Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique
Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to...
Saved in:
Published in | Crystals (Basel) Vol. 9; no. 7; p. 352 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal’s formation at low temperatures. To assess AFP’s function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications. |
---|---|
AbstractList | Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal’s formation at low temperatures. To assess AFP’s function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications. Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal's formation at low temperatures. To assess AFP's function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications.Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal's formation at low temperatures. To assess AFP's function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications. |
Author | Taing, Kyle R. Perez, Adiel F. Quon, Justin C. Flores, Antonia Ba, Yong |
Author_xml | – sequence: 1 givenname: Adiel F. orcidid: 0000-0002-4916-5645 surname: Perez fullname: Perez, Adiel F. – sequence: 2 givenname: Kyle R. surname: Taing fullname: Taing, Kyle R. – sequence: 3 givenname: Justin C. surname: Quon fullname: Quon, Justin C. – sequence: 4 givenname: Antonia surname: Flores fullname: Flores, Antonia – sequence: 5 givenname: Yong surname: Ba fullname: Ba, Yong |
BookMark | eNptks1u1DAQgCNUREvpjQewxIUDAf8kdnJBqpYWVloE0i5ny3HGu15l7WA7lZYX4XVx2CK1Fb54NP7mszzjl8WZ8w6K4jXB7xlr8QcdjjG1WGBW02fFBcWClVWOzx7E58VVjHucl-BYCPKiOGeM0qqm9KL4fWMM6IS8QZvjCGiJrl2yJgD8AvQ9-ATWReQdSjtAt3Paui1SrkdfYUhznCENMUKcHYtw9ONcpZO9A7T2w5Ssz4Z1mnoLPeqOaG0TlJ9syExOrEfr0Ep1MMyyDeidsz8neFU8N2qIcHW_XxY_bm82iy_l6tvn5eJ6VeqaklQaDMCVYKyuGsaU4rSpeoVBG641xaTruOJaCU5yJzin1NSiJx2mQECpvmaXxfLk7b3ayzHYgwpH6ZWVfxM-bKUKyeoBpCGakq5iStdVxTBpNbC24b3GQqu2mV0fT65x6g7Qa3ApqOGR9PGJszu59XdScNGImmXB23tB8LkHMcmDjRqGQTnwU5S04oxj0jRVRt88Qfd-Ci63StI6D50L3LaZoidKBx9jACO1TWqeSL7fDpJgOX8j-fAb5aJ3T4r-veC_-B9OJczv |
CitedBy_id | crossref_primary_10_1093_bbb_zbac020 crossref_primary_10_3390_ani15020270 crossref_primary_10_3390_cryst9100540 crossref_primary_10_3390_ijms20205149 crossref_primary_10_3390_ijms23052639 crossref_primary_10_1016_j_psj_2024_104053 crossref_primary_10_1016_j_ijbiomac_2020_03_040 crossref_primary_10_1016_j_isci_2022_104903 crossref_primary_10_1016_j_cryobiol_2021_11_178 crossref_primary_10_1080_10408398_2024_2436133 |
Cites_doi | 10.1021/bi970817d 10.1021/bi982602p 10.1007/s00249-009-0510-5 10.1016/0167-4838(89)90135-0 10.1007/s11120-009-9490-7 10.1074/jbc.273.52.34806 10.1139/o98-052 10.1016/S0006-3495(91)82234-2 10.1016/S0006-3495(92)81750-2 10.1529/biophysj.105.071316 10.1074/jbc.274.17.11842 10.1063/1.2238870 10.1021/ja9801341 10.1021/jp8057788 10.1016/S0021-9258(18)63073-X 10.1146/annurev.ph.45.030183.001333 10.1159/000327033 10.1016/S0014-5793(01)02213-X 10.1002/pro.5560031016 10.1021/bi961934w 10.1038/375427a0 10.1007/978-1-4613-0743-3 10.1016/S0006-3495(96)79476-6 10.1016/j.bbrc.2011.09.092 10.1046/j.1432-1327.1999.00617.x 10.1016/j.ssnmr.2011.03.002 10.1038/247237a0 10.1016/S0065-3233(08)60576-8 10.1038/333232a0 10.1126/science.163.3871.1073 10.1096/fasebj.4.8.2185972 10.1107/S0907444995015253 10.1111/j.1432-1033.1985.tb09081.x 10.1063/1.3223181 10.1007/s00249-018-1285-3 10.1016/S1046-2023(02)00309-2 10.1006/jmbi.1997.1482 10.1006/bbrc.1994.1512 10.1016/S0014-5793(99)01588-4 10.1002/psc.1344 10.1016/0014-5793(94)01357-7 10.1016/0011-2240(72)90166-6 10.1016/S0014-5793(98)00652-8 10.1016/S0959-440X(98)80158-9 10.1038/308295a0 10.1016/S0021-9258(18)63074-1 10.1002/jez.1402620316 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/cryst9070352 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_f1c21b43ac5443019ce3986dc07ca985 PMC7678753 10_3390_cryst9070352 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c521t-f0ee6a73354833aa6284da0ecf6cc201bb6a6ca7614356622f57d1b02e1eaad53 |
IEDL.DBID | DOA |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Thu Aug 21 18:41:25 EDT 2025 Fri Jul 11 02:25:21 EDT 2025 Fri Jul 25 12:12:19 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Tue Jul 01 03:49:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-f0ee6a73354833aa6284da0ecf6cc201bb6a6ca7614356622f57d1b02e1eaad53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions: Conceptualization, Y.B.; methodology, Y.B., A.P., K.T., J.Q., and A.F.; software, Y.B., A.P., K.T., J.Q., and A.F.; validation, Y.B., A.P., K.T., J.Q.; formal analysis, Y.B., A.P., K.T., J.Q., and A.F.; investigation, Y.B., A.P., K.T., J.Q., and A.F.; resources, Y.B.; data curation, Y.B., A.P., K.T., J.Q., and A.F.; writing—original draft preparation, Y.B., A.P.; writing—review and editing, Y.B., A.P., K.T. and J.Q.; visualization, Y.B., A.P., K.T., J.Q., and A.F.; supervision, Y.B.; project administration, Y.B.; funding acquisition, Y.B. |
ORCID | 0000-0002-4916-5645 |
OpenAccessLink | https://doaj.org/article/f1c21b43ac5443019ce3986dc07ca985 |
PMID | 33224522 |
PQID | 2535267099 |
PQPubID | 2032412 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f1c21b43ac5443019ce3986dc07ca985 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7678753 proquest_miscellaneous_2463601884 proquest_journals_2535267099 crossref_citationtrail_10_3390_cryst9070352 crossref_primary_10_3390_cryst9070352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Steinhoff (ref_45) 2003; 29 Klare (ref_48) 2009; 102 Couto (ref_56) 2011; 414 Loewen (ref_33) 1999; 38 Duman (ref_13) 1976; 54 Haymet (ref_32) 2001; 491 Galiano (ref_44) 2009; 113 ref_54 Mao (ref_57) 2006; 125 Mao (ref_19) 2006; 91 Duman (ref_10) 1993; 2 Zhang (ref_31) 1998; 273 Rubinsky (ref_36) 1994; 200 Komatsu (ref_5) 1970; 245 Yang (ref_21) 1988; 333 Sicheri (ref_22) 1996; 52 Duman (ref_3) 1972; 9 Feeney (ref_6) 1974; 62 Davies (ref_8) 1990; 4 Mao (ref_18) 2011; 39 Harding (ref_16) 1999; 264 Hubbell (ref_41) 1998; 8 Deluca (ref_52) 1998; 275 Mao (ref_17) 2009; 131 Longhi (ref_46) 2011; 17 Knight (ref_24) 1991; 59 Gronwald (ref_23) 1996; 35 Haymet (ref_27) 1999; 121 Takacs (ref_55) 2013; 58 Raymond (ref_35) 1992; 262 Wen (ref_25) 1992; 63 Bhattacharya (ref_38) 2016; 10 Sicheri (ref_20) 1995; 375 Graether (ref_53) 1999; 274 Guiberta (ref_37) 2011; 38 Duman (ref_12) 1974; 247 Chao (ref_50) 1994; 3 Feeney (ref_7) 1978; 32 DeVries (ref_2) 1983; 45 Cheng (ref_9) 1989; 997 Haymet (ref_30) 1998; 430 ref_39 DeVries (ref_4) 1969; 163 DeVries (ref_1) 1970; 245 Hubbell (ref_42) 1994; 1 Chao (ref_29) 1997; 36 Knight (ref_11) 1984; 308 Baardsnes (ref_28) 1999; 463 Kavalenka (ref_47) 2010; 39 Davies (ref_15) 1998; 76 DeLuca (ref_51) 1996; 71 ref_43 Flores (ref_34) 2018; 47 ref_40 ref_49 Chao (ref_26) 1995; 357 Hew (ref_14) 1985; 151 |
References_xml | – volume: 36 start-page: 14652 year: 1997 ident: ref_29 article-title: A diminished role for hydrogen bonds in antifreeze protein binding to ice publication-title: Biochemistry doi: 10.1021/bi970817d – volume: 62 start-page: 712 year: 1974 ident: ref_6 article-title: A biological antifreeze publication-title: Am. Sci. – volume: 38 start-page: 4743 year: 1999 ident: ref_33 article-title: Alternative roles for putative ice-binding residues in type I antifreeze protein publication-title: Biochemistry doi: 10.1021/bi982602p – volume: 39 start-page: 499 year: 2010 ident: ref_47 article-title: SDSL-ESR-based protein structure characterization publication-title: Eur. Biophys. J. doi: 10.1007/s00249-009-0510-5 – volume: 997 start-page: 55 year: 1989 ident: ref_9 article-title: Structures of antifreeze peptides from the antarctic eel pout, Austrolycicthys brachycephalus publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(89)90135-0 – volume: 102 start-page: 377 year: 2009 ident: ref_48 article-title: Spin labeling EPR publication-title: Photosynth Res. doi: 10.1007/s11120-009-9490-7 – ident: ref_39 – volume: 273 start-page: 34806 year: 1998 ident: ref_31 article-title: Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.52.34806 – volume: 76 start-page: 284 year: 1998 ident: ref_15 article-title: NMR structural studies on antifreeze proteins publication-title: Biochem. Cell Biol. doi: 10.1139/o98-052 – volume: 10 start-page: 154 year: 2016 ident: ref_38 article-title: A Review on Cryoprotectant and its Modern Implication in Cryonics publication-title: Asian J. Pharm. – volume: 58 start-page: 49 year: 2013 ident: ref_55 article-title: Hemoglobin Side Chains by Spin Labeled EPR Spectroscopy publication-title: Studia UBB Phys. – volume: 59 start-page: 409 year: 1991 ident: ref_24 article-title: Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes publication-title: Biophys. J. doi: 10.1016/S0006-3495(91)82234-2 – volume: 63 start-page: 1659 year: 1992 ident: ref_25 article-title: A model for binding of an antifreeze polypeptide to ice publication-title: Biophys. J. doi: 10.1016/S0006-3495(92)81750-2 – volume: 91 start-page: 1059 year: 2006 ident: ref_19 article-title: Insight into the Binding of Antifreeze Proteins to Ice Surfaces via 13C Spin Lattice Relaxation Solid State NMR publication-title: Biophys. J. doi: 10.1529/biophysj.105.071316 – volume: 274 start-page: 11842 year: 1999 ident: ref_53 article-title: Quantitative and qualitative analysis of type III antifreeze protein structure and function publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.17.11842 – volume: 125 start-page: 091102 year: 2006 ident: ref_57 article-title: Ice-Surface Adsorption Enhanced Colligative Effect of Antifreeze Proteins in Ice Growth Inhibition publication-title: J. Chem. Phys. doi: 10.1063/1.2238870 – volume: 121 start-page: 941 year: 1999 ident: ref_27 article-title: Winter Flounder “Antifreeze” Proteins: Synthesis and Ice Growth Inhibition of Analogues that Probe the Relative Importance of Hydrophobic and Hydrogen-Bonding Interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9801341 – volume: 113 start-page: 1673 year: 2009 ident: ref_44 article-title: Solute Effects on Spin Labels at an Aqueous-Exposed Site in the Flap Region of HIV-1 Protease publication-title: J. Phys. Chem. B. doi: 10.1021/jp8057788 – volume: 245 start-page: 2901 year: 1970 ident: ref_1 article-title: Chemical and physical properties of freezing point-depressing glycolproteins from Antarctic fihes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63073-X – volume: 45 start-page: 245 year: 1983 ident: ref_2 article-title: Antifreeze peptides and glycopeptides in cold-water fishes publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.ph.45.030183.001333 – volume: 38 start-page: 125 year: 2011 ident: ref_37 article-title: Organ Preservation: Current Concepts and New Strategies for the Next Decade publication-title: Transfus. Med. Hemotherapy doi: 10.1159/000327033 – volume: 491 start-page: 285 year: 2001 ident: ref_32 article-title: Hydrophobic analogues of the winter flounder ‘antifreeze’ protein publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02213-X – volume: 3 start-page: 1760 year: 1994 ident: ref_50 article-title: Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice publication-title: Protein Sci. doi: 10.1002/pro.5560031016 – volume: 35 start-page: 16698 year: 1996 ident: ref_23 article-title: NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures publication-title: Biochemistry doi: 10.1021/bi961934w – volume: 54 start-page: 375 year: 1976 ident: ref_13 article-title: Isolation, characterization and physical properties of protein antifreeze from the winter flounder Pseudopleunectus americanus publication-title: Comp. Biochem. Physiol. – volume: 375 start-page: 427 year: 1995 ident: ref_20 article-title: Ice-binding structure and mechanism of an antifreeze protein from winter flounder publication-title: Nature doi: 10.1038/375427a0 – ident: ref_49 doi: 10.1007/978-1-4613-0743-3 – volume: 71 start-page: 2346 year: 1996 ident: ref_51 article-title: Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79476-6 – volume: 414 start-page: 487 year: 2011 ident: ref_56 article-title: Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.09.092 – volume: 2 start-page: 131 year: 1993 ident: ref_10 article-title: Thermal-Hysteresis Proteins publication-title: Adv. Low Temp. Biol. – volume: 264 start-page: 653 year: 1999 ident: ref_16 article-title: Type I ‘antifreeze’ proteins. Structure-activity studies and mechanisms of ice growth inhibition publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00617.x – volume: 39 start-page: 7 year: 2011 ident: ref_18 article-title: Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via 13C–15N dynamic REDOR NMR publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2011.03.002 – volume: 247 start-page: 237 year: 1974 ident: ref_12 article-title: Freezing resistance in winter flounder Pseudopleuronectus americanus publication-title: Nature doi: 10.1038/247237a0 – volume: 32 start-page: 191 year: 1978 ident: ref_7 article-title: Antifreeze proteins from fish bloods publication-title: Adv. Protein. Chem. doi: 10.1016/S0065-3233(08)60576-8 – volume: 333 start-page: 232 year: 1988 ident: ref_21 article-title: Crystal structure of an antifreeze polypeptide and its mechanistic implications publication-title: Nature doi: 10.1038/333232a0 – volume: 163 start-page: 1073 year: 1969 ident: ref_4 article-title: Freezing resistance in some Antarctic fishes publication-title: Science doi: 10.1126/science.163.3871.1073 – volume: 4 start-page: 2460 year: 1990 ident: ref_8 article-title: Biochemistry of fish antifreeze proteins publication-title: FASEB J. doi: 10.1096/fasebj.4.8.2185972 – ident: ref_40 – volume: 52 start-page: 486 year: 1996 ident: ref_22 article-title: Structure determination of a lone a-helical antifreeze protein from winter flounder publication-title: Acta Cryst. D doi: 10.1107/S0907444995015253 – volume: 151 start-page: 167 year: 1985 ident: ref_14 article-title: Structure of shorthorn sculpin antifreeze polypeptides publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1985.tb09081.x – volume: 131 start-page: 101102 year: 2009 ident: ref_17 article-title: Antifreeze protein NMR sensor to detect water molecular reorientation in the surface of ice publication-title: J. Chem. Phys. doi: 10.1063/1.3223181 – volume: 47 start-page: 611 year: 2018 ident: ref_34 article-title: Mechanisms of Antifreeze Proteins Investigated via the Site-Directed Spin Labeling Technique publication-title: Eur. Biophys. J. doi: 10.1007/s00249-018-1285-3 – volume: 29 start-page: 188 year: 2003 ident: ref_45 article-title: Molecular mechanisms of gene regulation studied by site-directed spin labeling publication-title: Methods doi: 10.1016/S1046-2023(02)00309-2 – volume: 275 start-page: 515 year: 1998 ident: ref_52 article-title: The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1482 – volume: 1 start-page: 224 year: 1994 ident: ref_42 article-title: Site-directed spin labeling of membrane proteins publication-title: Methods Physiol. Ser. – volume: 200 start-page: 732 year: 1994 ident: ref_36 article-title: Freezing of Mammalian Livers with Glycerol and Antifreeze Proteins publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1994.1512 – volume: 463 start-page: 87 year: 1999 ident: ref_28 article-title: New ice-binding face for type I antifreeze protein publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01588-4 – volume: 17 start-page: 315 year: 2011 ident: ref_46 article-title: Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy publication-title: J. Pept. Sci. doi: 10.1002/psc.1344 – ident: ref_54 – volume: 357 start-page: 183 year: 1995 ident: ref_26 article-title: Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)01357-7 – volume: 9 start-page: 469 year: 1972 ident: ref_3 article-title: Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish publication-title: Cryobiology doi: 10.1016/0011-2240(72)90166-6 – volume: 430 start-page: 301 year: 1998 ident: ref_30 article-title: Valine substituted winter flounder ‘antifreeze’: preservation of ice growth hysteresis publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00652-8 – volume: 8 start-page: 649 year: 1998 ident: ref_41 article-title: Recent advances in site-directed spin labeling of proteins publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(98)80158-9 – volume: 308 start-page: 295 year: 1984 ident: ref_11 article-title: Fish antifreeze protein and the freezing and recrystallization of ice publication-title: Nature doi: 10.1038/308295a0 – ident: ref_43 – volume: 245 start-page: 2909 year: 1970 ident: ref_5 article-title: Studies of the structure of freezing point-depressing glycoproteins from an Antarctic fish publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63074-1 – volume: 262 start-page: 347 year: 1992 ident: ref_35 article-title: Glycerol Is a Colligative Antifreeze in Some Northern Fishes publication-title: J. Exp. Zool. doi: 10.1002/jez.1402620316 |
SSID | ssj0000760771 |
Score | 2.1845872 |
Snippet | Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 352 |
SubjectTerms | antifreeze protein Cooling cryo-photo microscopy Cryopreservation cryoprotective agent Electron paramagnetic resonance Freezing Glycerol Hemodialysis ice crystal Ice crystals Ice formation Labeling Low temperature Melting points Nitrogen Organs Peptides Propylene Proteins Room temperature spin labeling |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4ikCBRkJTihqHCe2c0Jt1VVBUFW0lXqL_CwrVcmSbA_LH-HvMpN4l80BrrbzkGc8nhl__oaQ9wxJw4IKqcnKAAGK5GllM586U5VeOZEzO6B8z8TpVfHluryOCbc-wio3NnEw1K61mCM_yAcmdwkOzaflzxSrRuHpaiyhcZ_sgQlWakb2jk7Ozr9vsyx47iQlGxHvHOL7A9ut-1WFil7mk71ooOyf-JlTlOTOtjN_TB5Ff5EejgJ-Qu755il5uMMi-Iz8HhmIaRsoRpX0Mz1EBFDn_S9Pz5GHYdH0tG0o-Hp0js3wGNWNo9_8LaKeabwt4Ht8x3G3biN7A1hCus2b0RFy6KhZ0wuYlHS0ltBwsVw09Ks2w9V2erlhhX1OruYnl8enaay3kFosa5CGzHuhJecQxXCutYCty-nM24Dg6owZI7SwWgr0sYTI81BKx0yWe-a1diV_QWZN2_iXhAYbAqsKU8DriiJIxY3RwVVGKDyLMwn5uJn52kYycqyJcVtDUIJyqnfllJAP29HLkYTjH-OOUIjbMUidPTS03U0dV2IdmM2ZKbi2SP0HHq71vFLC2UxaXakyIfsbFajjeu7rv9qXkHfbbliJeLyiG9_ewZiBe40pVSRETlRn8kPTnmbxY-D0luA0QOT46v8ff00egByqES68T2ar7s6_AadoZd5Gzf8Dwi8TBw priority: 102 providerName: ProQuest |
Title | Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique |
URI | https://www.proquest.com/docview/2535267099 https://www.proquest.com/docview/2463601884 https://pubmed.ncbi.nlm.nih.gov/PMC7678753 https://doaj.org/article/f1c21b43ac5443019ce3986dc07ca985 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-BSBshokOKGocZzYyXFbuhTUVhXbSr1FtmOLlaqk2t0etn-kf5cZJ7tKDogLp0i2Yzn22H4TP79h7DMn0TBf-NgkuUcHRYm4tImLa1Pmrqhlym1g-Z7Lk6vs53V-PQj1RZywTh6467gDz23KTSa0JaU2BCTWibKQtU2U1WUR1Etxzxs4U2ENVjJRindMd4F-_YFdblbrkgw8T0d7UJDqH-HLMTtysN3MXrDnPU6Eade-l-yRa16xZwP1wNfsoVMehtYDeZPwA6bE_Fk6d-_ggvQXFs0K2gYQ48GMkvE10E0NZ-6G2M7Q3xJwK6rjaLlpe9UGXAFh978MOqphDWYDcwSocbdKYsL8dtHAqTbhSjtcbtVg37Cr2fHl0Uncx1mILYUziH3inNRKCPRehNBa4pZV68RZT6TqhBsjtbRaScJWUqapz1XNTZI67rSuc_GW7TVt494x8NZ7XmYmw-qyzKtCGKN9XRpZ0BmcidjXbc9Xthchp1gYNxU6IzRO1XCcIvZlV_q2E9_4S7lDGsRdGZLMDgloSFVvSNW_DCli-1sTqPp5vKrSED9AIYyO2KddNs5AOlbRjWvvsEzQXONFkUVMjUxn1KBxTrP4HbS8FYIF9Bjf_48v-MCe4miVHZl4n-2tl3fuI0KmtZmwx8Xs-4Q9mX47O53j8_D4_OLXJMyZPx3MHdk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcIFDASPaGocR52ckCoFJZduq2QupV6C37CSlWyJFuh5Y_wL_iNzOTF5gC3Xm3HiTIPf2OPvyHkFUPSMJc6XwWJgwBFRH6mA-sblSU2NTxkusnyPeXT8_jTRXKxQ373d2EwrbL3iY2jNqXGPfKDsGFyFwBo3q6--1g1Ck9X-xIarVoc280PCNnqN7P3IN_9MJx8WBxN_a6qgK-RvN93gbVciigCrB5FUnJw0EYGVjtMIQ6YUlxyLSG8ByTBeRi6RBimgtAyK6XBKhHg8m_EEazkeDN98nHY08FTLiFYm18P_cGBrjb1OkOzSsLRytcUCBih2nFO5tYiN7lL7nTolB626nSP7NjiPrm9xVn4gPxq-Y5p6SjGsHRGDzHfqLL2p6WfkfVhWdS0LCggSzrBZniMysLQE3uJOda0u5tga5zjqNqUHVcE-F067NLRNsHRULWhZyACv_XN0HC2WhZ0LlVzkZ4ueg7ah-T8WuTwiOwWZWEfE-q0cyyLVQzTxbETaaSUdCZTPMWTP-WR1_2fz3VHfY4VOC5zCIFQTvm2nDyyP4xetZQf_xj3DoU4jEGi7qahrL7mnd3njumQqTiSGokGAU9rG2UpNzoQWmZp4pG9XgXyznvU-V9d98jLoRvsHg9zZGHLKxjTML2xNI09IkaqM_qgcU-x_NYwiAuAKBCnPvn_y1-Qm9PFyTyfz06Pn5JbIJOsTVTeI7vr6so-Azi2Vs8bG6Dky3Ub3R84PE7B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggKCACBQwEj2haOM87OSAUF-rLi2rFW2l3oLt2LBSlSzJVmj5I_wXfh0zeXVzgFuvtvNQZjz5xv78DSHvGIqG2di6yossJCgicBPtGTdTSWTijPtM1yzfGT-5DD9dRVdb5E93FgZplV1MrAN1VmhcIx_7tZK7AEAzti0tYn40-bj84WIFKdxp7cppNC5yatY_IX2rPkyPwNZ7vj85vjg8cdsKA65GIX_XesZwKYIAcHsQSMkhWGfSM9oindhjSnHJtYRUH1AF575vI5Ex5fmGGSkzrBgB4X9bYFY0ItsHx7P5l36FB_e8hGAN2z4IEm-sy3W1SnCSRf7gP1iXCxhg3CFDc-OXN3lEHrZYle43zvWYbJl8hzzYUDB8Qn436se0sBQzWjql-8g-Ko35ZegcNSAWeUWLnALOpBNshsuozDP62Vwj45q2JxVMhfc4LNdFqxwBUZj2a3a0oTtmVK3pORjBbSI1NJwvFzk9k6o-Vk8vOkXap-TyTizxjIzyIjfPCbXaWpaEKoTbhaEVcaCUtFmieIz7gMoh77svn-pWCB3rcVynkBChndJNOzlkrx-9bARA_jHuAI3Yj0HZ7rqhKL-lbRRILdM-U2EgNcoOArrWJkhinmlPaJnEkUN2OxdI21hSpbee75C3fTdEAdzakbkpbmBMrfvG4jh0iBi4zuCFhj354nutJy4AsEDW-uL_D39D7sGES8-ms9OX5D6YJGlYy7tktCpvzCvAZiv1up0ElHy963n3F-yJVFM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Type+I+Antifreeze+Proteins+on+the+Freezing+and+Melting+Processes+of+Cryoprotective+Solutions+Studied+by+Site-Directed+Spin+Labeling+Technique&rft.jtitle=Crystals+%28Basel%29&rft.au=Perez%2C+Adiel+F&rft.au=Taing%2C+Kyle+R&rft.au=Quon%2C+Justin+C&rft.au=Flores%2C+Antonia&rft.date=2019-07-01&rft.issn=2073-4352&rft.eissn=2073-4352&rft.volume=9&rft.issue=7&rft_id=info:doi/10.3390%2Fcryst9070352&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |