Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC–MS and multivariate statistical analysis

Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be...

Full description

Saved in:
Bibliographic Details
Published inJournal of chromatography. B, Analytical technologies in the biomedical and life sciences Vol. 878; no. 28; pp. 2817 - 2825
Main Authors Liu, Liyan, Li, Ying, Guan, Chunmei, Li, Kang, Wang, Cheng, Feng, Rennan, Sun, Changhao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry (GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.
AbstractList Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.
Isolated post-challenge diabetes (IPD, 2h-PG >=11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and alpha -linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.
Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.
Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control individuals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry (GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used for classification and prediction among the three groups. The predictive correct rates were 92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals, indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and α-linolenic acid were identified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These potential biomarkers might be helpful for diagnosis and characterization of diabetes.
Author Guan, Chunmei
Li, Ying
Li, Kang
Sun, Changhao
Wang, Cheng
Liu, Liyan
Feng, Rennan
Author_xml – sequence: 1
  givenname: Liyan
  surname: Liu
  fullname: Liu, Liyan
– sequence: 2
  givenname: Ying
  surname: Li
  fullname: Li, Ying
– sequence: 3
  givenname: Chunmei
  surname: Guan
  fullname: Guan, Chunmei
– sequence: 4
  givenname: Kang
  surname: Li
  fullname: Li, Kang
– sequence: 5
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
– sequence: 6
  givenname: Rennan
  surname: Feng
  fullname: Feng, Rennan
– sequence: 7
  givenname: Changhao
  surname: Sun
  fullname: Sun, Changhao
  email: Sun2002changhao@yahoo.com
BackLink https://cir.nii.ac.jp/crid/1572824500681873792$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23378203$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20846914$$D View this record in MEDLINE/PubMed
BookMark eNqFks-OFCEQxjtmjftHH0HDQeOpRxpoYOLBmIm7mqzxoCbeSDVduIzdzQjMJnPzHXwJn8snkd6ZzSZe9gKk-H1VVPGdVkdTmLCqnjZ00dBGvlov1vYqhrFbMFpiVC8obx9UJ41WvOZKfjsq51bRmjLOjqvTlNaUNooq_qg6ZlQLuWzESfXnPCISBznvCFjfkxEzdGHwlmxicH5AAlNPOh9GiD8wJhIc8SkMkLEnm5Byba9gGHD6jqT30GHGdCPJuw0SdhcbcRh83ibSQSrSMJGL1d9fvz9-vqHH7ZD9NURf8pKUIfuUvYWhXMKwSz49rh46GBI-Oexn1dfzd19W7-vLTxcfVm8va9uyJtdOLcH1opWNEE5L6AVlWvUgOiFboI63EoRuhZUClhT4EplzEhroNXKnLT-rXu7zlvZ_bjFlM_pky9thwrBNRquWaskFu5dUrZRSKzmTzw7kthuxN5voyzR35vYbCvDiAEAqTbsIk_XpjuNcaUZ54V7vORtDShGdsX6eVZhyBD-YhprZHGZtDuYwszkM1aaYo6jb_9S3Be7TPd_rJu9LwXktzmKaiZZSqWfHqeXc5Zs9huV7rj1Gk6zHyWLvI9ps-uDvKfQP7zXkHg
CitedBy_id crossref_primary_10_1016_j_cca_2014_07_001
crossref_primary_10_1039_C6RA01344A
crossref_primary_10_18097_PBMC20166202206
crossref_primary_10_1002_mas_21848
crossref_primary_10_1007_s11356_023_26018_0
crossref_primary_10_1016_j_lfs_2025_123532
crossref_primary_10_1039_C3AN02130K
crossref_primary_10_31083_j_fbl2808181
crossref_primary_10_1016_j_addr_2020_06_009
crossref_primary_10_2337_db20_1079
crossref_primary_10_1016_j_clinbiochem_2011_10_011
crossref_primary_10_1016_j_diabres_2015_01_014
crossref_primary_10_1038_srep10344
crossref_primary_10_3389_fphar_2021_735410
crossref_primary_10_3390_metabo12040357
crossref_primary_10_1111_acel_13199
crossref_primary_10_1016_j_jchromb_2018_09_004
crossref_primary_10_1021_ac202602u
crossref_primary_10_1097_NEN_0000000000000116
crossref_primary_10_1002_glia_23983
crossref_primary_10_1002_bmc_3321
crossref_primary_10_1186_s12967_024_04922_4
crossref_primary_10_1515_enr_2016_0020
crossref_primary_10_1007_s10517_023_05915_x
crossref_primary_10_1186_s13287_020_02102_x
crossref_primary_10_14341_omet12938
crossref_primary_10_1016_j_ijdevneu_2015_04_350
crossref_primary_10_1016_j_aca_2013_07_060
crossref_primary_10_1039_C8RA01897A
crossref_primary_10_1152_ajpendo_00302_2019
crossref_primary_10_1074_jbc_M114_548933
crossref_primary_10_1016_j_bcp_2014_08_009
crossref_primary_10_1002_jcp_24907
crossref_primary_10_1002_mnfr_201100392
crossref_primary_10_1016_j_jchromb_2018_05_013
crossref_primary_10_4155_bio_13_112
crossref_primary_10_1002_mnfr_201400670
crossref_primary_10_1021_acs_jafc_8b05036
crossref_primary_10_3390_diagnostics13050979
crossref_primary_10_1002_bmc_3963
crossref_primary_10_1002_jcb_30270
crossref_primary_10_1080_19382014_2025_2479911
crossref_primary_10_1371_journal_pone_0178271
crossref_primary_10_1039_C9FO02142F
crossref_primary_10_2139_ssrn_4181417
crossref_primary_10_1002_bab_1105
crossref_primary_10_1039_C9FO00153K
crossref_primary_10_1016_j_bbrep_2024_101849
crossref_primary_10_1080_00032719_2012_673094
crossref_primary_10_1016_j_prostaglandins_2013_08_003
crossref_primary_10_1172_JCI161348
crossref_primary_10_3390_nu8040227
crossref_primary_10_1002_mnfr_201200131
crossref_primary_10_3390_biomedicines10051189
crossref_primary_10_1016_j_jchromb_2017_04_017
crossref_primary_10_1080_07315724_2013_875420
crossref_primary_10_1186_s12944_020_01346_z
crossref_primary_10_1007_s11306_021_01788_1
crossref_primary_10_1007_s11745_014_3890_y
crossref_primary_10_1017_S0007114517003269
crossref_primary_10_1016_j_jbior_2023_100973
crossref_primary_10_1016_j_talanta_2015_09_040
crossref_primary_10_2337_db12_0646
crossref_primary_10_1007_s12553_019_00385_6
crossref_primary_10_1371_journal_pone_0122598
crossref_primary_10_1016_j_mce_2017_10_005
crossref_primary_10_1053_j_gastro_2016_10_007
crossref_primary_10_3390_molecules23071834
crossref_primary_10_3803_EnM_2022_1565
crossref_primary_10_1016_j_jhazmat_2024_136103
crossref_primary_10_1021_acs_jproteome_2c00295
crossref_primary_10_1111_jdi_13443
crossref_primary_10_1016_j_ab_2019_05_013
crossref_primary_10_1002_bmc_4922
crossref_primary_10_1194_jlr_M039347
crossref_primary_10_1039_C9FO02040C
crossref_primary_10_1186_s12944_017_0551_1
crossref_primary_10_1007_s00125_016_3900_0
crossref_primary_10_1007_s00125_017_4534_6
crossref_primary_10_1186_s12263_021_00685_5
crossref_primary_10_1038_ejcn_2015_208
crossref_primary_10_2337_db12_0139
crossref_primary_10_1016_j_chroma_2016_07_017
crossref_primary_10_1021_acs_jafc_2c06311
crossref_primary_10_3390_nu11092022
crossref_primary_10_1039_c3fo30376d
crossref_primary_10_1016_j_jfda_2019_10_003
crossref_primary_10_1111_febs_16306
crossref_primary_10_3945_jn_111_141762
crossref_primary_10_14814_phy2_14708
crossref_primary_10_1039_C4RA10539G
crossref_primary_10_1016_j_jchromb_2013_01_038
crossref_primary_10_3390_metabo13050641
crossref_primary_10_1373_clinchem_2012_200527
Cites_doi 10.1038/414799a
10.1016/j.jchromb.2006.11.035
10.2337/diacare.20.7.1183
10.1373/clinchem.2007.089011
10.1021/ac0481001
10.2337/diacare.21.8.1236
10.2337/diacare.23.2.176
10.1200/JCO.2006.09.7550
10.1016/j.amjmed.2003.09.004
10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
10.1007/s001250051269
10.1093/brain/awm304
10.1093/jb/mvn105
10.1016/S1043-2760(00)00323-4
10.1016/0002-9343(88)90402-0
10.1016/j.jchromb.2004.09.023
10.1016/j.febslet.2006.11.043
10.1038/nature01478
10.1046/j.1525-1381.1999.99220.x
10.1093/ajcn/86.3.542
10.1016/j.aca.2008.11.058
10.2337/diabetes.40.2.280
10.1056/NEJM200105033441801
10.1016/j.metabol.2006.09.009
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Elsevier B.V. All rights reserved.
DBID RYH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TB
8FD
FR3
DOI 10.1016/j.jchromb.2010.08.035
DatabaseName CiNii Complete
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-376X
EndPage 2825
ExternalDocumentID 20846914
23378203
10_1016_j_jchromb_2010_08_035
10028042663
S1570023210005337
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D-I
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSU
SSZ
T5K
VH1
XFK
ZGI
~G-
AATTM
AAXKI
AAYWO
AEIPS
AGCQF
AGRNS
AIIUN
ANKPU
RYH
SSH
AAYXX
AFJKZ
APXCP
BNPGV
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TB
8FD
FR3
ID FETCH-LOGICAL-c521t-f79afd456144f86ad40287da4b465a0f356a4854c64a90a39e2ff6a1ad8e3f8c3
IEDL.DBID .~1
ISSN 1570-0232
1873-376X
IngestDate Tue Aug 05 10:46:02 EDT 2025
Fri Jul 11 04:25:59 EDT 2025
Mon Jul 21 06:02:19 EDT 2025
Mon Jul 21 09:13:14 EDT 2025
Tue Jul 01 01:50:03 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Thu Jun 26 22:25:51 EDT 2025
Fri Feb 23 02:21:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords Biomarker
Isolated post-challenge diabetes
Free fatty acid
Type 2 diabetes mellitus
Gas chromatography–mass spectrometry
Endocrinopathy
Type 2 diabetes
Statistical analysis
Metabolite
Biological marker
Lipids
Metabolic diseases
Gas chromatography-mass spectrometry
Multivariate analysis
Isolation
Mass spectrometry
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-f79afd456144f86ad40287da4b465a0f356a4854c64a90a39e2ff6a1ad8e3f8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20846914
PQID 756668762
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_875086342
proquest_miscellaneous_756668762
pubmed_primary_20846914
pascalfrancis_primary_23378203
crossref_citationtrail_10_1016_j_jchromb_2010_08_035
crossref_primary_10_1016_j_jchromb_2010_08_035
nii_cinii_1572824500681873792
elsevier_sciencedirect_doi_10_1016_j_jchromb_2010_08_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-15
PublicationDateYYYYMMDD 2010-10-15
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
PublicationTitleAlternate J Chromatogr B Analyt Technol Biomed Life Sci
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wikoff, Gangoiti, Barshop, Siuzdak (bib0075) 2007; 53
Kahn (bib0010) 1997; 20
Reaven, Chen (bib0060) 1988; 85
Wyne (bib0040) 2003; 115
Boden (bib0045) 1999; 3
Eriksson, Johansson, Kettaneh-Wold (bib0105) 2001
(bib0015) 1999; 42
Shaw, Hodge, Chitson, Zimmet (bib0030) 1999; 42
Evans, Chen, Ross, Shen, Lin, London (bib0065) 2002; 11
Itoh, Kawamata, Harada (bib0145) 2003; 422
Barrett-Connor, Ferrara (bib0025) 1998; 21
Wang, Kong, Guan, Yang, Xu (bib0110) 2005; 77
Tuomìlehto, Undstròm, Eriksson (bib0055) 2001; 344
Zeisel (bib0090) 2007; 86
Yi, He (bib0100) 2006; 580
Li, Xu, Lu, Yang, Xu (bib0130) 2009; 633
Yuan, Kong, Guan, Xu (bib0125) 2007; 850
Xue, Lin, Deng, Dong, Liu, Wang, Shen (bib0080) 2008; 22
L. Eriksson, E. Johansson, N. Kettanah-Wold, S. Wold, Umetrics AB, Malmo, Sweden, 1999.
Resnick, Harris, Brock, Harris (bib0020) 2000; 23
Storlien, Jenkins, Chishoim (bib0050) 1991; 40
User's Guide to SIMCA-P, SIMCA-P+ version 11.0, Umetrics AB, Ume.
Ruddock, Stein, Landaker, Robert (bib0135) 2008; 144
Saltiel, Kahn (bib0150) 2001; 414
Bergman, Ader (bib0035) 2000; 11
Yang, Xu (bib0095) 2004; 813
Claudino, Quattrone, Biganzoli, Pestrin, Bertini, Di Leo (bib0070) 2007; 25
Alberti, Zimmet (bib0005) 1998; 15
Noto, Zahradka, Ryz, Yurkova, Xie, Taylor (bib0140) 2007; 56
Bogdanov, Matson, Wang, Matson, Saunders-Pullman, Bressman, Flint Beal (bib0085) 2008; 131
Tuomìlehto (10.1016/j.jchromb.2010.08.035_bib0055) 2001; 344
Yang (10.1016/j.jchromb.2010.08.035_bib0095) 2004; 813
Storlien (10.1016/j.jchromb.2010.08.035_bib0050) 1991; 40
Alberti (10.1016/j.jchromb.2010.08.035_bib0005) 1998; 15
Xue (10.1016/j.jchromb.2010.08.035_bib0080) 2008; 22
Itoh (10.1016/j.jchromb.2010.08.035_bib0145) 2003; 422
Kahn (10.1016/j.jchromb.2010.08.035_bib0010) 1997; 20
10.1016/j.jchromb.2010.08.035_bib0115
Li (10.1016/j.jchromb.2010.08.035_bib0130) 2009; 633
Bogdanov (10.1016/j.jchromb.2010.08.035_bib0085) 2008; 131
Ruddock (10.1016/j.jchromb.2010.08.035_bib0135) 2008; 144
Claudino (10.1016/j.jchromb.2010.08.035_bib0070) 2007; 25
Bergman (10.1016/j.jchromb.2010.08.035_bib0035) 2000; 11
Boden (10.1016/j.jchromb.2010.08.035_bib0045) 1999; 3
Reaven (10.1016/j.jchromb.2010.08.035_bib0060) 1988; 85
Wyne (10.1016/j.jchromb.2010.08.035_bib0040) 2003; 115
(10.1016/j.jchromb.2010.08.035_bib0015) 1999; 42
Saltiel (10.1016/j.jchromb.2010.08.035_bib0150) 2001; 414
Eriksson (10.1016/j.jchromb.2010.08.035_bib0105) 2001
10.1016/j.jchromb.2010.08.035_bib0120
Zeisel (10.1016/j.jchromb.2010.08.035_bib0090) 2007; 86
Yi (10.1016/j.jchromb.2010.08.035_bib0100) 2006; 580
Wang (10.1016/j.jchromb.2010.08.035_bib0110) 2005; 77
Wikoff (10.1016/j.jchromb.2010.08.035_bib0075) 2007; 53
Evans (10.1016/j.jchromb.2010.08.035_bib0065) 2002; 11
Noto (10.1016/j.jchromb.2010.08.035_bib0140) 2007; 56
Resnick (10.1016/j.jchromb.2010.08.035_bib0020) 2000; 23
Yuan (10.1016/j.jchromb.2010.08.035_bib0125) 2007; 850
Shaw (10.1016/j.jchromb.2010.08.035_bib0030) 1999; 42
Barrett-Connor (10.1016/j.jchromb.2010.08.035_bib0025) 1998; 21
References_xml – volume: 56
  start-page: 142
  year: 2007
  ident: bib0140
  publication-title: Metabolism
– volume: 3
  start-page: 241
  year: 1999
  ident: bib0045
  publication-title: Proc. Assoc. Am. Phys.
– volume: 40
  start-page: 280
  year: 1991
  ident: bib0050
  publication-title: Diabetes
– volume: 20
  start-page: 1183
  year: 1997
  ident: bib0010
  publication-title: Diabetes Care
– volume: 633
  start-page: 257
  year: 2009
  ident: bib0130
  publication-title: Anal. Chim. Acta
– year: 2001
  ident: bib0105
  article-title: Multi- and Megavariate Data Analysis—Part 1: Basic Principles and Applications
– volume: 115
  start-page: 29
  year: 2003
  ident: bib0040
  publication-title: Am. J. Med
– volume: 850
  start-page: 236
  year: 2007
  ident: bib0125
  publication-title: J. Chromatogr. B
– volume: 11
  start-page: 351
  year: 2000
  ident: bib0035
  publication-title: Trends Endocrin. Met.
– volume: 22
  start-page: 3061
  year: 2008
  ident: bib0080
  publication-title: Mass Spectrometr.
– reference: User's Guide to SIMCA-P, SIMCA-P+ version 11.0, Umetrics AB, Ume.
– volume: 344
  start-page: 1343
  year: 2001
  ident: bib0055
  publication-title: N. Engl. J. Med.
– reference: L. Eriksson, E. Johansson, N. Kettanah-Wold, S. Wold, Umetrics AB, Malmo, Sweden, 1999.
– volume: 414
  start-page: 799
  year: 2001
  ident: bib0150
  publication-title: Nature
– volume: 42
  start-page: 1050
  year: 1999
  ident: bib0030
  publication-title: Diabetologia
– volume: 85
  start-page: 106
  year: 1988
  ident: bib0060
  publication-title: Am. J. Med.
– volume: 144
  start-page: 599
  year: 2008
  ident: bib0135
  publication-title: J. Biochem.
– volume: 11
  start-page: 369
  year: 2002
  ident: bib0065
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 25
  start-page: 2840
  year: 2007
  ident: bib0070
  publication-title: J. Clin. Oncol.
– volume: 77
  start-page: 4108
  year: 2005
  ident: bib0110
  publication-title: Anal. Chem.
– volume: 21
  start-page: 1236
  year: 1998
  ident: bib0025
  publication-title: Diabetes Care
– volume: 53
  start-page: 2169
  year: 2007
  ident: bib0075
  publication-title: Clin. Chem.
– volume: 86
  start-page: 542
  year: 2007
  ident: bib0090
  publication-title: Am. J. Clin. Nutr.
– volume: 131
  start-page: 389
  year: 2008
  ident: bib0085
  publication-title: Brain
– volume: 23
  start-page: 176
  year: 2000
  ident: bib0020
  publication-title: Diabetes Care
– volume: 813
  start-page: 53
  year: 2004
  ident: bib0095
  publication-title: J. Chromatogr. B
– volume: 422
  start-page: 173
  year: 2003
  ident: bib0145
  publication-title: Nature
– volume: 42
  start-page: 647
  year: 1999
  ident: bib0015
  article-title: Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe
  publication-title: Diabetologia
– volume: 15
  start-page: 539
  year: 1998
  ident: bib0005
  publication-title: Diabetes Med.
– volume: 580
  start-page: 6837
  year: 2006
  ident: bib0100
  publication-title: FEBS Lett.
– volume: 414
  start-page: 799
  year: 2001
  ident: 10.1016/j.jchromb.2010.08.035_bib0150
  publication-title: Nature
  doi: 10.1038/414799a
– ident: 10.1016/j.jchromb.2010.08.035_bib0115
– volume: 850
  start-page: 236
  year: 2007
  ident: 10.1016/j.jchromb.2010.08.035_bib0125
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2006.11.035
– volume: 20
  start-page: 1183
  year: 1997
  ident: 10.1016/j.jchromb.2010.08.035_bib0010
  publication-title: Diabetes Care
  doi: 10.2337/diacare.20.7.1183
– volume: 53
  start-page: 2169
  year: 2007
  ident: 10.1016/j.jchromb.2010.08.035_bib0075
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2007.089011
– volume: 22
  start-page: 3061
  year: 2008
  ident: 10.1016/j.jchromb.2010.08.035_bib0080
  publication-title: Mass Spectrometr.
– volume: 77
  start-page: 4108
  year: 2005
  ident: 10.1016/j.jchromb.2010.08.035_bib0110
  publication-title: Anal. Chem.
  doi: 10.1021/ac0481001
– volume: 21
  start-page: 1236
  year: 1998
  ident: 10.1016/j.jchromb.2010.08.035_bib0025
  publication-title: Diabetes Care
  doi: 10.2337/diacare.21.8.1236
– volume: 23
  start-page: 176
  year: 2000
  ident: 10.1016/j.jchromb.2010.08.035_bib0020
  publication-title: Diabetes Care
  doi: 10.2337/diacare.23.2.176
– volume: 25
  start-page: 2840
  year: 2007
  ident: 10.1016/j.jchromb.2010.08.035_bib0070
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2006.09.7550
– volume: 42
  start-page: 647
  year: 1999
  ident: 10.1016/j.jchromb.2010.08.035_bib0015
  article-title: Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe
  publication-title: Diabetologia
– volume: 115
  start-page: 29
  year: 2003
  ident: 10.1016/j.jchromb.2010.08.035_bib0040
  publication-title: Am. J. Med
  doi: 10.1016/j.amjmed.2003.09.004
– volume: 15
  start-page: 539
  year: 1998
  ident: 10.1016/j.jchromb.2010.08.035_bib0005
  publication-title: Diabetes Med.
  doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
– volume: 42
  start-page: 1050
  year: 1999
  ident: 10.1016/j.jchromb.2010.08.035_bib0030
  publication-title: Diabetologia
  doi: 10.1007/s001250051269
– volume: 131
  start-page: 389
  year: 2008
  ident: 10.1016/j.jchromb.2010.08.035_bib0085
  publication-title: Brain
  doi: 10.1093/brain/awm304
– volume: 144
  start-page: 599
  year: 2008
  ident: 10.1016/j.jchromb.2010.08.035_bib0135
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvn105
– volume: 11
  start-page: 351
  year: 2000
  ident: 10.1016/j.jchromb.2010.08.035_bib0035
  publication-title: Trends Endocrin. Met.
  doi: 10.1016/S1043-2760(00)00323-4
– volume: 85
  start-page: 106
  year: 1988
  ident: 10.1016/j.jchromb.2010.08.035_bib0060
  publication-title: Am. J. Med.
  doi: 10.1016/0002-9343(88)90402-0
– volume: 813
  start-page: 53
  year: 2004
  ident: 10.1016/j.jchromb.2010.08.035_bib0095
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2004.09.023
– volume: 11
  start-page: 369
  year: 2002
  ident: 10.1016/j.jchromb.2010.08.035_bib0065
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 580
  start-page: 6837
  year: 2006
  ident: 10.1016/j.jchromb.2010.08.035_bib0100
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.11.043
– volume: 422
  start-page: 173
  year: 2003
  ident: 10.1016/j.jchromb.2010.08.035_bib0145
  publication-title: Nature
  doi: 10.1038/nature01478
– volume: 3
  start-page: 241
  year: 1999
  ident: 10.1016/j.jchromb.2010.08.035_bib0045
  publication-title: Proc. Assoc. Am. Phys.
  doi: 10.1046/j.1525-1381.1999.99220.x
– volume: 86
  start-page: 542
  year: 2007
  ident: 10.1016/j.jchromb.2010.08.035_bib0090
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/86.3.542
– volume: 633
  start-page: 257
  year: 2009
  ident: 10.1016/j.jchromb.2010.08.035_bib0130
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.058
– volume: 40
  start-page: 280
  year: 1991
  ident: 10.1016/j.jchromb.2010.08.035_bib0050
  publication-title: Diabetes
  doi: 10.2337/diabetes.40.2.280
– ident: 10.1016/j.jchromb.2010.08.035_bib0120
– year: 2001
  ident: 10.1016/j.jchromb.2010.08.035_bib0105
– volume: 344
  start-page: 1343
  year: 2001
  ident: 10.1016/j.jchromb.2010.08.035_bib0055
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200105033441801
– volume: 56
  start-page: 142
  year: 2007
  ident: 10.1016/j.jchromb.2010.08.035_bib0140
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2006.09.009
SSID ssj0017073
Score 2.322513
Snippet Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG)...
Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1mmol/L and FPG <7.0mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG) levels....
Isolated post-challenge diabetes (IPD, 2h-PG >=11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in screening for diabetes by fasting plasma glucose (FPG)...
SourceID proquest
pubmed
pascalfrancis
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2817
SubjectTerms Adult
Aged
Analysis
Analysis of Variance
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Biomarker
Biomarkers - blood
Case-Control Studies
Classification
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 2 - blood
Diagnosis
Fasting
Fatty acids
Fatty Acids, Nonesterified - blood
Female
Free fatty acid
Fundamental and applied biological sciences. Psychology
Gas Chromatography-Mass Spectrometry
General pharmacology
Humans
Isolated post-challenge diabetes
Least-Squares Analysis
Linear Models
Male
Medical sciences
Middle Aged
Patients
Pharmacology. Drug treatments
Principal Component Analysis
Reproducibility of Results
Type 2 diabetes mellitus
Title Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC–MS and multivariate statistical analysis
URI https://dx.doi.org/10.1016/j.jchromb.2010.08.035
https://cir.nii.ac.jp/crid/1572824500681873792
https://www.ncbi.nlm.nih.gov/pubmed/20846914
https://www.proquest.com/docview/756668762
https://www.proquest.com/docview/875086342
Volume 878
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZd97KXsa27pFuDHsbenNiWbMuPISzLLi1jXaFvRtaFOTR2iJ1BX8b-w_7Eftd-yc5R5ITCSmEQHDBHQrY-63xHOhdCXjMtM0yjFhhgBwFnRgW5KHkQg31rVVSqzJ3onp6l8wv-4TK5PCDTPhYG3Sr92r9d091q7e-M_dscr6pqfB5havYYY1BcQClGlHOeIcpHP3ZuHlEWulNmFA5Qeh_FM16MFurbulmW3sNLjEJX9e2f-uleXVXoOClbeHd2W_TidlbqtNPsEXnoaSWdbEf-mByY-gk5mtRgUi-v6RvqHD3dDvoR-T1bG0Ot7LprKlWl6dJ0AIWrSlFfwZvKWlMMzEffnXVLG0srwCjQUk1XTdsFqi_BQvu9W9cE93NpvL-3xGyf3aalqCs1bWr6bvrn56_TcyftfBm_g60O_VIMbHI5o-EppE-U8pRczN5-nc4DX7AhUFgXIbBZLq1GSsa5FanUYJyKTEte8jSRoWVJKrlIuEq5zEPJchNbm8pIamGYFYo9I4d1U5sXhMo811Ea2zK00Fmuhcxj6IAhH4vC0gwI76epUD6bORbVuCp6t7VF4We3wNktsNgmSwZktGu22qbzuKuB6DFQ3MBlASrnrqYngBkYHV4Bf2Dc8gRDciKRsSyPB2R4A027AcUAZiBmbEBoD68CPno8yZG1aTZtkQEJT1GP3S4CdihYq4yDyPMtMvf9h0A684gf__-zvSQPnBsF_pJX5LBbb8wJsLOuHLrPb0juT6ZfPn3G__cf52d_AeHmO7M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615QAXBJRHgJY9ADcntnf9OnCoCqGlTS9tpd7Meh_CUWNHsQPKBfEf-BPc-Uf8EmY260SVqCohVYpysHZXa89795sZQl4zJRIso-Zp8A48zrT0srTgXgjxrZFBIRN7ozs6iQ_O-aeL6GKD_O5yYRBW6XT_Uqdbbe2eDNzXHEzLcnAaYGn2EHNQbEJp4pCVR3rxDeK25t3heyDymzAcfjjbP_BcawFPYgV_zySZMAqdB85NGgsFYVSaKMELHkfCNyyKBU8jLmMuMl-wTIfGxCIQKtXMpJLBupvkDgd1gW0T-t9XuJIg8e21Nu7Ow-2t04YG4_5YfpnVk8JBytK-b9vM_dMgblZliUhN0QCxzLLLxvVusDWHwwfkvvNj6d7yUz0kG7p6RLb3KojhJwv6llpkqT2y3ya_hjOtqRFtu6BClopOdAu8d1lK6lqGU1EpipUAECw0a2htaAlCAX6wotO6aT3Z9Xyh3WGxnYIHyDRcP5tgedF23lA0zorWFf24_-fHz9GpHW3Bk18FiFyrKWZS2SLV8BbCVWZ5TM5vhYxPyFZVV_oZoSLLVBCHpvANLJapVGQhLMDQAQz8QvcI78iUS1c-Hbt4XOYdTm6cO-rmSN0cu3uyqEf6q2nTZf2QmyakHQ_kVwQhBxt309Qd4BnYHf4D_0E0zSPMAQrShCVZ2CO7V7hptaEQpAc8QdYjtGOvHLQMXh2JStfzJk_A64_RcF4_BAJfCI8ZhyFPl5y5Xt8HLzcL-PP_f7dX5O7B2eg4Pz48OXpB7lkMB_6il2Srnc31DriGbbFrRZGSz7ct-38BSFR19A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+fatty+acid+metabolic+profile+and+biomarkers+of+isolated+post-challenge+diabetes+and+type+2+diabetes+mellitus+based+on+GC%E2%80%93MS+and+multivariate+statistical+analysis&rft.jtitle=Journal+of+chromatography.+B%2C+Analytical+technologies+in+the+biomedical+and+life+sciences&rft.au=Liu%2C+Liyan&rft.au=Li%2C+Ying&rft.au=Guan%2C+Chunmei&rft.au=Li%2C+Kang&rft.date=2010-10-15&rft.pub=Elsevier+B.V&rft.issn=1570-0232&rft.eissn=1873-376X&rft.volume=878&rft.issue=28&rft.spage=2817&rft.epage=2825&rft_id=info:doi/10.1016%2Fj.jchromb.2010.08.035&rft.externalDocID=S1570023210005337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0232&client=summon