An ecological framework for the analysis of prebiotic chemical reaction networks

[Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 507; p. 110451
Main Authors Peng, Zhen, Plum, Alex M., Gagrani, Praful, Baum, David A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical ecosystems can exhibit successional dynamics and historical contingence, implying evolution.•A chemical ecosystem framework explains how adaptive evolution can precede genetic encoding. It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system’s trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.
AbstractList It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed containers that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and the population of a biological species. We extend this finding to show that pairs of autocatalytic cycles can show competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence (“survival of the first”), which makes the system’s dynamics historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here is helpful for visualizing how autocatalysis in prebiotic chemical reaction networks can yield life-like properties. Furthermore, chemical ecosystem ecology could provide a useful foundation for exploring the emergence of adaptive dynamics and further steps along the path to life as we now know it.
It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.
It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system's trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.
[Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth like a biological population.•Pairs of ACs can interact just like biological species, including competition, predation, etc.•Simple chemical ecosystems can exhibit successional dynamics and historical contingence, implying evolution.•A chemical ecosystem framework explains how adaptive evolution can precede genetic encoding. It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed compartments that are subject to constant dilution by a solution with a fixed concentration of input chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an autocatalytic cycle and a biological species. We extend this finding to show that pairs of autocatalytic cycles can exhibit competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of autocatalytic cycles, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence, which makes a system’s trajectory historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here helps explain the onset of adaptive evolution in prebiotic chemical reaction networks, and can shed light on the origin of key biological attributes such as thermodynamic irreversibility and genetic encoding.
ArticleNumber 110451
Author Gagrani, Praful
Peng, Zhen
Baum, David A.
Plum, Alex M.
AuthorAffiliation 1 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI 53706, USA
2 Department of Engineering Physics, University of Wisconsin-Madison, Madison WI 53706, USA
3 Department of Physics, University of Wisconsin-Madison, Madison WI 53706, USA
4 Department of Botany, University of Wisconsin-Madison, Madison WI 53706, USA
AuthorAffiliation_xml – name: 1 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI 53706, USA
– name: 2 Department of Engineering Physics, University of Wisconsin-Madison, Madison WI 53706, USA
– name: 3 Department of Physics, University of Wisconsin-Madison, Madison WI 53706, USA
– name: 4 Department of Botany, University of Wisconsin-Madison, Madison WI 53706, USA
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-2235-2341
  surname: Peng
  fullname: Peng, Zhen
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Alex M.
  surname: Plum
  fullname: Plum, Alex M.
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Praful
  surname: Gagrani
  fullname: Gagrani, Praful
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 4
  givenname: David A.
  surname: Baum
  fullname: Baum, David A.
  email: dbaum@wisc.edu
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32800733$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrHDEQhEVwiNdO_kAOQcdcZtN6zQNCwJi8wBAfnLOQND1ebWakjaS18b_PTNYxsQ8-NajrqxZVJ-QoxICEvGWwZsDqD9v1tli_5sDnBwZSsRdkxaBTVaskOyIrAM4rxTpxTE5y3gJAJ0X9ihwL3gI0QqzI5Vmg6OIYr70zIx2SmfA2pl90iImWDVITzHiXfaZxoLuE1sfiHXUbnP4CCY0rPgYasCxcfk1eDmbM-OZ-npKfXz5fnX-rLn58_X5-dlE5xVmpBqZA2JpDj0xaMNi3nWuEstLImvVYd11jhWpaYcWs6GuFQtYGleldY10tTsmng-9ubyfsHYaSzKh3yU8m3elovH68CX6jr-ONblvJmIDZ4P29QYq_95iLnnx2OI4mYNxnzaWQjQKQYpa--__Ww5F_Mc4CfhC4FHNOODxIGOilK73VS1d66Uofupqh9gnkfDFLmPN__fg8-vGA4pzwjceks_MYHPY-oSu6j_45_A_dCLBk
CitedBy_id crossref_primary_10_3390_life13112171
crossref_primary_10_1103_PhysRevE_111_014414
crossref_primary_10_1007_s00239_021_10018_0
crossref_primary_10_1098_rsif_2021_0814
crossref_primary_10_1098_rsif_2023_0346
crossref_primary_10_3389_fevo_2021_643122
crossref_primary_10_3390_life11040308
crossref_primary_10_1007_s11084_023_09641_2
crossref_primary_10_1051_medsci_2025038
crossref_primary_10_1038_s41598_024_69267_w
crossref_primary_10_1142_S0217979221502507
crossref_primary_10_1017_jpr_2021_65
crossref_primary_10_1073_pnas_2013527117
crossref_primary_10_1371_journal_pcbi_1010498
crossref_primary_10_1007_s10910_024_01576_x
crossref_primary_10_1098_rsif_2020_0488
crossref_primary_10_1017_S1473550423000095
crossref_primary_10_1038_s41570_021_00329_7
crossref_primary_10_1021_jacs_3c07041
crossref_primary_10_1002_bies_202200098
crossref_primary_10_1016_j_chaos_2024_114955
crossref_primary_10_1029_2023CN000223
crossref_primary_10_1007_s00285_022_01798_0
crossref_primary_10_1098_rsif_2024_0492
Cites_doi 10.1016/j.jtbi.2018.08.016
10.1074/jbc.RA118.003795
10.1016/S0040-4039(01)99487-0
10.1007/s11084-014-9374-5
10.1016/j.jtbi.2017.09.003
10.1038/nature19776
10.1086/283241
10.1021/cr2004844
10.1073/pnas.110153997
10.1162/ARTL_a_00195
10.1016/j.coisb.2018.01.004
10.3390/life7040038
10.1016/S1367-5931(97)80043-9
10.1016/j.jtbi.2003.11.020
10.1038/nature11549
10.1098/rsif.2012.0869
10.1007/BF00327865
10.1073/pnas.0912628107
10.1016/j.compbiolchem.2004.09.001
10.1038/ncomms11274
10.1016/j.tree.2010.12.007
10.1038/46453
10.3390/life9040080
10.1023/A:1006517315105
10.1111/j.1600-0706.2009.17522.x
10.1086/506024
10.1016/S0893-9659(99)00191-3
10.3390/life5010872
10.1002/ecy.2052
10.1186/s13322-015-0009-7
10.1063/1.1668896
10.3390/life9020045
10.1002/bies.20389
10.1038/s41559-017-0311-7
10.1007/s11084-016-9526-x
10.1038/119012a0
10.1007/s11084-015-9471-0
10.1007/s10441-012-9165-1
10.1089/ast.2006.6.490
10.1063/1.1681288
10.1016/j.ecolmodel.2016.12.003
10.1162/artl_a_00033
10.1073/pnas.6.7.410
10.3390/e12071733
10.1186/1745-6150-7-1
10.1007/s00239-014-9658-4
10.1080/00324728.1967.10405468
10.1016/S0022-5193(86)80047-9
10.1186/1759-2208-4-3
10.1007/s00706-019-02437-z
10.1371/journal.pone.0045772
10.1007/s00239-017-9804-x
10.1890/04-1824
10.1073/pnas.220406697
10.1128/MR.52.4.452-484.1988
10.1038/119012b0
10.1016/j.biosystems.2014.03.004
10.1038/118558a0
10.1023/A:1006583712886
10.1098/rspb.2019.2377
10.1371/journal.pone.0064567
10.1111/brv.12433
10.1007/s11084-012-9306-1
10.1007/s10910-016-0666-z
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jtbi.2020.110451
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 110451
ExternalDocumentID PMC8841130
32800733
10_1016_j_jtbi_2020_110451
S0022519320303064
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Shared Services Center NASA
  grantid: 80NSSC17K0296
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEW
SSH
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-f1503b620de14b0aed89c735b4a461de6997b35783b3e14d65e346ae5adc7bc63
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Thu Aug 21 13:41:38 EDT 2025
Fri Jul 11 04:52:47 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
Fri Feb 23 02:46:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chemical ecosystem ecology
Logistic growth model
Origin of life
Autocatalytic cycle
Chemical kinetics
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-f1503b620de14b0aed89c735b4a461de6997b35783b3e14d65e346ae5adc7bc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2235-2341
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8841130
PMID 32800733
PQID 2434750043
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8841130
proquest_miscellaneous_2434750043
pubmed_primary_32800733
crossref_primary_10_1016_j_jtbi_2020_110451
crossref_citationtrail_10_1016_j_jtbi_2020_110451
elsevier_sciencedirect_doi_10_1016_j_jtbi_2020_110451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-21
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hordijk, Steel, Kauffman (b0105) 2012; 60
Kauffman (b0125) 1993
Orgel (b0215) 2000; 97
Passarge, Hol, Escher, Huisman (b0220) 2006; 76
Lotka, A.J., 1927. Fluctuations in the Abundance of a Species considered Mathematically. Nature 119, 12–12. https://doi.org/10.1038/119012a0.
Lotka (b0170) 1920; 6
Ulanowicz (b0290) 2004; 28
Hordijk (b0070) 2017; 435
Segré, D., Lancet, D., Kedem, O., Pilpel, Y., 1998. Graded autocatalysis replication domain (gard): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol. Biosph., 28, 501–514. https://doi.org/10.1023/A:1006583712886.
Vasas, Fernando, Santos, Kauffman, Szathmáry (b0305) 2012; 7
Virgo, Ikegami, McGregor (b0325) 2016; 22
Lloyd (b0160) 1967; 21
Delmas, Besson, Brice, Burkle, Dalla Riva, Fortin, Gravel, Guimarães, Hembry, Newman, Olesen, Pires, Yeakel, Poisot (b0035) 2019; 94
Vasas, Szathmary, Santos (b0310) 2010; 107
Field, Noyes (b0045) 1974; 60
Mathis, C., Ramprasad, S.N., Walker, S.I., Lehman, N., 2017. Prebiotic RNA network formation: a taxonomy of molecular cooperation. Life 7, 38. https://doi.org/10.3390/life7040038.
Gatti, Hordijk, Kauffman (b0055) 2017; 346
Odum (b0210) 1971
Wieczorek, R., 2012. On prebiotic ecology, supramolecular selection and autopoiesis. Orig. Life Evol. Biosph., 42, 445–452. https://doi.org/10.1007/s11084-012-9306-1.
Kauffman (b0120) 2014; 123
Vaidya, Manapat, Chen, Xulvi-Brunet, Hayden, Lehman (b0300) 2012; 491
Baum (bib366) 2018; 456
Neill, Daufresne, Jones (b0205) 2009; 118
Sommer (b0270) 1999; 402
Kreyssig, Escuela, Reynaert, Veloz, Ibrahim, Dittrich (bib367) 2012; 7
Prigogine, Lefever (b0240) 1968; 48
Xavier, Hordijk, Kauffman, Steel, Martin (b0365) 2020; 287
Hunding, Kepes, Lancet, Minsky, Norris, Raine, Sriram, Root-Bernstein (b0110) 2006; 28
Goldford, Segrè (b0060) 2018; 8
Boutlerow (b0010) 1861; 53
Breslow (b0015) 1959; 1
Semenov, Kraft, Ainla, Zhao, Baghbanzadeh, Campbell, Kang, Fox, Whitesides (b0260) 2016; 537
Ulanowicz (b0295) 1997
Joyce (b0115) 1994
Kauffman (b0130) 1986; 119
Sousa, Hordijk, Steel, Martin (b0275) 2015; 6
Wright, Vetsigian (b0360) 2016; 7
Morin (b0190) 2011
Walker, S.I., Davies, P.C.W., 2013. The algorithmic origins of life. J. R. Soc. Interface 10, 20120869. https://doi.org/10.1098/rsif.2012.0869.
Hordijk, Steel (b0085) 2016; 54
Herschy, Whicher, Camprubi, Watson, Dartnell, Ward, Evans, Lane (b0065) 2014; 79
Shapiro (b0265) 2006; 81
Måren, Kapfer, Aarrestad, Grytnes, Vandvik (b0180) 2018; 99
Virgo, Ikegami (b0320) 2013; 25
Steel (b0280) 2000; 13
Laidler (b0140) 1985; 32
Hordijk (b0075) 2016; 46
Luisi (b0175) 1998; 28
Prach, Walker (b0235) 2011; 26
Ruiz-Mirazo, Briones, de la Escosura (b0245) 2014; 114
Baum, Vetsigian (b0005) 2017; 47
Hordijk, Steel (b0095) 2013; 4
Liu, Sumpter (b0155) 2018; 293
Muchowska, Varma, Chevallot-Beroux, Lethuillier-Karl, Li, Moran (b0200) 2017; 1
Chang (b0020) 2005
Ehrenfreund, Rasmussen, Cleaves, Chen (b0040) 2006; 6
Lanier, Petrov, Williams (b0145) 2017; 85
Wagner, N., Hochberg, D., Peacock-Lopez, E., Maity, I., Ashkenasy, G., 2019. Open prebiotic environments drive emergent phenomena and complex behavior. Life 9, 45. https://doi.org/10.3390/life9020045.
Volterra (b0330) 1927; 119
Hordijk, Steel (b0100) 2004; 227
Schuster (b0250) 2019; 150
Hordijk, W., Hein, J., Steel, M., 2010. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742. https://doi.org/10.3390/e12071733.
Plasson, Brandenburg, Jullien, Bersini (b0230) 2011; 17
Vincent, L., Berg, M., Krismer, M., Saghafi, S., Cosby, J., Sankari, T., Vetsigian, K., Cleaves, H. J. III, and Baum, D. A., 2019. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life 9, 80. https://doi.org/10.3390/life9040080.
Hordijk, Steel (b0090) 2014; 44
Connell, Slatyer (b0025) 1977; 111
Khandelwal, R.A., Olivier, B.G., Röling, W.F.M., Teusink, B., Bruggeman, F.J., 2013. Community flux balance analysis for microbial consortia at balanced growth. PLOS ONE 8, e64567. https://doi.org/10.1371/journal.pone.0064567.
Wächtershäuser, G., 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484
Volterra (b0335) 1926; 118
Damer, B., Deamer, D., 2015. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life 5, 872–887. https://doi.org/10.3390/life5010872.
Fiscus (b0050) 2002; 83
Morowitz, Kostelnik, Yang, Cody (b0195) 2000; 97
Lee, Severin, Ghadiri (b0150) 1997; 1
Pereira, Rodrigues, Carrapiço (b0225) 2012
Ulanowicz (b0285) 2009
Gatti (10.1016/j.jtbi.2020.110451_b0055) 2017; 346
Hunding (10.1016/j.jtbi.2020.110451_b0110) 2006; 28
Lotka (10.1016/j.jtbi.2020.110451_b0170) 1920; 6
Connell (10.1016/j.jtbi.2020.110451_b0025) 1977; 111
Kauffman (10.1016/j.jtbi.2020.110451_b0120) 2014; 123
Xavier (10.1016/j.jtbi.2020.110451_b0365) 2020; 287
Baum (10.1016/j.jtbi.2020.110451_b0005) 2017; 47
10.1016/j.jtbi.2020.110451_b0030
Odum (10.1016/j.jtbi.2020.110451_b0210) 1971
Kauffman (10.1016/j.jtbi.2020.110451_b0125) 1993
10.1016/j.jtbi.2020.110451_b0350
Schuster (10.1016/j.jtbi.2020.110451_b0250) 2019; 150
Hordijk (10.1016/j.jtbi.2020.110451_b0075) 2016; 46
Ulanowicz (10.1016/j.jtbi.2020.110451_b0290) 2004; 28
Goldford (10.1016/j.jtbi.2020.110451_b0060) 2018; 8
Morin (10.1016/j.jtbi.2020.110451_b0190) 2011
10.1016/j.jtbi.2020.110451_b0315
Neill (10.1016/j.jtbi.2020.110451_b0205) 2009; 118
10.1016/j.jtbi.2020.110451_b0355
Laidler (10.1016/j.jtbi.2020.110451_b0140) 1985; 32
Plasson (10.1016/j.jtbi.2020.110451_b0230) 2011; 17
Liu (10.1016/j.jtbi.2020.110451_b0155) 2018; 293
Vasas (10.1016/j.jtbi.2020.110451_b0310) 2010; 107
Muchowska (10.1016/j.jtbi.2020.110451_b0200) 2017; 1
Hordijk (10.1016/j.jtbi.2020.110451_b0095) 2013; 4
Hordijk (10.1016/j.jtbi.2020.110451_b0070) 2017; 435
Luisi (10.1016/j.jtbi.2020.110451_b0175) 1998; 28
Prach (10.1016/j.jtbi.2020.110451_b0235) 2011; 26
Vaidya (10.1016/j.jtbi.2020.110451_b0300) 2012; 491
10.1016/j.jtbi.2020.110451_b0340
Delmas (10.1016/j.jtbi.2020.110451_b0035) 2019; 94
10.1016/j.jtbi.2020.110451_b0185
Ruiz-Mirazo (10.1016/j.jtbi.2020.110451_b0245) 2014; 114
Ulanowicz (10.1016/j.jtbi.2020.110451_b0285) 2009
Lee (10.1016/j.jtbi.2020.110451_b0150) 1997; 1
Lanier (10.1016/j.jtbi.2020.110451_b0145) 2017; 85
Prigogine (10.1016/j.jtbi.2020.110451_b0240) 1968; 48
10.1016/j.jtbi.2020.110451_b0345
Field (10.1016/j.jtbi.2020.110451_b0045) 1974; 60
Lloyd (10.1016/j.jtbi.2020.110451_b0160) 1967; 21
Baum (10.1016/j.jtbi.2020.110451_bib366) 2018; 456
Joyce (10.1016/j.jtbi.2020.110451_b0115) 1994
Hordijk (10.1016/j.jtbi.2020.110451_b0100) 2004; 227
Orgel (10.1016/j.jtbi.2020.110451_b0215) 2000; 97
Pereira (10.1016/j.jtbi.2020.110451_b0225) 2012
Chang (10.1016/j.jtbi.2020.110451_b0020) 2005
Shapiro (10.1016/j.jtbi.2020.110451_b0265) 2006; 81
Volterra (10.1016/j.jtbi.2020.110451_b0330) 1927; 119
Fiscus (10.1016/j.jtbi.2020.110451_b0050) 2002; 83
Herschy (10.1016/j.jtbi.2020.110451_b0065) 2014; 79
Sommer (10.1016/j.jtbi.2020.110451_b0270) 1999; 402
Steel (10.1016/j.jtbi.2020.110451_b0280) 2000; 13
Morowitz (10.1016/j.jtbi.2020.110451_b0195) 2000; 97
Hordijk (10.1016/j.jtbi.2020.110451_b0105) 2012; 60
Virgo (10.1016/j.jtbi.2020.110451_b0325) 2016; 22
Volterra (10.1016/j.jtbi.2020.110451_b0335) 1926; 118
Hordijk (10.1016/j.jtbi.2020.110451_b0090) 2014; 44
10.1016/j.jtbi.2020.110451_b0135
Passarge (10.1016/j.jtbi.2020.110451_b0220) 2006; 76
10.1016/j.jtbi.2020.110451_b0255
Kreyssig (10.1016/j.jtbi.2020.110451_bib367) 2012; 7
Semenov (10.1016/j.jtbi.2020.110451_b0260) 2016; 537
Kauffman (10.1016/j.jtbi.2020.110451_b0130) 1986; 119
Sousa (10.1016/j.jtbi.2020.110451_b0275) 2015; 6
Ulanowicz (10.1016/j.jtbi.2020.110451_b0295) 1997
Wright (10.1016/j.jtbi.2020.110451_b0360) 2016; 7
Ehrenfreund (10.1016/j.jtbi.2020.110451_b0040) 2006; 6
10.1016/j.jtbi.2020.110451_b0080
Boutlerow (10.1016/j.jtbi.2020.110451_b0010) 1861; 53
Hordijk (10.1016/j.jtbi.2020.110451_b0085) 2016; 54
Vasas (10.1016/j.jtbi.2020.110451_b0305) 2012; 7
Breslow (10.1016/j.jtbi.2020.110451_b0015) 1959; 1
10.1016/j.jtbi.2020.110451_b0165
Måren (10.1016/j.jtbi.2020.110451_b0180) 2018; 99
Virgo (10.1016/j.jtbi.2020.110451_b0320) 2013; 25
References_xml – volume: 227
  start-page: 451
  year: 2004
  end-page: 461
  ident: b0100
  article-title: Detecting autocatalytic, self-sustaining sets in chemical reaction systems
  publication-title: J. Theor. Biol.
– volume: 150
  start-page: 763
  year: 2019
  end-page: 775
  ident: b0250
  article-title: What is special about autocatalysis?
  publication-title: Monatsh. Chem.
– volume: 111
  start-page: 1119
  year: 1977
  end-page: 1144
  ident: b0025
  article-title: Mechanisms of succession in natural communities and their role in community stability and organization
  publication-title: Am. Nat.
– volume: 402
  start-page: 366
  year: 1999
  end-page: 367
  ident: b0270
  article-title: Competition and coexistence
  publication-title: Nature
– volume: 4
  year: 2013
  ident: b0095
  article-title: A formal model of autocatalytic sets emerging in an RNA replicator system
  publication-title: J. Syst. Chem.
– volume: 47
  start-page: 481
  year: 2017
  end-page: 497
  ident: b0005
  article-title: An experimental framework for generating evolvable chemical systems in the laboratory
  publication-title: Orig. Life Evol. Biosph.
– volume: 54
  start-page: 1997
  year: 2016
  end-page: 2021
  ident: b0085
  article-title: Autocatalytic sets in polymer networks with variable catalysis distributions
  publication-title: J. Math. Chem.
– volume: 25
  start-page: 240
  year: 2013
  end-page: 247
  ident: b0320
  article-title: Autocatalysis before enzymes: the emergence of prebiotic chain reactions
  publication-title: Artif. Life Conf. Proceed.
– volume: 537
  start-page: 656
  year: 2016
  end-page: 660
  ident: b0260
  article-title: Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
  publication-title: Nature
– volume: 99
  start-page: 148
  year: 2018
  end-page: 157
  ident: b0180
  article-title: Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient
  publication-title: Ecology
– volume: 32
  start-page: 43
  year: 1985
  end-page: 75
  ident: b0140
  article-title: Chemical kinetics and the origins of physical chemistry
  publication-title: Arch. Rational Mech.
– reference: Hordijk, W., Hein, J., Steel, M., 2010. Autocatalytic sets and the origin of life. Entropy 12, 1733–1742. https://doi.org/10.3390/e12071733.
– volume: 81
  start-page: 105
  year: 2006
  end-page: 126
  ident: b0265
  article-title: Small molecule interactions were central to the origin of life
  publication-title: Q. Rev. Biol.
– volume: 13
  start-page: 91
  year: 2000
  end-page: 95
  ident: b0280
  article-title: The emergence of a self-catalysing structure in abstract origin-of-life models
  publication-title: Appl. Math. Lett.
– volume: 7
  start-page: 1
  year: 2012
  ident: b0305
  article-title: Evolution before genes
  publication-title: Biol. Direct
– volume: 346
  start-page: 70
  year: 2017
  end-page: 76
  ident: b0055
  article-title: Biodiversity is autocatalytic
  publication-title: Ecol. Model.
– reference: Segré, D., Lancet, D., Kedem, O., Pilpel, Y., 1998. Graded autocatalysis replication domain (gard): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol. Biosph., 28, 501–514. https://doi.org/10.1023/A:1006583712886.
– volume: 28
  start-page: 399
  year: 2006
  end-page: 412
  ident: b0110
  article-title: Compositional complementarity and prebiotic ecology in the origin of life
  publication-title: BioEssays
– volume: 7
  start-page: e45772
  year: 2012
  ident: bib367
  article-title: Cycles and the Qualitative Evolution of Chemical Systems
  publication-title: PLoS ONE
– reference: Khandelwal, R.A., Olivier, B.G., Röling, W.F.M., Teusink, B., Bruggeman, F.J., 2013. Community flux balance analysis for microbial consortia at balanced growth. PLOS ONE 8, e64567. https://doi.org/10.1371/journal.pone.0064567.
– volume: 28
  start-page: 613
  year: 1998
  end-page: 622
  ident: b0175
  article-title: About various definitions of life
  publication-title: Orig. Life Evol. Biosph.
– volume: 46
  start-page: 233
  year: 2016
  end-page: 245
  ident: b0075
  article-title: Evolution of autocatalytic sets in computational models of chemical reaction networks
  publication-title: Orig. Life Evol. Biosph.
– volume: 76
  start-page: 57
  year: 2006
  end-page: 72
  ident: b0220
  article-title: Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion?
  publication-title: Ecol. Monogr.
– volume: 97
  start-page: 7704
  year: 2000
  end-page: 7708
  ident: b0195
  article-title: The origin of intermediary metabolism
  publication-title: Proc. Natl. Acad. Sci.
– volume: 79
  start-page: 213
  year: 2014
  end-page: 227
  ident: b0065
  article-title: An origin-of-life reactor to simulate alkaline hydrothermal vents
  publication-title: J. Mol. Evol.
– volume: 85
  start-page: 8
  year: 2017
  end-page: 13
  ident: b0145
  article-title: The central symbiosis of molecular biology: molecules in mutualism
  publication-title: J. Mol. Evol.
– volume: 1
  start-page: 1716
  year: 2017
  end-page: 1721
  ident: b0200
  article-title: Metals promote sequences of the reverse Krebs cycle
  publication-title: Nat. Ecol. Evol.
– volume: 107
  start-page: 1470
  year: 2010
  end-page: 1475
  ident: b0310
  article-title: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life
  publication-title: Proc. Natl. Acad. Sci.
– volume: 22
  start-page: 138
  year: 2016
  end-page: 152
  ident: b0325
  article-title: Complex autocatalysis in simple chemistries
  publication-title: Artif. Life
– volume: 94
  start-page: 16
  year: 2019
  end-page: 36
  ident: b0035
  article-title: Analysing ecological networks of species interactions: analyzing ecological networks
  publication-title: Biol. Rev.
– volume: 26
  start-page: 119
  year: 2011
  end-page: 123
  ident: b0235
  article-title: Four opportunities for studies of ecological succession
  publication-title: Trends Ecol. Evol.
– volume: 53
  start-page: 145
  year: 1861
  end-page: 147
  ident: b0010
  article-title: Formation synthétique d’une substance sucrée
  publication-title: Compt. Rend. Sean. l’a Acad. Sci.
– year: 2005
  ident: b0020
  article-title: Physical Chemistry for the Biosciences
– volume: 123
  start-page: 3
  year: 2014
  end-page: 8
  ident: b0120
  article-title: Prolegomenon to patterns in evolution
  publication-title: Biosystems
– volume: 435
  start-page: 22
  year: 2017
  end-page: 28
  ident: b0070
  article-title: Autocatalytic confusion clarified
  publication-title: J. Theor. Biol.
– year: 2009
  ident: b0285
  article-title: A Third Window: Natural Life Beyond Newton and Darwin
– reference: Vincent, L., Berg, M., Krismer, M., Saghafi, S., Cosby, J., Sankari, T., Vetsigian, K., Cleaves, H. J. III, and Baum, D. A., 2019. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life 9, 80. https://doi.org/10.3390/life9040080.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0360
  article-title: Inhibitory interactions promote frequent bistability among competing bacteria
  publication-title: Nat. Commun.
– reference: Mathis, C., Ramprasad, S.N., Walker, S.I., Lehman, N., 2017. Prebiotic RNA network formation: a taxonomy of molecular cooperation. Life 7, 38. https://doi.org/10.3390/life7040038.
– volume: 83
  start-page: 146
  year: 2002
  end-page: 149
  ident: b0050
  article-title: The Ecosystemic Life Hypothesis III: The Hypothesis and Its Implications
  publication-title: Bull. Ecol. Soc. Am.
– year: 1971
  ident: b0210
  article-title: Environment, Power, and Society
– volume: 456
  start-page: 295
  year: 2018
  end-page: 304
  ident: bib366
  article-title: The origin and early evolution of life in chemical complexity space
  publication-title: Journal of Theoretical Biology
– year: 1994
  ident: b0115
  article-title: Foreword
  publication-title: Origins of Life: The Central Concepts
– reference: Walker, S.I., Davies, P.C.W., 2013. The algorithmic origins of life. J. R. Soc. Interface 10, 20120869. https://doi.org/10.1098/rsif.2012.0869.
– volume: 60
  start-page: 1877
  year: 1974
  end-page: 1884
  ident: b0045
  article-title: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 321
  year: 2004
  end-page: 339
  ident: b0290
  article-title: Quantitative methods for ecological network analysis
  publication-title: Comput. Biol. Chem.
– volume: 1
  start-page: 22
  year: 1959
  end-page: 26
  ident: b0015
  article-title: On the mechanism of the formose reaction
  publication-title: Tetrahedron Lett.
– reference: Wieczorek, R., 2012. On prebiotic ecology, supramolecular selection and autopoiesis. Orig. Life Evol. Biosph., 42, 445–452. https://doi.org/10.1007/s11084-012-9306-1.
– volume: 6
  start-page: 490
  year: 2006
  end-page: 520
  ident: b0040
  article-title: Experimentally tracing the key steps in the origin of life: the aromatic world
  publication-title: Astrobiology
– volume: 17
  start-page: 219
  year: 2011
  end-page: 236
  ident: b0230
  article-title: Autocatalysis: at the root of self-replication
  publication-title: Artif. Life
– volume: 44
  start-page: 111
  year: 2014
  end-page: 124
  ident: b0090
  article-title: Conditions for evolvability of autocatalytic sets: a formal example and analysis
  publication-title: Orig. Life Evol. Biosph.
– volume: 491
  start-page: 72
  year: 2012
  end-page: 77
  ident: b0300
  article-title: Spontaneous network formation among cooperative RNA replicators
  publication-title: Nature
– volume: 118
  start-page: 558
  year: 1926
  end-page: 560
  ident: b0335
  article-title: Fluctuations in the abundance of a species considered mathematically1
  publication-title: Nature
– volume: 6
  year: 2015
  ident: b0275
  article-title: Autocatalytic sets in E. coli metabolism
  publication-title: J. Syst. Chem.
– volume: 48
  start-page: 1695
  year: 1968
  end-page: 1700
  ident: b0240
  article-title: Symmetry breaking instabilities in dissipative Systems. II
  publication-title: J. Chem. Phys.
– year: 2011
  ident: b0190
  article-title: Community Ecology
– volume: 6
  start-page: 410
  year: 1920
  end-page: 415
  ident: b0170
  article-title: Analytical note on certain rhythmic relations in organic systems
  publication-title: PNAS
– reference: Wagner, N., Hochberg, D., Peacock-Lopez, E., Maity, I., Ashkenasy, G., 2019. Open prebiotic environments drive emergent phenomena and complex behavior. Life 9, 45. https://doi.org/10.3390/life9020045.
– volume: 1
  start-page: 491
  year: 1997
  end-page: 496
  ident: b0150
  article-title: Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems
  publication-title: Curr. Opin. Chem. Biol.
– volume: 287
  start-page: 20192377
  year: 2020
  ident: b0365
  article-title: Autocatalytic chemical networks at the origin of metabolism
  publication-title: Proc. R. Soc. B
– volume: 118
  start-page: 1570
  year: 2009
  end-page: 1578
  ident: b0205
  article-title: A competitive coexistence principle?
  publication-title: Oikos
– start-page: 723
  year: 2012
  end-page: 742
  ident: b0225
  article-title: A symbiogenic way in the origin of life
  publication-title: Genesis – In The Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, Cellular Origin, Life in Extreme Habitats and Astrobiology
– year: 1997
  ident: b0295
  article-title: Ecology, the Ascendent Perspective, Complexity in Ecological Systems Series
– reference: Lotka, A.J., 1927. Fluctuations in the Abundance of a Species considered Mathematically. Nature 119, 12–12. https://doi.org/10.1038/119012a0.
– volume: 8
  start-page: 117
  year: 2018
  end-page: 124
  ident: b0060
  article-title: Modern views of ancient metabolic networks
  publication-title: Curr. Opin. Syst. Biol.
– volume: 119
  start-page: 12
  year: 1927
  end-page: 13
  ident: b0330
  article-title: Fluctuations in the abundance of a species considered mathematically
  publication-title: Nature
– volume: 21
  start-page: 99
  year: 1967
  ident: b0160
  article-title: American, German and British antecedents to pearl and Reed’s Logistic Curve
  publication-title: Population Studies
– reference: Damer, B., Deamer, D., 2015. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life 5, 872–887. https://doi.org/10.3390/life5010872.
– volume: 114
  start-page: 285
  year: 2014
  end-page: 366
  ident: b0245
  article-title: Prebiotic systems chemistry: new perspectives for the origins of life
  publication-title: Chem. Rev.
– volume: 119
  start-page: 1
  year: 1986
  end-page: 24
  ident: b0130
  article-title: Autocatalytic sets of proteins
  publication-title: J. Theor. Biol.
– volume: 293
  start-page: 18854
  year: 2018
  end-page: 18863
  ident: b0155
  article-title: Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 12503
  year: 2000
  end-page: 12507
  ident: b0215
  article-title: Self-organizing biochemical cycles
  publication-title: Proc. Natl. Acad. Sci.
– reference: Wächtershäuser, G., 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484,
– volume: 60
  start-page: 379
  year: 2012
  end-page: 392
  ident: b0105
  article-title: The structure of autocatalytic sets: evolvability, enablement, and emergence
  publication-title: Acta Biotheor.
– year: 1993
  ident: b0125
  article-title: The Origins of Order: Self-Organization and Selection in Evolution
– volume: 456
  start-page: 295
  year: 2018
  ident: 10.1016/j.jtbi.2020.110451_bib366
  article-title: The origin and early evolution of life in chemical complexity space
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2018.08.016
– volume: 293
  start-page: 18854
  issue: 49
  year: 2018
  ident: 10.1016/j.jtbi.2020.110451_b0155
  article-title: Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003795
– year: 1993
  ident: 10.1016/j.jtbi.2020.110451_b0125
– year: 1994
  ident: 10.1016/j.jtbi.2020.110451_b0115
  article-title: Foreword
– volume: 1
  start-page: 22
  issue: 21
  year: 1959
  ident: 10.1016/j.jtbi.2020.110451_b0015
  article-title: On the mechanism of the formose reaction
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)99487-0
– year: 1997
  ident: 10.1016/j.jtbi.2020.110451_b0295
– volume: 44
  start-page: 111
  issue: 2
  year: 2014
  ident: 10.1016/j.jtbi.2020.110451_b0090
  article-title: Conditions for evolvability of autocatalytic sets: a formal example and analysis
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1007/s11084-014-9374-5
– volume: 435
  start-page: 22
  year: 2017
  ident: 10.1016/j.jtbi.2020.110451_b0070
  article-title: Autocatalytic confusion clarified
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2017.09.003
– volume: 537
  start-page: 656
  issue: 7622
  year: 2016
  ident: 10.1016/j.jtbi.2020.110451_b0260
  article-title: Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
  publication-title: Nature
  doi: 10.1038/nature19776
– volume: 111
  start-page: 1119
  issue: 982
  year: 1977
  ident: 10.1016/j.jtbi.2020.110451_b0025
  article-title: Mechanisms of succession in natural communities and their role in community stability and organization
  publication-title: Am. Nat.
  doi: 10.1086/283241
– volume: 114
  start-page: 285
  issue: 1
  year: 2014
  ident: 10.1016/j.jtbi.2020.110451_b0245
  article-title: Prebiotic systems chemistry: new perspectives for the origins of life
  publication-title: Chem. Rev.
  doi: 10.1021/cr2004844
– volume: 97
  start-page: 7704
  issue: 14
  year: 2000
  ident: 10.1016/j.jtbi.2020.110451_b0195
  article-title: The origin of intermediary metabolism
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.110153997
– volume: 22
  start-page: 138
  issue: 2
  year: 2016
  ident: 10.1016/j.jtbi.2020.110451_b0325
  article-title: Complex autocatalysis in simple chemistries
  publication-title: Artif. Life
  doi: 10.1162/ARTL_a_00195
– volume: 8
  start-page: 117
  year: 2018
  ident: 10.1016/j.jtbi.2020.110451_b0060
  article-title: Modern views of ancient metabolic networks
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2018.01.004
– ident: 10.1016/j.jtbi.2020.110451_b0185
  doi: 10.3390/life7040038
– volume: 1
  start-page: 491
  issue: 4
  year: 1997
  ident: 10.1016/j.jtbi.2020.110451_b0150
  article-title: Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(97)80043-9
– volume: 227
  start-page: 451
  issue: 4
  year: 2004
  ident: 10.1016/j.jtbi.2020.110451_b0100
  article-title: Detecting autocatalytic, self-sustaining sets in chemical reaction systems
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2003.11.020
– volume: 491
  start-page: 72
  issue: 7422
  year: 2012
  ident: 10.1016/j.jtbi.2020.110451_b0300
  article-title: Spontaneous network formation among cooperative RNA replicators
  publication-title: Nature
  doi: 10.1038/nature11549
– ident: 10.1016/j.jtbi.2020.110451_b0350
  doi: 10.1098/rsif.2012.0869
– volume: 32
  start-page: 43
  issue: 1
  year: 1985
  ident: 10.1016/j.jtbi.2020.110451_b0140
  article-title: Chemical kinetics and the origins of physical chemistry
  publication-title: Arch. Rational Mech.
  doi: 10.1007/BF00327865
– volume: 107
  start-page: 1470
  issue: 4
  year: 2010
  ident: 10.1016/j.jtbi.2020.110451_b0310
  article-title: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0912628107
– volume: 28
  start-page: 321
  issue: 5-6
  year: 2004
  ident: 10.1016/j.jtbi.2020.110451_b0290
  article-title: Quantitative methods for ecological network analysis
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2004.09.001
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.jtbi.2020.110451_b0360
  article-title: Inhibitory interactions promote frequent bistability among competing bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11274
– volume: 26
  start-page: 119
  issue: 3
  year: 2011
  ident: 10.1016/j.jtbi.2020.110451_b0235
  article-title: Four opportunities for studies of ecological succession
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.12.007
– volume: 402
  start-page: 366
  issue: 6760
  year: 1999
  ident: 10.1016/j.jtbi.2020.110451_b0270
  article-title: Competition and coexistence
  publication-title: Nature
  doi: 10.1038/46453
– year: 2011
  ident: 10.1016/j.jtbi.2020.110451_b0190
– ident: 10.1016/j.jtbi.2020.110451_b0315
  doi: 10.3390/life9040080
– volume: 28
  start-page: 613
  year: 1998
  ident: 10.1016/j.jtbi.2020.110451_b0175
  article-title: About various definitions of life
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1023/A:1006517315105
– volume: 53
  start-page: 145
  year: 1861
  ident: 10.1016/j.jtbi.2020.110451_b0010
  article-title: Formation synthétique d’une substance sucrée
  publication-title: Compt. Rend. Sean. l’a Acad. Sci.
– volume: 118
  start-page: 1570
  issue: 10
  year: 2009
  ident: 10.1016/j.jtbi.2020.110451_b0205
  article-title: A competitive coexistence principle?
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17522.x
– volume: 81
  start-page: 105
  issue: 2
  year: 2006
  ident: 10.1016/j.jtbi.2020.110451_b0265
  article-title: Small molecule interactions were central to the origin of life
  publication-title: Q. Rev. Biol.
  doi: 10.1086/506024
– volume: 13
  start-page: 91
  issue: 3
  year: 2000
  ident: 10.1016/j.jtbi.2020.110451_b0280
  article-title: The emergence of a self-catalysing structure in abstract origin-of-life models
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(99)00191-3
– ident: 10.1016/j.jtbi.2020.110451_b0030
  doi: 10.3390/life5010872
– volume: 99
  start-page: 148
  issue: 1
  year: 2018
  ident: 10.1016/j.jtbi.2020.110451_b0180
  article-title: Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient
  publication-title: Ecology
  doi: 10.1002/ecy.2052
– volume: 6
  issue: 1
  year: 2015
  ident: 10.1016/j.jtbi.2020.110451_b0275
  article-title: Autocatalytic sets in E. coli metabolism
  publication-title: J. Syst. Chem.
  doi: 10.1186/s13322-015-0009-7
– volume: 48
  start-page: 1695
  issue: 4
  year: 1968
  ident: 10.1016/j.jtbi.2020.110451_b0240
  article-title: Symmetry breaking instabilities in dissipative Systems. II
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1668896
– ident: 10.1016/j.jtbi.2020.110451_b0345
  doi: 10.3390/life9020045
– volume: 28
  start-page: 399
  issue: 4
  year: 2006
  ident: 10.1016/j.jtbi.2020.110451_b0110
  article-title: Compositional complementarity and prebiotic ecology in the origin of life
  publication-title: BioEssays
  doi: 10.1002/bies.20389
– volume: 1
  start-page: 1716
  issue: 11
  year: 2017
  ident: 10.1016/j.jtbi.2020.110451_b0200
  article-title: Metals promote sequences of the reverse Krebs cycle
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0311-7
– volume: 47
  start-page: 481
  issue: 4
  year: 2017
  ident: 10.1016/j.jtbi.2020.110451_b0005
  article-title: An experimental framework for generating evolvable chemical systems in the laboratory
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1007/s11084-016-9526-x
– ident: 10.1016/j.jtbi.2020.110451_b0165
  doi: 10.1038/119012a0
– volume: 46
  start-page: 233
  issue: 2-3
  year: 2016
  ident: 10.1016/j.jtbi.2020.110451_b0075
  article-title: Evolution of autocatalytic sets in computational models of chemical reaction networks
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1007/s11084-015-9471-0
– volume: 83
  start-page: 146
  year: 2002
  ident: 10.1016/j.jtbi.2020.110451_b0050
  article-title: The Ecosystemic Life Hypothesis III: The Hypothesis and Its Implications
  publication-title: Bull. Ecol. Soc. Am.
– volume: 60
  start-page: 379
  issue: 4
  year: 2012
  ident: 10.1016/j.jtbi.2020.110451_b0105
  article-title: The structure of autocatalytic sets: evolvability, enablement, and emergence
  publication-title: Acta Biotheor.
  doi: 10.1007/s10441-012-9165-1
– volume: 6
  start-page: 490
  issue: 3
  year: 2006
  ident: 10.1016/j.jtbi.2020.110451_b0040
  article-title: Experimentally tracing the key steps in the origin of life: the aromatic world
  publication-title: Astrobiology
  doi: 10.1089/ast.2006.6.490
– volume: 60
  start-page: 1877
  issue: 5
  year: 1974
  ident: 10.1016/j.jtbi.2020.110451_b0045
  article-title: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681288
– start-page: 723
  year: 2012
  ident: 10.1016/j.jtbi.2020.110451_b0225
  article-title: A symbiogenic way in the origin of life
– volume: 346
  start-page: 70
  year: 2017
  ident: 10.1016/j.jtbi.2020.110451_b0055
  article-title: Biodiversity is autocatalytic
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2016.12.003
– volume: 17
  start-page: 219
  issue: 3
  year: 2011
  ident: 10.1016/j.jtbi.2020.110451_b0230
  article-title: Autocatalysis: at the root of self-replication
  publication-title: Artif. Life
  doi: 10.1162/artl_a_00033
– volume: 6
  start-page: 410
  issue: 7
  year: 1920
  ident: 10.1016/j.jtbi.2020.110451_b0170
  article-title: Analytical note on certain rhythmic relations in organic systems
  publication-title: PNAS
  doi: 10.1073/pnas.6.7.410
– ident: 10.1016/j.jtbi.2020.110451_b0080
  doi: 10.3390/e12071733
– volume: 7
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.jtbi.2020.110451_b0305
  article-title: Evolution before genes
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-7-1
– volume: 79
  start-page: 213
  issue: 5-6
  year: 2014
  ident: 10.1016/j.jtbi.2020.110451_b0065
  article-title: An origin-of-life reactor to simulate alkaline hydrothermal vents
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-014-9658-4
– volume: 21
  start-page: 99
  issue: 2
  year: 1967
  ident: 10.1016/j.jtbi.2020.110451_b0160
  article-title: American, German and British antecedents to pearl and Reed’s Logistic Curve
  publication-title: Population Studies
  doi: 10.1080/00324728.1967.10405468
– volume: 119
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.jtbi.2020.110451_b0130
  article-title: Autocatalytic sets of proteins
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(86)80047-9
– volume: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.jtbi.2020.110451_b0095
  article-title: A formal model of autocatalytic sets emerging in an RNA replicator system
  publication-title: J. Syst. Chem.
  doi: 10.1186/1759-2208-4-3
– volume: 150
  start-page: 763
  issue: 5
  year: 2019
  ident: 10.1016/j.jtbi.2020.110451_b0250
  article-title: What is special about autocatalysis?
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-019-02437-z
– year: 2009
  ident: 10.1016/j.jtbi.2020.110451_b0285
– year: 2005
  ident: 10.1016/j.jtbi.2020.110451_b0020
– volume: 7
  start-page: e45772
  issue: 10
  year: 2012
  ident: 10.1016/j.jtbi.2020.110451_bib367
  article-title: Cycles and the Qualitative Evolution of Chemical Systems
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045772
– volume: 85
  start-page: 8
  issue: 1-2
  year: 2017
  ident: 10.1016/j.jtbi.2020.110451_b0145
  article-title: The central symbiosis of molecular biology: molecules in mutualism
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-017-9804-x
– volume: 76
  start-page: 57
  issue: 1
  year: 2006
  ident: 10.1016/j.jtbi.2020.110451_b0220
  article-title: Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion?
  publication-title: Ecol. Monogr.
  doi: 10.1890/04-1824
– volume: 97
  start-page: 12503
  issue: 23
  year: 2000
  ident: 10.1016/j.jtbi.2020.110451_b0215
  article-title: Self-organizing biochemical cycles
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.220406697
– ident: 10.1016/j.jtbi.2020.110451_b0340
  doi: 10.1128/MR.52.4.452-484.1988
– year: 1971
  ident: 10.1016/j.jtbi.2020.110451_b0210
– volume: 119
  start-page: 12
  issue: 2983
  year: 1927
  ident: 10.1016/j.jtbi.2020.110451_b0330
  article-title: Fluctuations in the abundance of a species considered mathematically
  publication-title: Nature
  doi: 10.1038/119012b0
– volume: 123
  start-page: 3
  year: 2014
  ident: 10.1016/j.jtbi.2020.110451_b0120
  article-title: Prolegomenon to patterns in evolution
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2014.03.004
– volume: 118
  start-page: 558
  issue: 2972
  year: 1926
  ident: 10.1016/j.jtbi.2020.110451_b0335
  article-title: Fluctuations in the abundance of a species considered mathematically1
  publication-title: Nature
  doi: 10.1038/118558a0
– ident: 10.1016/j.jtbi.2020.110451_b0255
  doi: 10.1023/A:1006583712886
– volume: 287
  start-page: 20192377
  issue: 1922
  year: 2020
  ident: 10.1016/j.jtbi.2020.110451_b0365
  article-title: Autocatalytic chemical networks at the origin of metabolism
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2019.2377
– ident: 10.1016/j.jtbi.2020.110451_b0135
  doi: 10.1371/journal.pone.0064567
– volume: 94
  start-page: 16
  issue: 1
  year: 2019
  ident: 10.1016/j.jtbi.2020.110451_b0035
  article-title: Analysing ecological networks of species interactions: analyzing ecological networks
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12433
– volume: 25
  start-page: 240
  year: 2013
  ident: 10.1016/j.jtbi.2020.110451_b0320
  article-title: Autocatalysis before enzymes: the emergence of prebiotic chain reactions
  publication-title: Artif. Life Conf. Proceed.
– ident: 10.1016/j.jtbi.2020.110451_b0355
  doi: 10.1007/s11084-012-9306-1
– volume: 54
  start-page: 1997
  issue: 10
  year: 2016
  ident: 10.1016/j.jtbi.2020.110451_b0085
  article-title: Autocatalytic sets in polymer networks with variable catalysis distributions
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-016-0666-z
SSID ssj0009436
Score 2.4733543
Snippet [Display omitted] •Early life was an open chemical system of reversible reactions with branched autocatalytic cycles (ACs).•Individual ACs show logistic growth...
It is becoming widely accepted that very early in life's origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals...
It is becoming widely accepted that very early in life’s origin, even before the emergence of genetic encoding, reaction networks of diverse small chemicals...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110451
SubjectTerms Autocatalytic cycle
Catalysis
Chemical ecosystem ecology
Chemical kinetics
Ecosystem
Logistic growth model
Models, Biological
Origin of Life
Title An ecological framework for the analysis of prebiotic chemical reaction networks
URI https://dx.doi.org/10.1016/j.jtbi.2020.110451
https://www.ncbi.nlm.nih.gov/pubmed/32800733
https://www.proquest.com/docview/2434750043
https://pubmed.ncbi.nlm.nih.gov/PMC8841130
Volume 507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUCUuCNoCy0uu1FuVkviRxMcVAm1bFfUAEjfLThwRhLIrWA5c-O3MOM7CtioHjknGkTUzHn-Wv5kB-Ep3LaXXNsEzcp0gAk8TpxqRKF9mEiFwwy3lO_8-zyeX8ueVulqBkyEXhmiVMfb3MT1E6_jmOGrzeNa2lOPLecAf6KeEoymDXRbk5d-fXmgeWoY2gYG1TtIxcabneN3MXYtnRB7Y8FJl_9uc_gWff3MoX21KZ5uwEdEkG_cT3oIV332ED31_ycdP8GfcMV8N4Y01AxGLIVJliPyYjSVJ2LRhszvv2in-iFWxiABDQBnSHljXk8XvP8Pl2enFySSJLRSSijoVJA3iPeFyntY-ky61vi51VQjlpJV5Vvtc68JRwRvhBErUufJC5tYrW1eFq3KxDavdtPO7wPAMXdRCV40SWuLKtS7VNs054gXpG61GkA26M1WsL05tLm7NQCS7MaRvQ_o2vb5H8G0xZtZX13hTWg0mMUs-YjD8vznuy2A_g4uHbkRs56cP94ZLIREypVKMYKe352Iegpeho-UIiiVLLwSoMPfyl669DgW6y1JmiA323jnffVinJyLN8OwAVud3D_4Qoc_cHQXfPoK18Y9fk_NnUmoCNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZ4CMEF8VoYXhskbqhLm0fbHBECDSwgDiBxi5I21RatOiMYDlz47ThpOjAgOHBtnCqyHeeL8tkG2HdvLbmVOsI7chkhAo8jIyoWCZsnHCFwRbXLd768Svu3_PxO3E3BcZcL42iVIfa3Md1H6_DlMGjzcFjXLseXUo8_0E8djp6GWY7b17Ux-PPyxvOQ3PcJ9LR1Jx4yZ1qS1_3I1HhJpJ4Oz0Xy1en0GX1-JFG-O5VOl2AxwEly1K54GaZsswJzbYPJ51W4PmqILbr4RqqOiUUQqhKEfkSHmiRkUJHhgzX1AH9EilBFgCCi9HkPpGnZ4o9rcHt6cnPcj0IPhahwrQqiCgEfMymNS5twE2tb5rLImDBc8zQpbSplZlzFG2YYSpSpsIyn2gpdFpkpUvYLZppBYzeA4CU6K5ksKsEkKjrRJpY6TikCBm4rKXqQdLpTRSgw7vpc_Fcdk-xeOX0rp2_V6rsHB-M5w7a8xrfSojOJmnAShfH_23l7nf0U7h73JKIbO3h6VJQzjpgp5qwH6609x-tgNPctLXuQTVh6LOAqc0-ONPU_X6E7z3mC4GDzh-v9DfP9m8sLdXF29XcLFtyIY9DQZBtmRg9Pdgdx0Mjsej9_BScAA8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ecological+framework+for+the+analysis+of+prebiotic+chemical+reaction+networks&rft.jtitle=Journal+of+theoretical+biology&rft.au=Peng%2C+Zhen&rft.au=Plum%2C+Alex+M&rft.au=Gagrani%2C+Praful&rft.au=Baum%2C+David+A&rft.date=2020-12-21&rft.eissn=1095-8541&rft.volume=507&rft.spage=110451&rft_id=info:doi/10.1016%2Fj.jtbi.2020.110451&rft_id=info%3Apmid%2F32800733&rft.externalDocID=32800733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon