_2015_04_350 crossref_primary_10_1016_j_aca_2013_07_060 crossref_primary_10_1039_C8RA01897A crossref_primary_10_1152_ajpendo_00302_2019 crossref_primary_10_1074_jbc_M114_548933 crossref_primary_10_1016_j_bcp_2014_08_009 crossref_primary_10_1002_jcp_24907 crossref_primary_10_1002_mnfr_201100392 crossref_primary_10_1016_j_jchromb_2018_05_013 crossref_primary_10_4155_bio_13_112 crossref_primary_10_1002_mnfr_201400670 crossref_primary_10_1021_acs_jafc_8b05036 crossref_primary_10_3390_diagnostics13050979 crossref_primary_10_1002_bmc_3963 crossref_primary_10_1002_jcb_30270 crossref_primary_10_1080_19382014_2025_2479911 crossref_primary_10_1371_journal_pone_0178271 crossref_primary_10_1039_C9FO02142F crossref_primary_10_2139_ssrn_4181417 crossref_primary_10_1002_bab_1105 crossref_primary_10_1039_C9FO00153K crossref_primary_10_1016_j_bbrep_2024_101849 crossref_primary_10_1080_00032719_2012_673094 crossref_primary_10_1016_j_prostaglandins_2013_08_003 crossref_primary_10_1172_JCI161348 crossref_primary_10_3390_nu8040227 crossref_primary_10_1002_mnfr_201200131 crossref_primary_10_3390_biomedicines10051189 crossref_primary_10_1016_j_jchromb_2017_04_017 crossref_primary_10_1080_07315724_2013_875420 crossref_primary_10_1186_s12944_020_01346_z crossref_primary_10_1007_s11306_021_01788_1 crossref_primary_10_1007_s11745_014_3890_y crossref_primary_10_1017_S0007114517003269 crossref_primary_10_1016_j_jbior_2023_100973 crossref_primary_10_1016_j_talanta_2015_09_040 crossref_primary_10_2337_db12_0646 crossref_primary_10_1007_s12553_019_00385_6 crossref_primary_10_1371_journal_pone_0122598 crossref_primary_10_1016_j_mce_2017_10_005 crossref_primary_10_1053_j_gastro_2016_10_007 crossref_primary_10_3390_molecules23071834 crossref_primary_10_3803_EnM_2022_1565 crossref_primary_10_1016_j_jhazmat_2024_136103 crossref_primary_10_1021_acs_jproteome_2c00295 crossref_primary_10_1111_jdi_13443 crossref_primary_10_1016_j_ab_2019_05_013 crossref_primary_10_1002_bmc_4922 crossref_primary_10_1194_jlr_M039347 crossref_primary_10_1039_C9FO02040C crossref_primary_10_1186_s12944_017_0551_1 crossref_primary_10_1007_s00125_016_3900_0 crossref_primary_10_1007_s00125_017_4534_6 crossref_primary_10_1186_s12263_021_00685_5 crossref_primary_10_1038_ejcn_2015_208 crossref_primary_10_2337_db12_0139 crossref_primary_10_1016_j_chroma_2016_07_017 crossref_primary_10_1021_acs_jafc_2c06311 crossref_primary_10_3390_nu11092022 crossref_primary_10_1039_c3fo30376d crossref_primary_10_1016_j_jfda_2019_10_003 crossref_primary_10_1111_febs_16306 crossref_primary_10_3945_jn_111_141762 crossref_primary_10_14814_phy2_14708 crossref_primary_10_1039_C4RA10539G crossref_primary_10_1016_j_jchromb_2013_01_038 crossref_primary_10_3390_metabo13050641 crossref_primary_10_1373_clinchem_2012_200527 |
Cites_doi | 10.1038/414799a 10.1016/j.jchromb.2006.11.035 10.2337/diacare.20.7.1183 10.1373/clinchem.2007.089011 10.1021/ac0481001 10.2337/diacare.21.8.1236 10.2337/diacare.23.2.176 10.1200/JCO.2006.09.7550 10.1016/j.amjmed.2003.09.004 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S 10.1007/s001250051269 10.1093/brain/awm304 10.1093/jb/mvn105 10.1016/S1043-2760(00)00323-4 10.1016/0002-9343(88)90402-0 10.1016/j.jchromb.2004.09.023 10.1016/j.febslet.2006.11.043 10.1038/nature01478 10.1046/j.1525-1381.1999.99220.x 10.1093/ajcn/86.3.542 10.1016/j.aca.2008.11.058 10.2337/diabetes.40.2.280 10.1056/NEJM200105033441801 10.1016/j.metabol.2006.09.009 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS Copyright © 2010 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2010 Elsevier B.V. All rights reserved. |
DBID | RYH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TB 8FD FR3 |
DOI | 10.1016/j.jchromb.2010.08.035 |
DatabaseName | CiNii Complete CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-376X |
EndPage | 2825 |
ExternalDocumentID | 20846914 23378203 10_1016_j_jchromb_2010_08_035 10028042663 S1570023210005337 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D-I DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCB SCC SDF SDG SDP SES SEW SPC SPCBC SSK SSU SSZ T5K VH1 XFK ZGI ~G- AATTM AAXKI AAYWO AEIPS AGCQF AGRNS AIIUN ANKPU RYH SSH AAYXX AFJKZ APXCP BNPGV CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c521t-f79afd456144f86ad40287da4b465a0f356a4854c64a90a39e2ff6a1ad8e3f8c3 |
IEDL.DBID | .~1 |
ISSN | 1570-0232 1873-376X |
IngestDate | Tue Aug 05 10:46:02 EDT 2025 Fri Jul 11 04:25:59 EDT 2025 Mon Jul 21 06:02:19 EDT 2025 Mon Jul 21 09:13:14 EDT 2025 Tue Jul 01 01:50:03 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Thu Jun 26 22:25:51 EDT 2025 Fri Feb 23 02:21:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | Biomarker Isolated post-challenge diabetes Free fatty acid Type 2 diabetes mellitus Gas chromatography–mass spectrometry Endocrinopathy Type 2 diabetes Statistical analysis Metabolite Biological marker Lipids Metabolic diseases Gas chromatography-mass spectrometry Multivariate analysis Isolation Mass spectrometry |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-f79afd456144f86ad40287da4b465a0f356a4854c64a90a39e2ff6a1ad8e3f8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20846914 |
PQID | 756668762 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_875086342 proquest_miscellaneous_756668762 pubmed_primary_20846914 pascalfrancis_primary_23378203 crossref_citationtrail_10_1016_j_jchromb_2010_08_035 crossref_primary_10_1016_j_jchromb_2010_08_035 nii_cinii_1572824500681873792 elsevier_sciencedirect_doi_10_1016_j_jchromb_2010_08_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-10-15 |
PublicationDateYYYYMMDD | 2010-10-15 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences |
PublicationTitleAlternate | J Chromatogr B Analyt Technol Biomed Life Sci |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wikoff, Gangoiti, Barshop, Siuzdak (bib0075) 2007; 53 Kahn (bib0010) 1997; 20 Reaven, Chen (bib0060) 1988; 85 Wyne (bib0040) 2003; 115 Boden (bib0045) 1999; 3 Eriksson, Johansson, Kettaneh-Wold (bib0105) 2001 (bib0015) 1999; 42 Shaw, Hodge, Chitson, Zimmet (bib0030) 1999; 42 Evans, Chen, Ross, Shen, Lin, London (bib0065) 2002; 11 Itoh, Kawamata, Harada (bib0145) 2003; 422 Barrett-Connor, Ferrara (bib0025) 1998; 21 Wang, Kong, Guan, Yang, Xu (bib0110) 2005; 77 Tuomìlehto, Undstròm, Eriksson (bib0055) 2001; 344 Zeisel (bib0090) 2007; 86 Yi, He (bib0100) 2006; 580 Li, Xu, Lu, Yang, Xu (bib0130) 2009; 633 Yuan, Kong, Guan, Xu (bib0125) 2007; 850 Xue, Lin, Deng, Dong, Liu, Wang, Shen (bib0080) 2008; 22 L. Eriksson, E. Johansson, N. Kettanah-Wold, S. Wold, Umetrics AB, Malmo, Sweden, 1999. Resnick, Harris, Brock, Harris (bib0020) 2000; 23 Storlien, Jenkins, Chishoim (bib0050) 1991; 40 User's Guide to SIMCA-P, SIMCA-P+ version 11.0, Umetrics AB, Ume. Ruddock, Stein, Landaker, Robert (bib0135) 2008; 144 Saltiel, Kahn (bib0150) 2001; 414 Bergman, Ader (bib0035) 2000; 11 Yang, Xu (bib0095) 2004; 813 Claudino, Quattrone, Biganzoli, Pestrin, Bertini, Di Leo (bib0070) 2007; 25 Alberti, Zimmet (bib0005) 1998; 15 Noto, Zahradka, Ryz, Yurkova, Xie, Taylor (bib0140) 2007; 56 Bogdanov, Matson, Wang, Matson, Saunders-Pullman, Bressman, Flint Beal (bib0085) 2008; 131 Tuomìlehto (10.1016/j.jchromb.2010.08.035_bib0055) 2001; 344 Yang (10.1016/j.jchromb.2010.08.035_bib0095) 2004; 813 Storlien (10.1016/j.jchromb.2010.08.035_bib0050) 1991; 40 Alberti (10.1016/j.jchromb.2010.08.035_bib0005) 1998; 15 Xue (10.1016/j.jchromb.2010.08.035_bib0080) 2008; 22 Itoh (10.1016/j.jchromb.2010.08.035_bib0145) 2003; 422 Kahn (10.1016/j.jchromb.2010.08.035_bib0010) 1997; 20 10.1016/j.jchromb.2010.08.035_bib0115 Li (10.1016/j.jchromb.2010.08.035_bib0130) 2009; 633 Bogdanov (10.1016/j.jchromb.2010.08.035_bib0085) 2008; 131 Ruddock (10.1016/j.jchromb.2010.08.035_bib0135) 2008; 144 Claudino (10.1016/j.jchromb.2010.08.035_bib0070) 2007; 25 Bergman (10.1016/j.jchromb.2010.08.035_bib0035) 2000; 11 Boden (10.1016/j.jchromb.2010.08.035_bib0045) 1999; 3 Reaven (10.1016/j.jchromb.2010.08.035_bib0060) 1988; 85 Wyne (10.1016/j.jchromb.2010.08.035_bib0040) 2003; 115 (10.1016/j.jchromb.2010.08.035_bib0015) 1999; 42 Saltiel (10.1016/j.jchromb.2010.08.035_bib0150) 2001; 414 Eriksson (10.1016/j.jchromb.2010.08.035_bib0105) 2001 10.1016/j.jchromb.2010.08.035_bib0120 Zeisel (10.1016/j.jchromb.2010.08.035_bib0090) 2007; 86 Yi (10.1016/j.jchromb.2010.08.035_bib0100) 2006; 580 Wang (10.1016/j.jchromb.2010.08.035_bib0110) 2005; 77 Wikoff (10.1016/j.jchromb.2010.08.035_bib0075) 2007; 53 Evans (10.1016/j.jchromb.2010.08.035_bib0065) 2002; 11 Noto (10.1016/j.jchromb.2010.08.035_bib0140) 2007; 56 Resnick (10.1016/j.jchromb.2010.08.035_bib0020) 2000; 23 Yuan (10.1016/j.jchromb.2010.08.035_bib0125) 2007; 850 Shaw (10.1016/j.jchromb.2010.08.035_bib0030) 1999; 42 Barrett-Connor (10.1016/j.jchromb.2010.08.035_bib0025) 1998; 21 |
References_xml | – volume: 56 start-page: 142 year: 2007 ident: bib0140 publication-title: Metabolism – volume: 3 start-page: 241 year: 1999 ident: bib0045 publication-title: Proc. Assoc. Am. Phys. – volume: 40 start-page: 280 year: 1991 ident: bib0050 publication-title: Diabetes – volume: 20 start-page: 1183 year: 1997 ident: bib0010 publication-title: Diabetes Care – volume: 633 start-page: 257 year: 2009 ident: bib0130 publication-title: Anal. Chim. Acta – year: 2001 ident: bib0105 article-title: Multi- and Megavariate Data Analysis—Part 1: Basic Principles and Applications – volume: 115 start-page: 29 year: 2003 ident: bib0040 publication-title: Am. J. Med – volume: 850 start-page: 236 year: 2007 ident: bib0125 publication-title: J. Chromatogr. B – volume: 11 start-page: 351 year: 2000 ident: bib0035 publication-title: Trends Endocrin. Met. – volume: 22 start-page: 3061 year: 2008 ident: bib0080 publication-title: Mass Spectrometr. – reference: User's Guide to SIMCA-P, SIMCA-P+ version 11.0, Umetrics AB, Ume. – volume: 344 start-page: 1343 year: 2001 ident: bib0055 publication-title: N. Engl. J. Med. – reference: L. Eriksson, E. Johansson, N. Kettanah-Wold, S. Wold, Umetrics AB, Malmo, Sweden, 1999. – volume: 414 start-page: 799 year: 2001 ident: bib0150 publication-title: Nature – volume: 42 start-page: 1050 year: 1999 ident: bib0030 publication-title: Diabetologia – volume: 85 start-page: 106 year: 1988 ident: bib0060 publication-title: Am. J. Med. – volume: 144 start-page: 599 year: 2008 ident: bib0135 publication-title: J. Biochem. – volume: 11 start-page: 369 year: 2002 ident: bib0065 publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 25 start-page: 2840 year: 2007 ident: bib0070 publication-title: J. Clin. Oncol. – volume: 77 start-page: 4108 year: 2005 ident: bib0110 publication-title: Anal. Chem. – volume: 21 start-page: 1236 year: 1998 ident: bib0025 publication-title: Diabetes Care – volume: 53 start-page: 2169 year: 2007 ident: bib0075 publication-title: Clin. Chem. – volume: 86 start-page: 542 year: 2007 ident: bib0090 publication-title: Am. J. Clin. Nutr. – volume: 131 start-page: 389 year: 2008 ident: bib0085 publication-title: Brain – volume: 23 start-page: 176 year: 2000 ident: bib0020 publication-title: Diabetes Care – volume: 813 start-page: 53 year: 2004 ident: bib0095 publication-title: J. Chromatogr. B – volume: 422 start-page: 173 year: 2003 ident: bib0145 publication-title: Nature – volume: 42 start-page: 647 year: 1999 ident: bib0015 article-title: Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe publication-title: Diabetologia – volume: 15 start-page: 539 year: 1998 ident: bib0005 publication-title: Diabetes Med. – volume: 580 start-page: 6837 year: 2006 ident: bib0100 publication-title: FEBS Lett. – volume: 414 start-page: 799 year: 2001 ident: 10.1016/j.jchromb.2010.08.035_bib0150 publication-title: Nature doi: 10.1038/414799a – ident: 10.1016/j.jchromb.2010.08.035_bib0115 – volume: 850 start-page: 236 year: 2007 ident: 10.1016/j.jchromb.2010.08.035_bib0125 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2006.11.035 – volume: 20 start-page: 1183 year: 1997 ident: 10.1016/j.jchromb.2010.08.035_bib0010 publication-title: Diabetes Care doi: 10.2337/diacare.20.7.1183 – volume: 53 start-page: 2169 year: 2007 ident: 10.1016/j.jchromb.2010.08.035_bib0075 publication-title: Clin. Chem. doi: 10.1373/clinchem.2007.089011 – volume: 22 start-page: 3061 year: 2008 ident: 10.1016/j.jchromb.2010.08.035_bib0080 publication-title: Mass Spectrometr. – volume: 77 start-page: 4108 year: 2005 ident: 10.1016/j.jchromb.2010.08.035_bib0110 publication-title: Anal. Chem. doi: 10.1021/ac0481001 – volume: 21 start-page: 1236 year: 1998 ident: 10.1016/j.jchromb.2010.08.035_bib0025 publication-title: Diabetes Care doi: 10.2337/diacare.21.8.1236 – volume: 23 start-page: 176 year: 2000 ident: 10.1016/j.jchromb.2010.08.035_bib0020 publication-title: Diabetes Care doi: 10.2337/diacare.23.2.176 – volume: 25 start-page: 2840 year: 2007 ident: 10.1016/j.jchromb.2010.08.035_bib0070 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.09.7550 – volume: 42 start-page: 647 year: 1999 ident: 10.1016/j.jchromb.2010.08.035_bib0015 article-title: Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe publication-title: Diabetologia – volume: 115 start-page: 29 year: 2003 ident: 10.1016/j.jchromb.2010.08.035_bib0040 publication-title: Am. J. Med doi: 10.1016/j.amjmed.2003.09.004 – volume: 15 start-page: 539 year: 1998 ident: 10.1016/j.jchromb.2010.08.035_bib0005 publication-title: Diabetes Med. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – volume: 42 start-page: 1050 year: 1999 ident: 10.1016/j.jchromb.2010.08.035_bib0030 publication-title: Diabetologia doi: 10.1007/s001250051269 – volume: 131 start-page: 389 year: 2008 ident: 10.1016/j.jchromb.2010.08.035_bib0085 publication-title: Brain doi: 10.1093/brain/awm304 – volume: 144 start-page: 599 year: 2008 ident: 10.1016/j.jchromb.2010.08.035_bib0135 publication-title: J. Biochem. doi: 10.1093/jb/mvn105 – volume: 11 start-page: 351 year: 2000 ident: 10.1016/j.jchromb.2010.08.035_bib0035 publication-title: Trends Endocrin. Met. doi: 10.1016/S1043-2760(00)00323-4 – volume: 85 start-page: 106 year: 1988 ident: 10.1016/j.jchromb.2010.08.035_bib0060 publication-title: Am. J. Med. doi: 10.1016/0002-9343(88)90402-0 – volume: 813 start-page: 53 year: 2004 ident: 10.1016/j.jchromb.2010.08.035_bib0095 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2004.09.023 – volume: 11 start-page: 369 year: 2002 ident: 10.1016/j.jchromb.2010.08.035_bib0065 publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 580 start-page: 6837 year: 2006 ident: 10.1016/j.jchromb.2010.08.035_bib0100 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.11.043 – volume: 422 start-page: 173 year: 2003 ident: 10.1016/j.jchromb.2010.08.035_bib0145 publication-title: Nature doi: 10.1038/nature01478 – volume: 3 start-page: 241 year: 1999 ident: 10.1016/j.jchromb.2010.08.035_bib0045 publication-title: Proc. Assoc. Am. Phys. doi: 10.1046/j.1525-1381.1999.99220.x – volume: 86 start-page: 542 year: 2007 ident: 10.1016/j.jchromb.2010.08.035_bib0090 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/86.3.542 – volume: 633 start-page: 257 year: 2009 ident: 10.1016/j.jchromb.2010.08.035_bib0130 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.11.058 – volume: 40 start-page: 280 year: 1991 ident: 10.1016/j.jchromb.2010.08.035_bib0050 publication-title: Diabetes doi: 10.2337/diabetes.40.2.280 – ident: 10.1016/j.jchromb.2010.08.035_bib0120 – year: 2001 ident: 10.1016/j.jchromb.2010.08.035_bib0105 – volume: 344 start-page: 1343 year: 2001 ident: 10.1016/j.jchromb.2010.08.035_bib0055 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200105033441801 – volume: 56 start-page: 142 year: 2007 ident: 10.1016/j.jchromb.2010.08.035_bib0140 publication-title: Metabolism doi: 10.1016/j.metabol.2006.09.009 |
SSID | ssj0017073 |
Score | 2.322513 |
Snippet | Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1
mmol/L and FPG <7.0
mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG)... Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels.... Isolated post-challenge diabetes (IPD, 2h-PG >=11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG)... |
SourceID | proquest pubmed pascalfrancis crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2817 |
SubjectTerms | Adult Aged Analysis Analysis of Variance Analytical, structural and metabolic biochemistry Biological and medical sciences Biomarker Biomarkers - blood Case-Control Studies Classification Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - blood Diagnosis Fasting Fatty acids Fatty Acids, Nonesterified - blood Female Free fatty acid Fundamental and applied biological sciences. Psychology Gas Chromatography-Mass Spectrometry General pharmacology Humans Isolated post-challenge diabetes Least-Squares Analysis Linear Models Male Medical sciences Middle Aged Patients Pharmacology. Drug treatments Principal Component Analysis Reproducibility of Results Type 2 diabetes mellitus |
Title | Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC–MS and multivariate statistical analysis |
URI | https://dx.doi.org/10.1016/j.jchromb.2010.08.035 https://cir.nii.ac.jp/crid/1572824500681873792 https://www.ncbi.nlm.nih.gov/pubmed/20846914 https://www.proquest.com/docview/756668762 https://www.proquest.com/docview/875086342 |
Volume | 878 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZd97KXsa27pFuDHsbenNiWbMuPISzLLi1jXaFvRtaFOTR2iJ1BX8b-w_7Eftd-yc5R5ITCSmEQHDBHQrY-63xHOhdCXjMtM0yjFhhgBwFnRgW5KHkQg31rVVSqzJ3onp6l8wv-4TK5PCDTPhYG3Sr92r9d091q7e-M_dscr6pqfB5havYYY1BcQClGlHOeIcpHP3ZuHlEWulNmFA5Qeh_FM16MFurbulmW3sNLjEJX9e2f-uleXVXoOClbeHd2W_TidlbqtNPsEXnoaSWdbEf-mByY-gk5mtRgUi-v6RvqHD3dDvoR-T1bG0Ot7LprKlWl6dJ0AIWrSlFfwZvKWlMMzEffnXVLG0srwCjQUk1XTdsFqi_BQvu9W9cE93NpvL-3xGyf3aalqCs1bWr6bvrn56_TcyftfBm_g60O_VIMbHI5o-EppE-U8pRczN5-nc4DX7AhUFgXIbBZLq1GSsa5FanUYJyKTEte8jSRoWVJKrlIuEq5zEPJchNbm8pIamGYFYo9I4d1U5sXhMo811Ea2zK00Fmuhcxj6IAhH4vC0gwI76epUD6bORbVuCp6t7VF4We3wNktsNgmSwZktGu22qbzuKuB6DFQ3MBlASrnrqYngBkYHV4Bf2Dc8gRDciKRsSyPB2R4A027AcUAZiBmbEBoD68CPno8yZG1aTZtkQEJT1GP3S4CdihYq4yDyPMtMvf9h0A684gf__-zvSQPnBsF_pJX5LBbb8wJsLOuHLrPb0juT6ZfPn3G__cf52d_AeHmO7M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615QAXBJRHgJY9ADcntnf9OnCoCqGlTS9tpd7Meh_CUWNHsQPKBfEf-BPc-Uf8EmY260SVqCohVYpysHZXa89795sZQl4zJRIso-Zp8A48zrT0srTgXgjxrZFBIRN7ozs6iQ_O-aeL6GKD_O5yYRBW6XT_Uqdbbe2eDNzXHEzLcnAaYGn2EHNQbEJp4pCVR3rxDeK25t3heyDymzAcfjjbP_BcawFPYgV_zySZMAqdB85NGgsFYVSaKMELHkfCNyyKBU8jLmMuMl-wTIfGxCIQKtXMpJLBupvkDgd1gW0T-t9XuJIg8e21Nu7Ow-2t04YG4_5YfpnVk8JBytK-b9vM_dMgblZliUhN0QCxzLLLxvVusDWHwwfkvvNj6d7yUz0kG7p6RLb3KojhJwv6llpkqT2y3ya_hjOtqRFtu6BClopOdAu8d1lK6lqGU1EpipUAECw0a2htaAlCAX6wotO6aT3Z9Xyh3WGxnYIHyDRcP5tgedF23lA0zorWFf24_-fHz9GpHW3Bk18FiFyrKWZS2SLV8BbCVWZ5TM5vhYxPyFZVV_oZoSLLVBCHpvANLJapVGQhLMDQAQz8QvcI78iUS1c-Hbt4XOYdTm6cO-rmSN0cu3uyqEf6q2nTZf2QmyakHQ_kVwQhBxt309Qd4BnYHf4D_0E0zSPMAQrShCVZ2CO7V7hptaEQpAc8QdYjtGOvHLQMXh2JStfzJk_A64_RcF4_BAJfCI8ZhyFPl5y5Xt8HLzcL-PP_f7dX5O7B2eg4Pz48OXpB7lkMB_6il2Srnc31DriGbbFrRZGSz7ct-38BSFR19A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+fatty+acid+metabolic+profile+and+biomarkers+of+isolated+post-challenge+diabetes+and+type+2+diabetes+mellitus+based+on+GC%E2%80%93MS+and+multivariate+statistical+analysis&rft.jtitle=Journal+of+chromatography.+B%2C+Analytical+technologies+in+the+biomedical+and+life+sciences&rft.au=Liu%2C+Liyan&rft.au=Li%2C+Ying&rft.au=Guan%2C+Chunmei&rft.au=Li%2C+Kang&rft.date=2010-10-15&rft.pub=Elsevier+B.V&rft.issn=1570-0232&rft.eissn=1873-376X&rft.volume=878&rft.issue=28&rft.spage=2817&rft.epage=2825&rft_id=info:doi/10.1016%2Fj.jchromb.2010.08.035&rft.externalDocID=S1570023210005337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0232&client=summon |