Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate

Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 25; no. 3; pp. 661 - 672
Main Authors Fan, Yi, Hanai, Jun-ichi, Le, Phuong T., Bi, Ruiye, Maridas, David, DeMambro, Victoria, Figueroa, Carolina A., Kir, Serkan, Zhou, Xuedong, Mannstadt, Michael, Baron, Roland, Bronson, Roderick T., Horowitz, Mark C., Wu, Joy Y., Bilezikian, John P., Dempster, David W., Rosen, Clifford J., Lanske, Beate
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.03.2017
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2017.01.001

Cover

Loading…
Abstract Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate. [Display omitted] •PTH1R regulates lineage allocation in the marrow•Bone marrow adipocytes compose a unique adipose depot and produce RANKL•PTH reduced marrow adipogenesis in mice and humans Fan et al. show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH.
AbstractList Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 RANKL marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP Receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa-B ligand ( Rankl ) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotics. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate. XXX et al show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH.
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate. [Display omitted] •PTH1R regulates lineage allocation in the marrow•Bone marrow adipocytes compose a unique adipose depot and produce RANKL•PTH reduced marrow adipogenesis in mice and humans Fan et al. show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH.
Author Bilezikian, John P.
Wu, Joy Y.
Rosen, Clifford J.
Fan, Yi
Baron, Roland
Zhou, Xuedong
Bronson, Roderick T.
Mannstadt, Michael
Lanske, Beate
Hanai, Jun-ichi
Bi, Ruiye
DeMambro, Victoria
Dempster, David W.
Le, Phuong T.
Maridas, David
Kir, Serkan
Figueroa, Carolina A.
Horowitz, Mark C.
AuthorAffiliation 6 Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
9 Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
4 Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
1 Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, 02115, USA
10 Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
11 Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02215, USA
8 Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, 06510, USA
5 Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical
AuthorAffiliation_xml – name: 4 Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
– name: 2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
– name: 1 Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, 02115, USA
– name: 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02215, USA
– name: 9 Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
– name: 3 Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
– name: 10 Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
– name: 8 Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, 06510, USA
– name: 5 Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA
– name: 11 Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
– name: 6 Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
Author_xml – sequence: 1
  givenname: Yi
  surname: Fan
  fullname: Fan, Yi
  organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
– sequence: 2
  givenname: Jun-ichi
  surname: Hanai
  fullname: Hanai, Jun-ichi
  organization: Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
– sequence: 3
  givenname: Phuong T.
  surname: Le
  fullname: Le, Phuong T.
  organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA
– sequence: 4
  givenname: Ruiye
  surname: Bi
  fullname: Bi, Ruiye
  organization: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
– sequence: 5
  givenname: David
  surname: Maridas
  fullname: Maridas, David
  organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA
– sequence: 6
  givenname: Victoria
  surname: DeMambro
  fullname: DeMambro, Victoria
  organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA
– sequence: 7
  givenname: Carolina A.
  surname: Figueroa
  fullname: Figueroa, Carolina A.
  organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA
– sequence: 8
  givenname: Serkan
  surname: Kir
  fullname: Kir, Serkan
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 9
  givenname: Xuedong
  surname: Zhou
  fullname: Zhou, Xuedong
  organization: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
– sequence: 10
  givenname: Michael
  surname: Mannstadt
  fullname: Mannstadt, Michael
  organization: Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
– sequence: 11
  givenname: Roland
  surname: Baron
  fullname: Baron, Roland
  organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
– sequence: 12
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
  organization: Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
– sequence: 13
  givenname: Mark C.
  surname: Horowitz
  fullname: Horowitz, Mark C.
  organization: Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06510, USA
– sequence: 14
  givenname: Joy Y.
  surname: Wu
  fullname: Wu, Joy Y.
  organization: Division of Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 15
  givenname: John P.
  surname: Bilezikian
  fullname: Bilezikian, John P.
  organization: Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
– sequence: 16
  givenname: David W.
  surname: Dempster
  fullname: Dempster, David W.
  organization: Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
– sequence: 17
  givenname: Clifford J.
  surname: Rosen
  fullname: Rosen, Clifford J.
  email: rosenc@mmc.org
  organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA
– sequence: 18
  givenname: Beate
  surname: Lanske
  fullname: Lanske, Beate
  email: beate_lanske@hsdm.harvard.edu
  organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28162969$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi3Uil7gBVigLNkk-PiSjCVAKgOlSK1gAWvLds4wHiVxsT1F8_Y4TFuVLrqyLf8X-3wn5GAKExLyCmgDFNq3m8aNmBtGoWsoNJTCM3IMirO6E4welL2UtBbA4YicpLShlLdc8efkiC2gZapVx-T9dxNNXu9i8H11EeJYKqpPPqLLqfo4H65MjOFPdYUJJ7fejWaoljgM1bnJ-IIcrsyQ8OXtekp-nn_-sbyoL799-bo8u6ydZJBrNMYyZi0DszAWhRPQohTMSLtS0oJUHRdKcGqlkthL1xVBy7myiFKJjp-SD_vc660dsXc45WgGfR39aOJOB-P1_zeTX-tf4UZLLphisgS8uQ2I4fcWU9ajT658w0wYtknDopXlqQCz9PXDrvuSu5kVwWIvcDGkFHGlnc8m-zBX-0ED1TMevdEzHj3j0RR0wVOs7JH1Lv1J07u9CcuEbzxGnZwvLLD_h0n3wT9l_wuwqai6
CitedBy_id crossref_primary_10_1021_acsami_1c07453
crossref_primary_10_3390_cells11213380
crossref_primary_10_1007_s11914_019_00552_8
crossref_primary_10_1016_j_beem_2021_101550
crossref_primary_10_1210_er_2018_00138
crossref_primary_10_1016_j_jposna_2024_100059
crossref_primary_10_1002_osi2_1023
crossref_primary_10_1016_j_bone_2017_07_018
crossref_primary_10_14336_AD_2023_1115
crossref_primary_10_1007_s13197_023_05686_3
crossref_primary_10_1038_s41413_023_00250_3
crossref_primary_10_1038_s41413_024_00351_7
crossref_primary_10_3390_ijms252413594
crossref_primary_10_1007_s40610_018_0096_8
crossref_primary_10_1038_s41573_024_01083_3
crossref_primary_10_1039_C7RA09738G
crossref_primary_10_3389_fendo_2022_921073
crossref_primary_10_1007_s12079_021_00635_1
crossref_primary_10_1172_jci_insight_165604
crossref_primary_10_14336_AD_2024_0306
crossref_primary_10_3389_fonc_2022_899272
crossref_primary_10_1186_s13578_023_01039_x
crossref_primary_10_7554_eLife_83142
crossref_primary_10_3389_fendo_2021_766254
crossref_primary_10_3390_ijms25137269
crossref_primary_10_18632_aging_103590
crossref_primary_10_1016_j_prp_2022_153985
crossref_primary_10_1080_09513590_2020_1764929
crossref_primary_10_1021_acsami_3c03047
crossref_primary_10_3389_fendo_2019_00069
crossref_primary_10_1002_oby_23171
crossref_primary_10_1146_annurev_physiol_021119_034513
crossref_primary_10_1007_s40610_018_0086_x
crossref_primary_10_2478_amb_2020_0050
crossref_primary_10_1002_advs_202100808
crossref_primary_10_1016_j_exger_2021_111596
crossref_primary_10_1007_s10585_021_10076_0
crossref_primary_10_1016_j_bonr_2023_101688
crossref_primary_10_1002_adhm_202302835
crossref_primary_10_1172_jci_insight_161932
crossref_primary_10_3389_fbioe_2017_00032
crossref_primary_10_4252_wjsc_v12_i3_222
crossref_primary_10_1016_j_coemr_2024_100548
crossref_primary_10_1038_s41413_021_00142_4
crossref_primary_10_1210_er_2017_00064
crossref_primary_10_1038_s41419_020_03143_z
crossref_primary_10_1111_joim_12718
crossref_primary_10_1021_acs_nanolett_9b00287
crossref_primary_10_1182_blood_2019002721
crossref_primary_10_1016_j_bone_2018_05_024
crossref_primary_10_1093_hmg_ddy386
crossref_primary_10_1007_s11914_018_0422_3
crossref_primary_10_1530_EJE_18_0182
crossref_primary_10_7554_eLife_78496
crossref_primary_10_3389_fped_2023_1214608
crossref_primary_10_1002_jbmr_4485
crossref_primary_10_1016_j_bcp_2025_116844
crossref_primary_10_1002_jbmr_4248
crossref_primary_10_1038_s41574_023_00879_4
crossref_primary_10_14341_DM12436
crossref_primary_10_1210_clinem_dgad116
crossref_primary_10_1210_clinem_dgad355
crossref_primary_10_1038_s41598_024_70151_w
crossref_primary_10_1302_2046_3758_88_BJR_2019_0018_R1
crossref_primary_10_1186_s11658_022_00371_3
crossref_primary_10_1016_j_bcp_2021_114669
crossref_primary_10_1152_ajpendo_00142_2019
crossref_primary_10_3390_cells13050406
crossref_primary_10_3390_ijms24098263
crossref_primary_10_1016_j_pharmthera_2023_108383
crossref_primary_10_1038_s41375_020_0886_x
crossref_primary_10_1038_s41392_020_00328_y
crossref_primary_10_1038_s41420_023_01708_3
crossref_primary_10_3389_fendo_2024_1518656
crossref_primary_10_1002_jbmr_3811
crossref_primary_10_1016_j_beem_2021_101545
crossref_primary_10_3389_fendo_2022_882297
crossref_primary_10_1002_ptr_7780
crossref_primary_10_1177_20417314231175364
crossref_primary_10_3390_cancers10060182
crossref_primary_10_1016_j_archoralbio_2019_01_014
crossref_primary_10_3390_cancers13030364
crossref_primary_10_1002_jbmr_3140
crossref_primary_10_1007_s00109_021_02164_1
crossref_primary_10_1158_1055_9965_EPI_24_0477
crossref_primary_10_3389_fcell_2021_653308
crossref_primary_10_1016_j_bone_2021_116104
crossref_primary_10_1172_jci_insight_160915
crossref_primary_10_3389_fimmu_2019_01001
crossref_primary_10_1002_jbmr_3728
crossref_primary_10_1002_jcp_31434
crossref_primary_10_1111_jcmm_15153
crossref_primary_10_1038_s41398_020_0819_5
crossref_primary_10_3390_ijms25053024
crossref_primary_10_3803_EnM_2023_1673
crossref_primary_10_7554_eLife_67772
crossref_primary_10_4239_wjd_v12_i7_997
crossref_primary_10_7717_peerj_9484
crossref_primary_10_1038_s41413_019_0076_5
crossref_primary_10_3389_fcell_2022_1033223
crossref_primary_10_1016_j_bone_2024_117326
crossref_primary_10_1002_iub_2420
crossref_primary_10_3390_ijms252312607
crossref_primary_10_1096_fj_201800948RR
crossref_primary_10_1002_adbi_202400148
crossref_primary_10_3724_abbs_2024201
crossref_primary_10_1002_adbi_202300136
crossref_primary_10_1080_03008207_2023_2199086
crossref_primary_10_3389_fphar_2022_1051134
crossref_primary_10_1007_s40610_018_0087_9
crossref_primary_10_1016_j_bcp_2019_113627
crossref_primary_10_1111_acel_13247
crossref_primary_10_1155_2020_1540905
crossref_primary_10_3390_biomedicines11030787
crossref_primary_10_1080_14712598_2018_1401607
crossref_primary_10_3389_fcell_2022_963389
crossref_primary_10_3389_fendo_2022_910602
crossref_primary_10_1016_j_bone_2018_04_023
crossref_primary_10_1371_journal_pone_0273025
crossref_primary_10_1016_j_stem_2018_07_010
crossref_primary_10_1038_s41413_024_00337_5
crossref_primary_10_3390_ijms21072277
crossref_primary_10_3389_fcimb_2022_827575
crossref_primary_10_3390_biom11081129
crossref_primary_10_3389_fcell_2020_00265
crossref_primary_10_1002_jbmr_4161
crossref_primary_10_1002_jbmr_4282
crossref_primary_10_1002_EXP_20210011
crossref_primary_10_1007_s40610_017_0057_7
crossref_primary_10_1016_j_jdsr_2024_01_003
crossref_primary_10_1007_s11914_019_00550_w
crossref_primary_10_1002_jbm4_10695
crossref_primary_10_1016_j_bone_2021_116010
crossref_primary_10_1080_03008207_2022_2120392
crossref_primary_10_3389_fendo_2020_00465
crossref_primary_10_1039_C9NR02791B
crossref_primary_10_3390_cells9122630
crossref_primary_10_3389_fmolb_2021_807487
crossref_primary_10_1038_s41467_022_29633_6
crossref_primary_10_1038_s41368_022_00204_1
crossref_primary_10_1007_s13679_024_00594_9
crossref_primary_10_3389_fendo_2024_1442046
crossref_primary_10_1186_s13287_022_02878_0
crossref_primary_10_1007_s11914_020_00569_4
crossref_primary_10_1016_j_molmet_2022_101480
crossref_primary_10_1002_advs_202308698
crossref_primary_10_3389_fendo_2020_578194
crossref_primary_10_1007_s11914_018_0426_z
crossref_primary_10_1016_j_mehy_2023_111161
crossref_primary_10_1016_j_omtn_2021_02_008
crossref_primary_10_1080_10520295_2022_2049876
crossref_primary_10_1007_s00109_017_1604_7
crossref_primary_10_1177_0022034520932834
crossref_primary_10_1038_s41574_024_01039_y
crossref_primary_10_1093_jbmr_zjae056
crossref_primary_10_1016_S2213_8587_19_30255_4
crossref_primary_10_18632_aging_203808
crossref_primary_10_3390_ijms232415492
crossref_primary_10_1007_s40610_018_0093_y
crossref_primary_10_1002_jcp_25860
crossref_primary_10_3389_fendo_2023_1207416
crossref_primary_10_1016_j_cmet_2019_01_016
crossref_primary_10_2174_1574888X17666220426120850
crossref_primary_10_1038_s41588_023_01528_2
crossref_primary_10_3389_fendo_2020_622950
crossref_primary_10_1007_s11914_018_0440_1
crossref_primary_10_1016_j_bone_2017_10_023
crossref_primary_10_3390_ijms24129814
crossref_primary_10_1002_jbmr_4732
crossref_primary_10_3389_fcell_2025_1465092
crossref_primary_10_1007_s40610_017_0062_x
crossref_primary_10_1002_jbmr_4170
crossref_primary_10_1007_s12015_023_10531_3
crossref_primary_10_1016_j_bone_2020_115832
crossref_primary_10_1038_s41467_022_28472_9
crossref_primary_10_3389_fendo_2022_1017832
crossref_primary_10_1016_j_tem_2017_06_003
crossref_primary_10_1073_pnas_2026176118
crossref_primary_10_1111_cpr_12755
crossref_primary_10_7554_eLife_82118
crossref_primary_10_1002_jbmr_4523
crossref_primary_10_1007_s40610_017_0074_6
crossref_primary_10_1007_s12020_023_03504_6
crossref_primary_10_3389_fendo_2022_861878
crossref_primary_10_1016_j_cytogfr_2020_02_003
crossref_primary_10_3389_fonc_2020_584683
crossref_primary_10_1007_s10585_019_09997_8
crossref_primary_10_1016_j_bone_2020_115624
crossref_primary_10_1158_0008_5472_CAN_20_1088
crossref_primary_10_1172_JCI140214
crossref_primary_10_3389_fonc_2022_912834
crossref_primary_10_3390_cells9092073
crossref_primary_10_1002_jcla_23916
crossref_primary_10_1111_bjh_18748
crossref_primary_10_1016_j_bone_2023_116891
crossref_primary_10_1016_j_omtn_2019_08_027
crossref_primary_10_1155_2018_7098456
crossref_primary_10_1016_j_thromres_2022_10_008
crossref_primary_10_3389_fbioe_2022_866627
crossref_primary_10_3389_fendo_2018_00339
crossref_primary_10_1038_s41574_020_00426_5
crossref_primary_10_1016_j_bone_2020_115617
crossref_primary_10_1016_j_bbrc_2024_149888
crossref_primary_10_1016_j_stem_2018_06_009
crossref_primary_10_1038_s41413_022_00235_8
crossref_primary_10_3390_ijms21144967
crossref_primary_10_3389_fcell_2020_00592
crossref_primary_10_1002_jcp_25976
crossref_primary_10_1038_s41467_024_48255_8
crossref_primary_10_1016_j_biomaterials_2018_06_035
crossref_primary_10_1016_j_bbrep_2024_101788
crossref_primary_10_3892_mmr_2020_11110
crossref_primary_10_1182_blood_2019002227
crossref_primary_10_1016_j_cmet_2019_09_015
crossref_primary_10_2174_1871530323666230505114343
crossref_primary_10_7554_eLife_83345
crossref_primary_10_1016_j_bone_2019_03_038
crossref_primary_10_1210_en_2017_00299
crossref_primary_10_1016_j_taap_2024_117047
crossref_primary_10_1007_s00223_022_01022_7
crossref_primary_10_1016_j_rccot_2020_04_014
crossref_primary_10_1016_j_bone_2018_01_023
crossref_primary_10_3390_ijms26031311
crossref_primary_10_1007_s40610_017_0075_5
crossref_primary_10_1210_jc_2017_02169
crossref_primary_10_1111_cpr_12693
crossref_primary_10_1007_s11657_018_0437_5
crossref_primary_10_1016_j_cmet_2023_03_005
crossref_primary_10_3389_fcell_2020_00089
crossref_primary_10_1016_j_cmet_2024_03_006
crossref_primary_10_1038_s41598_020_62562_2
crossref_primary_10_3389_fendo_2017_00188
crossref_primary_10_3390_metabo12121205
crossref_primary_10_1007_s00018_024_05297_x
crossref_primary_10_3389_fvets_2025_1534742
crossref_primary_10_1111_cpr_12688
crossref_primary_10_3390_jcm13133889
crossref_primary_10_1080_21623945_2017_1367881
crossref_primary_10_1016_j_stem_2021_01_010
crossref_primary_10_1016_j_biopha_2021_112548
crossref_primary_10_1038_s41419_019_1942_1
crossref_primary_10_1002_jbmr_3562
crossref_primary_10_1016_j_bone_2019_115076
crossref_primary_10_1002_jbm4_10021
crossref_primary_10_1002_jbmr_4410
crossref_primary_10_1111_nyas_13380
crossref_primary_10_1016_j_bone_2019_03_041
crossref_primary_10_1002_jbmr_4778
crossref_primary_10_1210_endrev_bnad025
crossref_primary_10_1038_s42003_025_07765_x
crossref_primary_10_15252_embr_202152481
crossref_primary_10_1155_2019_9026729
crossref_primary_10_1016_j_cej_2020_127413
crossref_primary_10_1093_alcalc_agad026
crossref_primary_10_1016_j_biopha_2022_114122
crossref_primary_10_1016_j_bone_2018_01_008
crossref_primary_10_1016_j_bone_2017_10_011
crossref_primary_10_1186_s13045_019_0778_6
crossref_primary_10_1210_en_2018_00601
crossref_primary_10_1080_21623945_2017_1313374
crossref_primary_10_3389_fcell_2021_770705
crossref_primary_10_1016_j_bbrc_2020_02_079
crossref_primary_10_3389_fcell_2021_714716
crossref_primary_10_2174_1574888X17666220621155341
crossref_primary_10_1016_j_cmet_2017_12_002
crossref_primary_10_1002_advs_202309951
crossref_primary_10_1042_CS20200220
crossref_primary_10_1038_nrendo_2017_19
crossref_primary_10_3390_ma16114017
crossref_primary_10_1016_j_ajhg_2019_05_002
crossref_primary_10_3389_fendo_2019_00126
crossref_primary_10_1111_cpr_12784
crossref_primary_10_3389_fendo_2019_00923
crossref_primary_10_1210_er_2018_00005
crossref_primary_10_3390_cimb44120433
crossref_primary_10_3389_fbioe_2023_1215233
crossref_primary_10_3389_fendo_2020_00065
crossref_primary_10_1016_j_jare_2024_06_010
crossref_primary_10_1172_JCI131554
crossref_primary_10_1007_s42765_023_00370_9
crossref_primary_10_1016_j_bone_2019_03_022
crossref_primary_10_1038_s41574_019_0246_y
crossref_primary_10_1016_j_bone_2020_115258
crossref_primary_10_1021_acs_jproteome_8b00472
crossref_primary_10_1101_cshperspect_a031237
crossref_primary_10_1302_2046_3758_123_BJR_2022_0368_R1
crossref_primary_10_3390_ani12172203
crossref_primary_10_1002_jbmr_3340
crossref_primary_10_3390_ijms241512259
crossref_primary_10_1038_s41467_018_06898_4
crossref_primary_10_3389_fcell_2021_654715
Cites_doi 10.1038/nature08099
10.1016/j.bbrc.2014.11.120
10.1186/1471-2164-12-212
10.1371/journal.pone.0071318
10.1002/gene.10092
10.1016/j.cmet.2014.06.003
10.1172/JCI11296
10.1210/endo.142.11.8515
10.1016/j.stem.2016.02.015
10.1002/jbmr.1663
10.1359/jbmr.2001.16.10.1846
10.1002/jbmr.1665
10.1002/stem.2474
10.1016/0092-8674(93)90252-L
10.1172/JCI72126
10.1038/ncprheum0070
10.1210/en.2015-1614
10.3109/13697137.2015.1126576
10.1002/jbmr.2581
10.1007/s00125-013-2926-9
10.1016/S8756-3282(01)00487-2
10.1210/en.2015-1867
10.1016/j.bone.2005.03.018
10.1172/JCI119491
10.1111/nyas.12327
10.1016/j.bone.2009.08.050
10.1210/jc.2008-2532
10.1371/journal.pone.0085161
10.1172/JCI6610
10.1056/NEJM200105103441904
10.1074/jbc.M110.178251
10.1515/hmbci-2016-0012
10.1242/dev.129.12.2977
10.1002/jbmr.1962
10.1210/jc.2013-1172
10.1210/en.2003-0273
10.1186/1479-5876-10-11
10.1038/ncomms8808
10.1016/j.cmet.2015.11.003
10.1038/nn.2467
10.1074/jbc.M114.547919
10.1006/dbio.1996.0104
10.1016/j.bone.2003.11.020
10.1096/fj.15-278184
10.1615/CritRevEukarGeneExpr.v19.i2.20
10.1002/jbmr.2270
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2017.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 672
ExternalDocumentID PMC5342925
28162969
10_1016_j_cmet_2017_01_001
S1550413117300360
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P30 GM106391
– fundername: NIAMS NIH HHS
  grantid: R21 AR066120
– fundername: NIDDK NIH HHS
  grantid: R01 DK100584
– fundername: NCI NIH HHS
  grantid: K99 CA197410
– fundername: NIDDK NIH HHS
  grantid: R24 DK092759
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIDDK NIH HHS
  grantid: R01 DK097105
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-eaab22bb21a8abe4c416e542a5bf95b1597349430b595ed5c74166339bee59473
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:05:39 EDT 2025
Fri Sep 05 07:15:47 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 03:58:16 EDT 2025
Fri Feb 23 02:27:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lineage
RANKL
receptor
PTH
bone resorption
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-eaab22bb21a8abe4c416e542a5bf95b1597349430b595ed5c74166339bee59473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Co-Corresponding author description: Dr. Lanske (lead contact): Dr. Lanske was involved in designing the original study, in generating the mutant mouse strains, planning the experiments, discovering and analyzing the phenotype of mice, supervising all in vivo and in vitro experiments performed at HSDM, setting up required collaborations for the completion of the study, writing and revising the manuscript. She has discussed all steps of the study with the postdoc and co-authors on a daily basis, reviewed the results, coordinated the experiments, and exchanged the design and ideas with Dr. Rosen on a regular basis.
Dr. Rosen was involved in planning experiments, writing the manuscript with Dr. Lanske, and writing the revisions with Dr. Lanske. Specifically, Dr. Rosen focused on the marrow adipose phenotype and supervised the osmium micro CT analyses at MMCRI with and without PTH, the tibial histology for counting of the marrow adipocytes in mutant and controls, the human studies of marrow adiposity in iliac crest biopsies pre- and post PTH treatment, and the in vitro studies of PTH regulation of 3T3 L1 cells. He provided the methods that Dr. Fan used for isolating marrow adipocytes in the controls and mutants. He also developed the methods for sorting marrow progenitors for Pref-1 and RANKL using FACS that were adapted for this study by Dr. Fan, and supervised the adaptation of the TRAP technology for RANKL expression in inguinal adipose depots performed at MMCRI. Dr. Rosen discussed extensively with Dr. Jack Martin the role of Zfp467 in mediating RANKL expression in adipocytes.
Co-correspondence
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413117300360
PMID 28162969
PQID 1865521115
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5342925
proquest_miscellaneous_1865521115
pubmed_primary_28162969
crossref_citationtrail_10_1016_j_cmet_2017_01_001
crossref_primary_10_1016_j_cmet_2017_01_001
elsevier_sciencedirect_doi_10_1016_j_cmet_2017_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-07
PublicationDateYYYYMMDD 2017-03-07
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Shen, Ueno, Patel, Kraemer (bib21) 2011; 12
Yang, Luo, Xie, Yan, Chen, Zhao, Jiang, Fang, Shen (bib44) 2016; 19
Calvi, Sims, Hunzelman, Knight, Giovannetti, Saxton, Kronenberg, Baron, Schipani (bib4) 2001; 107
Keller, Kneissel (bib16) 2005; 37
Cohen, Stein, Recker, Lappe, Dempster, Zhou, Cremers, McMahon, Nickolas, Müller (bib9) 2013; 98
Liu, Krautzberger, Sui, Hofmann, Chen, Baetscher, Grgic, Kumar, Humphreys, Hide, McMahon (bib23) 2014; 124
Smas, Sul (bib38) 1993; 73
Liu, Strecker, Wang, Kronenberg, Wang, Rowe, Maye (bib22) 2013; 8
Naveiras, Nardi, Wenzel, Hauschka, Fahey, Daley (bib27) 2009; 460
Ishizuya, Yokose, Hori, Noda, Suda, Yoshiki, Yamaguchi (bib14) 1997; 99
Rosen, Ackert-Bicknell, Rodriguez, Pino (bib34) 2009; 19
O’Brien (bib29) 2010; 46
Georgiou, Hui, Xian (bib12) 2012; 1
Hamrick, Pennington, Newton, Xie, Isales (bib13) 2004; 34
Fan, Bi, Densmore, Sato, Kobayashi, Yuan, Zhou, Erben, Lanske (bib11) 2016; 30
Sinha, Aarnisalo, Chubb, Ono, Fulzele, Selig, Saeed, Chen, Weinstein, Pajevic (bib37) 2014; 29
Bredella, Fazeli, Miller, Misra, Torriani, Thomas, Ghomi, Rosen, Klibanski (bib2) 2009; 94
Takeshita, Fumoto, Naoe, Ikeda (bib40) 2014; 289
Dempster, Cosman, Kurland, Zhou, Nieves, Woelfert, Shane, Plavetić, Müller, Bilezikian, Lindsay (bib10) 2001; 16
Scheller, Doucette, Learman, Cawthorn, Khandaker, Schell, Wu, Ding, Bredella, Fazeli (bib36) 2015; 6
Sulston, Cawthorn (bib39) 2016; 28
Weinstein, Yu, Warner, Liu (bib43) 2001; 22
Kobayashi, Chung, Schipani, Starbuck, Karsenty, Katagiri, Goad, Lanske, Kronenberg (bib19) 2002; 129
Neer, Arnaud, Zanchetta, Prince, Gaich, Reginster, Hodsman, Eriksen, Ish-Shalom, Genant (bib28) 2001; 344
Chan, Deckelbaum, Bolivar, Goltzman, Karaplis (bib6) 2001; 142
Scheller, Rosen (bib35) 2014; 1311
Jilka, Weinstein, Bellido, Roberson, Parfitt, Manolagas (bib15) 1999; 104
Cawthorn, Scheller, Learman, Parlee, Simon, Mori, Ning, Bree, Schell, Broome (bib5) 2014; 20
Chen, Shi, Regan, Karuppaiah, Ornitz, Long (bib8) 2014; 9
Kim, Pajevic, Selig, Barry, Yang, Shin, Baek, Kim, Kronenberg (bib17) 2012; 27
Chan, Miao, Deckelbaum, Bolivar, Karaplis, Goltzman (bib7) 2003; 144
Prieur, Dollet, Takahashi, Nemani, Pillot, Le May, Mounier, Takigawa-Imamura, Zelenika, Matsuda (bib31) 2013; 56
Li, Xing, Yu, Xie, Wang, Shi, Crane, Cao, Wan (bib20) 2013; 28
Rosen, Bouxsein (bib33) 2006; 2
Yue, Zhou, Shimada, Zhao, Morrison (bib48) 2016; 18
Logan, Martin, Nagy, Lobe, Olson, Tabin (bib24) 2002; 33
Tascau, Gardner, Anan, Yongpravat, Cardozo, Bauman, Lee, Oh, Tawfeek (bib41) 2016; 157
Quach, Walker, Allan, Solano, Yokoyama, Kato, Sims, Gillespie, Martin (bib32) 2011; 286
Amizuka, Karaplis, Henderson, Warshawsky, Lipman, Matsuki, Ejiri, Tanaka, Izumi, Ozawa, Goltzman (bib1) 1996; 175
Yu, Zhao, Yang, Crane, Xian, Lu, Wan, Cao (bib47) 2012; 27
Panaroni, Fulzele, Saini, Chubb, Pajevic, Wu (bib30) 2015; 30
Matic, Matthews, Wang, Dyment, Worthley, Rowe, Grcevic, Kalajzic (bib26) 2016; 34
Thomas, Burguera, Melton, Atkinson, O’Fallon, Riggs, Khosla (bib42) 2001; 29
You, Pan, Chen, Chen, Zhang, Lv, Fu (bib45) 2012; 10
Madisen, Zwingman, Sunkin, Oh, Zariwala, Gu, Ng, Palmiter, Hawrylycz, Jones (bib25) 2010; 13
Kir, Komaba, Garcia, Economopoulos, Liu, Lanske, Hodin, Spiegelman (bib18) 2016; 23
You, Chen, Pan, Gu, Chen (bib46) 2015; 456
Cain, Valencia, Ho, Jordan, Mattingly, Morales, Hsiao (bib3) 2016; 157
Kir (10.1016/j.cmet.2017.01.001_bib18) 2016; 23
Ishizuya (10.1016/j.cmet.2017.01.001_bib14) 1997; 99
Kobayashi (10.1016/j.cmet.2017.01.001_bib19) 2002; 129
Smas (10.1016/j.cmet.2017.01.001_bib38) 1993; 73
Takeshita (10.1016/j.cmet.2017.01.001_bib40) 2014; 289
Kim (10.1016/j.cmet.2017.01.001_bib17) 2012; 27
Rosen (10.1016/j.cmet.2017.01.001_bib34) 2009; 19
Yu (10.1016/j.cmet.2017.01.001_bib47) 2012; 27
Jilka (10.1016/j.cmet.2017.01.001_bib15) 1999; 104
You (10.1016/j.cmet.2017.01.001_bib46) 2015; 456
Chan (10.1016/j.cmet.2017.01.001_bib6) 2001; 142
Logan (10.1016/j.cmet.2017.01.001_bib24) 2002; 33
Sinha (10.1016/j.cmet.2017.01.001_bib37) 2014; 29
Cohen (10.1016/j.cmet.2017.01.001_bib9) 2013; 98
Calvi (10.1016/j.cmet.2017.01.001_bib4) 2001; 107
Chan (10.1016/j.cmet.2017.01.001_bib7) 2003; 144
Hamrick (10.1016/j.cmet.2017.01.001_bib13) 2004; 34
Fan (10.1016/j.cmet.2017.01.001_bib11) 2016; 30
Li (10.1016/j.cmet.2017.01.001_bib20) 2013; 28
Scheller (10.1016/j.cmet.2017.01.001_bib35) 2014; 1311
Quach (10.1016/j.cmet.2017.01.001_bib32) 2011; 286
Yue (10.1016/j.cmet.2017.01.001_bib48) 2016; 18
Rosen (10.1016/j.cmet.2017.01.001_bib33) 2006; 2
Amizuka (10.1016/j.cmet.2017.01.001_bib1) 1996; 175
Chen (10.1016/j.cmet.2017.01.001_bib8) 2014; 9
Dempster (10.1016/j.cmet.2017.01.001_bib10) 2001; 16
Panaroni (10.1016/j.cmet.2017.01.001_bib30) 2015; 30
Thomas (10.1016/j.cmet.2017.01.001_bib42) 2001; 29
Keller (10.1016/j.cmet.2017.01.001_bib16) 2005; 37
Madisen (10.1016/j.cmet.2017.01.001_bib25) 2010; 13
Scheller (10.1016/j.cmet.2017.01.001_bib36) 2015; 6
Sulston (10.1016/j.cmet.2017.01.001_bib39) 2016; 28
Georgiou (10.1016/j.cmet.2017.01.001_bib12) 2012; 1
Matic (10.1016/j.cmet.2017.01.001_bib26) 2016; 34
Liu (10.1016/j.cmet.2017.01.001_bib22) 2013; 8
Naveiras (10.1016/j.cmet.2017.01.001_bib27) 2009; 460
Liu (10.1016/j.cmet.2017.01.001_bib21) 2011; 12
Prieur (10.1016/j.cmet.2017.01.001_bib31) 2013; 56
Liu (10.1016/j.cmet.2017.01.001_bib23) 2014; 124
You (10.1016/j.cmet.2017.01.001_bib45) 2012; 10
Weinstein (10.1016/j.cmet.2017.01.001_bib43) 2001; 22
O’Brien (10.1016/j.cmet.2017.01.001_bib29) 2010; 46
Tascau (10.1016/j.cmet.2017.01.001_bib41) 2016; 157
Bredella (10.1016/j.cmet.2017.01.001_bib2) 2009; 94
Cain (10.1016/j.cmet.2017.01.001_bib3) 2016; 157
Neer (10.1016/j.cmet.2017.01.001_bib28) 2001; 344
Yang (10.1016/j.cmet.2017.01.001_bib44) 2016; 19
Cawthorn (10.1016/j.cmet.2017.01.001_bib5) 2014; 20
20023653 - Nat Neurosci. 2010 Jan;13(1):133-40
8608863 - Dev Biol. 1996 Apr 10;175(1):166-76
27507737 - Stem Cells. 2016 Dec;34(12 ):2930-2942
22589223 - J Bone Miner Res. 2012 Sep;27(9):2001-14
11585349 - J Bone Miner Res. 2001 Oct;16(10):1846-53
24454809 - PLoS One. 2014 Jan 15;9(1):e85161
25490389 - Biochem Biophys Res Commun. 2015 Jan 9;456(2):598-604
23543660 - J Clin Endocrinol Metab. 2013 May;98 (5):1971-81
15003785 - Bone. 2004 Mar;34(3):376-83
19318450 - J Clin Endocrinol Metab. 2009 Jun;94(6):2129-36
27149203 - Horm Mol Biol Clin Investig. 2016 Oct 1;28(1):21-38
24753250 - J Biol Chem. 2014 Jun 13;289(24):16699-710
24650218 - Ann N Y Acad Sci. 2014 Apr;1311:14-30
23609180 - J Bone Miner Res. 2013 Oct;28(10):2094-108
23951132 - PLoS One. 2013 Aug 08;8(8):e71318
19716455 - Bone. 2010 Apr;46(4):911-9
11160151 - J Clin Invest. 2001 Feb;107(3):277-86
26669699 - Cell Metab. 2016 Feb 9;23 (2):315-23
23671809 - Am J Stem Cells. 2012 Nov 30;1(3):205-24
11588148 - Endocr Rev. 2001 Oct;22(5):675-705
10449436 - J Clin Invest. 1999 Aug;104(4):439-46
24998914 - Cell Metab. 2014 Aug 5;20(2):368-75
11502471 - Bone. 2001 Aug;29(2):114-20
12960089 - Endocrinology. 2003 Dec;144(12):5511-20
16932650 - Nat Clin Pract Rheumatol. 2006 Jan;2(1):35-43
24569379 - J Clin Invest. 2014 Mar;124(3):1242-54
11606458 - Endocrinology. 2001 Nov;142(11):4900-9
22623172 - J Bone Miner Res. 2012 Oct;27(10):2075-84
11346808 - N Engl J Med. 2001 May 10;344(19):1434-41
26245716 - Nat Commun. 2015 Aug 06;6:7808
26901092 - Endocrinology. 2016 Apr;157(4):1481-94
9185520 - J Clin Invest. 1997 Jun 15;99(12):2961-70
24806274 - J Bone Miner Res. 2014 Nov;29(11):2414-26
26191777 - J Bone Miner Res. 2015 Dec;30(12 ):2273-86
23680914 - Diabetologia. 2013 Aug;56(8):1813-25
26428657 - FASEB J. 2016 Jan;30(1):428-40
19516257 - Nature. 2009 Jul 9;460(7252):259-63
19392647 - Crit Rev Eukaryot Gene Expr. 2009;19(2):109-24
21545734 - BMC Genomics. 2011 May 05;12:212
12050144 - Development. 2002 Jun;129(12):2977-86
15946907 - Bone. 2005 Aug;37(2):148-58
27053299 - Cell Stem Cell. 2016 Jun 2;18(6):782-96
28211514 - Nat Rev Endocrinol. 2017 Apr;13(4):190
26744910 - Climacteric. 2016 Jun;19(3):285-91
21123171 - J Biol Chem. 2011 Feb 11;286(6):4186-98
12112875 - Genesis. 2002 Jun;33(2):77-80
22252242 - J Transl Med. 2012 Jan 17;10:11
26488807 - Endocrinology. 2016 Jan;157(1):112-26
8500166 - Cell. 1993 May 21;73(4):725-34
References_xml – volume: 34
  start-page: 376
  year: 2004
  end-page: 383
  ident: bib13
  article-title: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine
  publication-title: Bone
– volume: 29
  start-page: 114
  year: 2001
  end-page: 120
  ident: bib42
  article-title: Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women
  publication-title: Bone
– volume: 13
  start-page: 133
  year: 2010
  end-page: 140
  ident: bib25
  article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: e71318
  year: 2013
  ident: bib22
  article-title: Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma
  publication-title: PLoS One
– volume: 10
  start-page: 11
  year: 2012
  ident: bib45
  article-title: Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts
  publication-title: J. Transl. Med.
– volume: 29
  start-page: 2414
  year: 2014
  end-page: 2426
  ident: bib37
  article-title: Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors
  publication-title: J. Bone Miner. Res.
– volume: 16
  start-page: 1846
  year: 2001
  end-page: 1853
  ident: bib10
  article-title: Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study
  publication-title: J. Bone Miner. Res.
– volume: 27
  start-page: 2001
  year: 2012
  end-page: 2014
  ident: bib47
  article-title: Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling
  publication-title: J. Bone Miner. Res.
– volume: 9
  start-page: e85161
  year: 2014
  ident: bib8
  article-title: Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
  publication-title: PLoS One
– volume: 124
  start-page: 1242
  year: 2014
  end-page: 1254
  ident: bib23
  article-title: Cell-specific translational profiling in acute kidney injury
  publication-title: J. Clin. Invest.
– volume: 286
  start-page: 4186
  year: 2011
  end-page: 4198
  ident: bib32
  article-title: Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 205
  year: 2012
  end-page: 224
  ident: bib12
  article-title: Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy
  publication-title: Am. J. Stem Cells
– volume: 30
  start-page: 2273
  year: 2015
  end-page: 2286
  ident: bib30
  article-title: PTH signaling in osteoprogenitors is essential for B-lymphocyte differentiation and mobilization
  publication-title: J. Bone Miner. Res.
– volume: 37
  start-page: 148
  year: 2005
  end-page: 158
  ident: bib16
  article-title: SOST is a target gene for PTH in bone
  publication-title: Bone
– volume: 73
  start-page: 725
  year: 1993
  end-page: 734
  ident: bib38
  article-title: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation
  publication-title: Cell
– volume: 144
  start-page: 5511
  year: 2003
  end-page: 5520
  ident: bib7
  article-title: Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells
  publication-title: Endocrinology
– volume: 27
  start-page: 2075
  year: 2012
  end-page: 2084
  ident: bib17
  article-title: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts
  publication-title: J. Bone Miner. Res.
– volume: 34
  start-page: 2930
  year: 2016
  end-page: 2942
  ident: bib26
  article-title: Quiescent bone lining cells are a major source of osteoblasts during adulthood
  publication-title: Stem Cells
– volume: 28
  start-page: 2094
  year: 2013
  end-page: 2108
  ident: bib20
  article-title: Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH
  publication-title: J. Bone Miner. Res.
– volume: 6
  start-page: 7808
  year: 2015
  ident: bib36
  article-title: Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues
  publication-title: Nat. Commun.
– volume: 22
  start-page: 675
  year: 2001
  end-page: 705
  ident: bib43
  article-title: Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting
  publication-title: Endocr. Rev.
– volume: 104
  start-page: 439
  year: 1999
  end-page: 446
  ident: bib15
  article-title: Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone
  publication-title: J. Clin. Invest.
– volume: 344
  start-page: 1434
  year: 2001
  end-page: 1441
  ident: bib28
  article-title: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis
  publication-title: N. Engl. J. Med.
– volume: 99
  start-page: 2961
  year: 1997
  end-page: 2970
  ident: bib14
  article-title: Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells
  publication-title: J. Clin. Invest.
– volume: 129
  start-page: 2977
  year: 2002
  end-page: 2986
  ident: bib19
  article-title: PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps
  publication-title: Development
– volume: 23
  start-page: 315
  year: 2016
  end-page: 323
  ident: bib18
  article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer
  publication-title: Cell Metab.
– volume: 56
  start-page: 1813
  year: 2013
  end-page: 1825
  ident: bib31
  article-title: Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice
  publication-title: Diabetologia
– volume: 1311
  start-page: 14
  year: 2014
  end-page: 30
  ident: bib35
  article-title: What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health
  publication-title: Ann. N Y Acad. Sci.
– volume: 18
  start-page: 782
  year: 2016
  end-page: 796
  ident: bib48
  article-title: Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow
  publication-title: Cell Stem Cell
– volume: 46
  start-page: 911
  year: 2010
  end-page: 919
  ident: bib29
  article-title: Control of RANKL gene expression
  publication-title: Bone
– volume: 33
  start-page: 77
  year: 2002
  end-page: 80
  ident: bib24
  article-title: Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer
  publication-title: Genesis
– volume: 2
  start-page: 35
  year: 2006
  end-page: 43
  ident: bib33
  article-title: Mechanisms of disease: is osteoporosis the obesity of bone?
  publication-title: Nat. Clin. Pract. Rheumatol.
– volume: 19
  start-page: 285
  year: 2016
  end-page: 291
  ident: bib44
  article-title: Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy
  publication-title: Climacteric
– volume: 456
  start-page: 598
  year: 2015
  end-page: 604
  ident: bib46
  article-title: Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 20
  start-page: 368
  year: 2014
  end-page: 375
  ident: bib5
  article-title: Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction
  publication-title: Cell Metab.
– volume: 107
  start-page: 277
  year: 2001
  end-page: 286
  ident: bib4
  article-title: Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone
  publication-title: J. Clin. Invest.
– volume: 157
  start-page: 1481
  year: 2016
  end-page: 1494
  ident: bib3
  article-title: Increased Gs signaling in osteoblasts reduces bone marrow and whole-body adiposity in male mice
  publication-title: Endocrinology
– volume: 12
  start-page: 212
  year: 2011
  ident: bib21
  article-title: Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes
  publication-title: BMC Genomics
– volume: 460
  start-page: 259
  year: 2009
  end-page: 263
  ident: bib27
  article-title: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
  publication-title: Nature
– volume: 19
  start-page: 109
  year: 2009
  end-page: 124
  ident: bib34
  article-title: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications
  publication-title: Crit. Rev. Eukaryot. Gene Expr.
– volume: 98
  start-page: 1971
  year: 2013
  end-page: 1981
  ident: bib9
  article-title: Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 94
  start-page: 2129
  year: 2009
  end-page: 2136
  ident: bib2
  article-title: Increased bone marrow fat in anorexia nervosa
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 289
  start-page: 16699
  year: 2014
  end-page: 16710
  ident: bib40
  article-title: Age-related marrow adipogenesis is linked to increased expression of RANKL
  publication-title: J. Biol. Chem.
– volume: 157
  start-page: 112
  year: 2016
  end-page: 126
  ident: bib41
  article-title: Activation of protein kinase A in mature osteoblasts promotes a major bone anabolic response
  publication-title: Endocrinology
– volume: 175
  start-page: 166
  year: 1996
  end-page: 176
  ident: bib1
  article-title: Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development
  publication-title: Dev. Biol.
– volume: 142
  start-page: 4900
  year: 2001
  end-page: 4909
  ident: bib6
  article-title: PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway
  publication-title: Endocrinology
– volume: 30
  start-page: 428
  year: 2016
  end-page: 440
  ident: bib11
  article-title: Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis
  publication-title: FASEB J.
– volume: 28
  start-page: 21
  year: 2016
  end-page: 38
  ident: bib39
  article-title: Bone marrow adipose tissue as an endocrine organ: close to the bone?
  publication-title: Horm. Mol. Biol. Clin. Investig.
– volume: 460
  start-page: 259
  year: 2009
  ident: 10.1016/j.cmet.2017.01.001_bib27
  article-title: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
  publication-title: Nature
  doi: 10.1038/nature08099
– volume: 456
  start-page: 598
  year: 2015
  ident: 10.1016/j.cmet.2017.01.001_bib46
  article-title: Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.11.120
– volume: 12
  start-page: 212
  year: 2011
  ident: 10.1016/j.cmet.2017.01.001_bib21
  article-title: Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-212
– volume: 8
  start-page: e71318
  year: 2013
  ident: 10.1016/j.cmet.2017.01.001_bib22
  article-title: Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071318
– volume: 33
  start-page: 77
  year: 2002
  ident: 10.1016/j.cmet.2017.01.001_bib24
  article-title: Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer
  publication-title: Genesis
  doi: 10.1002/gene.10092
– volume: 20
  start-page: 368
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib5
  article-title: Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.06.003
– volume: 107
  start-page: 277
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib4
  article-title: Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI11296
– volume: 142
  start-page: 4900
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib6
  article-title: PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway
  publication-title: Endocrinology
  doi: 10.1210/endo.142.11.8515
– volume: 18
  start-page: 782
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib48
  article-title: Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.02.015
– volume: 27
  start-page: 2001
  year: 2012
  ident: 10.1016/j.cmet.2017.01.001_bib47
  article-title: Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1663
– volume: 16
  start-page: 1846
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib10
  article-title: Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.10.1846
– volume: 27
  start-page: 2075
  year: 2012
  ident: 10.1016/j.cmet.2017.01.001_bib17
  article-title: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1665
– volume: 34
  start-page: 2930
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib26
  article-title: Quiescent bone lining cells are a major source of osteoblasts during adulthood
  publication-title: Stem Cells
  doi: 10.1002/stem.2474
– volume: 73
  start-page: 725
  year: 1993
  ident: 10.1016/j.cmet.2017.01.001_bib38
  article-title: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90252-L
– volume: 124
  start-page: 1242
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib23
  article-title: Cell-specific translational profiling in acute kidney injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI72126
– volume: 2
  start-page: 35
  year: 2006
  ident: 10.1016/j.cmet.2017.01.001_bib33
  article-title: Mechanisms of disease: is osteoporosis the obesity of bone?
  publication-title: Nat. Clin. Pract. Rheumatol.
  doi: 10.1038/ncprheum0070
– volume: 157
  start-page: 112
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib41
  article-title: Activation of protein kinase A in mature osteoblasts promotes a major bone anabolic response
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1614
– volume: 19
  start-page: 285
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib44
  article-title: Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy
  publication-title: Climacteric
  doi: 10.3109/13697137.2015.1126576
– volume: 30
  start-page: 2273
  year: 2015
  ident: 10.1016/j.cmet.2017.01.001_bib30
  article-title: PTH signaling in osteoprogenitors is essential for B-lymphocyte differentiation and mobilization
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2581
– volume: 56
  start-page: 1813
  year: 2013
  ident: 10.1016/j.cmet.2017.01.001_bib31
  article-title: Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2926-9
– volume: 29
  start-page: 114
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib42
  article-title: Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women
  publication-title: Bone
  doi: 10.1016/S8756-3282(01)00487-2
– volume: 157
  start-page: 1481
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib3
  article-title: Increased Gs signaling in osteoblasts reduces bone marrow and whole-body adiposity in male mice
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1867
– volume: 37
  start-page: 148
  year: 2005
  ident: 10.1016/j.cmet.2017.01.001_bib16
  article-title: SOST is a target gene for PTH in bone
  publication-title: Bone
  doi: 10.1016/j.bone.2005.03.018
– volume: 22
  start-page: 675
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib43
  article-title: Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting
  publication-title: Endocr. Rev.
– volume: 99
  start-page: 2961
  year: 1997
  ident: 10.1016/j.cmet.2017.01.001_bib14
  article-title: Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI119491
– volume: 1311
  start-page: 14
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib35
  article-title: What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health
  publication-title: Ann. N Y Acad. Sci.
  doi: 10.1111/nyas.12327
– volume: 46
  start-page: 911
  year: 2010
  ident: 10.1016/j.cmet.2017.01.001_bib29
  article-title: Control of RANKL gene expression
  publication-title: Bone
  doi: 10.1016/j.bone.2009.08.050
– volume: 94
  start-page: 2129
  year: 2009
  ident: 10.1016/j.cmet.2017.01.001_bib2
  article-title: Increased bone marrow fat in anorexia nervosa
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2008-2532
– volume: 9
  start-page: e85161
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib8
  article-title: Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085161
– volume: 104
  start-page: 439
  year: 1999
  ident: 10.1016/j.cmet.2017.01.001_bib15
  article-title: Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI6610
– volume: 344
  start-page: 1434
  year: 2001
  ident: 10.1016/j.cmet.2017.01.001_bib28
  article-title: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200105103441904
– volume: 286
  start-page: 4186
  year: 2011
  ident: 10.1016/j.cmet.2017.01.001_bib32
  article-title: Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.178251
– volume: 28
  start-page: 21
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib39
  article-title: Bone marrow adipose tissue as an endocrine organ: close to the bone?
  publication-title: Horm. Mol. Biol. Clin. Investig.
  doi: 10.1515/hmbci-2016-0012
– volume: 129
  start-page: 2977
  year: 2002
  ident: 10.1016/j.cmet.2017.01.001_bib19
  article-title: PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps
  publication-title: Development
  doi: 10.1242/dev.129.12.2977
– volume: 28
  start-page: 2094
  year: 2013
  ident: 10.1016/j.cmet.2017.01.001_bib20
  article-title: Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1962
– volume: 98
  start-page: 1971
  year: 2013
  ident: 10.1016/j.cmet.2017.01.001_bib9
  article-title: Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2013-1172
– volume: 144
  start-page: 5511
  year: 2003
  ident: 10.1016/j.cmet.2017.01.001_bib7
  article-title: Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells
  publication-title: Endocrinology
  doi: 10.1210/en.2003-0273
– volume: 10
  start-page: 11
  year: 2012
  ident: 10.1016/j.cmet.2017.01.001_bib45
  article-title: Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-10-11
– volume: 6
  start-page: 7808
  year: 2015
  ident: 10.1016/j.cmet.2017.01.001_bib36
  article-title: Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8808
– volume: 23
  start-page: 315
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib18
  article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.11.003
– volume: 13
  start-page: 133
  year: 2010
  ident: 10.1016/j.cmet.2017.01.001_bib25
  article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2467
– volume: 289
  start-page: 16699
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib40
  article-title: Age-related marrow adipogenesis is linked to increased expression of RANKL
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.547919
– volume: 175
  start-page: 166
  year: 1996
  ident: 10.1016/j.cmet.2017.01.001_bib1
  article-title: Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1996.0104
– volume: 34
  start-page: 376
  year: 2004
  ident: 10.1016/j.cmet.2017.01.001_bib13
  article-title: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine
  publication-title: Bone
  doi: 10.1016/j.bone.2003.11.020
– volume: 1
  start-page: 205
  year: 2012
  ident: 10.1016/j.cmet.2017.01.001_bib12
  article-title: Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy
  publication-title: Am. J. Stem Cells
– volume: 30
  start-page: 428
  year: 2016
  ident: 10.1016/j.cmet.2017.01.001_bib11
  article-title: Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis
  publication-title: FASEB J.
  doi: 10.1096/fj.15-278184
– volume: 19
  start-page: 109
  year: 2009
  ident: 10.1016/j.cmet.2017.01.001_bib34
  article-title: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications
  publication-title: Crit. Rev. Eukaryot. Gene Expr.
  doi: 10.1615/CritRevEukarGeneExpr.v19.i2.20
– volume: 29
  start-page: 2414
  year: 2014
  ident: 10.1016/j.cmet.2017.01.001_bib37
  article-title: Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2270
– reference: 26488807 - Endocrinology. 2016 Jan;157(1):112-26
– reference: 27507737 - Stem Cells. 2016 Dec;34(12 ):2930-2942
– reference: 24998914 - Cell Metab. 2014 Aug 5;20(2):368-75
– reference: 26191777 - J Bone Miner Res. 2015 Dec;30(12 ):2273-86
– reference: 11588148 - Endocr Rev. 2001 Oct;22(5):675-705
– reference: 19392647 - Crit Rev Eukaryot Gene Expr. 2009;19(2):109-24
– reference: 9185520 - J Clin Invest. 1997 Jun 15;99(12):2961-70
– reference: 12050144 - Development. 2002 Jun;129(12):2977-86
– reference: 22589223 - J Bone Miner Res. 2012 Sep;27(9):2001-14
– reference: 24806274 - J Bone Miner Res. 2014 Nov;29(11):2414-26
– reference: 12112875 - Genesis. 2002 Jun;33(2):77-80
– reference: 11606458 - Endocrinology. 2001 Nov;142(11):4900-9
– reference: 10449436 - J Clin Invest. 1999 Aug;104(4):439-46
– reference: 11585349 - J Bone Miner Res. 2001 Oct;16(10):1846-53
– reference: 11502471 - Bone. 2001 Aug;29(2):114-20
– reference: 22252242 - J Transl Med. 2012 Jan 17;10:11
– reference: 28211514 - Nat Rev Endocrinol. 2017 Apr;13(4):190
– reference: 23671809 - Am J Stem Cells. 2012 Nov 30;1(3):205-24
– reference: 19716455 - Bone. 2010 Apr;46(4):911-9
– reference: 24454809 - PLoS One. 2014 Jan 15;9(1):e85161
– reference: 25490389 - Biochem Biophys Res Commun. 2015 Jan 9;456(2):598-604
– reference: 8608863 - Dev Biol. 1996 Apr 10;175(1):166-76
– reference: 21545734 - BMC Genomics. 2011 May 05;12:212
– reference: 15946907 - Bone. 2005 Aug;37(2):148-58
– reference: 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40
– reference: 12960089 - Endocrinology. 2003 Dec;144(12):5511-20
– reference: 11160151 - J Clin Invest. 2001 Feb;107(3):277-86
– reference: 19516257 - Nature. 2009 Jul 9;460(7252):259-63
– reference: 19318450 - J Clin Endocrinol Metab. 2009 Jun;94(6):2129-36
– reference: 22623172 - J Bone Miner Res. 2012 Oct;27(10):2075-84
– reference: 26901092 - Endocrinology. 2016 Apr;157(4):1481-94
– reference: 26744910 - Climacteric. 2016 Jun;19(3):285-91
– reference: 24753250 - J Biol Chem. 2014 Jun 13;289(24):16699-710
– reference: 23609180 - J Bone Miner Res. 2013 Oct;28(10):2094-108
– reference: 27149203 - Horm Mol Biol Clin Investig. 2016 Oct 1;28(1):21-38
– reference: 15003785 - Bone. 2004 Mar;34(3):376-83
– reference: 16932650 - Nat Clin Pract Rheumatol. 2006 Jan;2(1):35-43
– reference: 26428657 - FASEB J. 2016 Jan;30(1):428-40
– reference: 23543660 - J Clin Endocrinol Metab. 2013 May;98 (5):1971-81
– reference: 23951132 - PLoS One. 2013 Aug 08;8(8):e71318
– reference: 11346808 - N Engl J Med. 2001 May 10;344(19):1434-41
– reference: 26669699 - Cell Metab. 2016 Feb 9;23 (2):315-23
– reference: 23680914 - Diabetologia. 2013 Aug;56(8):1813-25
– reference: 8500166 - Cell. 1993 May 21;73(4):725-34
– reference: 26245716 - Nat Commun. 2015 Aug 06;6:7808
– reference: 27053299 - Cell Stem Cell. 2016 Jun 2;18(6):782-96
– reference: 21123171 - J Biol Chem. 2011 Feb 11;286(6):4186-98
– reference: 24569379 - J Clin Invest. 2014 Mar;124(3):1242-54
– reference: 24650218 - Ann N Y Acad Sci. 2014 Apr;1311:14-30
SSID ssj0036393
Score 2.6312993
Snippet Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP...
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor...
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP Receptor...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 661
SubjectTerms Adipocytes - metabolism
Adipogenesis
Adipose Tissue - metabolism
Animals
Biomarkers - metabolism
Bone and Bones
Bone Marrow Cells - cytology
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
bone resorption
Cell Count
Cell Lineage - drug effects
Humans
Integrases - metabolism
lineage
Male
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - metabolism
Mice
Osteoblasts - metabolism
Osteoporosis - pathology
Parathyroid Hormone - pharmacology
Phenotype
PTH
RANK Ligand - metabolism
RANKL
receptor
Receptor, Parathyroid Hormone, Type 1 - metabolism
Signal Transduction
Skull - cytology
Title Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate
URI https://dx.doi.org/10.1016/j.cmet.2017.01.001
https://www.ncbi.nlm.nih.gov/pubmed/28162969
https://www.proquest.com/docview/1865521115
https://pubmed.ncbi.nlm.nih.gov/PMC5342925
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hEBIXxE7ZFCRuKGpie-Lm2FZUFQgOLKI3y3YdUdSmiOXQv8eTpaKAOHB0Mk6ssTN-Vt68ATjLpMaMtWworMxCITIMU39qCCVnXCIJmA0Llu9N0n8QlwMcLEG3zoUhWmUV-8uYXkTr6kqz8mbzZTRq3hG4FqQWQ5LrPKFzO2WVUhLfoFNHY-534IJk741Dsq4SZ0qOl5044lPGspDurArD_LI5_QSf3zmUXzal3gasV2gyaJcD3oQll2_BallfcrYNlNPsEd7sdToaBn2PTqe5C8og9xZ0qHFdaDAG15SDZJ9mE_-wrhuPg56HoDvw0Lu47_bDql5CaKksQei0NowZw2Ld0sYJ68GWQ8E0mixF44GLJDEaHhlM0Q3REhpLOE-Nc5gKyXdhOffv3ocg0zyyBqNs2IoEN5HhUjOST2RRxpHbBsS1o5StxMSppsVY1ayxZ0XOVeRcFcVEnWvA-bzPSyml8ac11v5XCwtC-Vj_Z7_TerKU_1Lo94fO3fTjTcWUg-vPuzE2YK-cvPk4WCtOWJqkDZAL0zo3IBXuxTv56KlQ40ZOFb_w4J_jPYQ1ahW0NnkEy--vH-7Y45x3cwIr7avbx6uTYkF_Ashe-zA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hEIILYqesQeKGoia2J26OUFGVpVwAqTfLdh1RVFLEcujf48lSUUAcOCYeJ9bYGT8rb94AnGRSY8ZaNhRWZqEQGYapPzWEkjMukQTMBgXL9zbpPoirPvbnoF3nwhCtsor9ZUwvonV1p1l5s_kyHDbvCFwLUoshyXWe-HP7gkcDCQnoX_bP63DM_RZcsOy9dUjmVeZMSfKyz44IlbEstDuryjC_7E4_0ed3EuWXXamzCisVnAzOyhGvwZzL12GxLDA52QBKavYQb_I6Hg6Croen49wFZZR7C87poleIMAY9SkKyj5Nn_7C2G42Cjsegm_DQubhvd8OqYEJoqS5B6LQ2jBnDYt3Sxgnr0ZZDwTSaLEXjkYskNRoeGUzRDdASHEs4T41zmArJt2A-9-_egSDTPLIGo2zQigQ3keFSM9JPZFHGkdsGxLWjlK3UxKmoxUjVtLEnRc5V5FwVxcSda8DptM9LqaXxpzXW_lczK0L5YP9nv-N6spT_VOj_h87d-ONNxZSE6w-8MTZgu5y86ThYK05YmqQNkDPTOjUgGe7Zlnz4WMhxI6eSX7j7z_EewVL3vnejbi5vr_dgmVoKjpvch_n31w934EHPuzksFvUnkS78sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parathyroid+Hormone+Directs+Bone+Marrow+Mesenchymal+Cell+Fate&rft.jtitle=Cell+metabolism&rft.au=Fan%2C+Yi&rft.au=Hanai%2C+Jun-ichi&rft.au=Le%2C+Phuong+T.&rft.au=Bi%2C+Ruiye&rft.date=2017-03-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=25&rft.issue=3&rft.spage=661&rft.epage=672&rft_id=info:doi/10.1016%2Fj.cmet.2017.01.001&rft.externalDocID=S1550413117300360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon