An ecological framework for the analysis of prebiotic chemical reaction networks
[Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical...
Saved in:
Published in | Journal of theoretical biology Vol. 507; p. 110451 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
21.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical ecosystems can exhibit successional dynamics and historical contingence, implying evolution.•A chemical ecosystem framework explains how adaptive evolution can precede genetic encoding.
It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system’s trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding. |
---|---|
AbstractList | It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed containers that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and the population of a biological species. We extend this finding to show that pairs of autocatalytic cycles can show competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence (“survival of the first”), which makes the system’s dynamics historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here is helpful for visualizing how autocatalysis in prebiotic chemical reaction networks can yield life-like properties. Furthermore, chemical ecosystem ecology could provide a useful foundation for exploring the emergence of adaptive dynamics and further steps along the path to life as we now know it. It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding. It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding. [Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical ecosystems can exhibit successional dynamics and historical contingence, implying evolution.•A chemical ecosystem framework explains how adaptive evolution can precede genetic encoding. It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system’s trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding. |
ArticleNumber | 110451 |
Author | Gagrani, Praful Peng, Zhen Baum, David A. Plum, Alex M. |
AuthorAffiliation | 1 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI 53706, USA 2 Department of Engineering Physics, University of Wisconsin-Madison, Madison WI 53706, USA 3 Department of Physics, University of Wisconsin-Madison, Madison WI 53706, USA 4 Department of Botany, University of Wisconsin-Madison, Madison WI 53706, USA |
AuthorAffiliation_xml | – name: 1 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI 53706, USA – name: 2 Department of Engineering Physics, University of Wisconsin-Madison, Madison WI 53706, USA – name: 3 Department of Physics, University of Wisconsin-Madison, Madison WI 53706, USA – name: 4 Department of Botany, University of Wisconsin-Madison, Madison WI 53706, USA |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-2235-2341 surname: Peng fullname: Peng, Zhen organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 2 givenname: Alex M. surname: Plum fullname: Plum, Alex M. organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Praful surname: Gagrani fullname: Gagrani, Praful organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 4 givenname: David A. surname: Baum fullname: Baum, David A. email: dbaum@wisc.edu organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32800733$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrHDEQhEVwiNdO_kAOQcdcZtN6zQNCwJi8wBAfnLOQND1ebWakjaS18b_PTNYxsQ8-NajrqxZVJ-QoxICEvGWwZsDqD9v1tli_5sDnBwZSsRdkxaBTVaskOyIrAM4rxTpxTE5y3gJAJ0X9ihwL3gI0QqzI5Vmg6OIYr70zIx2SmfA2pl90iImWDVITzHiXfaZxoLuE1sfiHXUbnP4CCY0rPgYasCxcfk1eDmbM-OZ-npKfXz5fnX-rLn58_X5-dlE5xVmpBqZA2JpDj0xaMNi3nWuEstLImvVYd11jhWpaYcWs6GuFQtYGleldY10tTsmng-9ubyfsHYaSzKh3yU8m3elovH68CX6jr-ONblvJmIDZ4P29QYq_95iLnnx2OI4mYNxnzaWQjQKQYpa--__Ww5F_Mc4CfhC4FHNOODxIGOilK73VS1d66Uofupqh9gnkfDFLmPN__fg8-vGA4pzwjceks_MYHPY-oSu6j_45_A_dCLBk |
CitedBy_id | crossref_primary_10_3390_life13112171 crossref_primary_10_1103_PhysRevE_111_014414 crossref_primary_10_1007_s00239_021_10018_0 crossref_primary_10_1098_rsif_2021_0814 crossref_primary_10_1098_rsif_2023_0346 crossref_primary_10_3389_fevo_2021_643122 crossref_primary_10_3390_life11040308 crossref_primary_10_1007_s11084_023_09641_2 crossref_primary_10_1051_medsci_2025038 crossref_primary_10_1038_s41598_024_69267_w crossref_primary_10_1142_S0217979221502507 crossref_primary_10_1017_jpr_2021_65 crossref_primary_10_1073_pnas_2013527117 crossref_primary_10_1371_journal_pcbi_1010498 crossref_primary_10_1007_s10910_024_01576_x crossref_primary_10_1098_rsif_2020_0488 crossref_primary_10_1017_S1473550423000095 crossref_primary_10_1038_s41570_021_00329_7 crossref_primary_10_1021_jacs_3c07041 crossref_primary_10_1002_bies_202200098 crossref_primary_10_1016_j_chaos_2024_114955 crossref_primary_10_1029_2023CN000223 crossref_primary_10_1007_s00285_022_01798_0 crossref_primary_10_1098_rsif_2024_0492 |
Cites_doi | 10.1016/j.jtbi.2018.08.016 10.1074/jbc.RA118.003795 10.1016/S0040-4039(01)99487-0 10.1007/s11084-014-9374-5 10.1016/j.jtbi.2017.09.003 10.1038/nature19776 10.1086/283241 10.1021/cr2004844 10.1073/pnas.110153997 10.1162/ARTL_a_00195 10.1016/j.coisb.2018.01.004 10.3390/life7040038 10.1016/S1367-5931(97)80043-9 10.1016/j.jtbi.2003.11.020 10.1038/nature11549 10.1098/rsif.2012.0869 10.1007/BF00327865 10.1073/pnas.0912628107 10.1016/j.compbiolchem.2004.09.001 10.1038/ncomms11274 10.1016/j.tree.2010.12.007 10.1038/46453 10.3390/life9040080 10.1023/A:1006517315105 10.1111/j.1600-0706.2009.17522.x 10.1086/506024 10.1016/S0893-9659(99)00191-3 10.3390/life5010872 10.1002/ecy.2052 10.1186/s13322-015-0009-7 10.1063/1.1668896 10.3390/life9020045 10.1002/bies.20389 10.1038/s41559-017-0311-7 10.1007/s11084-016-9526-x 10.1038/119012a0 10.1007/s11084-015-9471-0 10.1007/s10441-012-9165-1 10.1089/ast.2006.6.490 10.1063/1.1681288 10.1016/j.ecolmodel.2016.12.003 10.1162/artl_a_00033 10.1073/pnas.6.7.410 10.3390/e12071733 10.1186/1745-6150-7-1 10.1007/s00239-014-9658-4 10.1080/00324728.1967.10405468 10.1016/S0022-5193(86)80047-9 10.1186/1759-2208-4-3 10.1007/s00706-019-02437-z 10.1371/journal.pone.0045772 10.1007/s00239-017-9804-x 10.1890/04-1824 10.1073/pnas.220406697 10.1128/MR.52.4.452-484.1988 10.1038/119012b0 10.1016/j.biosystems.2014.03.004 10.1038/118558a0 10.1023/A:1006583712886 10.1098/rspb.2019.2377 10.1371/journal.pone.0064567 10.1111/brv.12433 10.1007/s11084-012-9306-1 10.1007/s10910-016-0666-z |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jtbi.2020.110451 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 110451 |
ExternalDocumentID | PMC8841130 32800733 10_1016_j_jtbi_2020_110451 S0022519320303064 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Shared Services Center NASA grantid: 80NSSC17K0296 |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- RIG SEW SSH UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-f1503b620de14b0aed89c735b4a461de6997b35783b3e14d65e346ae5adc7bc63 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Thu Aug 21 13:41:38 EDT 2025 Fri Jul 11 04:52:47 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Thu Apr 24 22:53:47 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 Fri Feb 23 02:46:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chemical ecosystem ecology Logistic growth model Origin of life Autocatalytic cycle Chemical kinetics |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-f1503b620de14b0aed89c735b4a461de6997b35783b3e14d65e346ae5adc7bc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2235-2341 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8841130 |
PMID | 32800733 |
PQID | 2434750043 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8841130 proquest_miscellaneous_2434750043 pubmed_primary_32800733 crossref_primary_10_1016_j_jtbi_2020_110451 crossref_citationtrail_10_1016_j_jtbi_2020_110451 elsevier_sciencedirect_doi_10_1016_j_jtbi_2020_110451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-21 |
PublicationDateYYYYMMDD | 2020-12-21 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hordijk, Steel, Kauffman (b0105) 2012; 60 Kauffman (b0125) 1993 Orgel (b0215) 2000; 97 Passarge, Hol, Escher, Huisman (b0220) 2006; 76 Lotka, A.J., 1927. Fluctuations in the Abundance of a Species considered Mathematically. Nature 119, 12–12. https://doi.org/10.1038/119012a0. Lotka (b0170) 1920; 6 Ulanowicz (b0290) 2004; 28 Hordijk (b0070) 2017; 435 Segré, D., Lancet, D., Kedem, O., Pilpel, Y., 1998. Graded autocatalysis replication domain (gard): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol. Biosph., 28, 501–514. https://doi.org/10.1023/A:1006583712886. Vasas, Fernando, Santos, Kauffman, Szathmáry (b0305) 2012; 7 Virgo, Ikegami, McGregor (b0325) 2016; 22 Lloyd (b0160) 1967; 21 Delmas, Besson, Brice, Burkle, Dalla Riva, Fortin, Gravel, Guimarães, Hembry, Newman, Olesen, Pires, Yeakel, Poisot (b0035) 2019; 94 Vasas, Szathmary, Santos (b0310) 2010; 107 Field, Noyes (b0045) 1974; 60 Mathis, C., Ramprasad, S.N., Walker, S.I., Lehman, N., 2017. Prebiotic RNA network formation: a taxonomy of molecular cooperation. Life 7, 38. https://doi.org/10.3390/life7040038. Gatti, Hordijk, Kauffman (b0055) 2017; 346 Odum (b0210) 1971 Wieczorek, R., 2012. On prebiotic ecology, supramolecular selection and autopoiesis. Orig. Life Evol. Biosph., 42, 445–452. https://doi.org/10.1007/s11084-012-9306-1. Kauffman (b0120) 2014; 123 Vaidya, Manapat, Chen, Xulvi-Brunet, Hayden, Lehman (b0300) 2012; 491 Baum (bib366) 2018; 456 Neill, Daufresne, Jones (b0205) 2009; 118 Sommer (b0270) 1999; 402 Kreyssig, Escuela, Reynaert, Veloz, Ibrahim, Dittrich (bib367) 2012; 7 Prigogine, Lefever (b0240) 1968; 48 Xavier, Hordijk, Kauffman, Steel, Martin (b0365) 2020; 287 Hunding, Kepes, Lancet, Minsky, Norris, Raine, Sriram, Root-Bernstein (b0110) 2006; 28 Goldford, Segrè (b0060) 2018; 8 Boutlerow (b0010) 1861; 53 Breslow (b0015) 1959; 1 Semenov, Kraft, Ainla, Zhao, Baghbanzadeh, Campbell, Kang, Fox, Whitesides (b0260) 2016; 537 Ulanowicz (b0295) 1997 Joyce (b0115) 1994 Kauffman (b0130) 1986; 119 Sousa, Hordijk, Steel, Martin (b0275) 2015; 6 Wright, Vetsigian (b0360) 2016; 7 Morin (b0190) 2011 Walker, S.I., Davies, P.C.W., 2013. The algorithmic origins of life. J. R. Soc. Interface 10, 20120869. https://doi.org/10.1098/rsif.2012.0869. Hordijk, Steel (b0085) 2016; 54 Herschy, Whicher, Camprubi, Watson, Dartnell, Ward, Evans, Lane (b0065) 2014; 79 Shapiro (b0265) 2006; 81 Måren, Kapfer, Aarrestad, Grytnes, Vandvik (b0180) 2018; 99 Virgo, Ikegami (b0320) 2013; 25 Steel (b0280) 2000; 13 Laidler (b0140) 1985; 32 Hordijk (b0075) 2016; 46 Luisi (b0175) 1998; 28 Prach, Walker (b0235) 2011; 26 Ruiz-Mirazo, Briones, de la Escosura (b0245) 2014; 114 Baum, Vetsigian (b0005) 2017; 47 Hordijk, Steel (b0095) 2013; 4 Liu, Sumpter (b0155) 2018; 293 Muchowska, Varma, Chevallot-Beroux, Lethuillier-Karl, Li, Moran (b0200) 2017; 1 Chang (b0020) 2005 Ehrenfreund, Rasmussen, Cleaves, Chen (b0040) 2006; 6 Lanier, Petrov, Williams (b0145) 2017; 85 Wagner, N., Hochberg, D., Peacock-Lopez, E., Maity, I., Ashkenasy, G., 2019. Open prebiotic environments drive emergent phenomena and complex behavior. Life 9, 45. https://doi.org/10.3390/life9020045. Volterra (b0330) 1927; 119 Hordijk, Steel (b0100) 2004; 227 Schuster (b0250) 2019; 150 Hordijk, W., Hein, J., Steel, M., 2010. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742. https://doi.org/10.3390/e12071733. Plasson, Brandenburg, Jullien, Bersini (b0230) 2011; 17 Vincent, L., Berg, M., Krismer, M., Saghafi, S., Cosby, J., Sankari, T., Vetsigian, K., Cleaves, H. J. III, and Baum, D. A., 2019. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life 9, 80. https://doi.org/10.3390/life9040080. Hordijk, Steel (b0090) 2014; 44 Connell, Slatyer (b0025) 1977; 111 Khandelwal, R.A., Olivier, B.G., Röling, W.F.M., Teusink, B., Bruggeman, F.J., 2013. Community flux balance analysis for microbial consortia at balanced growth. PLOS ONE 8, e64567. https://doi.org/10.1371/journal.pone.0064567. Wächtershäuser, G., 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 Volterra (b0335) 1926; 118 Damer, B., Deamer, D., 2015. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life 5, 872–887. https://doi.org/10.3390/life5010872. Fiscus (b0050) 2002; 83 Morowitz, Kostelnik, Yang, Cody (b0195) 2000; 97 Lee, Severin, Ghadiri (b0150) 1997; 1 Pereira, Rodrigues, Carrapiço (b0225) 2012 Ulanowicz (b0285) 2009 Gatti (10.1016/j.jtbi.2020.110451_b0055) 2017; 346 Hunding (10.1016/j.jtbi.2020.110451_b0110) 2006; 28 Lotka (10.1016/j.jtbi.2020.110451_b0170) 1920; 6 Connell (10.1016/j.jtbi.2020.110451_b0025) 1977; 111 Kauffman (10.1016/j.jtbi.2020.110451_b0120) 2014; 123 Xavier (10.1016/j.jtbi.2020.110451_b0365) 2020; 287 Baum (10.1016/j.jtbi.2020.110451_b0005) 2017; 47 10.1016/j.jtbi.2020.110451_b0030 Odum (10.1016/j.jtbi.2020.110451_b0210) 1971 Kauffman (10.1016/j.jtbi.2020.110451_b0125) 1993 10.1016/j.jtbi.2020.110451_b0350 Schuster (10.1016/j.jtbi.2020.110451_b0250) 2019; 150 Hordijk (10.1016/j.jtbi.2020.110451_b0075) 2016; 46 Ulanowicz (10.1016/j.jtbi.2020.110451_b0290) 2004; 28 Goldford (10.1016/j.jtbi.2020.110451_b0060) 2018; 8 Morin (10.1016/j.jtbi.2020.110451_b0190) 2011 10.1016/j.jtbi.2020.110451_b0315 Neill (10.1016/j.jtbi.2020.110451_b0205) 2009; 118 10.1016/j.jtbi.2020.110451_b0355 Laidler (10.1016/j.jtbi.2020.110451_b0140) 1985; 32 Plasson (10.1016/j.jtbi.2020.110451_b0230) 2011; 17 Liu (10.1016/j.jtbi.2020.110451_b0155) 2018; 293 Vasas (10.1016/j.jtbi.2020.110451_b0310) 2010; 107 Muchowska (10.1016/j.jtbi.2020.110451_b0200) 2017; 1 Hordijk (10.1016/j.jtbi.2020.110451_b0095) 2013; 4 Hordijk (10.1016/j.jtbi.2020.110451_b0070) 2017; 435 Luisi (10.1016/j.jtbi.2020.110451_b0175) 1998; 28 Prach (10.1016/j.jtbi.2020.110451_b0235) 2011; 26 Vaidya (10.1016/j.jtbi.2020.110451_b0300) 2012; 491 10.1016/j.jtbi.2020.110451_b0340 Delmas (10.1016/j.jtbi.2020.110451_b0035) 2019; 94 10.1016/j.jtbi.2020.110451_b0185 Ruiz-Mirazo (10.1016/j.jtbi.2020.110451_b0245) 2014; 114 Ulanowicz (10.1016/j.jtbi.2020.110451_b0285) 2009 Lee (10.1016/j.jtbi.2020.110451_b0150) 1997; 1 Lanier (10.1016/j.jtbi.2020.110451_b0145) 2017; 85 Prigogine (10.1016/j.jtbi.2020.110451_b0240) 1968; 48 10.1016/j.jtbi.2020.110451_b0345 Field (10.1016/j.jtbi.2020.110451_b0045) 1974; 60 Lloyd (10.1016/j.jtbi.2020.110451_b0160) 1967; 21 Baum (10.1016/j.jtbi.2020.110451_bib366) 2018; 456 Joyce (10.1016/j.jtbi.2020.110451_b0115) 1994 Hordijk (10.1016/j.jtbi.2020.110451_b0100) 2004; 227 Orgel (10.1016/j.jtbi.2020.110451_b0215) 2000; 97 Pereira (10.1016/j.jtbi.2020.110451_b0225) 2012 Chang (10.1016/j.jtbi.2020.110451_b0020) 2005 Shapiro (10.1016/j.jtbi.2020.110451_b0265) 2006; 81 Volterra (10.1016/j.jtbi.2020.110451_b0330) 1927; 119 Fiscus (10.1016/j.jtbi.2020.110451_b0050) 2002; 83 Herschy (10.1016/j.jtbi.2020.110451_b0065) 2014; 79 Sommer (10.1016/j.jtbi.2020.110451_b0270) 1999; 402 Steel (10.1016/j.jtbi.2020.110451_b0280) 2000; 13 Morowitz (10.1016/j.jtbi.2020.110451_b0195) 2000; 97 Hordijk (10.1016/j.jtbi.2020.110451_b0105) 2012; 60 Virgo (10.1016/j.jtbi.2020.110451_b0325) 2016; 22 Volterra (10.1016/j.jtbi.2020.110451_b0335) 1926; 118 Hordijk (10.1016/j.jtbi.2020.110451_b0090) 2014; 44 10.1016/j.jtbi.2020.110451_b0135 Passarge (10.1016/j.jtbi.2020.110451_b0220) 2006; 76 10.1016/j.jtbi.2020.110451_b0255 Kreyssig (10.1016/j.jtbi.2020.110451_bib367) 2012; 7 Semenov (10.1016/j.jtbi.2020.110451_b0260) 2016; 537 Kauffman (10.1016/j.jtbi.2020.110451_b0130) 1986; 119 Sousa (10.1016/j.jtbi.2020.110451_b0275) 2015; 6 Ulanowicz (10.1016/j.jtbi.2020.110451_b0295) 1997 Wright (10.1016/j.jtbi.2020.110451_b0360) 2016; 7 Ehrenfreund (10.1016/j.jtbi.2020.110451_b0040) 2006; 6 10.1016/j.jtbi.2020.110451_b0080 Boutlerow (10.1016/j.jtbi.2020.110451_b0010) 1861; 53 Hordijk (10.1016/j.jtbi.2020.110451_b0085) 2016; 54 Vasas (10.1016/j.jtbi.2020.110451_b0305) 2012; 7 Breslow (10.1016/j.jtbi.2020.110451_b0015) 1959; 1 10.1016/j.jtbi.2020.110451_b0165 Måren (10.1016/j.jtbi.2020.110451_b0180) 2018; 99 Virgo (10.1016/j.jtbi.2020.110451_b0320) 2013; 25 |
References_xml | – volume: 227 start-page: 451 year: 2004 end-page: 461 ident: b0100 article-title: Detecting autocatalytic, self-sustaining sets in chemical reaction systems publication-title: J. Theor. Biol. – volume: 150 start-page: 763 year: 2019 end-page: 775 ident: b0250 article-title: What is special about autocatalysis? publication-title: Monatsh. Chem. – volume: 111 start-page: 1119 year: 1977 end-page: 1144 ident: b0025 article-title: Mechanisms of succession in natural communities and their role in community stability and organization publication-title: Am. Nat. – volume: 402 start-page: 366 year: 1999 end-page: 367 ident: b0270 article-title: Competition and coexistence publication-title: Nature – volume: 4 year: 2013 ident: b0095 article-title: A formal model of autocatalytic sets emerging in an RNA replicator system publication-title: J. Syst. Chem. – volume: 47 start-page: 481 year: 2017 end-page: 497 ident: b0005 article-title: An experimental framework for generating evolvable chemical systems in the laboratory publication-title: Orig. Life Evol. Biosph. – volume: 54 start-page: 1997 year: 2016 end-page: 2021 ident: b0085 article-title: Autocatalytic sets in polymer networks with variable catalysis distributions publication-title: J. Math. Chem. – volume: 25 start-page: 240 year: 2013 end-page: 247 ident: b0320 article-title: Autocatalysis before enzymes: the emergence of prebiotic chain reactions publication-title: Artif. Life Conf. Proceed. – volume: 537 start-page: 656 year: 2016 end-page: 660 ident: b0260 article-title: Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions publication-title: Nature – volume: 99 start-page: 148 year: 2018 end-page: 157 ident: b0180 article-title: Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient publication-title: Ecology – volume: 32 start-page: 43 year: 1985 end-page: 75 ident: b0140 article-title: Chemical kinetics and the origins of physical chemistry publication-title: Arch. Rational Mech. – reference: Hordijk, W., Hein, J., Steel, M., 2010. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742. https://doi.org/10.3390/e12071733. – volume: 81 start-page: 105 year: 2006 end-page: 126 ident: b0265 article-title: Small molecule interactions were central to the origin of life publication-title: Q. Rev. Biol. – volume: 13 start-page: 91 year: 2000 end-page: 95 ident: b0280 article-title: The emergence of a self-catalysing structure in abstract origin-of-life models publication-title: Appl. Math. Lett. – volume: 7 start-page: 1 year: 2012 ident: b0305 article-title: Evolution before genes publication-title: Biol. Direct – volume: 346 start-page: 70 year: 2017 end-page: 76 ident: b0055 article-title: Biodiversity is autocatalytic publication-title: Ecol. Model. – reference: Segré, D., Lancet, D., Kedem, O., Pilpel, Y., 1998. Graded autocatalysis replication domain (gard): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol. Biosph., 28, 501–514. https://doi.org/10.1023/A:1006583712886. – volume: 28 start-page: 399 year: 2006 end-page: 412 ident: b0110 article-title: Compositional complementarity and prebiotic ecology in the origin of life publication-title: BioEssays – volume: 7 start-page: e45772 year: 2012 ident: bib367 article-title: Cycles and the Qualitative Evolution of Chemical Systems publication-title: PLoS ONE – reference: Khandelwal, R.A., Olivier, B.G., Röling, W.F.M., Teusink, B., Bruggeman, F.J., 2013. Community flux balance analysis for microbial consortia at balanced growth. PLOS ONE 8, e64567. https://doi.org/10.1371/journal.pone.0064567. – volume: 28 start-page: 613 year: 1998 end-page: 622 ident: b0175 article-title: About various definitions of life publication-title: Orig. Life Evol. Biosph. – volume: 46 start-page: 233 year: 2016 end-page: 245 ident: b0075 article-title: Evolution of autocatalytic sets in computational models of chemical reaction networks publication-title: Orig. Life Evol. Biosph. – volume: 76 start-page: 57 year: 2006 end-page: 72 ident: b0220 article-title: Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? publication-title: Ecol. Monogr. – volume: 97 start-page: 7704 year: 2000 end-page: 7708 ident: b0195 article-title: The origin of intermediary metabolism publication-title: Proc. Natl. Acad. Sci. – volume: 79 start-page: 213 year: 2014 end-page: 227 ident: b0065 article-title: An origin-of-life reactor to simulate alkaline hydrothermal vents publication-title: J. Mol. Evol. – volume: 85 start-page: 8 year: 2017 end-page: 13 ident: b0145 article-title: The central symbiosis of molecular biology: molecules in mutualism publication-title: J. Mol. Evol. – volume: 1 start-page: 1716 year: 2017 end-page: 1721 ident: b0200 article-title: Metals promote sequences of the reverse Krebs cycle publication-title: Nat. Ecol. Evol. – volume: 107 start-page: 1470 year: 2010 end-page: 1475 ident: b0310 article-title: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life publication-title: Proc. Natl. Acad. Sci. – volume: 22 start-page: 138 year: 2016 end-page: 152 ident: b0325 article-title: Complex autocatalysis in simple chemistries publication-title: Artif. Life – volume: 94 start-page: 16 year: 2019 end-page: 36 ident: b0035 article-title: Analysing ecological networks of species interactions: analyzing ecological networks publication-title: Biol. Rev. – volume: 26 start-page: 119 year: 2011 end-page: 123 ident: b0235 article-title: Four opportunities for studies of ecological succession publication-title: Trends Ecol. Evol. – volume: 53 start-page: 145 year: 1861 end-page: 147 ident: b0010 article-title: Formation synthétique d’une substance sucrée publication-title: Compt. Rend. Sean. l’a Acad. Sci. – year: 2005 ident: b0020 article-title: Physical Chemistry for the Biosciences – volume: 123 start-page: 3 year: 2014 end-page: 8 ident: b0120 article-title: Prolegomenon to patterns in evolution publication-title: Biosystems – volume: 435 start-page: 22 year: 2017 end-page: 28 ident: b0070 article-title: Autocatalytic confusion clarified publication-title: J. Theor. Biol. – year: 2009 ident: b0285 article-title: A Third Window: Natural Life Beyond Newton and Darwin – reference: Vincent, L., Berg, M., Krismer, M., Saghafi, S., Cosby, J., Sankari, T., Vetsigian, K., Cleaves, H. J. III, and Baum, D. A., 2019. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life 9, 80. https://doi.org/10.3390/life9040080. – volume: 7 start-page: 1 year: 2016 end-page: 7 ident: b0360 article-title: Inhibitory interactions promote frequent bistability among competing bacteria publication-title: Nat. Commun. – reference: Mathis, C., Ramprasad, S.N., Walker, S.I., Lehman, N., 2017. Prebiotic RNA network formation: a taxonomy of molecular cooperation. Life 7, 38. https://doi.org/10.3390/life7040038. – volume: 83 start-page: 146 year: 2002 end-page: 149 ident: b0050 article-title: The Ecosystemic Life Hypothesis III: The Hypothesis and Its Implications publication-title: Bull. Ecol. Soc. Am. – year: 1971 ident: b0210 article-title: Environment, Power, and Society – volume: 456 start-page: 295 year: 2018 end-page: 304 ident: bib366 article-title: The origin and early evolution of life in chemical complexity space publication-title: Journal of Theoretical Biology – year: 1994 ident: b0115 article-title: Foreword publication-title: Origins of Life: The Central Concepts – reference: Walker, S.I., Davies, P.C.W., 2013. The algorithmic origins of life. J. R. Soc. Interface 10, 20120869. https://doi.org/10.1098/rsif.2012.0869. – volume: 60 start-page: 1877 year: 1974 end-page: 1884 ident: b0045 article-title: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction publication-title: J. Chem. Phys. – volume: 28 start-page: 321 year: 2004 end-page: 339 ident: b0290 article-title: Quantitative methods for ecological network analysis publication-title: Comput. Biol. Chem. – volume: 1 start-page: 22 year: 1959 end-page: 26 ident: b0015 article-title: On the mechanism of the formose reaction publication-title: Tetrahedron Lett. – reference: Wieczorek, R., 2012. On prebiotic ecology, supramolecular selection and autopoiesis. Orig. Life Evol. Biosph., 42, 445–452. https://doi.org/10.1007/s11084-012-9306-1. – volume: 6 start-page: 490 year: 2006 end-page: 520 ident: b0040 article-title: Experimentally tracing the key steps in the origin of life: the aromatic world publication-title: Astrobiology – volume: 17 start-page: 219 year: 2011 end-page: 236 ident: b0230 article-title: Autocatalysis: at the root of self-replication publication-title: Artif. Life – volume: 44 start-page: 111 year: 2014 end-page: 124 ident: b0090 article-title: Conditions for evolvability of autocatalytic sets: a formal example and analysis publication-title: Orig. Life Evol. Biosph. – volume: 491 start-page: 72 year: 2012 end-page: 77 ident: b0300 article-title: Spontaneous network formation among cooperative RNA replicators publication-title: Nature – volume: 118 start-page: 558 year: 1926 end-page: 560 ident: b0335 article-title: Fluctuations in the abundance of a species considered mathematically1 publication-title: Nature – volume: 6 year: 2015 ident: b0275 article-title: Autocatalytic sets in E. coli metabolism publication-title: J. Syst. Chem. – volume: 48 start-page: 1695 year: 1968 end-page: 1700 ident: b0240 article-title: Symmetry breaking instabilities in dissipative Systems. II publication-title: J. Chem. Phys. – year: 2011 ident: b0190 article-title: Community Ecology – volume: 6 start-page: 410 year: 1920 end-page: 415 ident: b0170 article-title: Analytical note on certain rhythmic relations in organic systems publication-title: PNAS – reference: Wagner, N., Hochberg, D., Peacock-Lopez, E., Maity, I., Ashkenasy, G., 2019. Open prebiotic environments drive emergent phenomena and complex behavior. Life 9, 45. https://doi.org/10.3390/life9020045. – volume: 1 start-page: 491 year: 1997 end-page: 496 ident: b0150 article-title: Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems publication-title: Curr. Opin. Chem. Biol. – volume: 287 start-page: 20192377 year: 2020 ident: b0365 article-title: Autocatalytic chemical networks at the origin of metabolism publication-title: Proc. R. Soc. B – volume: 118 start-page: 1570 year: 2009 end-page: 1578 ident: b0205 article-title: A competitive coexistence principle? publication-title: Oikos – start-page: 723 year: 2012 end-page: 742 ident: b0225 article-title: A symbiogenic way in the origin of life publication-title: Genesis – In The Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, Cellular Origin, Life in Extreme Habitats and Astrobiology – year: 1997 ident: b0295 article-title: Ecology, the Ascendent Perspective, Complexity in Ecological Systems Series – reference: Lotka, A.J., 1927. Fluctuations in the Abundance of a Species considered Mathematically. Nature 119, 12–12. https://doi.org/10.1038/119012a0. – volume: 8 start-page: 117 year: 2018 end-page: 124 ident: b0060 article-title: Modern views of ancient metabolic networks publication-title: Curr. Opin. Syst. Biol. – volume: 119 start-page: 12 year: 1927 end-page: 13 ident: b0330 article-title: Fluctuations in the abundance of a species considered mathematically publication-title: Nature – volume: 21 start-page: 99 year: 1967 ident: b0160 article-title: American, German and British antecedents to pearl and Reed’s Logistic Curve publication-title: Population Studies – reference: Damer, B., Deamer, D., 2015. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life 5, 872–887. https://doi.org/10.3390/life5010872. – volume: 114 start-page: 285 year: 2014 end-page: 366 ident: b0245 article-title: Prebiotic systems chemistry: new perspectives for the origins of life publication-title: Chem. Rev. – volume: 119 start-page: 1 year: 1986 end-page: 24 ident: b0130 article-title: Autocatalytic sets of proteins publication-title: J. Theor. Biol. – volume: 293 start-page: 18854 year: 2018 end-page: 18863 ident: b0155 article-title: Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems publication-title: J. Biol. Chem. – volume: 97 start-page: 12503 year: 2000 end-page: 12507 ident: b0215 article-title: Self-organizing biochemical cycles publication-title: Proc. Natl. Acad. Sci. – reference: Wächtershäuser, G., 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484, – volume: 60 start-page: 379 year: 2012 end-page: 392 ident: b0105 article-title: The structure of autocatalytic sets: evolvability, enablement, and emergence publication-title: Acta Biotheor. – year: 1993 ident: b0125 article-title: The Origins of Order: Self-Organization and Selection in Evolution – volume: 456 start-page: 295 year: 2018 ident: 10.1016/j.jtbi.2020.110451_bib366 article-title: The origin and early evolution of life in chemical complexity space publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2018.08.016 – volume: 293 start-page: 18854 issue: 49 year: 2018 ident: 10.1016/j.jtbi.2020.110451_b0155 article-title: Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003795 – year: 1993 ident: 10.1016/j.jtbi.2020.110451_b0125 – year: 1994 ident: 10.1016/j.jtbi.2020.110451_b0115 article-title: Foreword – volume: 1 start-page: 22 issue: 21 year: 1959 ident: 10.1016/j.jtbi.2020.110451_b0015 article-title: On the mechanism of the formose reaction publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)99487-0 – year: 1997 ident: 10.1016/j.jtbi.2020.110451_b0295 – volume: 44 start-page: 111 issue: 2 year: 2014 ident: 10.1016/j.jtbi.2020.110451_b0090 article-title: Conditions for evolvability of autocatalytic sets: a formal example and analysis publication-title: Orig. Life Evol. Biosph. doi: 10.1007/s11084-014-9374-5 – volume: 435 start-page: 22 year: 2017 ident: 10.1016/j.jtbi.2020.110451_b0070 article-title: Autocatalytic confusion clarified publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2017.09.003 – volume: 537 start-page: 656 issue: 7622 year: 2016 ident: 10.1016/j.jtbi.2020.110451_b0260 article-title: Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions publication-title: Nature doi: 10.1038/nature19776 – volume: 111 start-page: 1119 issue: 982 year: 1977 ident: 10.1016/j.jtbi.2020.110451_b0025 article-title: Mechanisms of succession in natural communities and their role in community stability and organization publication-title: Am. Nat. doi: 10.1086/283241 – volume: 114 start-page: 285 issue: 1 year: 2014 ident: 10.1016/j.jtbi.2020.110451_b0245 article-title: Prebiotic systems chemistry: new perspectives for the origins of life publication-title: Chem. Rev. doi: 10.1021/cr2004844 – volume: 97 start-page: 7704 issue: 14 year: 2000 ident: 10.1016/j.jtbi.2020.110451_b0195 article-title: The origin of intermediary metabolism publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.110153997 – volume: 22 start-page: 138 issue: 2 year: 2016 ident: 10.1016/j.jtbi.2020.110451_b0325 article-title: Complex autocatalysis in simple chemistries publication-title: Artif. Life doi: 10.1162/ARTL_a_00195 – volume: 8 start-page: 117 year: 2018 ident: 10.1016/j.jtbi.2020.110451_b0060 article-title: Modern views of ancient metabolic networks publication-title: Curr. Opin. Syst. Biol. doi: 10.1016/j.coisb.2018.01.004 – ident: 10.1016/j.jtbi.2020.110451_b0185 doi: 10.3390/life7040038 – volume: 1 start-page: 491 issue: 4 year: 1997 ident: 10.1016/j.jtbi.2020.110451_b0150 article-title: Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(97)80043-9 – volume: 227 start-page: 451 issue: 4 year: 2004 ident: 10.1016/j.jtbi.2020.110451_b0100 article-title: Detecting autocatalytic, self-sustaining sets in chemical reaction systems publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2003.11.020 – volume: 491 start-page: 72 issue: 7422 year: 2012 ident: 10.1016/j.jtbi.2020.110451_b0300 article-title: Spontaneous network formation among cooperative RNA replicators publication-title: Nature doi: 10.1038/nature11549 – ident: 10.1016/j.jtbi.2020.110451_b0350 doi: 10.1098/rsif.2012.0869 – volume: 32 start-page: 43 issue: 1 year: 1985 ident: 10.1016/j.jtbi.2020.110451_b0140 article-title: Chemical kinetics and the origins of physical chemistry publication-title: Arch. Rational Mech. doi: 10.1007/BF00327865 – volume: 107 start-page: 1470 issue: 4 year: 2010 ident: 10.1016/j.jtbi.2020.110451_b0310 article-title: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0912628107 – volume: 28 start-page: 321 issue: 5-6 year: 2004 ident: 10.1016/j.jtbi.2020.110451_b0290 article-title: Quantitative methods for ecological network analysis publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2004.09.001 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.jtbi.2020.110451_b0360 article-title: Inhibitory interactions promote frequent bistability among competing bacteria publication-title: Nat. Commun. doi: 10.1038/ncomms11274 – volume: 26 start-page: 119 issue: 3 year: 2011 ident: 10.1016/j.jtbi.2020.110451_b0235 article-title: Four opportunities for studies of ecological succession publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2010.12.007 – volume: 402 start-page: 366 issue: 6760 year: 1999 ident: 10.1016/j.jtbi.2020.110451_b0270 article-title: Competition and coexistence publication-title: Nature doi: 10.1038/46453 – year: 2011 ident: 10.1016/j.jtbi.2020.110451_b0190 – ident: 10.1016/j.jtbi.2020.110451_b0315 doi: 10.3390/life9040080 – volume: 28 start-page: 613 year: 1998 ident: 10.1016/j.jtbi.2020.110451_b0175 article-title: About various definitions of life publication-title: Orig. Life Evol. Biosph. doi: 10.1023/A:1006517315105 – volume: 53 start-page: 145 year: 1861 ident: 10.1016/j.jtbi.2020.110451_b0010 article-title: Formation synthétique d’une substance sucrée publication-title: Compt. Rend. Sean. l’a Acad. Sci. – volume: 118 start-page: 1570 issue: 10 year: 2009 ident: 10.1016/j.jtbi.2020.110451_b0205 article-title: A competitive coexistence principle? publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17522.x – volume: 81 start-page: 105 issue: 2 year: 2006 ident: 10.1016/j.jtbi.2020.110451_b0265 article-title: Small molecule interactions were central to the origin of life publication-title: Q. Rev. Biol. doi: 10.1086/506024 – volume: 13 start-page: 91 issue: 3 year: 2000 ident: 10.1016/j.jtbi.2020.110451_b0280 article-title: The emergence of a self-catalysing structure in abstract origin-of-life models publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(99)00191-3 – ident: 10.1016/j.jtbi.2020.110451_b0030 doi: 10.3390/life5010872 – volume: 99 start-page: 148 issue: 1 year: 2018 ident: 10.1016/j.jtbi.2020.110451_b0180 article-title: Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient publication-title: Ecology doi: 10.1002/ecy.2052 – volume: 6 issue: 1 year: 2015 ident: 10.1016/j.jtbi.2020.110451_b0275 article-title: Autocatalytic sets in E. coli metabolism publication-title: J. Syst. Chem. doi: 10.1186/s13322-015-0009-7 – volume: 48 start-page: 1695 issue: 4 year: 1968 ident: 10.1016/j.jtbi.2020.110451_b0240 article-title: Symmetry breaking instabilities in dissipative Systems. II publication-title: J. Chem. Phys. doi: 10.1063/1.1668896 – ident: 10.1016/j.jtbi.2020.110451_b0345 doi: 10.3390/life9020045 – volume: 28 start-page: 399 issue: 4 year: 2006 ident: 10.1016/j.jtbi.2020.110451_b0110 article-title: Compositional complementarity and prebiotic ecology in the origin of life publication-title: BioEssays doi: 10.1002/bies.20389 – volume: 1 start-page: 1716 issue: 11 year: 2017 ident: 10.1016/j.jtbi.2020.110451_b0200 article-title: Metals promote sequences of the reverse Krebs cycle publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0311-7 – volume: 47 start-page: 481 issue: 4 year: 2017 ident: 10.1016/j.jtbi.2020.110451_b0005 article-title: An experimental framework for generating evolvable chemical systems in the laboratory publication-title: Orig. Life Evol. Biosph. doi: 10.1007/s11084-016-9526-x – ident: 10.1016/j.jtbi.2020.110451_b0165 doi: 10.1038/119012a0 – volume: 46 start-page: 233 issue: 2-3 year: 2016 ident: 10.1016/j.jtbi.2020.110451_b0075 article-title: Evolution of autocatalytic sets in computational models of chemical reaction networks publication-title: Orig. Life Evol. Biosph. doi: 10.1007/s11084-015-9471-0 – volume: 83 start-page: 146 year: 2002 ident: 10.1016/j.jtbi.2020.110451_b0050 article-title: The Ecosystemic Life Hypothesis III: The Hypothesis and Its Implications publication-title: Bull. Ecol. Soc. Am. – volume: 60 start-page: 379 issue: 4 year: 2012 ident: 10.1016/j.jtbi.2020.110451_b0105 article-title: The structure of autocatalytic sets: evolvability, enablement, and emergence publication-title: Acta Biotheor. doi: 10.1007/s10441-012-9165-1 – volume: 6 start-page: 490 issue: 3 year: 2006 ident: 10.1016/j.jtbi.2020.110451_b0040 article-title: Experimentally tracing the key steps in the origin of life: the aromatic world publication-title: Astrobiology doi: 10.1089/ast.2006.6.490 – volume: 60 start-page: 1877 issue: 5 year: 1974 ident: 10.1016/j.jtbi.2020.110451_b0045 article-title: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction publication-title: J. Chem. Phys. doi: 10.1063/1.1681288 – start-page: 723 year: 2012 ident: 10.1016/j.jtbi.2020.110451_b0225 article-title: A symbiogenic way in the origin of life – volume: 346 start-page: 70 year: 2017 ident: 10.1016/j.jtbi.2020.110451_b0055 article-title: Biodiversity is autocatalytic publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2016.12.003 – volume: 17 start-page: 219 issue: 3 year: 2011 ident: 10.1016/j.jtbi.2020.110451_b0230 article-title: Autocatalysis: at the root of self-replication publication-title: Artif. Life doi: 10.1162/artl_a_00033 – volume: 6 start-page: 410 issue: 7 year: 1920 ident: 10.1016/j.jtbi.2020.110451_b0170 article-title: Analytical note on certain rhythmic relations in organic systems publication-title: PNAS doi: 10.1073/pnas.6.7.410 – ident: 10.1016/j.jtbi.2020.110451_b0080 doi: 10.3390/e12071733 – volume: 7 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.jtbi.2020.110451_b0305 article-title: Evolution before genes publication-title: Biol. Direct doi: 10.1186/1745-6150-7-1 – volume: 79 start-page: 213 issue: 5-6 year: 2014 ident: 10.1016/j.jtbi.2020.110451_b0065 article-title: An origin-of-life reactor to simulate alkaline hydrothermal vents publication-title: J. Mol. Evol. doi: 10.1007/s00239-014-9658-4 – volume: 21 start-page: 99 issue: 2 year: 1967 ident: 10.1016/j.jtbi.2020.110451_b0160 article-title: American, German and British antecedents to pearl and Reed’s Logistic Curve publication-title: Population Studies doi: 10.1080/00324728.1967.10405468 – volume: 119 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.jtbi.2020.110451_b0130 article-title: Autocatalytic sets of proteins publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(86)80047-9 – volume: 4 issue: 1 year: 2013 ident: 10.1016/j.jtbi.2020.110451_b0095 article-title: A formal model of autocatalytic sets emerging in an RNA replicator system publication-title: J. Syst. Chem. doi: 10.1186/1759-2208-4-3 – volume: 150 start-page: 763 issue: 5 year: 2019 ident: 10.1016/j.jtbi.2020.110451_b0250 article-title: What is special about autocatalysis? publication-title: Monatsh. Chem. doi: 10.1007/s00706-019-02437-z – year: 2009 ident: 10.1016/j.jtbi.2020.110451_b0285 – year: 2005 ident: 10.1016/j.jtbi.2020.110451_b0020 – volume: 7 start-page: e45772 issue: 10 year: 2012 ident: 10.1016/j.jtbi.2020.110451_bib367 article-title: Cycles and the Qualitative Evolution of Chemical Systems publication-title: PLoS ONE doi: 10.1371/journal.pone.0045772 – volume: 85 start-page: 8 issue: 1-2 year: 2017 ident: 10.1016/j.jtbi.2020.110451_b0145 article-title: The central symbiosis of molecular biology: molecules in mutualism publication-title: J. Mol. Evol. doi: 10.1007/s00239-017-9804-x – volume: 76 start-page: 57 issue: 1 year: 2006 ident: 10.1016/j.jtbi.2020.110451_b0220 article-title: Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? publication-title: Ecol. Monogr. doi: 10.1890/04-1824 – volume: 97 start-page: 12503 issue: 23 year: 2000 ident: 10.1016/j.jtbi.2020.110451_b0215 article-title: Self-organizing biochemical cycles publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.220406697 – ident: 10.1016/j.jtbi.2020.110451_b0340 doi: 10.1128/MR.52.4.452-484.1988 – year: 1971 ident: 10.1016/j.jtbi.2020.110451_b0210 – volume: 119 start-page: 12 issue: 2983 year: 1927 ident: 10.1016/j.jtbi.2020.110451_b0330 article-title: Fluctuations in the abundance of a species considered mathematically publication-title: Nature doi: 10.1038/119012b0 – volume: 123 start-page: 3 year: 2014 ident: 10.1016/j.jtbi.2020.110451_b0120 article-title: Prolegomenon to patterns in evolution publication-title: Biosystems doi: 10.1016/j.biosystems.2014.03.004 – volume: 118 start-page: 558 issue: 2972 year: 1926 ident: 10.1016/j.jtbi.2020.110451_b0335 article-title: Fluctuations in the abundance of a species considered mathematically1 publication-title: Nature doi: 10.1038/118558a0 – ident: 10.1016/j.jtbi.2020.110451_b0255 doi: 10.1023/A:1006583712886 – volume: 287 start-page: 20192377 issue: 1922 year: 2020 ident: 10.1016/j.jtbi.2020.110451_b0365 article-title: Autocatalytic chemical networks at the origin of metabolism publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2019.2377 – ident: 10.1016/j.jtbi.2020.110451_b0135 doi: 10.1371/journal.pone.0064567 – volume: 94 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.jtbi.2020.110451_b0035 article-title: Analysing ecological networks of species interactions: analyzing ecological networks publication-title: Biol. Rev. doi: 10.1111/brv.12433 – volume: 25 start-page: 240 year: 2013 ident: 10.1016/j.jtbi.2020.110451_b0320 article-title: Autocatalysis before enzymes: the emergence of prebiotic chain reactions publication-title: Artif. Life Conf. Proceed. – ident: 10.1016/j.jtbi.2020.110451_b0355 doi: 10.1007/s11084-012-9306-1 – volume: 54 start-page: 1997 issue: 10 year: 2016 ident: 10.1016/j.jtbi.2020.110451_b0085 article-title: Autocatalytic sets in polymer networks with variable catalysis distributions publication-title: J. Math. Chem. doi: 10.1007/s10910-016-0666-z |
SSID | ssj0009436 |
Score | 2.4733543 |
Snippet | [Display omitted]
•Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth... It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals... It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110451 |
SubjectTerms | Autocatalytic cycle Catalysis Chemical ecosystem ecology Chemical kinetics Ecosystem Logistic growth model Models, Biological Origin of Life |
Title | An ecological framework for the analysis of prebiotic chemical reaction networks |
URI | https://dx.doi.org/10.1016/j.jtbi.2020.110451 https://www.ncbi.nlm.nih.gov/pubmed/32800733 https://www.proquest.com/docview/2434750043 https://pubmed.ncbi.nlm.nih.gov/PMC8841130 |
Volume | 507 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUCUuCNoCy0uu1FuVkviRxMcVAm1bFfUAEjfLThwRhLIrWA5c-O3MOM7CtioHjknGkTUzHn-Wv5kB-Ep3LaXXNsEzcp0gAk8TpxqRKF9mEiFwwy3lO_8-zyeX8ueVulqBkyEXhmiVMfb3MT1E6_jmOGrzeNa2lOPLecAf6KeEoymDXRbk5d-fXmgeWoY2gYG1TtIxcabneN3MXYtnRB7Y8FJl_9uc_gWff3MoX21KZ5uwEdEkG_cT3oIV332ED31_ycdP8GfcMV8N4Y01AxGLIVJliPyYjSVJ2LRhszvv2in-iFWxiABDQBnSHljXk8XvP8Pl2enFySSJLRSSijoVJA3iPeFyntY-ky61vi51VQjlpJV5Vvtc68JRwRvhBErUufJC5tYrW1eFq3KxDavdtPO7wPAMXdRCV40SWuLKtS7VNs054gXpG61GkA26M1WsL05tLm7NQCS7MaRvQ_o2vb5H8G0xZtZX13hTWg0mMUs-YjD8vznuy2A_g4uHbkRs56cP94ZLIREypVKMYKe352Iegpeho-UIiiVLLwSoMPfyl669DgW6y1JmiA323jnffVinJyLN8OwAVud3D_4Qoc_cHQXfPoK18Y9fk_NnUmoCNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZ4CMEF8VoYXhskbqhLm0fbHBECDSwgDiBxi5I21RatOiMYDlz47ThpOjAgOHBtnCqyHeeL8tkG2HdvLbmVOsI7chkhAo8jIyoWCZsnHCFwRbXLd768Svu3_PxO3E3BcZcL42iVIfa3Md1H6_DlMGjzcFjXLseXUo8_0E8djp6GWY7b17Ux-PPyxvOQ3PcJ9LR1Jx4yZ1qS1_3I1HhJpJ4Oz0Xy1en0GX1-JFG-O5VOl2AxwEly1K54GaZsswJzbYPJ51W4PmqILbr4RqqOiUUQqhKEfkSHmiRkUJHhgzX1AH9EilBFgCCi9HkPpGnZ4o9rcHt6cnPcj0IPhahwrQqiCgEfMymNS5twE2tb5rLImDBc8zQpbSplZlzFG2YYSpSpsIyn2gpdFpkpUvYLZppBYzeA4CU6K5ksKsEkKjrRJpY6TikCBm4rKXqQdLpTRSgw7vpc_Fcdk-xeOX0rp2_V6rsHB-M5w7a8xrfSojOJmnAShfH_23l7nf0U7h73JKIbO3h6VJQzjpgp5qwH6609x-tgNPctLXuQTVh6LOAqc0-ONPU_X6E7z3mC4GDzh-v9DfP9m8sLdXF29XcLFtyIY9DQZBtmRg9Pdgdx0Mjsej9_BScAA8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ecological+framework+for+the+analysis+of+prebiotic+chemical+reaction+networks&rft.jtitle=Journal+of+theoretical+biology&rft.au=Peng%2C+Zhen&rft.au=Plum%2C+Alex+M&rft.au=Gagrani%2C+Praful&rft.au=Baum%2C+David+A&rft.date=2020-12-21&rft.eissn=1095-8541&rft.volume=507&rft.spage=110451&rft_id=info:doi/10.1016%2Fj.jtbi.2020.110451&rft_id=info%3Apmid%2F32800733&rft.externalDocID=32800733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |