Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome

Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 32; no. 1; pp. 128 - 143.e5
Main Authors Hsieh, Wei-Yuan, Zhou, Quan D., York, Autumn G., Williams, Kevin J., Scumpia, Philip O., Kronenberger, Eliza B., Hoi, Xen Ping, Su, Baolong, Chi, Xun, Bui, Viet L., Khialeeva, Elvira, Kaplan, Amber, Son, Young Min, Divakaruni, Ajit S., Sun, Jie, Smale, Stephen T., Flavell, Richard A., Bensinger, Steven J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. [Display omitted] •A quantitative profiling of the mouse macrophage lipidome activated by immune stimuli•Macrophages alter lipid composition in a TLR-specific manner•MyD88-dependent TLRs alter lipid composition by increasing de novo MUFA synthesis•Inhibiting MUFA synthesis increases inflammation generated by MyD88-dependent TLRs Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy.
AbstractList Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. [Display omitted] •A quantitative profiling of the mouse macrophage lipidome activated by immune stimuli•Macrophages alter lipid composition in a TLR-specific manner•MyD88-dependent TLRs alter lipid composition by increasing de novo MUFA synthesis•Inhibiting MUFA synthesis increases inflammation generated by MyD88-dependent TLRs Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy.
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary “shotgun” and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. “Shotgun” lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity. Using a combination of shotgun lipidomics and stable-isotope tracing, Hsieh et al. show that distinct pro-inflammatory stimuli reshape the macrophage lipid composition in a signal-specific manner and that targeting this change can increase immunity. Thus, the study provides an in-depth resource and framework for understanding this lipidomic response while suggesting approaches for future therapy.
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
Author Son, Young Min
Flavell, Richard A.
Chi, Xun
Smale, Stephen T.
Sun, Jie
Williams, Kevin J.
Khialeeva, Elvira
York, Autumn G.
Kaplan, Amber
Kronenberger, Eliza B.
Hoi, Xen Ping
Bensinger, Steven J.
Bui, Viet L.
Zhou, Quan D.
Su, Baolong
Hsieh, Wei-Yuan
Scumpia, Philip O.
Divakaruni, Ajit S.
AuthorAffiliation 3 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
6 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
2 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
11 Lead Contact
1 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
5 Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
4 Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
10 These authors contributed equally
8 Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
7 Howard Hughes Medical Institute
AuthorAffiliation_xml – name: 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
– name: 7 Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
– name: 8 Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
– name: 10 These authors contributed equally
– name: 3 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
– name: 2 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– name: 1 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– name: 4 Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– name: 5 Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– name: 6 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
– name: 11 Lead Contact
Author_xml – sequence: 1
  givenname: Wei-Yuan
  surname: Hsieh
  fullname: Hsieh, Wei-Yuan
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Quan D.
  surname: Zhou
  fullname: Zhou, Quan D.
  organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Autumn G.
  surname: York
  fullname: York, Autumn G.
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Kevin J.
  surname: Williams
  fullname: Williams, Kevin J.
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Philip O.
  surname: Scumpia
  fullname: Scumpia, Philip O.
  organization: Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Eliza B.
  surname: Kronenberger
  fullname: Kronenberger, Eliza B.
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 7
  givenname: Xen Ping
  surname: Hoi
  fullname: Hoi, Xen Ping
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 8
  givenname: Baolong
  surname: Su
  fullname: Su, Baolong
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 9
  givenname: Xun
  surname: Chi
  fullname: Chi, Xun
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 10
  givenname: Viet L.
  surname: Bui
  fullname: Bui, Viet L.
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 11
  givenname: Elvira
  surname: Khialeeva
  fullname: Khialeeva, Elvira
  organization: Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 12
  givenname: Amber
  surname: Kaplan
  fullname: Kaplan, Amber
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 13
  givenname: Young Min
  surname: Son
  fullname: Son, Young Min
  organization: Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
– sequence: 14
  givenname: Ajit S.
  surname: Divakaruni
  fullname: Divakaruni, Ajit S.
  organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
– sequence: 15
  givenname: Jie
  surname: Sun
  fullname: Sun, Jie
  organization: Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
– sequence: 16
  givenname: Stephen T.
  surname: Smale
  fullname: Smale, Stephen T.
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
– sequence: 17
  givenname: Richard A.
  surname: Flavell
  fullname: Flavell, Richard A.
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 18
  givenname: Steven J.
  surname: Bensinger
  fullname: Bensinger, Steven J.
  email: sbensinger@mednet.ucla.edu
  organization: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32516576$$D View this record in MEDLINE/PubMed
BookMark eNp9kV-L1DAUxYOsuH_0C_ggffSlNTdtmhZEkEXdhRHBmfeQSW46GdukJp2F_fZmmHVZfdinXMjvnHs555Kc-eCRkLdAK6DQfthXesKlYpTRivKK0voFuYC-ZqVoGD3LM-e0bKCGc3KZ0j4Dbd3Xr8h5zTi0XLQXZL0J41iu3C8sfqLGeQkxFbfeHDQWazd4NZbrGbWzTmdgjmGIapqcH4pgi2WHxXelY5h3asBi5WZnwoSvyUurxoRvHt4rsvn6ZXN9U65-fLu9_rwqNWewlJYZsRVbZntuujw1XSeA647xpuOouQEGVokWqLWwbVpT8xbaru9RGN6L-op8OtnOh-2ERqNfohrlHN2k4r0Mysl_f7zbySHcSdH1AIJng_cPBjH8PmBa5OSSxnFUHsMhSdYA8L6jnGX03dNdj0v-BpkBdgJyGilFtI8IUHlsS-7lsS15bEtSLnMZWdT9J9JuUYsLx3vd-Lz040mKOeA7h1Em7dBrNC6iXqQJ7jn5H1K2sCw
CitedBy_id crossref_primary_10_3177_jnsv_69_62
crossref_primary_10_1089_can_2020_0181
crossref_primary_10_1080_21505594_2025_2459336
crossref_primary_10_1002_smll_202306483
crossref_primary_10_1016_j_lfs_2025_123411
crossref_primary_10_3389_fphys_2024_1431847
crossref_primary_10_1038_s42255_022_00722_6
crossref_primary_10_1186_s12974_022_02664_y
crossref_primary_10_3892_ijmm_2023_5337
crossref_primary_10_1007_s11033_021_07092_4
crossref_primary_10_15252_embr_202357238
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_3389_fimmu_2022_967437
crossref_primary_10_1073_pnas_2114739119
crossref_primary_10_1016_j_molimm_2022_10_014
crossref_primary_10_1016_j_celrep_2024_114681
crossref_primary_10_1152_ajpcell_00235_2020
crossref_primary_10_1038_s43018_025_00909_2
crossref_primary_10_1016_j_msard_2023_105020
crossref_primary_10_3389_fimmu_2022_1050984
crossref_primary_10_1038_s41419_023_05741_z
crossref_primary_10_1016_j_jddst_2024_106336
crossref_primary_10_1016_j_jep_2022_115308
crossref_primary_10_1093_jleuko_qiac011
crossref_primary_10_1016_j_actbio_2024_07_042
crossref_primary_10_1007_s00018_024_05521_8
crossref_primary_10_1007_s10142_023_01031_1
crossref_primary_10_1126_science_adf0966
crossref_primary_10_3389_fnut_2022_1082500
crossref_primary_10_3389_fimmu_2024_1495853
crossref_primary_10_1016_j_biopha_2023_115586
crossref_primary_10_3389_fimmu_2022_923024
crossref_primary_10_3389_fonc_2020_618515
crossref_primary_10_1159_000516780
crossref_primary_10_1007_s13258_023_01469_4
crossref_primary_10_1016_j_xpro_2020_100235
crossref_primary_10_3389_fonc_2022_944025
crossref_primary_10_3389_fendo_2021_626842
crossref_primary_10_1002_mco2_658
crossref_primary_10_1016_j_aca_2020_11_024
crossref_primary_10_1371_journal_ppat_1011658
crossref_primary_10_1210_endrev_bnab004
crossref_primary_10_1126_sciadv_abq1984
crossref_primary_10_1038_s41586_024_07098_5
crossref_primary_10_1093_jleuko_qiad114
crossref_primary_10_1038_s41556_024_01457_0
crossref_primary_10_1016_j_intimp_2022_109171
crossref_primary_10_1016_j_alcohol_2021_10_003
crossref_primary_10_3389_fimmu_2022_926220
crossref_primary_10_1111_bph_15642
crossref_primary_10_3389_fphar_2021_761883
crossref_primary_10_7554_eLife_71946
crossref_primary_10_2147_JIR_S475633
crossref_primary_10_4110_in_2023_23_e28
crossref_primary_10_1113_JP287791
crossref_primary_10_3389_fimmu_2021_828115
crossref_primary_10_1002_clc_24301
crossref_primary_10_1016_j_cmet_2020_09_013
crossref_primary_10_1016_j_jbc_2021_101341
crossref_primary_10_1042_BST20210857
crossref_primary_10_1080_14789450_2021_1995356
crossref_primary_10_1111_obr_13724
crossref_primary_10_1038_s41423_021_00827_0
crossref_primary_10_4103_1673_5374_391330
crossref_primary_10_1038_s44319_024_00351_y
crossref_primary_10_1002_eji_202048944
crossref_primary_10_1016_j_tem_2024_08_009
crossref_primary_10_1016_j_bbalip_2021_159066
crossref_primary_10_1038_s41556_024_01441_8
crossref_primary_10_20900_immunometab20210021
crossref_primary_10_1126_scitranslmed_adi6682
crossref_primary_10_3389_fimmu_2023_1148188
crossref_primary_10_1038_s41467_022_34532_x
crossref_primary_10_1039_D2MO00086E
crossref_primary_10_1002_advs_202300601
crossref_primary_10_1016_j_jff_2024_106067
crossref_primary_10_1038_s41423_022_00902_0
crossref_primary_10_3389_fimmu_2021_665782
crossref_primary_10_3390_ijms26010111
crossref_primary_10_1111_mmi_15120
crossref_primary_10_1016_j_fsi_2023_108863
crossref_primary_10_1021_jasms_1c00203
crossref_primary_10_2147_JIR_S405722
crossref_primary_10_1016_j_isci_2021_103004
crossref_primary_10_1128_mbio_00925_23
crossref_primary_10_1016_j_nbd_2023_106370
crossref_primary_10_1128_mbio_00159_23
crossref_primary_10_1186_s11671_024_04175_6
crossref_primary_10_1016_j_abb_2025_110384
crossref_primary_10_1016_j_plipres_2022_101207
crossref_primary_10_1002_advs_202307201
crossref_primary_10_1161_ATVBAHA_122_318006
Cites_doi 10.1073/pnas.0503132102
10.1016/j.cell.2015.11.045
10.1016/j.celrep.2018.08.015
10.1016/j.cell.2019.01.049
10.1016/j.mib.2013.11.003
10.1038/ni.3306
10.7554/eLife.06557
10.1016/j.smim.2003.10.003
10.1158/0008-5472.CAN-13-0382-T
10.1152/ajpgi.00322.2010
10.1038/s41577-018-0084-5
10.1126/science.1087262
10.1073/pnas.1813458115
10.1093/nar/gkv468
10.1084/jem.20080091
10.1016/j.celrep.2017.05.093
10.1038/nature18590
10.1126/science.1254790
10.1073/pnas.1218599110
10.1038/s41590-019-0356-7
10.1038/nri3520
10.1194/jlr.M033506
10.1038/nature18629
10.1172/JCI0215593
10.1371/journal.ppat.1006496
10.1359/jbmr.2000.15.8.1477
10.1371/journal.pbio.1000598
10.1016/j.cell.2017.09.029
10.1016/j.molcel.2017.06.012
10.1139/o59-099
10.1038/nature25986
10.1038/nri3088
10.1038/nature09968
10.1038/nri1733
10.1016/j.immuni.2012.11.004
10.15252/embj.201798321
10.1016/j.immuni.2012.11.005
10.1021/acs.nanolett.5b02963
10.1016/j.celrep.2018.11.041
10.1038/s41586-018-0052-z
10.1194/jlr.R800095-JLR200
10.1128/CMR.18.3.521-540.2005
10.1002/eji.201747404
10.1074/jbc.RA118.001921
10.1007/978-1-4939-9236-2_14
10.1016/j.cmet.2016.11.009
10.1152/ajpendo.90897.2008
10.1016/j.cmet.2018.03.014
10.1038/nature20117
10.1038/ni.3320
10.1016/bs.mie.2015.06.039
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2020.05.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 143.e5
ExternalDocumentID PMC7891175
32516576
10_1016_j_cmet_2020_05_003
S1550413120302424
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI122282
– fundername: NIAMS NIH HHS
  grantid: K08 AR066545
– fundername: Howard Hughes Medical Institute
– fundername: NHLBI NIH HHS
  grantid: R01 HL126647
– fundername: NIA NIH HHS
  grantid: R01 AG047156
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
– fundername: NIAMS NIH HHS
  grantid: R03 AR073940
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIAID NIH HHS
  grantid: R01 AI093768
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-f2d7b7b2f95d87b7488715c825485ec5d121fa7610ff1b46d35616899e7d5973
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:11:11 EDT 2025
Mon Jul 21 11:59:40 EDT 2025
Mon Jul 21 05:59:23 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Fri Feb 23 02:47:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords macrophages
toll-like receptors
stable isotope tracer analysis
inflammation
stearoyl-CoA desaturase
host defense
acetylated-LDL
interferon
MyD88
lipidomics
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-f2d7b7b2f95d87b7488715c825485ec5d121fa7610ff1b46d35616899e7d5973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
W.Y.H., Q.Z., and A.G.Y. conceptualized, designed/implemented experiments, analyzed data, and constructed the manuscript; K.J.W., P.O.S., V.L.B., E.K., X.P.H, X.C., A.Z., A.K., and A.S.D. designed, implemented experiments, and analyzed data; L.K., D.Q., B.L.S., and K.J.W. provided lipidomics and computational analysis; S.T.S. and R.A.F. provided resources and supervision, contributed to conceptualization, and revision of the manuscript; S.J.B. provided resources and supervision, and contributed to conceptualization, designed experiments, analyzed data, and construction of the manuscript.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7891175
PMID 32516576
PQID 2411598052
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7891175
proquest_miscellaneous_2411598052
pubmed_primary_32516576
crossref_primary_10_1016_j_cmet_2020_05_003
crossref_citationtrail_10_1016_j_cmet_2020_05_003
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-07
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References York, Williams, Argus, Zhou, Brar, Vergnes, Gray, Zhen, Wu, Yamada (bib51) 2015; 163
Halbleib, Pesek, Covino, Hofbauer, Wunnicke, Hänelt, Hummer, Ernst (bib19) 2017; 67
Glass, Natoli (bib17) 2016; 17
Reboldi, Dang, McDonald, Liang, Russell, Cyster (bib42) 2014; 345
Heilig, Dick, Sborgi, Meunier, Hiller, Broz (bib20) 2018; 48
Huang, Tabbi-Anneni, Gunda, Wang (bib22) 2010; 299
Dang, McDonald, Russell, Cyster (bib11) 2017; 171
Fournier, Philpott (bib14) 2005; 18
Argus, Wilks, Zhou, Hsieh, Khialeeva, Hoi, Bui, Xu, Yu, Wang (bib3) 2018; 25
Williams, Argus, Zhu, Wilks, Marbois, York, Kidani, Pourzia, Akhavan, Lisiero (bib49) 2013; 73
Fahy, Subramaniam, Murphy, Nishijima, Raetz, Shimizu, Spener, van Meer, Wakelam, Dennis (bib13) 2009; 50
Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (bib12) 2016; 535
Metsalu, Vilo (bib32) 2015; 43
Rong, Wang, Dunham, Hedde, Wong, Gratton, Young, Ford, Tontonoz (bib43) 2015; 4
Cordes, Metallo (bib10) 2019; 1978
Vromman, Subtil (bib47) 2014; 17
Yamamoto, Sato, Hemmi, Hoshino, Kaisho, Sanjo, Takeuchi, Sugiyama, Okabe, Takeda, Akira (bib50) 2003; 301
Barnett, Coronas-Serna, Zhou, Ernandes, Cao, Kranzusch, Kagan (bib5) 2019; 176
Bligh, Dyer (bib8) 1959; 37
Lancaster, Langley, Berglund, Kammoun, Reibe, Estevez, Weir, Mellett, Pernes, Conway (bib26) 2018; 27
Lee, Phelan, Shin, Oh, Han, Im, Osborne (bib28) 2018; 115
Kato, Takeuchi, Mikamo-Satoh, Hirai, Kawai, Matsushita, Hiiragi, Dermody, Fujita, Akira (bib24) 2008; 205
Wei, Song, Yin, Rizzo, Sidhu, Covey, Ory, Semenkovich (bib48) 2016; 539
Blanc, Hsieh, Robertson, Kropp, Forster, Shui, Lacaze, Watterson, Griffiths, Spann (bib6) 2013; 38
Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib34) 2018; 556
Kabashima, Honda, Ginhoux, Egawa (bib23) 2019; 19
Giannakis, Sansbury, Patsalos, Hays, Riley, Han, Spite, Nagy (bib16) 2019; 20
Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib33) 2013; 110
Gordon, Taylor (bib18) 2005; 5
Oishi, Spann, Link, Muse, Strid, Edillor, Kolar, Matsuzaka, Hayakawa, Tao (bib39) 2017; 25
Mulvihill, Sborgi, Mari, Pfreundschuh, Hiller, Müller (bib37) 2018; 37
Takeda, Akira (bib45) 2004; 16
Carroll, Zasłona, Galván-Peña, Koppe, Sévin, Angiari, Triantafilou, Triantafilou, Modis, O’Neill (bib9) 2018; 293
Okabe, Medzhitov (bib40) 2016; 17
Horton, Goldstein, Brown (bib21) 2002; 109
Paton, Ntambi (bib41) 2009; 297
Fu, Yang, Li, Hofmann, Dicker, Hide, Lin, Watkins, Ivanov, Hotamisligil (bib15) 2011; 473
Ackerman, Tumanov, Qiu, Michalopoulou, Spata, Azzam, Xie, Simon, Kamphorst (bib1) 2018; 24
Liu, Aliyari, Chikere, Li, Marsden, Smith, Pernet, Guo, Nusbaum, Zack (bib30) 2013; 38
Miyazaki, Dobrzyn, Elias, Ntambi (bib35) 2005; 102
Takeshita, Kaji, Kudo (bib46) 2000; 15
Araldi, Fernández-Fuertes, Canfrán-Duque, Tang, Cline, Madrigal-Matute, Pober, Lasunción, Wu, Fernández-Hernando, Suárez (bib2) 2017; 19
Liebisch, Vizcaíno, Köfeler, Trötzmüller, Griffiths, Schmitz, Spener, Wakelam (bib29) 2013; 54
Lawrence, Natoli (bib27) 2011; 11
Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (bib31) 2016; 535
Scumpia, Botten, Norman, Kelly-Scumpia, Spreafico, Ruccia, Purbey, Thomas, Modlin, Smale (bib44) 2017; 13
Bambouskova, Gorvel, Lampropoulou, Sergushichev, Loginicheva, Johnson, Korenfeld, Mathyer, Kim, Huang (bib4) 2018; 556
Blanc, Hsieh, Robertson, Watterson, Shui, Lacaze, Khondoker, Dickinson, Sing, Rodríguez-Martín (bib7) 2011; 9
Mulvihill, Van Pee, Mari, Müller, Yildiz (bib38) 2015; 15
Kelleher, Nickol (bib25) 2015; 561
Moore, Sheedy, Fisher (bib36) 2013; 13
Reboldi (10.1016/j.cmet.2020.05.003_bib42) 2014; 345
Carroll (10.1016/j.cmet.2020.05.003_bib9) 2018; 293
Kelleher (10.1016/j.cmet.2020.05.003_bib25) 2015; 561
Kabashima (10.1016/j.cmet.2020.05.003_bib23) 2019; 19
Liu (10.1016/j.cmet.2020.05.003_bib30) 2013; 38
Lee (10.1016/j.cmet.2020.05.003_bib28) 2018; 115
Araldi (10.1016/j.cmet.2020.05.003_bib2) 2017; 19
Vromman (10.1016/j.cmet.2020.05.003_bib47) 2014; 17
Williams (10.1016/j.cmet.2020.05.003_bib49) 2013; 73
Argus (10.1016/j.cmet.2020.05.003_bib3) 2018; 25
Glass (10.1016/j.cmet.2020.05.003_bib17) 2016; 17
Mulvihill (10.1016/j.cmet.2020.05.003_bib37) 2018; 37
Yamamoto (10.1016/j.cmet.2020.05.003_bib50) 2003; 301
Takeda (10.1016/j.cmet.2020.05.003_bib45) 2004; 16
York (10.1016/j.cmet.2020.05.003_bib51) 2015; 163
Lancaster (10.1016/j.cmet.2020.05.003_bib26) 2018; 27
Kato (10.1016/j.cmet.2020.05.003_bib24) 2008; 205
Okabe (10.1016/j.cmet.2020.05.003_bib40) 2016; 17
Barnett (10.1016/j.cmet.2020.05.003_bib5) 2019; 176
Ding (10.1016/j.cmet.2020.05.003_bib12) 2016; 535
Liebisch (10.1016/j.cmet.2020.05.003_bib29) 2013; 54
Scumpia (10.1016/j.cmet.2020.05.003_bib44) 2017; 13
Ackerman (10.1016/j.cmet.2020.05.003_bib1) 2018; 24
Mills (10.1016/j.cmet.2020.05.003_bib34) 2018; 556
Horton (10.1016/j.cmet.2020.05.003_bib21) 2002; 109
Fahy (10.1016/j.cmet.2020.05.003_bib13) 2009; 50
Mulvihill (10.1016/j.cmet.2020.05.003_bib38) 2015; 15
Miyazaki (10.1016/j.cmet.2020.05.003_bib35) 2005; 102
Fournier (10.1016/j.cmet.2020.05.003_bib14) 2005; 18
Paton (10.1016/j.cmet.2020.05.003_bib41) 2009; 297
Metsalu (10.1016/j.cmet.2020.05.003_bib32) 2015; 43
Blanc (10.1016/j.cmet.2020.05.003_bib6) 2013; 38
Liu (10.1016/j.cmet.2020.05.003_bib31) 2016; 535
Takeshita (10.1016/j.cmet.2020.05.003_bib46) 2000; 15
Bligh (10.1016/j.cmet.2020.05.003_bib8) 1959; 37
Moore (10.1016/j.cmet.2020.05.003_bib36) 2013; 13
Halbleib (10.1016/j.cmet.2020.05.003_bib19) 2017; 67
Lawrence (10.1016/j.cmet.2020.05.003_bib27) 2011; 11
Oishi (10.1016/j.cmet.2020.05.003_bib39) 2017; 25
Rong (10.1016/j.cmet.2020.05.003_bib43) 2015; 4
Dang (10.1016/j.cmet.2020.05.003_bib11) 2017; 171
Giannakis (10.1016/j.cmet.2020.05.003_bib16) 2019; 20
Heilig (10.1016/j.cmet.2020.05.003_bib20) 2018; 48
Fu (10.1016/j.cmet.2020.05.003_bib15) 2011; 473
Huang (10.1016/j.cmet.2020.05.003_bib22) 2010; 299
Michelucci (10.1016/j.cmet.2020.05.003_bib33) 2013; 110
Bambouskova (10.1016/j.cmet.2020.05.003_bib4) 2018; 556
Blanc (10.1016/j.cmet.2020.05.003_bib7) 2011; 9
Gordon (10.1016/j.cmet.2020.05.003_bib18) 2005; 5
Wei (10.1016/j.cmet.2020.05.003_bib48) 2016; 539
Cordes (10.1016/j.cmet.2020.05.003_bib10) 2019; 1978
References_xml – volume: 301
  start-page: 640
  year: 2003
  end-page: 643
  ident: bib50
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
– volume: 539
  start-page: 294
  year: 2016
  end-page: 298
  ident: bib48
  article-title: Fatty acid synthesis configures the plasma membrane for inflammation in diabetes
  publication-title: Nature
– volume: 163
  start-page: 1716
  year: 2015
  end-page: 1729
  ident: bib51
  article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type i IFN signaling
  publication-title: Cell
– volume: 17
  start-page: 9
  year: 2016
  end-page: 17
  ident: bib40
  article-title: Tissue biology perspective on macrophages
  publication-title: Nat. Immunol.
– volume: 19
  start-page: 2743
  year: 2017
  end-page: 2755
  ident: bib2
  article-title: Lanosterol modulates TLR4-mediated innate immune responses in macrophages
  publication-title: Cell Rep.
– volume: 19
  start-page: 19
  year: 2019
  end-page: 30
  ident: bib23
  article-title: The immunological anatomy of the skin
  publication-title: Nat. Rev. Immunol.
– volume: 9
  start-page: e1000598
  year: 2011
  ident: bib7
  article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis
  publication-title: PLoS Biol.
– volume: 11
  start-page: 750
  year: 2011
  end-page: 761
  ident: bib27
  article-title: Transcriptional regulation of macrophage polarization: enabling diversity with identity
  publication-title: Nat. Rev. Immunol.
– volume: 110
  start-page: 7820
  year: 2013
  end-page: 7825
  ident: bib33
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1096
  year: 2018
  end-page: 1110.e5
  ident: bib26
  article-title: Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism
  publication-title: Cell Metab.
– volume: 299
  start-page: G1211
  year: 2010
  end-page: G1221
  ident: bib22
  article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 115
  start-page: E12228
  year: 2018
  end-page: E12234
  ident: bib28
  article-title: SREBP-1a–stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: W566
  year: 2015
  end-page: W570
  ident: bib32
  article-title: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 2596
  year: 2018
  end-page: 2605.e5
  ident: bib1
  article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation
  publication-title: Cell Rep.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bib8
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bib34
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 38
  start-page: 92
  year: 2013
  end-page: 105
  ident: bib30
  article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol
  publication-title: Immunity
– volume: 25
  start-page: 2919
  year: 2018
  end-page: 2934.e8
  ident: bib3
  article-title: Development and application of FASA, a model for quantifying fatty acid metabolism using stable isotope labeling
  publication-title: Cell Rep.
– volume: 54
  start-page: 1523
  year: 2013
  end-page: 1530
  ident: bib29
  article-title: Shorthand notation for lipid structures derived from mass spectrometry
  publication-title: J. Lipid Res.
– volume: 1978
  start-page: 219
  year: 2019
  end-page: 241
  ident: bib10
  article-title: Quantifying intermediary metabolism and lipogenesis in cultured mammalian cells using stable isotope tracing and mass spectrometry
  publication-title: Methods Mol. Biol.
– volume: 297
  start-page: E28
  year: 2009
  end-page: E37
  ident: bib41
  article-title: Biochemical and physiological function of stearoyl-CoA desaturase
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 37
  start-page: e98321
  year: 2018
  ident: bib37
  article-title: Mechanism of membrane pore formation by human gasdermin-D
  publication-title: EMBO J.
– volume: 50
  start-page: S9
  year: 2009
  end-page: S14
  ident: bib13
  article-title: Update of the LIPID MAPS comprehensive classification system for lipids
  publication-title: J. Lipid Res.
– volume: 17
  start-page: 26
  year: 2016
  end-page: 33
  ident: bib17
  article-title: Molecular control of activation and priming in macrophages
  publication-title: Nat. Immunol.
– volume: 73
  start-page: 2850
  year: 2013
  end-page: 2862
  ident: bib49
  article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity
  publication-title: Cancer Res.
– volume: 4
  start-page: 1
  year: 2015
  end-page: 23
  ident: bib43
  article-title: Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion
  publication-title: eLife
– volume: 293
  start-page: 5509
  year: 2018
  end-page: 5521
  ident: bib9
  article-title: An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation
  publication-title: J. Biol. Chem.
– volume: 176
  start-page: 1432
  year: 2019
  end-page: 1446.e11
  ident: bib5
  article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA
  publication-title: Cell
– volume: 171
  start-page: 1057
  year: 2017
  end-page: 1071.e11
  ident: bib11
  article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation
  publication-title: Cell
– volume: 561
  start-page: 303
  year: 2015
  end-page: 330
  ident: bib25
  article-title: Isotopomer spectral analysis: Utilizing Nonlinear Models in Isotopic Flux Studies
  publication-title: Methods Enzymol.
– volume: 17
  start-page: 38
  year: 2014
  end-page: 45
  ident: bib47
  article-title: Exploitation of host lipids by bacteria
  publication-title: Curr. Opin. Microbiol.
– volume: 556
  start-page: 501
  year: 2018
  end-page: 504
  ident: bib4
  article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis
  publication-title: Nature
– volume: 205
  start-page: 1601
  year: 2008
  end-page: 1610
  ident: bib24
  article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5
  publication-title: J. Exp. Med.
– volume: 15
  start-page: 6965
  year: 2015
  end-page: 6973
  ident: bib38
  article-title: Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin listeriolysin O
  publication-title: Nano Lett.
– volume: 473
  start-page: 528
  year: 2011
  end-page: 531
  ident: bib15
  article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
  publication-title: Nature
– volume: 20
  start-page: 626
  year: 2019
  end-page: 636
  ident: bib16
  article-title: Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration
  publication-title: Nat. Immunol.
– volume: 5
  start-page: 953
  year: 2005
  end-page: 964
  ident: bib18
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat. Rev. Immunol.
– volume: 15
  start-page: 1477
  year: 2000
  end-page: 1488
  ident: bib46
  article-title: Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts
  publication-title: J. Bone Miner. Res.
– volume: 13
  start-page: e1006496
  year: 2017
  ident: bib44
  article-title: Opposing roles of toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense
  publication-title: PLoS Pathog.
– volume: 67
  start-page: 673
  year: 2017
  end-page: 684.e8
  ident: bib19
  article-title: Activation of the unfolded protein response by lipid bilayer stress
  publication-title: Mol. Cell
– volume: 102
  start-page: 12501
  year: 2005
  end-page: 12506
  ident: bib35
  article-title: Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 106
  year: 2013
  end-page: 118
  ident: bib6
  article-title: The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response
  publication-title: Immunity
– volume: 18
  start-page: 521
  year: 2005
  end-page: 540
  ident: bib14
  article-title: Recognition of Staphylococcus aureus by the innate immune system
  publication-title: Clin. Microbiol. Rev.
– volume: 16
  start-page: 3
  year: 2004
  end-page: 9
  ident: bib45
  article-title: TLR signaling pathways
  publication-title: Semin. Immunol.
– volume: 13
  start-page: 709
  year: 2013
  end-page: 721
  ident: bib36
  article-title: Macrophages in atherosclerosis: a dynamic balance
  publication-title: Nat. Rev. Immunol.
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  ident: bib31
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 48
  start-page: 584
  year: 2018
  end-page: 592
  ident: bib20
  article-title: The gasdermin-D pore acts as a conduit for IL-1β secretion in mice
  publication-title: Eur. J. Immunol.
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  ident: bib12
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: bib21
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
– volume: 345
  start-page: 679
  year: 2014
  end-page: 684
  ident: bib42
  article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon
  publication-title: Science
– volume: 25
  start-page: 412
  year: 2017
  end-page: 427
  ident: bib39
  article-title: SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism
  publication-title: Cell Metab.
– volume: 102
  start-page: 12501
  year: 2005
  ident: 10.1016/j.cmet.2020.05.003_bib35
  article-title: Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503132102
– volume: 163
  start-page: 1716
  year: 2015
  ident: 10.1016/j.cmet.2020.05.003_bib51
  article-title: Limiting cholesterol biosynthetic flux spontaneously engages Type i IFN signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.045
– volume: 24
  start-page: 2596
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib1
  article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.08.015
– volume: 176
  start-page: 1432
  year: 2019
  ident: 10.1016/j.cmet.2020.05.003_bib5
  article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.049
– volume: 17
  start-page: 38
  year: 2014
  ident: 10.1016/j.cmet.2020.05.003_bib47
  article-title: Exploitation of host lipids by bacteria
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.11.003
– volume: 17
  start-page: 26
  year: 2016
  ident: 10.1016/j.cmet.2020.05.003_bib17
  article-title: Molecular control of activation and priming in macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3306
– volume: 4
  start-page: 1
  year: 2015
  ident: 10.1016/j.cmet.2020.05.003_bib43
  article-title: Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion
  publication-title: eLife
  doi: 10.7554/eLife.06557
– volume: 16
  start-page: 3
  year: 2004
  ident: 10.1016/j.cmet.2020.05.003_bib45
  article-title: TLR signaling pathways
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2003.10.003
– volume: 73
  start-page: 2850
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib49
  article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-0382-T
– volume: 299
  start-page: G1211
  year: 2010
  ident: 10.1016/j.cmet.2020.05.003_bib22
  article-title: Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00322.2010
– volume: 19
  start-page: 19
  year: 2019
  ident: 10.1016/j.cmet.2020.05.003_bib23
  article-title: The immunological anatomy of the skin
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0084-5
– volume: 301
  start-page: 640
  year: 2003
  ident: 10.1016/j.cmet.2020.05.003_bib50
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 115
  start-page: E12228
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib28
  article-title: SREBP-1a–stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1813458115
– volume: 43
  start-page: W566
  year: 2015
  ident: 10.1016/j.cmet.2020.05.003_bib32
  article-title: ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv468
– volume: 205
  start-page: 1601
  year: 2008
  ident: 10.1016/j.cmet.2020.05.003_bib24
  article-title: Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080091
– volume: 19
  start-page: 2743
  year: 2017
  ident: 10.1016/j.cmet.2020.05.003_bib2
  article-title: Lanosterol modulates TLR4-mediated innate immune responses in macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.093
– volume: 535
  start-page: 111
  year: 2016
  ident: 10.1016/j.cmet.2020.05.003_bib12
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 345
  start-page: 679
  year: 2014
  ident: 10.1016/j.cmet.2020.05.003_bib42
  article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon
  publication-title: Science
  doi: 10.1126/science.1254790
– volume: 110
  start-page: 7820
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib33
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1218599110
– volume: 20
  start-page: 626
  year: 2019
  ident: 10.1016/j.cmet.2020.05.003_bib16
  article-title: Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0356-7
– volume: 13
  start-page: 709
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib36
  article-title: Macrophages in atherosclerosis: a dynamic balance
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3520
– volume: 54
  start-page: 1523
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib29
  article-title: Shorthand notation for lipid structures derived from mass spectrometry
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M033506
– volume: 535
  start-page: 153
  year: 2016
  ident: 10.1016/j.cmet.2020.05.003_bib31
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 109
  start-page: 1125
  year: 2002
  ident: 10.1016/j.cmet.2020.05.003_bib21
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215593
– volume: 13
  start-page: e1006496
  year: 2017
  ident: 10.1016/j.cmet.2020.05.003_bib44
  article-title: Opposing roles of toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006496
– volume: 15
  start-page: 1477
  year: 2000
  ident: 10.1016/j.cmet.2020.05.003_bib46
  article-title: Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2000.15.8.1477
– volume: 9
  start-page: e1000598
  year: 2011
  ident: 10.1016/j.cmet.2020.05.003_bib7
  article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000598
– volume: 171
  start-page: 1057
  year: 2017
  ident: 10.1016/j.cmet.2020.05.003_bib11
  article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.029
– volume: 67
  start-page: 673
  year: 2017
  ident: 10.1016/j.cmet.2020.05.003_bib19
  article-title: Activation of the unfolded protein response by lipid bilayer stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.012
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.cmet.2020.05.003_bib8
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/o59-099
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib34
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 11
  start-page: 750
  year: 2011
  ident: 10.1016/j.cmet.2020.05.003_bib27
  article-title: Transcriptional regulation of macrophage polarization: enabling diversity with identity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3088
– volume: 473
  start-page: 528
  year: 2011
  ident: 10.1016/j.cmet.2020.05.003_bib15
  article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
  publication-title: Nature
  doi: 10.1038/nature09968
– volume: 5
  start-page: 953
  year: 2005
  ident: 10.1016/j.cmet.2020.05.003_bib18
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1733
– volume: 38
  start-page: 106
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib6
  article-title: The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.11.004
– volume: 37
  start-page: e98321
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib37
  article-title: Mechanism of membrane pore formation by human gasdermin-D
  publication-title: EMBO J.
  doi: 10.15252/embj.201798321
– volume: 38
  start-page: 92
  year: 2013
  ident: 10.1016/j.cmet.2020.05.003_bib30
  article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.11.005
– volume: 15
  start-page: 6965
  year: 2015
  ident: 10.1016/j.cmet.2020.05.003_bib38
  article-title: Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin listeriolysin O
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02963
– volume: 25
  start-page: 2919
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib3
  article-title: Development and application of FASA, a model for quantifying fatty acid metabolism using stable isotope labeling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.11.041
– volume: 556
  start-page: 501
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib4
  article-title: Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 50
  start-page: S9
  year: 2009
  ident: 10.1016/j.cmet.2020.05.003_bib13
  article-title: Update of the LIPID MAPS comprehensive classification system for lipids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800095-JLR200
– volume: 18
  start-page: 521
  year: 2005
  ident: 10.1016/j.cmet.2020.05.003_bib14
  article-title: Recognition of Staphylococcus aureus by the innate immune system
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.18.3.521-540.2005
– volume: 48
  start-page: 584
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib20
  article-title: The gasdermin-D pore acts as a conduit for IL-1β secretion in mice
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201747404
– volume: 293
  start-page: 5509
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib9
  article-title: An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.001921
– volume: 1978
  start-page: 219
  year: 2019
  ident: 10.1016/j.cmet.2020.05.003_bib10
  article-title: Quantifying intermediary metabolism and lipogenesis in cultured mammalian cells using stable isotope tracing and mass spectrometry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9236-2_14
– volume: 25
  start-page: 412
  year: 2017
  ident: 10.1016/j.cmet.2020.05.003_bib39
  article-title: SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.11.009
– volume: 297
  start-page: E28
  year: 2009
  ident: 10.1016/j.cmet.2020.05.003_bib41
  article-title: Biochemical and physiological function of stearoyl-CoA desaturase
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90897.2008
– volume: 27
  start-page: 1096
  year: 2018
  ident: 10.1016/j.cmet.2020.05.003_bib26
  article-title: Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.014
– volume: 539
  start-page: 294
  year: 2016
  ident: 10.1016/j.cmet.2020.05.003_bib48
  article-title: Fatty acid synthesis configures the plasma membrane for inflammation in diabetes
  publication-title: Nature
  doi: 10.1038/nature20117
– volume: 17
  start-page: 9
  year: 2016
  ident: 10.1016/j.cmet.2020.05.003_bib40
  article-title: Tissue biology perspective on macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3320
– volume: 561
  start-page: 303
  year: 2015
  ident: 10.1016/j.cmet.2020.05.003_bib25
  article-title: Isotopomer spectral analysis: Utilizing Nonlinear Models in Isotopic Flux Studies
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2015.06.039
SSID ssj0036393
Score 2.5981348
Snippet Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms acetylated-LDL
Animals
Cell Line
host defense
inflammation
interferon
Lipidomics
macrophages
Macrophages - metabolism
Male
Mice
Mice, Knockout
Mice, Transgenic
MyD88
Signal Transduction
stable isotope tracer analysis
stearoyl-CoA desaturase
toll-like receptors
Toll-Like Receptors - metabolism
Title Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome
URI https://dx.doi.org/10.1016/j.cmet.2020.05.003
https://www.ncbi.nlm.nih.gov/pubmed/32516576
https://www.proquest.com/docview/2411598052
https://pubmed.ncbi.nlm.nih.gov/PMC7891175
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FELyIb-uLCN4ktJtsNrtHFUXEemmF3sJuHnbVbou2B_-9M_soVqEHb_uYQHYmmfnCzsxHyEUIfjfIVAYWiCQLRcZZxo1gqYtUlNqUhwILnHtP0f1z-DCUwxa5aWphMK2y9v2VTy-9df2kU2uzM83zTh_BNbjggMM6xSIH8MMijMsivuF1440FROAyyR6EGUrXhTNVjpcZO8yn5N2ye2dDnPU3OP0Fn79zKH8EpbstslmjSXpVTXibtFyxQ9YrfsmvXdIfgJXZY_7mKMBDN0VmHYpkHcbRfv4CQ1nJP-9zAwJ1qtYYghmdeArIkPZSZPgagc-hSHJtJ2O3RwZ3t4Obe1azKDCDZAXMc6vAGNwn0sZwBTtWBdLgyTCWzkgb8MCnCmCU90EWRlYApIrgGOaUhdOG2CdrxaRwh4T6EL42EV4JK0NubdIVSeyzNDCgXGtVmwSN9rSpO4wj0cW7blLJXjVqXKPGdVdiX9I2uVyMmVb9NVZKy8YoemmVaAgAK8edNxbUsH3wn0hauMn8UwOAAUCHvA5tclBZdDEPAdgvgvNYm6glWy8EsDX38psiH5UtulWcYA_Uo3_O95hs4F2ZFqxOyNrsY-5OAfzMsrNydX8DtdUCmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaDkN3Gbb1lXUPDdhtEBJLlhUf12JFuiW9JANyE2w9WreNE2zJYf9-pB_B0gA57GZYFCCTEvkJJvkBfI7R70a5ztECieKxzAXPhZU884lOMpeJWFKB8-gmGfyMv0_VdA8u21oYSqtsfH_t0ytv3bzpNtrsLoqiOyZwjS44ErhPqchhH54hGtDE33A9vWjdscQQXGXZozQn8aZypk7ysjNPCZWiV7XvbJmztqPTNvp8mkT5T1S6egUvGzjJvtYrfg17vnwDz2uCyT9HMJ6gmfmwePAM8aFfELUOI7YO69m4uMWpvCKgD4VFgSZXa4bRjM0DQ2jIRhlRfN2h02HEcu3mM38Mk6tvk8sBb2gUuCW2Ah6E02gNEVLl-viER1ZHytLVsK-8VS4SUcg04qgQojxOnERMleA9zGuH1w15AgflvPRnwEKMX5vKoKVTsXAu7cm0H_Issqhc53QHolZ7xjYtxonp4tG0uWT3hjRuSOOmp6gxaQe-rOcs6gYbO6VVaxSzsU0MRoCd8z61FjR4fuinSFb6-eq3QQSDiI6IHTpwWlt0vQ6J4C_BC1kH9Iat1wLUm3tzpCzuqh7dup9SE9S3_7nej3A4mIyGZnh98-McXtBIlSOs38HB8tfKv0cktMw_VDv9L7WQBbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toll-Like+Receptors+Induce+Signal-Specific+Reprogramming+of+the+Macrophage+Lipidome&rft.jtitle=Cell+metabolism&rft.au=Hsieh%2C+Wei-Yuan&rft.au=Zhou%2C+Quan+D.&rft.au=York%2C+Autumn+G.&rft.au=Williams%2C+Kevin+J.&rft.date=2020-07-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=1&rft.spage=128&rft.epage=143.e5&rft_id=info:doi/10.1016%2Fj.cmet.2020.05.003&rft.externalDocID=S1550413120302424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon