Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define...
Saved in:
Published in | Cell metabolism Vol. 32; no. 1; pp. 128 - 143.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
[Display omitted]
•A quantitative profiling of the mouse macrophage lipidome activated by immune stimuli•Macrophages alter lipid composition in a TLR-specific manner•MyD88-dependent TLRs alter lipid composition by increasing de novo MUFA synthesis•Inhibiting MUFA synthesis increases inflammation generated by MyD88-dependent TLRs
Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy. |
---|---|
AbstractList | Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
[Display omitted]
•A quantitative profiling of the mouse macrophage lipidome activated by immune stimuli•Macrophages alter lipid composition in a TLR-specific manner•MyD88-dependent TLRs alter lipid composition by increasing de novo MUFA synthesis•Inhibiting MUFA synthesis increases inflammation generated by MyD88-dependent TLRs
Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy. Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy. Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. |
Author | Son, Young Min Flavell, Richard A. Chi, Xun Smale, Stephen T. Sun, Jie Williams, Kevin J. Khialeeva, Elvira York, Autumn G. Kaplan, Amber Kronenberger, Eliza B. Hoi, Xen Ping Bensinger, Steven J. Bui, Viet L. Zhou, Quan D. Su, Baolong Hsieh, Wei-Yuan Scumpia, Philip O. Divakaruni, Ajit S. |
AuthorAffiliation | 3 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA 6 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA 2 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA 11 Lead Contact 1 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA 5 Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA 4 Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA 10 These authors contributed equally 8 Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA 7 Howard Hughes Medical Institute |
AuthorAffiliation_xml | – name: 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA – name: 7 Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA – name: 8 Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA – name: 10 These authors contributed equally – name: 3 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA – name: 2 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – name: 1 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – name: 4 Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – name: 5 Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – name: 6 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – name: 11 Lead Contact |
Author_xml | – sequence: 1 givenname: Wei-Yuan surname: Hsieh fullname: Hsieh, Wei-Yuan organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 2 givenname: Quan D. surname: Zhou fullname: Zhou, Quan D. organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – sequence: 3 givenname: Autumn G. surname: York fullname: York, Autumn G. organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 4 givenname: Kevin J. surname: Williams fullname: Williams, Kevin J. organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 5 givenname: Philip O. surname: Scumpia fullname: Scumpia, Philip O. organization: Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – sequence: 6 givenname: Eliza B. surname: Kronenberger fullname: Kronenberger, Eliza B. organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 7 givenname: Xen Ping surname: Hoi fullname: Hoi, Xen Ping organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 8 givenname: Baolong surname: Su fullname: Su, Baolong organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 9 givenname: Xun surname: Chi fullname: Chi, Xun organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 10 givenname: Viet L. surname: Bui fullname: Bui, Viet L. organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 11 givenname: Elvira surname: Khialeeva fullname: Khialeeva, Elvira organization: Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 12 givenname: Amber surname: Kaplan fullname: Kaplan, Amber organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 13 givenname: Young Min surname: Son fullname: Son, Young Min organization: Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA – sequence: 14 givenname: Ajit S. surname: Divakaruni fullname: Divakaruni, Ajit S. organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA – sequence: 15 givenname: Jie surname: Sun fullname: Sun, Jie organization: Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA – sequence: 16 givenname: Stephen T. surname: Smale fullname: Smale, Stephen T. organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA – sequence: 17 givenname: Richard A. surname: Flavell fullname: Flavell, Richard A. organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 18 givenname: Steven J. surname: Bensinger fullname: Bensinger, Steven J. email: sbensinger@mednet.ucla.edu organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32516576$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV-L1DAUxYOsuH_0C_ggffSlNTdtmhZEkEXdhRHBmfeQSW46GdukJp2F_fZmmHVZfdinXMjvnHs555Kc-eCRkLdAK6DQfthXesKlYpTRivKK0voFuYC-ZqVoGD3LM-e0bKCGc3KZ0j4Dbd3Xr8h5zTi0XLQXZL0J41iu3C8sfqLGeQkxFbfeHDQWazd4NZbrGbWzTmdgjmGIapqcH4pgi2WHxXelY5h3asBi5WZnwoSvyUurxoRvHt4rsvn6ZXN9U65-fLu9_rwqNWewlJYZsRVbZntuujw1XSeA647xpuOouQEGVokWqLWwbVpT8xbaru9RGN6L-op8OtnOh-2ERqNfohrlHN2k4r0Mysl_f7zbySHcSdH1AIJng_cPBjH8PmBa5OSSxnFUHsMhSdYA8L6jnGX03dNdj0v-BpkBdgJyGilFtI8IUHlsS-7lsS15bEtSLnMZWdT9J9JuUYsLx3vd-Lz040mKOeA7h1Em7dBrNC6iXqQJ7jn5H1K2sCw |
CitedBy_id | crossref_primary_10_3177_jnsv_69_62 crossref_primary_10_1089_can_2020_0181 crossref_primary_10_1080_21505594_2025_2459336 crossref_primary_10_1002_smll_202306483 crossref_primary_10_1016_j_lfs_2025_123411 crossref_primary_10_3389_fphys_2024_1431847 crossref_primary_10_1038_s42255_022_00722_6 crossref_primary_10_1186_s12974_022_02664_y crossref_primary_10_3892_ijmm_2023_5337 crossref_primary_10_1007_s11033_021_07092_4 crossref_primary_10_15252_embr_202357238 crossref_primary_10_3389_fimmu_2022_780839 crossref_primary_10_3389_fimmu_2022_967437 crossref_primary_10_1073_pnas_2114739119 crossref_primary_10_1016_j_molimm_2022_10_014 crossref_primary_10_1016_j_celrep_2024_114681 crossref_primary_10_1152_ajpcell_00235_2020 crossref_primary_10_1038_s43018_025_00909_2 crossref_primary_10_1016_j_msard_2023_105020 crossref_primary_10_3389_fimmu_2022_1050984 crossref_primary_10_1038_s41419_023_05741_z crossref_primary_10_1016_j_jddst_2024_106336 crossref_primary_10_1016_j_jep_2022_115308 crossref_primary_10_1093_jleuko_qiac011 crossref_primary_10_1016_j_actbio_2024_07_042 crossref_primary_10_1007_s00018_024_05521_8 crossref_primary_10_1007_s10142_023_01031_1 crossref_primary_10_1126_science_adf0966 crossref_primary_10_3389_fnut_2022_1082500 crossref_primary_10_3389_fimmu_2024_1495853 crossref_primary_10_1016_j_biopha_2023_115586 crossref_primary_10_3389_fimmu_2022_923024 crossref_primary_10_3389_fonc_2020_618515 crossref_primary_10_1159_000516780 crossref_primary_10_1007_s13258_023_01469_4 crossref_primary_10_1016_j_xpro_2020_100235 crossref_primary_10_3389_fonc_2022_944025 crossref_primary_10_3389_fendo_2021_626842 crossref_primary_10_1002_mco2_658 crossref_primary_10_1016_j_aca_2020_11_024 crossref_primary_10_1371_journal_ppat_1011658 crossref_primary_10_1210_endrev_bnab004 crossref_primary_10_1126_sciadv_abq1984 crossref_primary_10_1038_s41586_024_07098_5 crossref_primary_10_1093_jleuko_qiad114 crossref_primary_10_1038_s41556_024_01457_0 crossref_primary_10_1016_j_intimp_2022_109171 crossref_primary_10_1016_j_alcohol_2021_10_003 crossref_primary_10_3389_fimmu_2022_926220 crossref_primary_10_1111_bph_15642 crossref_primary_10_3389_fphar_2021_761883 crossref_primary_10_7554_eLife_71946 crossref_primary_10_2147_JIR_S475633 crossref_primary_10_4110_in_2023_23_e28 crossref_primary_10_1113_JP287791 crossref_primary_10_3389_fimmu_2021_828115 crossref_primary_10_1002_clc_24301 crossref_primary_10_1016_j_cmet_2020_09_013 crossref_primary_10_1016_j_jbc_2021_101341 crossref_primary_10_1042_BST20210857 crossref_primary_10_1080_14789450_2021_1995356 crossref_primary_10_1111_obr_13724 crossref_primary_10_1038_s41423_021_00827_0 crossref_primary_10_4103_1673_5374_391330 crossref_primary_10_1038_s44319_024_00351_y crossref_primary_10_1002_eji_202048944 crossref_primary_10_1016_j_tem_2024_08_009 crossref_primary_10_1016_j_bbalip_2021_159066 crossref_primary_10_1038_s41556_024_01441_8 crossref_primary_10_20900_immunometab20210021 crossref_primary_10_1126_scitranslmed_adi6682 crossref_primary_10_3389_fimmu_2023_1148188 crossref_primary_10_1038_s41467_022_34532_x crossref_primary_10_1039_D2MO00086E crossref_primary_10_1002_advs_202300601 crossref_primary_10_1016_j_jff_2024_106067 crossref_primary_10_1038_s41423_022_00902_0 crossref_primary_10_3389_fimmu_2021_665782 crossref_primary_10_3390_ijms26010111 crossref_primary_10_1111_mmi_15120 crossref_primary_10_1016_j_fsi_2023_108863 crossref_primary_10_1021_jasms_1c00203 crossref_primary_10_2147_JIR_S405722 crossref_primary_10_1016_j_isci_2021_103004 crossref_primary_10_1128_mbio_00925_23 crossref_primary_10_1016_j_nbd_2023_106370 crossref_primary_10_1128_mbio_00159_23 crossref_primary_10_1186_s11671_024_04175_6 crossref_primary_10_1016_j_abb_2025_110384 crossref_primary_10_1016_j_plipres_2022_101207 crossref_primary_10_1002_advs_202307201 crossref_primary_10_1161_ATVBAHA_122_318006 |
Cites_doi | 10.1073/pnas.0503132102 10.1016/j.cell.2015.11.045 10.1016/j.celrep.2018.08.015 10.1016/j.cell.2019.01.049 10.1016/j.mib.2013.11.003 10.1038/ni.3306 10.7554/eLife.06557 10.1016/j.smim.2003.10.003 10.1158/0008-5472.CAN-13-0382-T 10.1152/ajpgi.00322.2010 10.1038/s41577-018-0084-5 10.1126/science.1087262 10.1073/pnas.1813458115 10.1093/nar/gkv468 10.1084/jem.20080091 10.1016/j.celrep.2017.05.093 10.1038/nature18590 10.1126/science.1254790 10.1073/pnas.1218599110 10.1038/s41590-019-0356-7 10.1038/nri3520 10.1194/jlr.M033506 10.1038/nature18629 10.1172/JCI0215593 10.1371/journal.ppat.1006496 10.1359/jbmr.2000.15.8.1477 10.1371/journal.pbio.1000598 10.1016/j.cell.2017.09.029 10.1016/j.molcel.2017.06.012 10.1139/o59-099 10.1038/nature25986 10.1038/nri3088 10.1038/nature09968 10.1038/nri1733 10.1016/j.immuni.2012.11.004 10.15252/embj.201798321 10.1016/j.immuni.2012.11.005 10.1021/acs.nanolett.5b02963 10.1016/j.celrep.2018.11.041 10.1038/s41586-018-0052-z 10.1194/jlr.R800095-JLR200 10.1128/CMR.18.3.521-540.2005 10.1002/eji.201747404 10.1074/jbc.RA118.001921 10.1007/978-1-4939-9236-2_14 10.1016/j.cmet.2016.11.009 10.1152/ajpendo.90897.2008 10.1016/j.cmet.2018.03.014 10.1038/nature20117 10.1038/ni.3320 10.1016/bs.mie.2015.06.039 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.05.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 143.e5 |
ExternalDocumentID | PMC7891175 32516576 10_1016_j_cmet_2020_05_003 S1550413120302424 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI122282 – fundername: NIAMS NIH HHS grantid: K08 AR066545 – fundername: Howard Hughes Medical Institute – fundername: NHLBI NIH HHS grantid: R01 HL126647 – fundername: NIA NIH HHS grantid: R01 AG047156 – fundername: NCATS NIH HHS grantid: UL1 TR001881 – fundername: NIAMS NIH HHS grantid: R03 AR073940 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIAID NIH HHS grantid: R01 AI093768 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-f2d7b7b2f95d87b7488715c825485ec5d121fa7610ff1b46d35616899e7d5973 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 14:11:11 EDT 2025 Mon Jul 21 11:59:40 EDT 2025 Mon Jul 21 05:59:23 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Fri Feb 23 02:47:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | macrophages toll-like receptors stable isotope tracer analysis inflammation stearoyl-CoA desaturase host defense acetylated-LDL interferon MyD88 lipidomics |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-f2d7b7b2f95d87b7488715c825485ec5d121fa7610ff1b46d35616899e7d5973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS W.Y.H., Q.Z., and A.G.Y. conceptualized, designed/implemented experiments, analyzed data, and constructed the manuscript; K.J.W., P.O.S., V.L.B., E.K., X.P.H, X.C., A.Z., A.K., and A.S.D. designed, implemented experiments, and analyzed data; L.K., D.Q., B.L.S., and K.J.W. provided lipidomics and computational analysis; S.T.S. and R.A.F. provided resources and supervision, contributed to conceptualization, and revision of the manuscript; S.J.B. provided resources and supervision, and contributed to conceptualization, designed experiments, analyzed data, and construction of the manuscript. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7891175 |
PMID | 32516576 |
PQID | 2411598052 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7891175 proquest_miscellaneous_2411598052 pubmed_primary_32516576 crossref_primary_10_1016_j_cmet_2020_05_003 crossref_citationtrail_10_1016_j_cmet_2020_05_003 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-07 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | York, Williams, Argus, Zhou, Brar, Vergnes, Gray, Zhen, Wu, Yamada (bib51) 2015; 163 Halbleib, Pesek, Covino, Hofbauer, Wunnicke, Hänelt, Hummer, Ernst (bib19) 2017; 67 Glass, Natoli (bib17) 2016; 17 Reboldi, Dang, McDonald, Liang, Russell, Cyster (bib42) 2014; 345 Heilig, Dick, Sborgi, Meunier, Hiller, Broz (bib20) 2018; 48 Huang, Tabbi-Anneni, Gunda, Wang (bib22) 2010; 299 Dang, McDonald, Russell, Cyster (bib11) 2017; 171 Fournier, Philpott (bib14) 2005; 18 Argus, Wilks, Zhou, Hsieh, Khialeeva, Hoi, Bui, Xu, Yu, Wang (bib3) 2018; 25 Williams, Argus, Zhu, Wilks, Marbois, York, Kidani, Pourzia, Akhavan, Lisiero (bib49) 2013; 73 Fahy, Subramaniam, Murphy, Nishijima, Raetz, Shimizu, Spener, van Meer, Wakelam, Dennis (bib13) 2009; 50 Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (bib12) 2016; 535 Metsalu, Vilo (bib32) 2015; 43 Rong, Wang, Dunham, Hedde, Wong, Gratton, Young, Ford, Tontonoz (bib43) 2015; 4 Cordes, Metallo (bib10) 2019; 1978 Vromman, Subtil (bib47) 2014; 17 Yamamoto, Sato, Hemmi, Hoshino, Kaisho, Sanjo, Takeuchi, Sugiyama, Okabe, Takeda, Akira (bib50) 2003; 301 Barnett, Coronas-Serna, Zhou, Ernandes, Cao, Kranzusch, Kagan (bib5) 2019; 176 Bligh, Dyer (bib8) 1959; 37 Lancaster, Langley, Berglund, Kammoun, Reibe, Estevez, Weir, Mellett, Pernes, Conway (bib26) 2018; 27 Lee, Phelan, Shin, Oh, Han, Im, Osborne (bib28) 2018; 115 Kato, Takeuchi, Mikamo-Satoh, Hirai, Kawai, Matsushita, Hiiragi, Dermody, Fujita, Akira (bib24) 2008; 205 Wei, Song, Yin, Rizzo, Sidhu, Covey, Ory, Semenkovich (bib48) 2016; 539 Blanc, Hsieh, Robertson, Kropp, Forster, Shui, Lacaze, Watterson, Griffiths, Spann (bib6) 2013; 38 Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib34) 2018; 556 Kabashima, Honda, Ginhoux, Egawa (bib23) 2019; 19 Giannakis, Sansbury, Patsalos, Hays, Riley, Han, Spite, Nagy (bib16) 2019; 20 Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib33) 2013; 110 Gordon, Taylor (bib18) 2005; 5 Oishi, Spann, Link, Muse, Strid, Edillor, Kolar, Matsuzaka, Hayakawa, Tao (bib39) 2017; 25 Mulvihill, Sborgi, Mari, Pfreundschuh, Hiller, Müller (bib37) 2018; 37 Takeda, Akira (bib45) 2004; 16 Carroll, Zasłona, Galván-Peña, Koppe, Sévin, Angiari, Triantafilou, Triantafilou, Modis, O’Neill (bib9) 2018; 293 Okabe, Medzhitov (bib40) 2016; 17 Horton, Goldstein, Brown (bib21) 2002; 109 Paton, Ntambi (bib41) 2009; 297 Fu, Yang, Li, Hofmann, Dicker, Hide, Lin, Watkins, Ivanov, Hotamisligil (bib15) 2011; 473 Ackerman, Tumanov, Qiu, Michalopoulou, Spata, Azzam, Xie, Simon, Kamphorst (bib1) 2018; 24 Liu, Aliyari, Chikere, Li, Marsden, Smith, Pernet, Guo, Nusbaum, Zack (bib30) 2013; 38 Miyazaki, Dobrzyn, Elias, Ntambi (bib35) 2005; 102 Takeshita, Kaji, Kudo (bib46) 2000; 15 Araldi, Fernández-Fuertes, Canfrán-Duque, Tang, Cline, Madrigal-Matute, Pober, Lasunción, Wu, Fernández-Hernando, Suárez (bib2) 2017; 19 Liebisch, Vizcaíno, Köfeler, Trötzmüller, Griffiths, Schmitz, Spener, Wakelam (bib29) 2013; 54 Lawrence, Natoli (bib27) 2011; 11 Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (bib31) 2016; 535 Scumpia, Botten, Norman, Kelly-Scumpia, Spreafico, Ruccia, Purbey, Thomas, Modlin, Smale (bib44) 2017; 13 Bambouskova, Gorvel, Lampropoulou, Sergushichev, Loginicheva, Johnson, Korenfeld, Mathyer, Kim, Huang (bib4) 2018; 556 Blanc, Hsieh, Robertson, Watterson, Shui, Lacaze, Khondoker, Dickinson, Sing, Rodríguez-Martín (bib7) 2011; 9 Mulvihill, Van Pee, Mari, Müller, Yildiz (bib38) 2015; 15 Kelleher, Nickol (bib25) 2015; 561 Moore, Sheedy, Fisher (bib36) 2013; 13 Reboldi (10.1016/j.cmet.2020.05.003_bib42) 2014; 345 Carroll (10.1016/j.cmet.2020.05.003_bib9) 2018; 293 Kelleher (10.1016/j.cmet.2020.05.003_bib25) 2015; 561 Kabashima (10.1016/j.cmet.2020.05.003_bib23) 2019; 19 Liu (10.1016/j.cmet.2020.05.003_bib30) 2013; 38 Lee (10.1016/j.cmet.2020.05.003_bib28) 2018; 115 Araldi (10.1016/j.cmet.2020.05.003_bib2) 2017; 19 Vromman (10.1016/j.cmet.2020.05.003_bib47) 2014; 17 Williams (10.1016/j.cmet.2020.05.003_bib49) 2013; 73 Argus (10.1016/j.cmet.2020.05.003_bib3) 2018; 25 Glass (10.1016/j.cmet.2020.05.003_bib17) 2016; 17 Mulvihill (10.1016/j.cmet.2020.05.003_bib37) 2018; 37 Yamamoto (10.1016/j.cmet.2020.05.003_bib50) 2003; 301 Takeda (10.1016/j.cmet.2020.05.003_bib45) 2004; 16 York (10.1016/j.cmet.2020.05.003_bib51) 2015; 163 Lancaster (10.1016/j.cmet.2020.05.003_bib26) 2018; 27 Kato (10.1016/j.cmet.2020.05.003_bib24) 2008; 205 Okabe (10.1016/j.cmet.2020.05.003_bib40) 2016; 17 Barnett (10.1016/j.cmet.2020.05.003_bib5) 2019; 176 Ding (10.1016/j.cmet.2020.05.003_bib12) 2016; 535 Liebisch (10.1016/j.cmet.2020.05.003_bib29) 2013; 54 Scumpia (10.1016/j.cmet.2020.05.003_bib44) 2017; 13 Ackerman (10.1016/j.cmet.2020.05.003_bib1) 2018; 24 Mills (10.1016/j.cmet.2020.05.003_bib34) 2018; 556 Horton (10.1016/j.cmet.2020.05.003_bib21) 2002; 109 Fahy (10.1016/j.cmet.2020.05.003_bib13) 2009; 50 Mulvihill (10.1016/j.cmet.2020.05.003_bib38) 2015; 15 Miyazaki (10.1016/j.cmet.2020.05.003_bib35) 2005; 102 Fournier (10.1016/j.cmet.2020.05.003_bib14) 2005; 18 Paton (10.1016/j.cmet.2020.05.003_bib41) 2009; 297 Metsalu (10.1016/j.cmet.2020.05.003_bib32) 2015; 43 Blanc (10.1016/j.cmet.2020.05.003_bib6) 2013; 38 Liu (10.1016/j.cmet.2020.05.003_bib31) 2016; 535 Takeshita (10.1016/j.cmet.2020.05.003_bib46) 2000; 15 Bligh (10.1016/j.cmet.2020.05.003_bib8) 1959; 37 Moore (10.1016/j.cmet.2020.05.003_bib36) 2013; 13 Halbleib (10.1016/j.cmet.2020.05.003_bib19) 2017; 67 Lawrence (10.1016/j.cmet.2020.05.003_bib27) 2011; 11 Oishi (10.1016/j.cmet.2020.05.003_bib39) 2017; 25 Rong (10.1016/j.cmet.2020.05.003_bib43) 2015; 4 Dang (10.1016/j.cmet.2020.05.003_bib11) 2017; 171 Giannakis (10.1016/j.cmet.2020.05.003_bib16) 2019; 20 Heilig (10.1016/j.cmet.2020.05.003_bib20) 2018; 48 Fu (10.1016/j.cmet.2020.05.003_bib15) 2011; 473 Huang (10.1016/j.cmet.2020.05.003_bib22) 2010; 299 Michelucci (10.1016/j.cmet.2020.05.003_bib33) 2013; 110 Bambouskova (10.1016/j.cmet.2020.05.003_bib4) 2018; 556 Blanc (10.1016/j.cmet.2020.05.003_bib7) 2011; 9 Gordon (10.1016/j.cmet.2020.05.003_bib18) 2005; 5 Wei (10.1016/j.cmet.2020.05.003_bib48) 2016; 539 Cordes (10.1016/j.cmet.2020.05.003_bib10) 2019; 1978 |
References_xml | – volume: 301 start-page: 640 year: 2003 end-page: 643 ident: bib50 article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway publication-title: Science – volume: 539 start-page: 294 year: 2016 end-page: 298 ident: bib48 article-title: Fatty acid synthesis configures the plasma membrane for inflammation in diabetes publication-title: Nature – volume: 163 start-page: 1716 year: 2015 end-page: 1729 ident: bib51 article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type i IFN signaling publication-title: Cell – volume: 17 start-page: 9 year: 2016 end-page: 17 ident: bib40 article-title: Tissue biology perspective on macrophages publication-title: Nat. Immunol. – volume: 19 start-page: 2743 year: 2017 end-page: 2755 ident: bib2 article-title: Lanosterol modulates TLR4-mediated innate immune responses in macrophages publication-title: Cell Rep. – volume: 19 start-page: 19 year: 2019 end-page: 30 ident: bib23 article-title: The immunological anatomy of the skin publication-title: Nat. Rev. Immunol. – volume: 9 start-page: e1000598 year: 2011 ident: bib7 article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis publication-title: PLoS Biol. – volume: 11 start-page: 750 year: 2011 end-page: 761 ident: bib27 article-title: Transcriptional regulation of macrophage polarization: enabling diversity with identity publication-title: Nat. Rev. Immunol. – volume: 110 start-page: 7820 year: 2013 end-page: 7825 ident: bib33 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 1096 year: 2018 end-page: 1110.e5 ident: bib26 article-title: Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism publication-title: Cell Metab. – volume: 299 start-page: G1211 year: 2010 end-page: G1221 ident: bib22 article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 115 start-page: E12228 year: 2018 end-page: E12234 ident: bib28 article-title: SREBP-1a–stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: W566 year: 2015 end-page: W570 ident: bib32 article-title: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap publication-title: Nucleic Acids Res. – volume: 24 start-page: 2596 year: 2018 end-page: 2605.e5 ident: bib1 article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation publication-title: Cell Rep. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: bib8 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bib34 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 38 start-page: 92 year: 2013 end-page: 105 ident: bib30 article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol publication-title: Immunity – volume: 25 start-page: 2919 year: 2018 end-page: 2934.e8 ident: bib3 article-title: Development and application of FASA, a model for quantifying fatty acid metabolism using stable isotope labeling publication-title: Cell Rep. – volume: 54 start-page: 1523 year: 2013 end-page: 1530 ident: bib29 article-title: Shorthand notation for lipid structures derived from mass spectrometry publication-title: J. Lipid Res. – volume: 1978 start-page: 219 year: 2019 end-page: 241 ident: bib10 article-title: Quantifying intermediary metabolism and lipogenesis in cultured mammalian cells using stable isotope tracing and mass spectrometry publication-title: Methods Mol. Biol. – volume: 297 start-page: E28 year: 2009 end-page: E37 ident: bib41 article-title: Biochemical and physiological function of stearoyl-CoA desaturase publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 37 start-page: e98321 year: 2018 ident: bib37 article-title: Mechanism of membrane pore formation by human gasdermin-D publication-title: EMBO J. – volume: 50 start-page: S9 year: 2009 end-page: S14 ident: bib13 article-title: Update of the LIPID MAPS comprehensive classification system for lipids publication-title: J. Lipid Res. – volume: 17 start-page: 26 year: 2016 end-page: 33 ident: bib17 article-title: Molecular control of activation and priming in macrophages publication-title: Nat. Immunol. – volume: 73 start-page: 2850 year: 2013 end-page: 2862 ident: bib49 article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity publication-title: Cancer Res. – volume: 4 start-page: 1 year: 2015 end-page: 23 ident: bib43 article-title: Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion publication-title: eLife – volume: 293 start-page: 5509 year: 2018 end-page: 5521 ident: bib9 article-title: An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation publication-title: J. Biol. Chem. – volume: 176 start-page: 1432 year: 2019 end-page: 1446.e11 ident: bib5 article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA publication-title: Cell – volume: 171 start-page: 1057 year: 2017 end-page: 1071.e11 ident: bib11 article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation publication-title: Cell – volume: 561 start-page: 303 year: 2015 end-page: 330 ident: bib25 article-title: Isotopomer spectral analysis: Utilizing Nonlinear Models in Isotopic Flux Studies publication-title: Methods Enzymol. – volume: 17 start-page: 38 year: 2014 end-page: 45 ident: bib47 article-title: Exploitation of host lipids by bacteria publication-title: Curr. Opin. Microbiol. – volume: 556 start-page: 501 year: 2018 end-page: 504 ident: bib4 article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis publication-title: Nature – volume: 205 start-page: 1601 year: 2008 end-page: 1610 ident: bib24 article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5 publication-title: J. Exp. Med. – volume: 15 start-page: 6965 year: 2015 end-page: 6973 ident: bib38 article-title: Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin listeriolysin O publication-title: Nano Lett. – volume: 473 start-page: 528 year: 2011 end-page: 531 ident: bib15 article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity publication-title: Nature – volume: 20 start-page: 626 year: 2019 end-page: 636 ident: bib16 article-title: Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration publication-title: Nat. Immunol. – volume: 5 start-page: 953 year: 2005 end-page: 964 ident: bib18 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. – volume: 15 start-page: 1477 year: 2000 end-page: 1488 ident: bib46 article-title: Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts publication-title: J. Bone Miner. Res. – volume: 13 start-page: e1006496 year: 2017 ident: bib44 article-title: Opposing roles of toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense publication-title: PLoS Pathog. – volume: 67 start-page: 673 year: 2017 end-page: 684.e8 ident: bib19 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol. Cell – volume: 102 start-page: 12501 year: 2005 end-page: 12506 ident: bib35 article-title: Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 106 year: 2013 end-page: 118 ident: bib6 article-title: The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response publication-title: Immunity – volume: 18 start-page: 521 year: 2005 end-page: 540 ident: bib14 article-title: Recognition of Staphylococcus aureus by the innate immune system publication-title: Clin. Microbiol. Rev. – volume: 16 start-page: 3 year: 2004 end-page: 9 ident: bib45 article-title: TLR signaling pathways publication-title: Semin. Immunol. – volume: 13 start-page: 709 year: 2013 end-page: 721 ident: bib36 article-title: Macrophages in atherosclerosis: a dynamic balance publication-title: Nat. Rev. Immunol. – volume: 535 start-page: 153 year: 2016 end-page: 158 ident: bib31 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 48 start-page: 584 year: 2018 end-page: 592 ident: bib20 article-title: The gasdermin-D pore acts as a conduit for IL-1β secretion in mice publication-title: Eur. J. Immunol. – volume: 535 start-page: 111 year: 2016 end-page: 116 ident: bib12 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: bib21 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. – volume: 345 start-page: 679 year: 2014 end-page: 684 ident: bib42 article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon publication-title: Science – volume: 25 start-page: 412 year: 2017 end-page: 427 ident: bib39 article-title: SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism publication-title: Cell Metab. – volume: 102 start-page: 12501 year: 2005 ident: 10.1016/j.cmet.2020.05.003_bib35 article-title: Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503132102 – volume: 163 start-page: 1716 year: 2015 ident: 10.1016/j.cmet.2020.05.003_bib51 article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type i IFN signaling publication-title: Cell doi: 10.1016/j.cell.2015.11.045 – volume: 24 start-page: 2596 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib1 article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.015 – volume: 176 start-page: 1432 year: 2019 ident: 10.1016/j.cmet.2020.05.003_bib5 article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA publication-title: Cell doi: 10.1016/j.cell.2019.01.049 – volume: 17 start-page: 38 year: 2014 ident: 10.1016/j.cmet.2020.05.003_bib47 article-title: Exploitation of host lipids by bacteria publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2013.11.003 – volume: 17 start-page: 26 year: 2016 ident: 10.1016/j.cmet.2020.05.003_bib17 article-title: Molecular control of activation and priming in macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.3306 – volume: 4 start-page: 1 year: 2015 ident: 10.1016/j.cmet.2020.05.003_bib43 article-title: Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion publication-title: eLife doi: 10.7554/eLife.06557 – volume: 16 start-page: 3 year: 2004 ident: 10.1016/j.cmet.2020.05.003_bib45 article-title: TLR signaling pathways publication-title: Semin. Immunol. doi: 10.1016/j.smim.2003.10.003 – volume: 73 start-page: 2850 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib49 article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0382-T – volume: 299 start-page: G1211 year: 2010 ident: 10.1016/j.cmet.2020.05.003_bib22 article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00322.2010 – volume: 19 start-page: 19 year: 2019 ident: 10.1016/j.cmet.2020.05.003_bib23 article-title: The immunological anatomy of the skin publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0084-5 – volume: 301 start-page: 640 year: 2003 ident: 10.1016/j.cmet.2020.05.003_bib50 article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway publication-title: Science doi: 10.1126/science.1087262 – volume: 115 start-page: E12228 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib28 article-title: SREBP-1a–stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1813458115 – volume: 43 start-page: W566 year: 2015 ident: 10.1016/j.cmet.2020.05.003_bib32 article-title: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv468 – volume: 205 start-page: 1601 year: 2008 ident: 10.1016/j.cmet.2020.05.003_bib24 article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5 publication-title: J. Exp. Med. doi: 10.1084/jem.20080091 – volume: 19 start-page: 2743 year: 2017 ident: 10.1016/j.cmet.2020.05.003_bib2 article-title: Lanosterol modulates TLR4-mediated innate immune responses in macrophages publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.093 – volume: 535 start-page: 111 year: 2016 ident: 10.1016/j.cmet.2020.05.003_bib12 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 345 start-page: 679 year: 2014 ident: 10.1016/j.cmet.2020.05.003_bib42 article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon publication-title: Science doi: 10.1126/science.1254790 – volume: 110 start-page: 7820 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib33 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218599110 – volume: 20 start-page: 626 year: 2019 ident: 10.1016/j.cmet.2020.05.003_bib16 article-title: Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0356-7 – volume: 13 start-page: 709 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib36 article-title: Macrophages in atherosclerosis: a dynamic balance publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3520 – volume: 54 start-page: 1523 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib29 article-title: Shorthand notation for lipid structures derived from mass spectrometry publication-title: J. Lipid Res. doi: 10.1194/jlr.M033506 – volume: 535 start-page: 153 year: 2016 ident: 10.1016/j.cmet.2020.05.003_bib31 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 109 start-page: 1125 year: 2002 ident: 10.1016/j.cmet.2020.05.003_bib21 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. doi: 10.1172/JCI0215593 – volume: 13 start-page: e1006496 year: 2017 ident: 10.1016/j.cmet.2020.05.003_bib44 article-title: Opposing roles of toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006496 – volume: 15 start-page: 1477 year: 2000 ident: 10.1016/j.cmet.2020.05.003_bib46 article-title: Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2000.15.8.1477 – volume: 9 start-page: e1000598 year: 2011 ident: 10.1016/j.cmet.2020.05.003_bib7 article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000598 – volume: 171 start-page: 1057 year: 2017 ident: 10.1016/j.cmet.2020.05.003_bib11 article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2017.09.029 – volume: 67 start-page: 673 year: 2017 ident: 10.1016/j.cmet.2020.05.003_bib19 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.012 – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.cmet.2020.05.003_bib8 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/o59-099 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib34 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 11 start-page: 750 year: 2011 ident: 10.1016/j.cmet.2020.05.003_bib27 article-title: Transcriptional regulation of macrophage polarization: enabling diversity with identity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3088 – volume: 473 start-page: 528 year: 2011 ident: 10.1016/j.cmet.2020.05.003_bib15 article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity publication-title: Nature doi: 10.1038/nature09968 – volume: 5 start-page: 953 year: 2005 ident: 10.1016/j.cmet.2020.05.003_bib18 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1733 – volume: 38 start-page: 106 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib6 article-title: The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response publication-title: Immunity doi: 10.1016/j.immuni.2012.11.004 – volume: 37 start-page: e98321 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib37 article-title: Mechanism of membrane pore formation by human gasdermin-D publication-title: EMBO J. doi: 10.15252/embj.201798321 – volume: 38 start-page: 92 year: 2013 ident: 10.1016/j.cmet.2020.05.003_bib30 article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol publication-title: Immunity doi: 10.1016/j.immuni.2012.11.005 – volume: 15 start-page: 6965 year: 2015 ident: 10.1016/j.cmet.2020.05.003_bib38 article-title: Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin listeriolysin O publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02963 – volume: 25 start-page: 2919 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib3 article-title: Development and application of FASA, a model for quantifying fatty acid metabolism using stable isotope labeling publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.11.041 – volume: 556 start-page: 501 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib4 article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis publication-title: Nature doi: 10.1038/s41586-018-0052-z – volume: 50 start-page: S9 year: 2009 ident: 10.1016/j.cmet.2020.05.003_bib13 article-title: Update of the LIPID MAPS comprehensive classification system for lipids publication-title: J. Lipid Res. doi: 10.1194/jlr.R800095-JLR200 – volume: 18 start-page: 521 year: 2005 ident: 10.1016/j.cmet.2020.05.003_bib14 article-title: Recognition of Staphylococcus aureus by the innate immune system publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.18.3.521-540.2005 – volume: 48 start-page: 584 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib20 article-title: The gasdermin-D pore acts as a conduit for IL-1β secretion in mice publication-title: Eur. J. Immunol. doi: 10.1002/eji.201747404 – volume: 293 start-page: 5509 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib9 article-title: An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.001921 – volume: 1978 start-page: 219 year: 2019 ident: 10.1016/j.cmet.2020.05.003_bib10 article-title: Quantifying intermediary metabolism and lipogenesis in cultured mammalian cells using stable isotope tracing and mass spectrometry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9236-2_14 – volume: 25 start-page: 412 year: 2017 ident: 10.1016/j.cmet.2020.05.003_bib39 article-title: SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.11.009 – volume: 297 start-page: E28 year: 2009 ident: 10.1016/j.cmet.2020.05.003_bib41 article-title: Biochemical and physiological function of stearoyl-CoA desaturase publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90897.2008 – volume: 27 start-page: 1096 year: 2018 ident: 10.1016/j.cmet.2020.05.003_bib26 article-title: Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.03.014 – volume: 539 start-page: 294 year: 2016 ident: 10.1016/j.cmet.2020.05.003_bib48 article-title: Fatty acid synthesis configures the plasma membrane for inflammation in diabetes publication-title: Nature doi: 10.1038/nature20117 – volume: 17 start-page: 9 year: 2016 ident: 10.1016/j.cmet.2020.05.003_bib40 article-title: Tissue biology perspective on macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.3320 – volume: 561 start-page: 303 year: 2015 ident: 10.1016/j.cmet.2020.05.003_bib25 article-title: Isotopomer spectral analysis: Utilizing Nonlinear Models in Isotopic Flux Studies publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2015.06.039 |
SSID | ssj0036393 |
Score | 2.5981348 |
Snippet | Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 128 |
SubjectTerms | acetylated-LDL Animals Cell Line host defense inflammation interferon Lipidomics macrophages Macrophages - metabolism Male Mice Mice, Knockout Mice, Transgenic MyD88 Signal Transduction stable isotope tracer analysis stearoyl-CoA desaturase toll-like receptors Toll-Like Receptors - metabolism |
Title | Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome |
URI | https://dx.doi.org/10.1016/j.cmet.2020.05.003 https://www.ncbi.nlm.nih.gov/pubmed/32516576 https://www.proquest.com/docview/2411598052 https://pubmed.ncbi.nlm.nih.gov/PMC7891175 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FELyIb-uLCN4ktJtsNrtHFUXEemmF3sJuHnbVbou2B_-9M_soVqEHb_uYQHYmmfnCzsxHyEUIfjfIVAYWiCQLRcZZxo1gqYtUlNqUhwILnHtP0f1z-DCUwxa5aWphMK2y9v2VTy-9df2kU2uzM83zTh_BNbjggMM6xSIH8MMijMsivuF1440FROAyyR6EGUrXhTNVjpcZO8yn5N2ye2dDnPU3OP0Fn79zKH8EpbstslmjSXpVTXibtFyxQ9YrfsmvXdIfgJXZY_7mKMBDN0VmHYpkHcbRfv4CQ1nJP-9zAwJ1qtYYghmdeArIkPZSZPgagc-hSHJtJ2O3RwZ3t4Obe1azKDCDZAXMc6vAGNwn0sZwBTtWBdLgyTCWzkgb8MCnCmCU90EWRlYApIrgGOaUhdOG2CdrxaRwh4T6EL42EV4JK0NubdIVSeyzNDCgXGtVmwSN9rSpO4wj0cW7blLJXjVqXKPGdVdiX9I2uVyMmVb9NVZKy8YoemmVaAgAK8edNxbUsH3wn0hauMn8UwOAAUCHvA5tclBZdDEPAdgvgvNYm6glWy8EsDX38psiH5UtulWcYA_Uo3_O95hs4F2ZFqxOyNrsY-5OAfzMsrNydX8DtdUCmA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaDkN3Gbb1lXUPDdhtEBJLlhUf12JFuiW9JANyE2w9WreNE2zJYf9-pB_B0gA57GZYFCCTEvkJJvkBfI7R70a5ztECieKxzAXPhZU884lOMpeJWFKB8-gmGfyMv0_VdA8u21oYSqtsfH_t0ytv3bzpNtrsLoqiOyZwjS44ErhPqchhH54hGtDE33A9vWjdscQQXGXZozQn8aZypk7ysjNPCZWiV7XvbJmztqPTNvp8mkT5T1S6egUvGzjJvtYrfg17vnwDz2uCyT9HMJ6gmfmwePAM8aFfELUOI7YO69m4uMWpvCKgD4VFgSZXa4bRjM0DQ2jIRhlRfN2h02HEcu3mM38Mk6tvk8sBb2gUuCW2Ah6E02gNEVLl-viER1ZHytLVsK-8VS4SUcg04qgQojxOnERMleA9zGuH1w15AgflvPRnwEKMX5vKoKVTsXAu7cm0H_Issqhc53QHolZ7xjYtxonp4tG0uWT3hjRuSOOmp6gxaQe-rOcs6gYbO6VVaxSzsU0MRoCd8z61FjR4fuinSFb6-eq3QQSDiI6IHTpwWlt0vQ6J4C_BC1kH9Iat1wLUm3tzpCzuqh7dup9SE9S3_7nej3A4mIyGZnh98-McXtBIlSOs38HB8tfKv0cktMw_VDv9L7WQBbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toll-Like+Receptors+Induce+Signal-Specific+Reprogramming+of+the+Macrophage+Lipidome&rft.jtitle=Cell+metabolism&rft.au=Hsieh%2C+Wei-Yuan&rft.au=Zhou%2C+Quan+D.&rft.au=York%2C+Autumn+G.&rft.au=Williams%2C+Kevin+J.&rft.date=2020-07-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=1&rft.spage=128&rft.epage=143.e5&rft_id=info:doi/10.1016%2Fj.cmet.2020.05.003&rft.externalDocID=S1550413120302424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |