Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue...
Saved in:
Published in | Cell metabolism Vol. 25; no. 3; pp. 661 - 672 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4131 1932-7420 1932-7420 |
DOI | 10.1016/j.cmet.2017.01.001 |
Cover
Loading…
Abstract | Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate.
[Display omitted]
•PTH1R regulates lineage allocation in the marrow•Bone marrow adipocytes compose a unique adipose depot and produce RANKL•PTH reduced marrow adipogenesis in mice and humans
Fan et al. show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH. |
---|---|
AbstractList | Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1
RANKL
marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP Receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa-B ligand ( Rankl ) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotics. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate. XXX et al show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH. Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH’s therapeutic action through its ability to direct mesenchymal cell fate. [Display omitted] •PTH1R regulates lineage allocation in the marrow•Bone marrow adipocytes compose a unique adipose depot and produce RANKL•PTH reduced marrow adipogenesis in mice and humans Fan et al. show that PTH regulates mesenchymal stem cell fate between bone and adipocyte in the marrow. Bone marrow adipocytes have distinct origins and properties from other adipocytes and are responsive to PTH, underlying the reduction in marrow adiposity in mouse models and idiopathic osteoporosis patients treated with PTH. |
Author | Bilezikian, John P. Wu, Joy Y. Rosen, Clifford J. Fan, Yi Baron, Roland Zhou, Xuedong Bronson, Roderick T. Mannstadt, Michael Lanske, Beate Hanai, Jun-ichi Bi, Ruiye DeMambro, Victoria Dempster, David W. Le, Phuong T. Maridas, David Kir, Serkan Figueroa, Carolina A. Horowitz, Mark C. |
AuthorAffiliation | 6 Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA 9 Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA 4 Maine Medical Center Research Institute, Scarborough, ME, 04074, USA 1 Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, 02115, USA 10 Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA 2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China 11 Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02215, USA 8 Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, 06510, USA 5 Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical |
AuthorAffiliation_xml | – name: 4 Maine Medical Center Research Institute, Scarborough, ME, 04074, USA – name: 2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China – name: 1 Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, 02115, USA – name: 7 Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02215, USA – name: 9 Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA – name: 3 Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA – name: 10 Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA – name: 8 Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, 06510, USA – name: 5 Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA – name: 11 Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA – name: 6 Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA |
Author_xml | – sequence: 1 givenname: Yi surname: Fan fullname: Fan, Yi organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA – sequence: 2 givenname: Jun-ichi surname: Hanai fullname: Hanai, Jun-ichi organization: Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA – sequence: 3 givenname: Phuong T. surname: Le fullname: Le, Phuong T. organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA – sequence: 4 givenname: Ruiye surname: Bi fullname: Bi, Ruiye organization: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China – sequence: 5 givenname: David surname: Maridas fullname: Maridas, David organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA – sequence: 6 givenname: Victoria surname: DeMambro fullname: DeMambro, Victoria organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA – sequence: 7 givenname: Carolina A. surname: Figueroa fullname: Figueroa, Carolina A. organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA – sequence: 8 givenname: Serkan surname: Kir fullname: Kir, Serkan organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 9 givenname: Xuedong surname: Zhou fullname: Zhou, Xuedong organization: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China – sequence: 10 givenname: Michael surname: Mannstadt fullname: Mannstadt, Michael organization: Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA – sequence: 11 givenname: Roland surname: Baron fullname: Baron, Roland organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA – sequence: 12 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. organization: Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA – sequence: 13 givenname: Mark C. surname: Horowitz fullname: Horowitz, Mark C. organization: Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06510, USA – sequence: 14 givenname: Joy Y. surname: Wu fullname: Wu, Joy Y. organization: Division of Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 15 givenname: John P. surname: Bilezikian fullname: Bilezikian, John P. organization: Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA – sequence: 16 givenname: David W. surname: Dempster fullname: Dempster, David W. organization: Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA – sequence: 17 givenname: Clifford J. surname: Rosen fullname: Rosen, Clifford J. email: rosenc@mmc.org organization: Maine Medical Center Research Institute, Scarborough, ME 04074, USA – sequence: 18 givenname: Beate surname: Lanske fullname: Lanske, Beate email: beate_lanske@hsdm.harvard.edu organization: Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28162969$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhi3Uil7gBVigLNkk-PiSjCVAKgOlSK1gAWvLds4wHiVxsT1F8_Y4TFuVLrqyLf8X-3wn5GAKExLyCmgDFNq3m8aNmBtGoWsoNJTCM3IMirO6E4welL2UtBbA4YicpLShlLdc8efkiC2gZapVx-T9dxNNXu9i8H11EeJYKqpPPqLLqfo4H65MjOFPdYUJJ7fejWaoljgM1bnJ-IIcrsyQ8OXtekp-nn_-sbyoL799-bo8u6ydZJBrNMYyZi0DszAWhRPQohTMSLtS0oJUHRdKcGqlkthL1xVBy7myiFKJjp-SD_vc660dsXc45WgGfR39aOJOB-P1_zeTX-tf4UZLLphisgS8uQ2I4fcWU9ajT658w0wYtknDopXlqQCz9PXDrvuSu5kVwWIvcDGkFHGlnc8m-zBX-0ED1TMevdEzHj3j0RR0wVOs7JH1Lv1J07u9CcuEbzxGnZwvLLD_h0n3wT9l_wuwqai6 |
CitedBy_id | crossref_primary_10_1021_acsami_1c07453 crossref_primary_10_3390_cells11213380 crossref_primary_10_1007_s11914_019_00552_8 crossref_primary_10_1016_j_beem_2021_101550 crossref_primary_10_1210_er_2018_00138 crossref_primary_10_1016_j_jposna_2024_100059 crossref_primary_10_1002_osi2_1023 crossref_primary_10_1016_j_bone_2017_07_018 crossref_primary_10_14336_AD_2023_1115 crossref_primary_10_1007_s13197_023_05686_3 crossref_primary_10_1038_s41413_023_00250_3 crossref_primary_10_1038_s41413_024_00351_7 crossref_primary_10_3390_ijms252413594 crossref_primary_10_1007_s40610_018_0096_8 crossref_primary_10_1038_s41573_024_01083_3 crossref_primary_10_1039_C7RA09738G crossref_primary_10_3389_fendo_2022_921073 crossref_primary_10_1007_s12079_021_00635_1 crossref_primary_10_1172_jci_insight_165604 crossref_primary_10_14336_AD_2024_0306 crossref_primary_10_3389_fonc_2022_899272 crossref_primary_10_1186_s13578_023_01039_x crossref_primary_10_7554_eLife_83142 crossref_primary_10_3389_fendo_2021_766254 crossref_primary_10_3390_ijms25137269 crossref_primary_10_18632_aging_103590 crossref_primary_10_1016_j_prp_2022_153985 crossref_primary_10_1080_09513590_2020_1764929 crossref_primary_10_1021_acsami_3c03047 crossref_primary_10_3389_fendo_2019_00069 crossref_primary_10_1002_oby_23171 crossref_primary_10_1146_annurev_physiol_021119_034513 crossref_primary_10_1007_s40610_018_0086_x crossref_primary_10_2478_amb_2020_0050 crossref_primary_10_1002_advs_202100808 crossref_primary_10_1016_j_exger_2021_111596 crossref_primary_10_1007_s10585_021_10076_0 crossref_primary_10_1016_j_bonr_2023_101688 crossref_primary_10_1002_adhm_202302835 crossref_primary_10_1172_jci_insight_161932 crossref_primary_10_3389_fbioe_2017_00032 crossref_primary_10_4252_wjsc_v12_i3_222 crossref_primary_10_1016_j_coemr_2024_100548 crossref_primary_10_1038_s41413_021_00142_4 crossref_primary_10_1210_er_2017_00064 crossref_primary_10_1038_s41419_020_03143_z crossref_primary_10_1111_joim_12718 crossref_primary_10_1021_acs_nanolett_9b00287 crossref_primary_10_1182_blood_2019002721 crossref_primary_10_1016_j_bone_2018_05_024 crossref_primary_10_1093_hmg_ddy386 crossref_primary_10_1007_s11914_018_0422_3 crossref_primary_10_1530_EJE_18_0182 crossref_primary_10_7554_eLife_78496 crossref_primary_10_3389_fped_2023_1214608 crossref_primary_10_1002_jbmr_4485 crossref_primary_10_1016_j_bcp_2025_116844 crossref_primary_10_1002_jbmr_4248 crossref_primary_10_1038_s41574_023_00879_4 crossref_primary_10_14341_DM12436 crossref_primary_10_1210_clinem_dgad116 crossref_primary_10_1210_clinem_dgad355 crossref_primary_10_1038_s41598_024_70151_w crossref_primary_10_1302_2046_3758_88_BJR_2019_0018_R1 crossref_primary_10_1186_s11658_022_00371_3 crossref_primary_10_1016_j_bcp_2021_114669 crossref_primary_10_1152_ajpendo_00142_2019 crossref_primary_10_3390_cells13050406 crossref_primary_10_3390_ijms24098263 crossref_primary_10_1016_j_pharmthera_2023_108383 crossref_primary_10_1038_s41375_020_0886_x crossref_primary_10_1038_s41392_020_00328_y crossref_primary_10_1038_s41420_023_01708_3 crossref_primary_10_3389_fendo_2024_1518656 crossref_primary_10_1002_jbmr_3811 crossref_primary_10_1016_j_beem_2021_101545 crossref_primary_10_3389_fendo_2022_882297 crossref_primary_10_1002_ptr_7780 crossref_primary_10_1177_20417314231175364 crossref_primary_10_3390_cancers10060182 crossref_primary_10_1016_j_archoralbio_2019_01_014 crossref_primary_10_3390_cancers13030364 crossref_primary_10_1002_jbmr_3140 crossref_primary_10_1007_s00109_021_02164_1 crossref_primary_10_1158_1055_9965_EPI_24_0477 crossref_primary_10_3389_fcell_2021_653308 crossref_primary_10_1016_j_bone_2021_116104 crossref_primary_10_1172_jci_insight_160915 crossref_primary_10_3389_fimmu_2019_01001 crossref_primary_10_1002_jbmr_3728 crossref_primary_10_1002_jcp_31434 crossref_primary_10_1111_jcmm_15153 crossref_primary_10_1038_s41398_020_0819_5 crossref_primary_10_3390_ijms25053024 crossref_primary_10_3803_EnM_2023_1673 crossref_primary_10_7554_eLife_67772 crossref_primary_10_4239_wjd_v12_i7_997 crossref_primary_10_7717_peerj_9484 crossref_primary_10_1038_s41413_019_0076_5 crossref_primary_10_3389_fcell_2022_1033223 crossref_primary_10_1016_j_bone_2024_117326 crossref_primary_10_1002_iub_2420 crossref_primary_10_3390_ijms252312607 crossref_primary_10_1096_fj_201800948RR crossref_primary_10_1002_adbi_202400148 crossref_primary_10_3724_abbs_2024201 crossref_primary_10_1002_adbi_202300136 crossref_primary_10_1080_03008207_2023_2199086 crossref_primary_10_3389_fphar_2022_1051134 crossref_primary_10_1007_s40610_018_0087_9 crossref_primary_10_1016_j_bcp_2019_113627 crossref_primary_10_1111_acel_13247 crossref_primary_10_1155_2020_1540905 crossref_primary_10_3390_biomedicines11030787 crossref_primary_10_1080_14712598_2018_1401607 crossref_primary_10_3389_fcell_2022_963389 crossref_primary_10_3389_fendo_2022_910602 crossref_primary_10_1016_j_bone_2018_04_023 crossref_primary_10_1371_journal_pone_0273025 crossref_primary_10_1016_j_stem_2018_07_010 crossref_primary_10_1038_s41413_024_00337_5 crossref_primary_10_3390_ijms21072277 crossref_primary_10_3389_fcimb_2022_827575 crossref_primary_10_3390_biom11081129 crossref_primary_10_3389_fcell_2020_00265 crossref_primary_10_1002_jbmr_4161 crossref_primary_10_1002_jbmr_4282 crossref_primary_10_1002_EXP_20210011 crossref_primary_10_1007_s40610_017_0057_7 crossref_primary_10_1016_j_jdsr_2024_01_003 crossref_primary_10_1007_s11914_019_00550_w crossref_primary_10_1002_jbm4_10695 crossref_primary_10_1016_j_bone_2021_116010 crossref_primary_10_1080_03008207_2022_2120392 crossref_primary_10_3389_fendo_2020_00465 crossref_primary_10_1039_C9NR02791B crossref_primary_10_3390_cells9122630 crossref_primary_10_3389_fmolb_2021_807487 crossref_primary_10_1038_s41467_022_29633_6 crossref_primary_10_1038_s41368_022_00204_1 crossref_primary_10_1007_s13679_024_00594_9 crossref_primary_10_3389_fendo_2024_1442046 crossref_primary_10_1186_s13287_022_02878_0 crossref_primary_10_1007_s11914_020_00569_4 crossref_primary_10_1016_j_molmet_2022_101480 crossref_primary_10_1002_advs_202308698 crossref_primary_10_3389_fendo_2020_578194 crossref_primary_10_1007_s11914_018_0426_z crossref_primary_10_1016_j_mehy_2023_111161 crossref_primary_10_1016_j_omtn_2021_02_008 crossref_primary_10_1080_10520295_2022_2049876 crossref_primary_10_1007_s00109_017_1604_7 crossref_primary_10_1177_0022034520932834 crossref_primary_10_1038_s41574_024_01039_y crossref_primary_10_1093_jbmr_zjae056 crossref_primary_10_1016_S2213_8587_19_30255_4 crossref_primary_10_18632_aging_203808 crossref_primary_10_3390_ijms232415492 crossref_primary_10_1007_s40610_018_0093_y crossref_primary_10_1002_jcp_25860 crossref_primary_10_3389_fendo_2023_1207416 crossref_primary_10_1016_j_cmet_2019_01_016 crossref_primary_10_2174_1574888X17666220426120850 crossref_primary_10_1038_s41588_023_01528_2 crossref_primary_10_3389_fendo_2020_622950 crossref_primary_10_1007_s11914_018_0440_1 crossref_primary_10_1016_j_bone_2017_10_023 crossref_primary_10_3390_ijms24129814 crossref_primary_10_1002_jbmr_4732 crossref_primary_10_3389_fcell_2025_1465092 crossref_primary_10_1007_s40610_017_0062_x crossref_primary_10_1002_jbmr_4170 crossref_primary_10_1007_s12015_023_10531_3 crossref_primary_10_1016_j_bone_2020_115832 crossref_primary_10_1038_s41467_022_28472_9 crossref_primary_10_3389_fendo_2022_1017832 crossref_primary_10_1016_j_tem_2017_06_003 crossref_primary_10_1073_pnas_2026176118 crossref_primary_10_1111_cpr_12755 crossref_primary_10_7554_eLife_82118 crossref_primary_10_1002_jbmr_4523 crossref_primary_10_1007_s40610_017_0074_6 crossref_primary_10_1007_s12020_023_03504_6 crossref_primary_10_3389_fendo_2022_861878 crossref_primary_10_1016_j_cytogfr_2020_02_003 crossref_primary_10_3389_fonc_2020_584683 crossref_primary_10_1007_s10585_019_09997_8 crossref_primary_10_1016_j_bone_2020_115624 crossref_primary_10_1158_0008_5472_CAN_20_1088 crossref_primary_10_1172_JCI140214 crossref_primary_10_3389_fonc_2022_912834 crossref_primary_10_3390_cells9092073 crossref_primary_10_1002_jcla_23916 crossref_primary_10_1111_bjh_18748 crossref_primary_10_1016_j_bone_2023_116891 crossref_primary_10_1016_j_omtn_2019_08_027 crossref_primary_10_1155_2018_7098456 crossref_primary_10_1016_j_thromres_2022_10_008 crossref_primary_10_3389_fbioe_2022_866627 crossref_primary_10_3389_fendo_2018_00339 crossref_primary_10_1038_s41574_020_00426_5 crossref_primary_10_1016_j_bone_2020_115617 crossref_primary_10_1016_j_bbrc_2024_149888 crossref_primary_10_1016_j_stem_2018_06_009 crossref_primary_10_1038_s41413_022_00235_8 crossref_primary_10_3390_ijms21144967 crossref_primary_10_3389_fcell_2020_00592 crossref_primary_10_1002_jcp_25976 crossref_primary_10_1038_s41467_024_48255_8 crossref_primary_10_1016_j_biomaterials_2018_06_035 crossref_primary_10_1016_j_bbrep_2024_101788 crossref_primary_10_3892_mmr_2020_11110 crossref_primary_10_1182_blood_2019002227 crossref_primary_10_1016_j_cmet_2019_09_015 crossref_primary_10_2174_1871530323666230505114343 crossref_primary_10_7554_eLife_83345 crossref_primary_10_1016_j_bone_2019_03_038 crossref_primary_10_1210_en_2017_00299 crossref_primary_10_1016_j_taap_2024_117047 crossref_primary_10_1007_s00223_022_01022_7 crossref_primary_10_1016_j_rccot_2020_04_014 crossref_primary_10_1016_j_bone_2018_01_023 crossref_primary_10_3390_ijms26031311 crossref_primary_10_1007_s40610_017_0075_5 crossref_primary_10_1210_jc_2017_02169 crossref_primary_10_1111_cpr_12693 crossref_primary_10_1007_s11657_018_0437_5 crossref_primary_10_1016_j_cmet_2023_03_005 crossref_primary_10_3389_fcell_2020_00089 crossref_primary_10_1016_j_cmet_2024_03_006 crossref_primary_10_1038_s41598_020_62562_2 crossref_primary_10_3389_fendo_2017_00188 crossref_primary_10_3390_metabo12121205 crossref_primary_10_1007_s00018_024_05297_x crossref_primary_10_3389_fvets_2025_1534742 crossref_primary_10_1111_cpr_12688 crossref_primary_10_3390_jcm13133889 crossref_primary_10_1080_21623945_2017_1367881 crossref_primary_10_1016_j_stem_2021_01_010 crossref_primary_10_1016_j_biopha_2021_112548 crossref_primary_10_1038_s41419_019_1942_1 crossref_primary_10_1002_jbmr_3562 crossref_primary_10_1016_j_bone_2019_115076 crossref_primary_10_1002_jbm4_10021 crossref_primary_10_1002_jbmr_4410 crossref_primary_10_1111_nyas_13380 crossref_primary_10_1016_j_bone_2019_03_041 crossref_primary_10_1002_jbmr_4778 crossref_primary_10_1210_endrev_bnad025 crossref_primary_10_1038_s42003_025_07765_x crossref_primary_10_15252_embr_202152481 crossref_primary_10_1155_2019_9026729 crossref_primary_10_1016_j_cej_2020_127413 crossref_primary_10_1093_alcalc_agad026 crossref_primary_10_1016_j_biopha_2022_114122 crossref_primary_10_1016_j_bone_2018_01_008 crossref_primary_10_1016_j_bone_2017_10_011 crossref_primary_10_1186_s13045_019_0778_6 crossref_primary_10_1210_en_2018_00601 crossref_primary_10_1080_21623945_2017_1313374 crossref_primary_10_3389_fcell_2021_770705 crossref_primary_10_1016_j_bbrc_2020_02_079 crossref_primary_10_3389_fcell_2021_714716 crossref_primary_10_2174_1574888X17666220621155341 crossref_primary_10_1016_j_cmet_2017_12_002 crossref_primary_10_1002_advs_202309951 crossref_primary_10_1042_CS20200220 crossref_primary_10_1038_nrendo_2017_19 crossref_primary_10_3390_ma16114017 crossref_primary_10_1016_j_ajhg_2019_05_002 crossref_primary_10_3389_fendo_2019_00126 crossref_primary_10_1111_cpr_12784 crossref_primary_10_3389_fendo_2019_00923 crossref_primary_10_1210_er_2018_00005 crossref_primary_10_3390_cimb44120433 crossref_primary_10_3389_fbioe_2023_1215233 crossref_primary_10_3389_fendo_2020_00065 crossref_primary_10_1016_j_jare_2024_06_010 crossref_primary_10_1172_JCI131554 crossref_primary_10_1007_s42765_023_00370_9 crossref_primary_10_1016_j_bone_2019_03_022 crossref_primary_10_1038_s41574_019_0246_y crossref_primary_10_1016_j_bone_2020_115258 crossref_primary_10_1021_acs_jproteome_8b00472 crossref_primary_10_1101_cshperspect_a031237 crossref_primary_10_1302_2046_3758_123_BJR_2022_0368_R1 crossref_primary_10_3390_ani12172203 crossref_primary_10_1002_jbmr_3340 crossref_primary_10_3390_ijms241512259 crossref_primary_10_1038_s41467_018_06898_4 crossref_primary_10_3389_fcell_2021_654715 |
Cites_doi | 10.1038/nature08099 10.1016/j.bbrc.2014.11.120 10.1186/1471-2164-12-212 10.1371/journal.pone.0071318 10.1002/gene.10092 10.1016/j.cmet.2014.06.003 10.1172/JCI11296 10.1210/endo.142.11.8515 10.1016/j.stem.2016.02.015 10.1002/jbmr.1663 10.1359/jbmr.2001.16.10.1846 10.1002/jbmr.1665 10.1002/stem.2474 10.1016/0092-8674(93)90252-L 10.1172/JCI72126 10.1038/ncprheum0070 10.1210/en.2015-1614 10.3109/13697137.2015.1126576 10.1002/jbmr.2581 10.1007/s00125-013-2926-9 10.1016/S8756-3282(01)00487-2 10.1210/en.2015-1867 10.1016/j.bone.2005.03.018 10.1172/JCI119491 10.1111/nyas.12327 10.1016/j.bone.2009.08.050 10.1210/jc.2008-2532 10.1371/journal.pone.0085161 10.1172/JCI6610 10.1056/NEJM200105103441904 10.1074/jbc.M110.178251 10.1515/hmbci-2016-0012 10.1242/dev.129.12.2977 10.1002/jbmr.1962 10.1210/jc.2013-1172 10.1210/en.2003-0273 10.1186/1479-5876-10-11 10.1038/ncomms8808 10.1016/j.cmet.2015.11.003 10.1038/nn.2467 10.1074/jbc.M114.547919 10.1006/dbio.1996.0104 10.1016/j.bone.2003.11.020 10.1096/fj.15-278184 10.1615/CritRevEukarGeneExpr.v19.i2.20 10.1002/jbmr.2270 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2017.01.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 672 |
ExternalDocumentID | PMC5342925 28162969 10_1016_j_cmet_2017_01_001 S1550413117300360 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P30 GM106391 – fundername: NIAMS NIH HHS grantid: R21 AR066120 – fundername: NIDDK NIH HHS grantid: R01 DK100584 – fundername: NCI NIH HHS grantid: K99 CA197410 – fundername: NIDDK NIH HHS grantid: R24 DK092759 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIDDK NIH HHS grantid: R01 DK097105 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-eaab22bb21a8abe4c416e542a5bf95b1597349430b595ed5c74166339bee59473 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 14:05:39 EDT 2025 Fri Sep 05 07:15:47 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 03:58:16 EDT 2025 Fri Feb 23 02:27:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | lineage RANKL receptor PTH bone resorption |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-eaab22bb21a8abe4c416e542a5bf95b1597349430b595ed5c74166339bee59473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Co-Corresponding author description: Dr. Lanske (lead contact): Dr. Lanske was involved in designing the original study, in generating the mutant mouse strains, planning the experiments, discovering and analyzing the phenotype of mice, supervising all in vivo and in vitro experiments performed at HSDM, setting up required collaborations for the completion of the study, writing and revising the manuscript. She has discussed all steps of the study with the postdoc and co-authors on a daily basis, reviewed the results, coordinated the experiments, and exchanged the design and ideas with Dr. Rosen on a regular basis. Dr. Rosen was involved in planning experiments, writing the manuscript with Dr. Lanske, and writing the revisions with Dr. Lanske. Specifically, Dr. Rosen focused on the marrow adipose phenotype and supervised the osmium micro CT analyses at MMCRI with and without PTH, the tibial histology for counting of the marrow adipocytes in mutant and controls, the human studies of marrow adiposity in iliac crest biopsies pre- and post PTH treatment, and the in vitro studies of PTH regulation of 3T3 L1 cells. He provided the methods that Dr. Fan used for isolating marrow adipocytes in the controls and mutants. He also developed the methods for sorting marrow progenitors for Pref-1 and RANKL using FACS that were adapted for this study by Dr. Fan, and supervised the adaptation of the TRAP technology for RANKL expression in inguinal adipose depots performed at MMCRI. Dr. Rosen discussed extensively with Dr. Jack Martin the role of Zfp467 in mediating RANKL expression in adipocytes. Co-correspondence |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413117300360 |
PMID | 28162969 |
PQID | 1865521115 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5342925 proquest_miscellaneous_1865521115 pubmed_primary_28162969 crossref_citationtrail_10_1016_j_cmet_2017_01_001 crossref_primary_10_1016_j_cmet_2017_01_001 elsevier_sciencedirect_doi_10_1016_j_cmet_2017_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-07 |
PublicationDateYYYYMMDD | 2017-03-07 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Shen, Ueno, Patel, Kraemer (bib21) 2011; 12 Yang, Luo, Xie, Yan, Chen, Zhao, Jiang, Fang, Shen (bib44) 2016; 19 Calvi, Sims, Hunzelman, Knight, Giovannetti, Saxton, Kronenberg, Baron, Schipani (bib4) 2001; 107 Keller, Kneissel (bib16) 2005; 37 Cohen, Stein, Recker, Lappe, Dempster, Zhou, Cremers, McMahon, Nickolas, Müller (bib9) 2013; 98 Liu, Krautzberger, Sui, Hofmann, Chen, Baetscher, Grgic, Kumar, Humphreys, Hide, McMahon (bib23) 2014; 124 Smas, Sul (bib38) 1993; 73 Liu, Strecker, Wang, Kronenberg, Wang, Rowe, Maye (bib22) 2013; 8 Naveiras, Nardi, Wenzel, Hauschka, Fahey, Daley (bib27) 2009; 460 Ishizuya, Yokose, Hori, Noda, Suda, Yoshiki, Yamaguchi (bib14) 1997; 99 Rosen, Ackert-Bicknell, Rodriguez, Pino (bib34) 2009; 19 O’Brien (bib29) 2010; 46 Georgiou, Hui, Xian (bib12) 2012; 1 Hamrick, Pennington, Newton, Xie, Isales (bib13) 2004; 34 Fan, Bi, Densmore, Sato, Kobayashi, Yuan, Zhou, Erben, Lanske (bib11) 2016; 30 Sinha, Aarnisalo, Chubb, Ono, Fulzele, Selig, Saeed, Chen, Weinstein, Pajevic (bib37) 2014; 29 Bredella, Fazeli, Miller, Misra, Torriani, Thomas, Ghomi, Rosen, Klibanski (bib2) 2009; 94 Takeshita, Fumoto, Naoe, Ikeda (bib40) 2014; 289 Dempster, Cosman, Kurland, Zhou, Nieves, Woelfert, Shane, Plavetić, Müller, Bilezikian, Lindsay (bib10) 2001; 16 Scheller, Doucette, Learman, Cawthorn, Khandaker, Schell, Wu, Ding, Bredella, Fazeli (bib36) 2015; 6 Sulston, Cawthorn (bib39) 2016; 28 Weinstein, Yu, Warner, Liu (bib43) 2001; 22 Kobayashi, Chung, Schipani, Starbuck, Karsenty, Katagiri, Goad, Lanske, Kronenberg (bib19) 2002; 129 Neer, Arnaud, Zanchetta, Prince, Gaich, Reginster, Hodsman, Eriksen, Ish-Shalom, Genant (bib28) 2001; 344 Chan, Deckelbaum, Bolivar, Goltzman, Karaplis (bib6) 2001; 142 Scheller, Rosen (bib35) 2014; 1311 Jilka, Weinstein, Bellido, Roberson, Parfitt, Manolagas (bib15) 1999; 104 Cawthorn, Scheller, Learman, Parlee, Simon, Mori, Ning, Bree, Schell, Broome (bib5) 2014; 20 Chen, Shi, Regan, Karuppaiah, Ornitz, Long (bib8) 2014; 9 Kim, Pajevic, Selig, Barry, Yang, Shin, Baek, Kim, Kronenberg (bib17) 2012; 27 Chan, Miao, Deckelbaum, Bolivar, Karaplis, Goltzman (bib7) 2003; 144 Prieur, Dollet, Takahashi, Nemani, Pillot, Le May, Mounier, Takigawa-Imamura, Zelenika, Matsuda (bib31) 2013; 56 Li, Xing, Yu, Xie, Wang, Shi, Crane, Cao, Wan (bib20) 2013; 28 Rosen, Bouxsein (bib33) 2006; 2 Yue, Zhou, Shimada, Zhao, Morrison (bib48) 2016; 18 Logan, Martin, Nagy, Lobe, Olson, Tabin (bib24) 2002; 33 Tascau, Gardner, Anan, Yongpravat, Cardozo, Bauman, Lee, Oh, Tawfeek (bib41) 2016; 157 Quach, Walker, Allan, Solano, Yokoyama, Kato, Sims, Gillespie, Martin (bib32) 2011; 286 Amizuka, Karaplis, Henderson, Warshawsky, Lipman, Matsuki, Ejiri, Tanaka, Izumi, Ozawa, Goltzman (bib1) 1996; 175 Yu, Zhao, Yang, Crane, Xian, Lu, Wan, Cao (bib47) 2012; 27 Panaroni, Fulzele, Saini, Chubb, Pajevic, Wu (bib30) 2015; 30 Matic, Matthews, Wang, Dyment, Worthley, Rowe, Grcevic, Kalajzic (bib26) 2016; 34 Thomas, Burguera, Melton, Atkinson, O’Fallon, Riggs, Khosla (bib42) 2001; 29 You, Pan, Chen, Chen, Zhang, Lv, Fu (bib45) 2012; 10 Madisen, Zwingman, Sunkin, Oh, Zariwala, Gu, Ng, Palmiter, Hawrylycz, Jones (bib25) 2010; 13 Kir, Komaba, Garcia, Economopoulos, Liu, Lanske, Hodin, Spiegelman (bib18) 2016; 23 You, Chen, Pan, Gu, Chen (bib46) 2015; 456 Cain, Valencia, Ho, Jordan, Mattingly, Morales, Hsiao (bib3) 2016; 157 Kir (10.1016/j.cmet.2017.01.001_bib18) 2016; 23 Ishizuya (10.1016/j.cmet.2017.01.001_bib14) 1997; 99 Kobayashi (10.1016/j.cmet.2017.01.001_bib19) 2002; 129 Smas (10.1016/j.cmet.2017.01.001_bib38) 1993; 73 Takeshita (10.1016/j.cmet.2017.01.001_bib40) 2014; 289 Kim (10.1016/j.cmet.2017.01.001_bib17) 2012; 27 Rosen (10.1016/j.cmet.2017.01.001_bib34) 2009; 19 Yu (10.1016/j.cmet.2017.01.001_bib47) 2012; 27 Jilka (10.1016/j.cmet.2017.01.001_bib15) 1999; 104 You (10.1016/j.cmet.2017.01.001_bib46) 2015; 456 Chan (10.1016/j.cmet.2017.01.001_bib6) 2001; 142 Logan (10.1016/j.cmet.2017.01.001_bib24) 2002; 33 Sinha (10.1016/j.cmet.2017.01.001_bib37) 2014; 29 Cohen (10.1016/j.cmet.2017.01.001_bib9) 2013; 98 Calvi (10.1016/j.cmet.2017.01.001_bib4) 2001; 107 Chan (10.1016/j.cmet.2017.01.001_bib7) 2003; 144 Hamrick (10.1016/j.cmet.2017.01.001_bib13) 2004; 34 Fan (10.1016/j.cmet.2017.01.001_bib11) 2016; 30 Li (10.1016/j.cmet.2017.01.001_bib20) 2013; 28 Scheller (10.1016/j.cmet.2017.01.001_bib35) 2014; 1311 Quach (10.1016/j.cmet.2017.01.001_bib32) 2011; 286 Yue (10.1016/j.cmet.2017.01.001_bib48) 2016; 18 Rosen (10.1016/j.cmet.2017.01.001_bib33) 2006; 2 Amizuka (10.1016/j.cmet.2017.01.001_bib1) 1996; 175 Chen (10.1016/j.cmet.2017.01.001_bib8) 2014; 9 Dempster (10.1016/j.cmet.2017.01.001_bib10) 2001; 16 Panaroni (10.1016/j.cmet.2017.01.001_bib30) 2015; 30 Thomas (10.1016/j.cmet.2017.01.001_bib42) 2001; 29 Keller (10.1016/j.cmet.2017.01.001_bib16) 2005; 37 Madisen (10.1016/j.cmet.2017.01.001_bib25) 2010; 13 Scheller (10.1016/j.cmet.2017.01.001_bib36) 2015; 6 Sulston (10.1016/j.cmet.2017.01.001_bib39) 2016; 28 Georgiou (10.1016/j.cmet.2017.01.001_bib12) 2012; 1 Matic (10.1016/j.cmet.2017.01.001_bib26) 2016; 34 Liu (10.1016/j.cmet.2017.01.001_bib22) 2013; 8 Naveiras (10.1016/j.cmet.2017.01.001_bib27) 2009; 460 Liu (10.1016/j.cmet.2017.01.001_bib21) 2011; 12 Prieur (10.1016/j.cmet.2017.01.001_bib31) 2013; 56 Liu (10.1016/j.cmet.2017.01.001_bib23) 2014; 124 You (10.1016/j.cmet.2017.01.001_bib45) 2012; 10 Weinstein (10.1016/j.cmet.2017.01.001_bib43) 2001; 22 O’Brien (10.1016/j.cmet.2017.01.001_bib29) 2010; 46 Tascau (10.1016/j.cmet.2017.01.001_bib41) 2016; 157 Bredella (10.1016/j.cmet.2017.01.001_bib2) 2009; 94 Cain (10.1016/j.cmet.2017.01.001_bib3) 2016; 157 Neer (10.1016/j.cmet.2017.01.001_bib28) 2001; 344 Yang (10.1016/j.cmet.2017.01.001_bib44) 2016; 19 Cawthorn (10.1016/j.cmet.2017.01.001_bib5) 2014; 20 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40 8608863 - Dev Biol. 1996 Apr 10;175(1):166-76 27507737 - Stem Cells. 2016 Dec;34(12 ):2930-2942 22589223 - J Bone Miner Res. 2012 Sep;27(9):2001-14 11585349 - J Bone Miner Res. 2001 Oct;16(10):1846-53 24454809 - PLoS One. 2014 Jan 15;9(1):e85161 25490389 - Biochem Biophys Res Commun. 2015 Jan 9;456(2):598-604 23543660 - J Clin Endocrinol Metab. 2013 May;98 (5):1971-81 15003785 - Bone. 2004 Mar;34(3):376-83 19318450 - J Clin Endocrinol Metab. 2009 Jun;94(6):2129-36 27149203 - Horm Mol Biol Clin Investig. 2016 Oct 1;28(1):21-38 24753250 - J Biol Chem. 2014 Jun 13;289(24):16699-710 24650218 - Ann N Y Acad Sci. 2014 Apr;1311:14-30 23609180 - J Bone Miner Res. 2013 Oct;28(10):2094-108 23951132 - PLoS One. 2013 Aug 08;8(8):e71318 19716455 - Bone. 2010 Apr;46(4):911-9 11160151 - J Clin Invest. 2001 Feb;107(3):277-86 26669699 - Cell Metab. 2016 Feb 9;23 (2):315-23 23671809 - Am J Stem Cells. 2012 Nov 30;1(3):205-24 11588148 - Endocr Rev. 2001 Oct;22(5):675-705 10449436 - J Clin Invest. 1999 Aug;104(4):439-46 24998914 - Cell Metab. 2014 Aug 5;20(2):368-75 11502471 - Bone. 2001 Aug;29(2):114-20 12960089 - Endocrinology. 2003 Dec;144(12):5511-20 16932650 - Nat Clin Pract Rheumatol. 2006 Jan;2(1):35-43 24569379 - J Clin Invest. 2014 Mar;124(3):1242-54 11606458 - Endocrinology. 2001 Nov;142(11):4900-9 22623172 - J Bone Miner Res. 2012 Oct;27(10):2075-84 11346808 - N Engl J Med. 2001 May 10;344(19):1434-41 26245716 - Nat Commun. 2015 Aug 06;6:7808 26901092 - Endocrinology. 2016 Apr;157(4):1481-94 9185520 - J Clin Invest. 1997 Jun 15;99(12):2961-70 24806274 - J Bone Miner Res. 2014 Nov;29(11):2414-26 26191777 - J Bone Miner Res. 2015 Dec;30(12 ):2273-86 23680914 - Diabetologia. 2013 Aug;56(8):1813-25 26428657 - FASEB J. 2016 Jan;30(1):428-40 19516257 - Nature. 2009 Jul 9;460(7252):259-63 19392647 - Crit Rev Eukaryot Gene Expr. 2009;19(2):109-24 21545734 - BMC Genomics. 2011 May 05;12:212 12050144 - Development. 2002 Jun;129(12):2977-86 15946907 - Bone. 2005 Aug;37(2):148-58 27053299 - Cell Stem Cell. 2016 Jun 2;18(6):782-96 28211514 - Nat Rev Endocrinol. 2017 Apr;13(4):190 26744910 - Climacteric. 2016 Jun;19(3):285-91 21123171 - J Biol Chem. 2011 Feb 11;286(6):4186-98 12112875 - Genesis. 2002 Jun;33(2):77-80 22252242 - J Transl Med. 2012 Jan 17;10:11 26488807 - Endocrinology. 2016 Jan;157(1):112-26 8500166 - Cell. 1993 May 21;73(4):725-34 |
References_xml | – volume: 34 start-page: 376 year: 2004 end-page: 383 ident: bib13 article-title: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine publication-title: Bone – volume: 29 start-page: 114 year: 2001 end-page: 120 ident: bib42 article-title: Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women publication-title: Bone – volume: 13 start-page: 133 year: 2010 end-page: 140 ident: bib25 article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain publication-title: Nat. Neurosci. – volume: 8 start-page: e71318 year: 2013 ident: bib22 article-title: Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma publication-title: PLoS One – volume: 10 start-page: 11 year: 2012 ident: bib45 article-title: Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts publication-title: J. Transl. Med. – volume: 29 start-page: 2414 year: 2014 end-page: 2426 ident: bib37 article-title: Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors publication-title: J. Bone Miner. Res. – volume: 16 start-page: 1846 year: 2001 end-page: 1853 ident: bib10 article-title: Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study publication-title: J. Bone Miner. Res. – volume: 27 start-page: 2001 year: 2012 end-page: 2014 ident: bib47 article-title: Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling publication-title: J. Bone Miner. Res. – volume: 9 start-page: e85161 year: 2014 ident: bib8 article-title: Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice publication-title: PLoS One – volume: 124 start-page: 1242 year: 2014 end-page: 1254 ident: bib23 article-title: Cell-specific translational profiling in acute kidney injury publication-title: J. Clin. Invest. – volume: 286 start-page: 4186 year: 2011 end-page: 4198 ident: bib32 article-title: Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment publication-title: J. Biol. Chem. – volume: 1 start-page: 205 year: 2012 end-page: 224 ident: bib12 article-title: Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy publication-title: Am. J. Stem Cells – volume: 30 start-page: 2273 year: 2015 end-page: 2286 ident: bib30 article-title: PTH signaling in osteoprogenitors is essential for B-lymphocyte differentiation and mobilization publication-title: J. Bone Miner. Res. – volume: 37 start-page: 148 year: 2005 end-page: 158 ident: bib16 article-title: SOST is a target gene for PTH in bone publication-title: Bone – volume: 73 start-page: 725 year: 1993 end-page: 734 ident: bib38 article-title: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation publication-title: Cell – volume: 144 start-page: 5511 year: 2003 end-page: 5520 ident: bib7 article-title: Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells publication-title: Endocrinology – volume: 27 start-page: 2075 year: 2012 end-page: 2084 ident: bib17 article-title: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts publication-title: J. Bone Miner. Res. – volume: 34 start-page: 2930 year: 2016 end-page: 2942 ident: bib26 article-title: Quiescent bone lining cells are a major source of osteoblasts during adulthood publication-title: Stem Cells – volume: 28 start-page: 2094 year: 2013 end-page: 2108 ident: bib20 article-title: Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH publication-title: J. Bone Miner. Res. – volume: 6 start-page: 7808 year: 2015 ident: bib36 article-title: Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues publication-title: Nat. Commun. – volume: 22 start-page: 675 year: 2001 end-page: 705 ident: bib43 article-title: Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting publication-title: Endocr. Rev. – volume: 104 start-page: 439 year: 1999 end-page: 446 ident: bib15 article-title: Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone publication-title: J. Clin. Invest. – volume: 344 start-page: 1434 year: 2001 end-page: 1441 ident: bib28 article-title: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis publication-title: N. Engl. J. Med. – volume: 99 start-page: 2961 year: 1997 end-page: 2970 ident: bib14 article-title: Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells publication-title: J. Clin. Invest. – volume: 129 start-page: 2977 year: 2002 end-page: 2986 ident: bib19 article-title: PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps publication-title: Development – volume: 23 start-page: 315 year: 2016 end-page: 323 ident: bib18 article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer publication-title: Cell Metab. – volume: 56 start-page: 1813 year: 2013 end-page: 1825 ident: bib31 article-title: Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice publication-title: Diabetologia – volume: 1311 start-page: 14 year: 2014 end-page: 30 ident: bib35 article-title: What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health publication-title: Ann. N Y Acad. Sci. – volume: 18 start-page: 782 year: 2016 end-page: 796 ident: bib48 article-title: Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow publication-title: Cell Stem Cell – volume: 46 start-page: 911 year: 2010 end-page: 919 ident: bib29 article-title: Control of RANKL gene expression publication-title: Bone – volume: 33 start-page: 77 year: 2002 end-page: 80 ident: bib24 article-title: Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer publication-title: Genesis – volume: 2 start-page: 35 year: 2006 end-page: 43 ident: bib33 article-title: Mechanisms of disease: is osteoporosis the obesity of bone? publication-title: Nat. Clin. Pract. Rheumatol. – volume: 19 start-page: 285 year: 2016 end-page: 291 ident: bib44 article-title: Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy publication-title: Climacteric – volume: 456 start-page: 598 year: 2015 end-page: 604 ident: bib46 article-title: Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 368 year: 2014 end-page: 375 ident: bib5 article-title: Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction publication-title: Cell Metab. – volume: 107 start-page: 277 year: 2001 end-page: 286 ident: bib4 article-title: Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone publication-title: J. Clin. Invest. – volume: 157 start-page: 1481 year: 2016 end-page: 1494 ident: bib3 article-title: Increased Gs signaling in osteoblasts reduces bone marrow and whole-body adiposity in male mice publication-title: Endocrinology – volume: 12 start-page: 212 year: 2011 ident: bib21 article-title: Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes publication-title: BMC Genomics – volume: 460 start-page: 259 year: 2009 end-page: 263 ident: bib27 article-title: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment publication-title: Nature – volume: 19 start-page: 109 year: 2009 end-page: 124 ident: bib34 article-title: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications publication-title: Crit. Rev. Eukaryot. Gene Expr. – volume: 98 start-page: 1971 year: 2013 end-page: 1981 ident: bib9 article-title: Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study publication-title: J. Clin. Endocrinol. Metab. – volume: 94 start-page: 2129 year: 2009 end-page: 2136 ident: bib2 article-title: Increased bone marrow fat in anorexia nervosa publication-title: J. Clin. Endocrinol. Metab. – volume: 289 start-page: 16699 year: 2014 end-page: 16710 ident: bib40 article-title: Age-related marrow adipogenesis is linked to increased expression of RANKL publication-title: J. Biol. Chem. – volume: 157 start-page: 112 year: 2016 end-page: 126 ident: bib41 article-title: Activation of protein kinase A in mature osteoblasts promotes a major bone anabolic response publication-title: Endocrinology – volume: 175 start-page: 166 year: 1996 end-page: 176 ident: bib1 article-title: Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development publication-title: Dev. Biol. – volume: 142 start-page: 4900 year: 2001 end-page: 4909 ident: bib6 article-title: PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway publication-title: Endocrinology – volume: 30 start-page: 428 year: 2016 end-page: 440 ident: bib11 article-title: Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis publication-title: FASEB J. – volume: 28 start-page: 21 year: 2016 end-page: 38 ident: bib39 article-title: Bone marrow adipose tissue as an endocrine organ: close to the bone? publication-title: Horm. Mol. Biol. Clin. Investig. – volume: 460 start-page: 259 year: 2009 ident: 10.1016/j.cmet.2017.01.001_bib27 article-title: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment publication-title: Nature doi: 10.1038/nature08099 – volume: 456 start-page: 598 year: 2015 ident: 10.1016/j.cmet.2017.01.001_bib46 article-title: Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.11.120 – volume: 12 start-page: 212 year: 2011 ident: 10.1016/j.cmet.2017.01.001_bib21 article-title: Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes publication-title: BMC Genomics doi: 10.1186/1471-2164-12-212 – volume: 8 start-page: e71318 year: 2013 ident: 10.1016/j.cmet.2017.01.001_bib22 article-title: Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma publication-title: PLoS One doi: 10.1371/journal.pone.0071318 – volume: 33 start-page: 77 year: 2002 ident: 10.1016/j.cmet.2017.01.001_bib24 article-title: Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer publication-title: Genesis doi: 10.1002/gene.10092 – volume: 20 start-page: 368 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib5 article-title: Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.06.003 – volume: 107 start-page: 277 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib4 article-title: Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone publication-title: J. Clin. Invest. doi: 10.1172/JCI11296 – volume: 142 start-page: 4900 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib6 article-title: PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway publication-title: Endocrinology doi: 10.1210/endo.142.11.8515 – volume: 18 start-page: 782 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib48 article-title: Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.02.015 – volume: 27 start-page: 2001 year: 2012 ident: 10.1016/j.cmet.2017.01.001_bib47 article-title: Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1663 – volume: 16 start-page: 1846 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib10 article-title: Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.10.1846 – volume: 27 start-page: 2075 year: 2012 ident: 10.1016/j.cmet.2017.01.001_bib17 article-title: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1665 – volume: 34 start-page: 2930 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib26 article-title: Quiescent bone lining cells are a major source of osteoblasts during adulthood publication-title: Stem Cells doi: 10.1002/stem.2474 – volume: 73 start-page: 725 year: 1993 ident: 10.1016/j.cmet.2017.01.001_bib38 article-title: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation publication-title: Cell doi: 10.1016/0092-8674(93)90252-L – volume: 124 start-page: 1242 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib23 article-title: Cell-specific translational profiling in acute kidney injury publication-title: J. Clin. Invest. doi: 10.1172/JCI72126 – volume: 2 start-page: 35 year: 2006 ident: 10.1016/j.cmet.2017.01.001_bib33 article-title: Mechanisms of disease: is osteoporosis the obesity of bone? publication-title: Nat. Clin. Pract. Rheumatol. doi: 10.1038/ncprheum0070 – volume: 157 start-page: 112 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib41 article-title: Activation of protein kinase A in mature osteoblasts promotes a major bone anabolic response publication-title: Endocrinology doi: 10.1210/en.2015-1614 – volume: 19 start-page: 285 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib44 article-title: Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy publication-title: Climacteric doi: 10.3109/13697137.2015.1126576 – volume: 30 start-page: 2273 year: 2015 ident: 10.1016/j.cmet.2017.01.001_bib30 article-title: PTH signaling in osteoprogenitors is essential for B-lymphocyte differentiation and mobilization publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2581 – volume: 56 start-page: 1813 year: 2013 ident: 10.1016/j.cmet.2017.01.001_bib31 article-title: Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice publication-title: Diabetologia doi: 10.1007/s00125-013-2926-9 – volume: 29 start-page: 114 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib42 article-title: Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women publication-title: Bone doi: 10.1016/S8756-3282(01)00487-2 – volume: 157 start-page: 1481 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib3 article-title: Increased Gs signaling in osteoblasts reduces bone marrow and whole-body adiposity in male mice publication-title: Endocrinology doi: 10.1210/en.2015-1867 – volume: 37 start-page: 148 year: 2005 ident: 10.1016/j.cmet.2017.01.001_bib16 article-title: SOST is a target gene for PTH in bone publication-title: Bone doi: 10.1016/j.bone.2005.03.018 – volume: 22 start-page: 675 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib43 article-title: Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting publication-title: Endocr. Rev. – volume: 99 start-page: 2961 year: 1997 ident: 10.1016/j.cmet.2017.01.001_bib14 article-title: Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells publication-title: J. Clin. Invest. doi: 10.1172/JCI119491 – volume: 1311 start-page: 14 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib35 article-title: What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health publication-title: Ann. N Y Acad. Sci. doi: 10.1111/nyas.12327 – volume: 46 start-page: 911 year: 2010 ident: 10.1016/j.cmet.2017.01.001_bib29 article-title: Control of RANKL gene expression publication-title: Bone doi: 10.1016/j.bone.2009.08.050 – volume: 94 start-page: 2129 year: 2009 ident: 10.1016/j.cmet.2017.01.001_bib2 article-title: Increased bone marrow fat in anorexia nervosa publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2008-2532 – volume: 9 start-page: e85161 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib8 article-title: Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice publication-title: PLoS One doi: 10.1371/journal.pone.0085161 – volume: 104 start-page: 439 year: 1999 ident: 10.1016/j.cmet.2017.01.001_bib15 article-title: Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone publication-title: J. Clin. Invest. doi: 10.1172/JCI6610 – volume: 344 start-page: 1434 year: 2001 ident: 10.1016/j.cmet.2017.01.001_bib28 article-title: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200105103441904 – volume: 286 start-page: 4186 year: 2011 ident: 10.1016/j.cmet.2017.01.001_bib32 article-title: Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.178251 – volume: 28 start-page: 21 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib39 article-title: Bone marrow adipose tissue as an endocrine organ: close to the bone? publication-title: Horm. Mol. Biol. Clin. Investig. doi: 10.1515/hmbci-2016-0012 – volume: 129 start-page: 2977 year: 2002 ident: 10.1016/j.cmet.2017.01.001_bib19 article-title: PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps publication-title: Development doi: 10.1242/dev.129.12.2977 – volume: 28 start-page: 2094 year: 2013 ident: 10.1016/j.cmet.2017.01.001_bib20 article-title: Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1962 – volume: 98 start-page: 1971 year: 2013 ident: 10.1016/j.cmet.2017.01.001_bib9 article-title: Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2013-1172 – volume: 144 start-page: 5511 year: 2003 ident: 10.1016/j.cmet.2017.01.001_bib7 article-title: Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells publication-title: Endocrinology doi: 10.1210/en.2003-0273 – volume: 10 start-page: 11 year: 2012 ident: 10.1016/j.cmet.2017.01.001_bib45 article-title: Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-11 – volume: 6 start-page: 7808 year: 2015 ident: 10.1016/j.cmet.2017.01.001_bib36 article-title: Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues publication-title: Nat. Commun. doi: 10.1038/ncomms8808 – volume: 23 start-page: 315 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib18 article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.11.003 – volume: 13 start-page: 133 year: 2010 ident: 10.1016/j.cmet.2017.01.001_bib25 article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain publication-title: Nat. Neurosci. doi: 10.1038/nn.2467 – volume: 289 start-page: 16699 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib40 article-title: Age-related marrow adipogenesis is linked to increased expression of RANKL publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.547919 – volume: 175 start-page: 166 year: 1996 ident: 10.1016/j.cmet.2017.01.001_bib1 article-title: Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development publication-title: Dev. Biol. doi: 10.1006/dbio.1996.0104 – volume: 34 start-page: 376 year: 2004 ident: 10.1016/j.cmet.2017.01.001_bib13 article-title: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine publication-title: Bone doi: 10.1016/j.bone.2003.11.020 – volume: 1 start-page: 205 year: 2012 ident: 10.1016/j.cmet.2017.01.001_bib12 article-title: Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy publication-title: Am. J. Stem Cells – volume: 30 start-page: 428 year: 2016 ident: 10.1016/j.cmet.2017.01.001_bib11 article-title: Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis publication-title: FASEB J. doi: 10.1096/fj.15-278184 – volume: 19 start-page: 109 year: 2009 ident: 10.1016/j.cmet.2017.01.001_bib34 article-title: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications publication-title: Crit. Rev. Eukaryot. Gene Expr. doi: 10.1615/CritRevEukarGeneExpr.v19.i2.20 – volume: 29 start-page: 2414 year: 2014 ident: 10.1016/j.cmet.2017.01.001_bib37 article-title: Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2270 – reference: 26488807 - Endocrinology. 2016 Jan;157(1):112-26 – reference: 27507737 - Stem Cells. 2016 Dec;34(12 ):2930-2942 – reference: 24998914 - Cell Metab. 2014 Aug 5;20(2):368-75 – reference: 26191777 - J Bone Miner Res. 2015 Dec;30(12 ):2273-86 – reference: 11588148 - Endocr Rev. 2001 Oct;22(5):675-705 – reference: 19392647 - Crit Rev Eukaryot Gene Expr. 2009;19(2):109-24 – reference: 9185520 - J Clin Invest. 1997 Jun 15;99(12):2961-70 – reference: 12050144 - Development. 2002 Jun;129(12):2977-86 – reference: 22589223 - J Bone Miner Res. 2012 Sep;27(9):2001-14 – reference: 24806274 - J Bone Miner Res. 2014 Nov;29(11):2414-26 – reference: 12112875 - Genesis. 2002 Jun;33(2):77-80 – reference: 11606458 - Endocrinology. 2001 Nov;142(11):4900-9 – reference: 10449436 - J Clin Invest. 1999 Aug;104(4):439-46 – reference: 11585349 - J Bone Miner Res. 2001 Oct;16(10):1846-53 – reference: 11502471 - Bone. 2001 Aug;29(2):114-20 – reference: 22252242 - J Transl Med. 2012 Jan 17;10:11 – reference: 28211514 - Nat Rev Endocrinol. 2017 Apr;13(4):190 – reference: 23671809 - Am J Stem Cells. 2012 Nov 30;1(3):205-24 – reference: 19716455 - Bone. 2010 Apr;46(4):911-9 – reference: 24454809 - PLoS One. 2014 Jan 15;9(1):e85161 – reference: 25490389 - Biochem Biophys Res Commun. 2015 Jan 9;456(2):598-604 – reference: 8608863 - Dev Biol. 1996 Apr 10;175(1):166-76 – reference: 21545734 - BMC Genomics. 2011 May 05;12:212 – reference: 15946907 - Bone. 2005 Aug;37(2):148-58 – reference: 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40 – reference: 12960089 - Endocrinology. 2003 Dec;144(12):5511-20 – reference: 11160151 - J Clin Invest. 2001 Feb;107(3):277-86 – reference: 19516257 - Nature. 2009 Jul 9;460(7252):259-63 – reference: 19318450 - J Clin Endocrinol Metab. 2009 Jun;94(6):2129-36 – reference: 22623172 - J Bone Miner Res. 2012 Oct;27(10):2075-84 – reference: 26901092 - Endocrinology. 2016 Apr;157(4):1481-94 – reference: 26744910 - Climacteric. 2016 Jun;19(3):285-91 – reference: 24753250 - J Biol Chem. 2014 Jun 13;289(24):16699-710 – reference: 23609180 - J Bone Miner Res. 2013 Oct;28(10):2094-108 – reference: 27149203 - Horm Mol Biol Clin Investig. 2016 Oct 1;28(1):21-38 – reference: 15003785 - Bone. 2004 Mar;34(3):376-83 – reference: 16932650 - Nat Clin Pract Rheumatol. 2006 Jan;2(1):35-43 – reference: 26428657 - FASEB J. 2016 Jan;30(1):428-40 – reference: 23543660 - J Clin Endocrinol Metab. 2013 May;98 (5):1971-81 – reference: 23951132 - PLoS One. 2013 Aug 08;8(8):e71318 – reference: 11346808 - N Engl J Med. 2001 May 10;344(19):1434-41 – reference: 26669699 - Cell Metab. 2016 Feb 9;23 (2):315-23 – reference: 23680914 - Diabetologia. 2013 Aug;56(8):1813-25 – reference: 8500166 - Cell. 1993 May 21;73(4):725-34 – reference: 26245716 - Nat Commun. 2015 Aug 06;6:7808 – reference: 27053299 - Cell Stem Cell. 2016 Jun 2;18(6):782-96 – reference: 21123171 - J Biol Chem. 2011 Feb 11;286(6):4186-98 – reference: 24569379 - J Clin Invest. 2014 Mar;124(3):1242-54 – reference: 24650218 - Ann N Y Acad Sci. 2014 Apr;1311:14-30 |
SSID | ssj0036393 |
Score | 2.6312993 |
Snippet | Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP... Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor... Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP Receptor... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 661 |
SubjectTerms | Adipocytes - metabolism Adipogenesis Adipose Tissue - metabolism Animals Biomarkers - metabolism Bone and Bones Bone Marrow Cells - cytology Bone Marrow Cells - drug effects Bone Marrow Cells - metabolism bone resorption Cell Count Cell Lineage - drug effects Humans Integrases - metabolism lineage Male Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - metabolism Mice Osteoblasts - metabolism Osteoporosis - pathology Parathyroid Hormone - pharmacology Phenotype PTH RANK Ligand - metabolism RANKL receptor Receptor, Parathyroid Hormone, Type 1 - metabolism Signal Transduction Skull - cytology |
Title | Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate |
URI | https://dx.doi.org/10.1016/j.cmet.2017.01.001 https://www.ncbi.nlm.nih.gov/pubmed/28162969 https://www.proquest.com/docview/1865521115 https://pubmed.ncbi.nlm.nih.gov/PMC5342925 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hEBIXxE7ZFCRuKGpie-Lm2FZUFQgOLKI3y3YdUdSmiOXQv8eTpaKAOHB0Mk6ssTN-Vt68ATjLpMaMtWworMxCITIMU39qCCVnXCIJmA0Llu9N0n8QlwMcLEG3zoUhWmUV-8uYXkTr6kqz8mbzZTRq3hG4FqQWQ5LrPKFzO2WVUhLfoFNHY-534IJk741Dsq4SZ0qOl5044lPGspDurArD_LI5_QSf3zmUXzal3gasV2gyaJcD3oQll2_BallfcrYNlNPsEd7sdToaBn2PTqe5C8og9xZ0qHFdaDAG15SDZJ9mE_-wrhuPg56HoDvw0Lu47_bDql5CaKksQei0NowZw2Ld0sYJ68GWQ8E0mixF44GLJDEaHhlM0Q3REhpLOE-Nc5gKyXdhOffv3ocg0zyyBqNs2IoEN5HhUjOST2RRxpHbBsS1o5StxMSppsVY1ayxZ0XOVeRcFcVEnWvA-bzPSyml8ac11v5XCwtC-Vj_Z7_TerKU_1Lo94fO3fTjTcWUg-vPuzE2YK-cvPk4WCtOWJqkDZAL0zo3IBXuxTv56KlQ40ZOFb_w4J_jPYQ1ahW0NnkEy--vH-7Y45x3cwIr7avbx6uTYkF_Ashe-zA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hEIILYqesQeKGoia2J26OUFGVpVwAqTfLdh1RVFLEcujf48lSUUAcOCYeJ9bYGT8rb94AnGRSY8ZaNhRWZqEQGYapPzWEkjMukQTMBgXL9zbpPoirPvbnoF3nwhCtsor9ZUwvonV1p1l5s_kyHDbvCFwLUoshyXWe-HP7gkcDCQnoX_bP63DM_RZcsOy9dUjmVeZMSfKyz44IlbEstDuryjC_7E4_0ed3EuWXXamzCisVnAzOyhGvwZzL12GxLDA52QBKavYQb_I6Hg6Croen49wFZZR7C87poleIMAY9SkKyj5Nn_7C2G42Cjsegm_DQubhvd8OqYEJoqS5B6LQ2jBnDYt3Sxgnr0ZZDwTSaLEXjkYskNRoeGUzRDdASHEs4T41zmArJt2A-9-_egSDTPLIGo2zQigQ3keFSM9JPZFHGkdsGxLWjlK3UxKmoxUjVtLEnRc5V5FwVxcSda8DptM9LqaXxpzXW_lczK0L5YP9nv-N6spT_VOj_h87d-ONNxZSE6w-8MTZgu5y86ThYK05YmqQNkDPTOjUgGe7Zlnz4WMhxI6eSX7j7z_EewVL3vnejbi5vr_dgmVoKjpvch_n31w934EHPuzksFvUnkS78sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parathyroid+Hormone+Directs+Bone+Marrow+Mesenchymal+Cell+Fate&rft.jtitle=Cell+metabolism&rft.au=Fan%2C+Yi&rft.au=Hanai%2C+Jun-ichi&rft.au=Le%2C+Phuong+T.&rft.au=Bi%2C+Ruiye&rft.date=2017-03-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=25&rft.issue=3&rft.spage=661&rft.epage=672&rft_id=info:doi/10.1016%2Fj.cmet.2017.01.001&rft.externalDocID=S1550413117300360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |