Development of an mRNA replacement therapy for phenylketonuria
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 28; pp. 87 - 98 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
14.06.2022
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2022.02.020 |
Cover
Loading…
Abstract | Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.
[Display omitted]
Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation. |
---|---|
AbstractList | Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation. Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. [Display omitted] Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation. |
Author | Yu, Hailong Vega, Jerel Boyd Chikamatsu, Simon Taylor, Wendy Limphong, Patty Karmali, Priya P. Chivukula, Padmanabh Perez-Garcia, Carlos G. Tachikawa, Kiyoshi Diaz-Trelles, Ramon Bao, Yanjie Sablad, Marciano |
Author_xml | – sequence: 1 givenname: Carlos G. surname: Perez-Garcia fullname: Perez-Garcia, Carlos G. email: carlos@arcturusrx.com organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 2 givenname: Ramon orcidid: 0000-0002-2666-9728 surname: Diaz-Trelles fullname: Diaz-Trelles, Ramon organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 3 givenname: Jerel Boyd orcidid: 0000-0003-0998-4715 surname: Vega fullname: Vega, Jerel Boyd organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 4 givenname: Yanjie surname: Bao fullname: Bao, Yanjie organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 5 givenname: Marciano surname: Sablad fullname: Sablad, Marciano organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 6 givenname: Patty surname: Limphong fullname: Limphong, Patty organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 7 givenname: Simon orcidid: 0000-0002-3165-4424 surname: Chikamatsu fullname: Chikamatsu, Simon organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 8 givenname: Hailong surname: Yu fullname: Yu, Hailong organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 9 givenname: Wendy surname: Taylor fullname: Taylor, Wendy organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 10 givenname: Priya P. surname: Karmali fullname: Karmali, Priya P. organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 11 givenname: Kiyoshi surname: Tachikawa fullname: Tachikawa, Kiyoshi organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA – sequence: 12 givenname: Padmanabh surname: Chivukula fullname: Chivukula, Padmanabh organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35356682$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAQFSWlSdP8gR6Kj73sVh-WVoYSCEk_AqGF0p7FWB5ltbUlV9Yu7L-vnE1D0kOGAYnRvDdv9F6ToxADEvKW0SWjTH3YLOOQw5JTzpd0TvqCnHCm-IJLwY4e3Y_J2TRtaAlFGVf8FTkWUkilND8h51e4wz6OA4ZcRVdBqIYf3y6qhGMPFu_KeY0Jxn3lYqrGNYZ9_xtzDNvk4Q156aCf8Oz-PCW_Pn_6efl1cfP9y_Xlxc3CSs7yAhtHWwXctm2LjdSCOVGjWylLnRCatrVbaapFp5zjrRRdB6ic4HUDrgFQ4pRcH3i7CBszJj9A2psI3twVYro1kLK3PZpWg0DBQSq5qpnloLimFrXuKG1Z0xWu8wPXuG0H7GxZMUH_hPTpS_Brcxt3RjdCqJoWgvf3BCn-2eKUzeAni30PAeN2MlzVUssSs-53j2c9DPlnQGnghwab4jQldA8tjJrZaFO2K0ab2WhD55wF6P9A1mfIPs56ff889OMBisWtncdkJusxWOx8QpvLd_rn4H8B_jnEUw |
CitedBy_id | crossref_primary_10_1002_adhm_202203033 crossref_primary_10_3390_bioengineering9080392 crossref_primary_10_1261_rna_080334_124 crossref_primary_10_1038_s43586_023_00246_7 crossref_primary_10_1016_j_cclet_2024_109875 crossref_primary_10_3390_pharmaceutics16111366 crossref_primary_10_1038_s41573_024_00943_2 crossref_primary_10_30629_0023_2149_2024_102_5_6_410_414 crossref_primary_10_1007_s12038_023_00415_6 crossref_primary_10_3389_fbioe_2022_993298 crossref_primary_10_3390_pharmaceutics15010166 crossref_primary_10_1016_j_addr_2023_115054 crossref_primary_10_3390_metabo14070397 crossref_primary_10_1002_jimd_12651 crossref_primary_10_1093_brain_awae135 crossref_primary_10_1038_s41467_024_47460_9 crossref_primary_10_1039_D4BM00909F crossref_primary_10_3724_abbs_2024241 crossref_primary_10_1016_j_yebeh_2023_109181 crossref_primary_10_1002_adhm_202401353 crossref_primary_10_1002_jimd_12803 crossref_primary_10_1039_D3SC03822J crossref_primary_10_1038_s44222_024_00259_1 crossref_primary_10_1002_jimd_12709 crossref_primary_10_3390_cells11203328 crossref_primary_10_1016_j_apsb_2024_04_015 crossref_primary_10_1016_j_spen_2023_101073 crossref_primary_10_1016_j_smaim_2022_11_001 crossref_primary_10_1002_advs_202305769 crossref_primary_10_1042_BST20231061 crossref_primary_10_1016_j_ymthe_2024_11_020 crossref_primary_10_1128_aac_00201_24 crossref_primary_10_1124_jpet_123_001587 crossref_primary_10_1038_s41392_023_01579_1 crossref_primary_10_1212_WNL_0000000000207133 crossref_primary_10_3345_cep_2023_00535 |
Cites_doi | 10.1073/pnas.0808421105 10.1002/ajmg.a.32562 10.1016/j.ymthe.2018.11.018 10.1073/pnas.1619653114 10.1038/nm1358 10.1089/hum.2016.160 10.1007/s10545-010-9073-y 10.1038/sj.gt.3302262 10.1002/jcph.1553 10.1007/s10545-007-9979-1 10.1007/s40265-019-01079-z 10.1542/peds.112.S4.1557 10.1203/01.PDR.0000132837.29067.0E 10.1016/j.omtm.2020.03.009 10.1073/pnas.96.5.2339 10.1016/S0140-6736(10)60961-0 10.1186/s13023-017-0685-2 10.1182/blood-2002-09-2889 10.1038/nbt.1733 10.5114/pedm.2018.80993 10.1517/14656566.2015.1013030 10.1016/j.ymgme.2009.09.002 10.1016/j.ymgme.2009.01.002 10.1089/humc.2017.239 10.1016/S0140-6736(07)61234-3 10.1093/genetics/134.4.1205 10.1016/j.ymgme.2011.08.005 10.1016/S0140-6736(80)90944-7 10.1016/j.ymgme.2017.06.005 10.1038/mt.2008.72 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2022.02.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 98 |
ExternalDocumentID | oai_doaj_org_article_b8a3e32a565741c2a6280ce88d00b19d PMC8933640 35356682 10_1016_j_omtn_2022_02_020 S2162253122000488 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFKRA AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E NCXOZ O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAMRU AAYWO AAYXX ABUWG ADRAZ ADVLN ALIPV APXCP CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT RIG UKHRP NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-e9f0b6a2cbbbe95831f34ef76c0f3380b4f78083d6ff2b53ddae6f3249af9aa63 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:05:27 EDT 2025 Thu Aug 21 13:48:33 EDT 2025 Fri Sep 05 09:40:42 EDT 2025 Thu Jan 02 22:55:28 EST 2025 Thu Apr 24 22:50:38 EDT 2025 Tue Jul 01 02:00:41 EDT 2025 Fri Feb 23 02:36:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | lipid nanoparticle liver therapy PAH mRNA PKU MT: Delivery Strategies phenylketonuria replacement hepatocytes LNP |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-e9f0b6a2cbbbe95831f34ef76c0f3380b4f78083d6ff2b53ddae6f3249af9aa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally |
ORCID | 0000-0002-3165-4424 0000-0002-2666-9728 0000-0003-0998-4715 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2022.02.020 |
PMID | 35356682 |
PQID | 2645855556 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8a3e32a565741c2a6280ce88d00b19d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933640 proquest_miscellaneous_2645855556 pubmed_primary_35356682 crossref_primary_10_1016_j_omtn_2022_02_020 crossref_citationtrail_10_1016_j_omtn_2022_02_020 elsevier_sciencedirect_doi_10_1016_j_omtn_2022_02_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-14 |
PublicationDateYYYYMMDD | 2022-06-14 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationTitleAlternate | Mol Ther Nucleic Acids |
PublicationYear | 2022 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Lee, Treacy, Crombez, Wasserstein, Waber, Wolff, Wendel, Dorenbaum, Bebchuk, Christ-Schmidt (bib21) 2008; 146A Blau, van Spronsen, Levy (bib3) 2010; 376 Levy, Milanowski, Chakrapani, Cleary, Lee, Trefz, Whitley, Feillet, Feigenbaum, Debchuk (bib5) 2007; 370 Mochizuki, Mizukami, Ogura, Kure, Ichinohe, Kojima, Matsubara, Kobayahi, Okada, Hoshika (bib15) 2004; 11 Sarkissian, Shao, Blain, Peevers, Su, Heft, Chang, Scriver (bib25) 1999; 96 Ahmed, Rubin, Wang, Faulkner, Sengooba, Dollive, Avila, Ellsworth, Lamppu, Lobikin (bib17) 2020; 17 Lichter-Konecki, Vockley (bib2) 2019; 79 Shedlovsky, McDonald, Symula, Dove (bib8) 1993; 134 Cunningham, Dane, Spinoulas, Alexander (bib30) 2008; 16 Williams, Mamotte, Burnett (bib20) 2008; 29 Zhang, Goel, Robbie (bib10) 2019; 60 Szypowska, Franek, Grzeszczak, Filipow, Zieba, Kabicz, Wieckowska, Sykuy-Cegielska, Taybert (bib19) 2018; 2018 Kormann, Hasenpusch, Aneja, Nica, Flemmer, Herber-Jonat, Huppmann, Mays, Illenyi, Schams (bib32) 2011; 29 Erlandsen, Patch, Gamez, Straub, Stevens (bib11) 2003; 112 Ramaswamy, Tonnu, Tachikawa, Limphong, Vega, Karmali, Chivukula, Verma (bib9) 2017; 114 Jaffe (bib12) 2017; 121 van Wegberg, MacDonald, Ahring, Belanger-Quintana, Blau, Bosch, Burlone, Campistol, Feillet, Gizewska (bib4) 2017; 12 Oh, Park, Kang, Jo, Jung (bib14) 2004; 56 Ellsworth, O'Callaghan, Rubin, Seymour (bib18) 2018; 29 Blau (bib7) 2008; 31 Kattenhorn, Tipper, Stoica, Geraghty, Wright, Clark, Wadsworth (bib28) 2016; 27 Magadum, Kaur, Zangi (bib31) 2019; 27 Blau, Belanger-Quintana, Demirkol, Feillet, Giovannini, MacDonald, Trefz, van spronsen (bib6) 2009; 96 Scriver, Kaufman (bib1) 2001 Sarkissian, Gamez, Wang, Charbonneau, Fitzpatrick, Lemontt, Zhao, Vellard, Bell, Henschell (bib16) 2008; 105 Davidoff, Ng, Zhou, Spence, Nathwani (bib13) 2003; 102 Demirkol, Gizewska, Giovannini, Walter (bib23) 2011; 104 Blau, Longo (bib26) 2015; 16 Kang, Wang, Sarkissian, Gamez, Scriver, Stevens (bib27) 2010; 99 Manno, Pierce, Arruda, Glader, Ragni, Rasko, Ozelo, Hoots, Blatt, Konkle (bib29) 2006; 12 Hoskins, Jack, Wade, Peiris, Wright, Starr, Stern (bib24) 1980; 1 MacDonald, Gokmen-Ozel, van Rijn, Burgard (bib22) 2010; 33 Davidoff (10.1016/j.omtn.2022.02.020_bib13) 2003; 102 Oh (10.1016/j.omtn.2022.02.020_bib14) 2004; 56 Hoskins (10.1016/j.omtn.2022.02.020_bib24) 1980; 1 Cunningham (10.1016/j.omtn.2022.02.020_bib30) 2008; 16 Blau (10.1016/j.omtn.2022.02.020_bib7) 2008; 31 Williams (10.1016/j.omtn.2022.02.020_bib20) 2008; 29 Kormann (10.1016/j.omtn.2022.02.020_bib32) 2011; 29 Mochizuki (10.1016/j.omtn.2022.02.020_bib15) 2004; 11 Ahmed (10.1016/j.omtn.2022.02.020_bib17) 2020; 17 Sarkissian (10.1016/j.omtn.2022.02.020_bib16) 2008; 105 van Wegberg (10.1016/j.omtn.2022.02.020_bib4) 2017; 12 Szypowska (10.1016/j.omtn.2022.02.020_bib19) 2018; 2018 Kattenhorn (10.1016/j.omtn.2022.02.020_bib28) 2016; 27 Blau (10.1016/j.omtn.2022.02.020_bib6) 2009; 96 Ellsworth (10.1016/j.omtn.2022.02.020_bib18) 2018; 29 Sarkissian (10.1016/j.omtn.2022.02.020_bib25) 1999; 96 Jaffe (10.1016/j.omtn.2022.02.020_bib12) 2017; 121 Levy (10.1016/j.omtn.2022.02.020_bib5) 2007; 370 Shedlovsky (10.1016/j.omtn.2022.02.020_bib8) 1993; 134 Erlandsen (10.1016/j.omtn.2022.02.020_bib11) 2003; 112 Lee (10.1016/j.omtn.2022.02.020_bib21) 2008; 146A Manno (10.1016/j.omtn.2022.02.020_bib29) 2006; 12 Demirkol (10.1016/j.omtn.2022.02.020_bib23) 2011; 104 Lichter-Konecki (10.1016/j.omtn.2022.02.020_bib2) 2019; 79 Blau (10.1016/j.omtn.2022.02.020_bib26) 2015; 16 Kang (10.1016/j.omtn.2022.02.020_bib27) 2010; 99 Scriver (10.1016/j.omtn.2022.02.020_bib1) 2001 Ramaswamy (10.1016/j.omtn.2022.02.020_bib9) 2017; 114 MacDonald (10.1016/j.omtn.2022.02.020_bib22) 2010; 33 Zhang (10.1016/j.omtn.2022.02.020_bib10) 2019; 60 Magadum (10.1016/j.omtn.2022.02.020_bib31) 2019; 27 Blau (10.1016/j.omtn.2022.02.020_bib3) 2010; 376 |
References_xml | – volume: 1 start-page: 392 year: 1980 end-page: 394 ident: bib24 article-title: Enzymatic control of phenylalanine intake in phenylketonuria publication-title: Lancet – volume: 104 start-page: S31 year: 2011 end-page: S39 ident: bib23 article-title: Follow up of phenylketonuria patients publication-title: Mol. Genet. Metab. – volume: 27 start-page: 947 year: 2016 end-page: 961 ident: bib28 article-title: Adeno-associated virus gene therapy for liver disease publication-title: Hum. Gene Ther. – start-page: 1661 year: 2001 end-page: 1724 ident: bib1 article-title: Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency – volume: 134 start-page: 1205 year: 1993 end-page: 1210 ident: bib8 article-title: Mouse models of human phenylketonuria publication-title: Genetics – volume: 27 start-page: 785 year: 2019 end-page: 793 ident: bib31 article-title: mRNA-based protein replacement therapy for the heart publication-title: Mol. Ther. – volume: 29 start-page: 31 year: 2008 end-page: 41 ident: bib20 article-title: Phenylketonuria: an inborn error of phenylalanine metabolism publication-title: Clin. Biochem. Rev. – volume: 96 start-page: 2339 year: 1999 end-page: 2344 ident: bib25 article-title: A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase publication-title: Proc. Natl. Acad. Sci. U S A – volume: 114 start-page: E1941 year: 2017 end-page: E1950 ident: bib9 article-title: Systemic delivery of factor IX messenger RNA for protein replacement therapy publication-title: Proc. Natl. Acad. Sci. U S A – volume: 370 start-page: 504 year: 2007 end-page: 510 ident: bib5 article-title: Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study publication-title: Lancet – volume: 56 start-page: 278 year: 2004 end-page: 284 ident: bib14 article-title: Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer publication-title: Pediatr. Res. – volume: 376 start-page: 1417 year: 2010 end-page: 1427 ident: bib3 article-title: Phenylketonuria publication-title: Lancet – volume: 146A start-page: 2851 year: 2008 end-page: 2859 ident: bib21 article-title: Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria publication-title: Am. J. Med. Genet. A. – volume: 31 start-page: 2 year: 2008 end-page: 3 ident: bib7 article-title: Defining tetrahydrobiopterin (BH4)-responsiveness in PKU publication-title: J. Inherit. Metab. Dis. – volume: 33 start-page: 665 year: 2010 end-page: 670 ident: bib22 article-title: The reality of dietary compliance in the management of phenylketonuria publication-title: J. Inherit. Metab. Dis. – volume: 16 start-page: 1081 year: 2008 end-page: 1088 ident: bib30 article-title: Gene delivery to the juvenile mouse liver using AAV2/8 vectors publication-title: Mol. Ther. – volume: 17 start-page: 568 year: 2020 end-page: 580 ident: bib17 article-title: Sustained correction of a murine model of phenylketonuria following a single intravenous administration of AAVHSC15-PAH publication-title: Mol. Ther. Methods Clin. Dev. – volume: 12 start-page: 162 year: 2017 ident: bib4 article-title: The complete European guidelines on phenylketonuria: diagnosis and treatment publication-title: Orphanet J. Rare Dis. – volume: 16 start-page: 791 year: 2015 end-page: 800 ident: bib26 article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria publication-title: Expert Opin. Pharmacother. – volume: 112 start-page: 1557 year: 2003 end-page: 1565 ident: bib11 article-title: Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria publication-title: Pediatrics – volume: 29 start-page: 154 year: 2011 end-page: 157 ident: bib32 article-title: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice publication-title: Nat. Biotechnol. – volume: 11 start-page: 1081 year: 2004 end-page: 1086 ident: bib15 article-title: Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice publication-title: Gene Ther. – volume: 96 start-page: 158 year: 2009 end-page: 163 ident: bib6 article-title: Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria publication-title: Mol. Genet. Metab. – volume: 99 start-page: 4 year: 2010 end-page: 9 ident: bib27 article-title: Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria publication-title: Mol. Genet. Metab. – volume: 102 start-page: 480 year: 2003 end-page: 488 ident: bib13 article-title: Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway publication-title: Blood – volume: 79 start-page: 495 year: 2019 end-page: 500 ident: bib2 article-title: Phenylketonuria: current treatments and future developments publication-title: Drugs – volume: 29 start-page: 60 year: 2018 end-page: 67 ident: bib18 article-title: Low seroprevalence of neutralizing antibodies targeting two clade F AAV in humans publication-title: Hum. Gene Ther. Clin. Dev. – volume: 12 start-page: 342 year: 2006 end-page: 347 ident: bib29 article-title: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response publication-title: Nat. Med. – volume: 121 start-page: 289 year: 2017 end-page: 296 ident: bib12 article-title: New protein structures provide an updated understanding of phenylketonuria publication-title: Mol. Genet. Metab. – volume: 60 start-page: 573 year: 2019 end-page: 585 ident: bib10 article-title: Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis publication-title: J. Clin. Pharmacol. – volume: 2018 start-page: 118 year: 2018 end-page: 125 ident: bib19 article-title: Medical care of patients with disorders of aromatic amino acid metabolism: a report based on the Polish National Health Fund data records publication-title: Pediatr. Endocrinol. Diabetes Metab. – volume: 105 start-page: 20894 year: 2008 end-page: 20899 ident: bib16 article-title: Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria publication-title: Proc. Natl. Acad. Sci. U S A – volume: 105 start-page: 20894 year: 2008 ident: 10.1016/j.omtn.2022.02.020_bib16 article-title: Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0808421105 – volume: 146A start-page: 2851 year: 2008 ident: 10.1016/j.omtn.2022.02.020_bib21 article-title: Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria publication-title: Am. J. Med. Genet. A. doi: 10.1002/ajmg.a.32562 – volume: 27 start-page: 785 year: 2019 ident: 10.1016/j.omtn.2022.02.020_bib31 article-title: mRNA-based protein replacement therapy for the heart publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.11.018 – volume: 114 start-page: E1941 year: 2017 ident: 10.1016/j.omtn.2022.02.020_bib9 article-title: Systemic delivery of factor IX messenger RNA for protein replacement therapy publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1619653114 – volume: 12 start-page: 342 year: 2006 ident: 10.1016/j.omtn.2022.02.020_bib29 article-title: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response publication-title: Nat. Med. doi: 10.1038/nm1358 – volume: 27 start-page: 947 year: 2016 ident: 10.1016/j.omtn.2022.02.020_bib28 article-title: Adeno-associated virus gene therapy for liver disease publication-title: Hum. Gene Ther. doi: 10.1089/hum.2016.160 – volume: 33 start-page: 665 year: 2010 ident: 10.1016/j.omtn.2022.02.020_bib22 article-title: The reality of dietary compliance in the management of phenylketonuria publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-010-9073-y – volume: 11 start-page: 1081 year: 2004 ident: 10.1016/j.omtn.2022.02.020_bib15 article-title: Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice publication-title: Gene Ther. doi: 10.1038/sj.gt.3302262 – volume: 60 start-page: 573 year: 2019 ident: 10.1016/j.omtn.2022.02.020_bib10 article-title: Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis publication-title: J. Clin. Pharmacol. doi: 10.1002/jcph.1553 – start-page: 1661 year: 2001 ident: 10.1016/j.omtn.2022.02.020_bib1 – volume: 29 start-page: 31 year: 2008 ident: 10.1016/j.omtn.2022.02.020_bib20 article-title: Phenylketonuria: an inborn error of phenylalanine metabolism publication-title: Clin. Biochem. Rev. – volume: 31 start-page: 2 year: 2008 ident: 10.1016/j.omtn.2022.02.020_bib7 article-title: Defining tetrahydrobiopterin (BH4)-responsiveness in PKU publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-007-9979-1 – volume: 79 start-page: 495 year: 2019 ident: 10.1016/j.omtn.2022.02.020_bib2 article-title: Phenylketonuria: current treatments and future developments publication-title: Drugs doi: 10.1007/s40265-019-01079-z – volume: 112 start-page: 1557 year: 2003 ident: 10.1016/j.omtn.2022.02.020_bib11 article-title: Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria publication-title: Pediatrics doi: 10.1542/peds.112.S4.1557 – volume: 56 start-page: 278 year: 2004 ident: 10.1016/j.omtn.2022.02.020_bib14 article-title: Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer publication-title: Pediatr. Res. doi: 10.1203/01.PDR.0000132837.29067.0E – volume: 17 start-page: 568 year: 2020 ident: 10.1016/j.omtn.2022.02.020_bib17 article-title: Sustained correction of a murine model of phenylketonuria following a single intravenous administration of AAVHSC15-PAH publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.03.009 – volume: 96 start-page: 2339 year: 1999 ident: 10.1016/j.omtn.2022.02.020_bib25 article-title: A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.96.5.2339 – volume: 376 start-page: 1417 year: 2010 ident: 10.1016/j.omtn.2022.02.020_bib3 article-title: Phenylketonuria publication-title: Lancet doi: 10.1016/S0140-6736(10)60961-0 – volume: 12 start-page: 162 year: 2017 ident: 10.1016/j.omtn.2022.02.020_bib4 article-title: The complete European guidelines on phenylketonuria: diagnosis and treatment publication-title: Orphanet J. Rare Dis. doi: 10.1186/s13023-017-0685-2 – volume: 102 start-page: 480 year: 2003 ident: 10.1016/j.omtn.2022.02.020_bib13 article-title: Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway publication-title: Blood doi: 10.1182/blood-2002-09-2889 – volume: 29 start-page: 154 year: 2011 ident: 10.1016/j.omtn.2022.02.020_bib32 article-title: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1733 – volume: 2018 start-page: 118 year: 2018 ident: 10.1016/j.omtn.2022.02.020_bib19 article-title: Medical care of patients with disorders of aromatic amino acid metabolism: a report based on the Polish National Health Fund data records publication-title: Pediatr. Endocrinol. Diabetes Metab. doi: 10.5114/pedm.2018.80993 – volume: 16 start-page: 791 year: 2015 ident: 10.1016/j.omtn.2022.02.020_bib26 article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria publication-title: Expert Opin. Pharmacother. doi: 10.1517/14656566.2015.1013030 – volume: 99 start-page: 4 year: 2010 ident: 10.1016/j.omtn.2022.02.020_bib27 article-title: Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2009.09.002 – volume: 96 start-page: 158 year: 2009 ident: 10.1016/j.omtn.2022.02.020_bib6 article-title: Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2009.01.002 – volume: 29 start-page: 60 year: 2018 ident: 10.1016/j.omtn.2022.02.020_bib18 article-title: Low seroprevalence of neutralizing antibodies targeting two clade F AAV in humans publication-title: Hum. Gene Ther. Clin. Dev. doi: 10.1089/humc.2017.239 – volume: 370 start-page: 504 year: 2007 ident: 10.1016/j.omtn.2022.02.020_bib5 article-title: Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study publication-title: Lancet doi: 10.1016/S0140-6736(07)61234-3 – volume: 134 start-page: 1205 year: 1993 ident: 10.1016/j.omtn.2022.02.020_bib8 article-title: Mouse models of human phenylketonuria publication-title: Genetics doi: 10.1093/genetics/134.4.1205 – volume: 104 start-page: S31 year: 2011 ident: 10.1016/j.omtn.2022.02.020_bib23 article-title: Follow up of phenylketonuria patients publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2011.08.005 – volume: 1 start-page: 392 year: 1980 ident: 10.1016/j.omtn.2022.02.020_bib24 article-title: Enzymatic control of phenylalanine intake in phenylketonuria publication-title: Lancet doi: 10.1016/S0140-6736(80)90944-7 – volume: 121 start-page: 289 year: 2017 ident: 10.1016/j.omtn.2022.02.020_bib12 article-title: New protein structures provide an updated understanding of phenylketonuria publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2017.06.005 – volume: 16 start-page: 1081 year: 2008 ident: 10.1016/j.omtn.2022.02.020_bib30 article-title: Gene delivery to the juvenile mouse liver using AAV2/8 vectors publication-title: Mol. Ther. doi: 10.1038/mt.2008.72 |
SSID | ssj0000601262 |
Score | 2.4649224 |
Snippet | Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | hepatocytes lipid nanoparticle liver LNP mRNA MT: Delivery Strategies Original PAH phenylketonuria PKU replacement therapy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_2RQTxIo15dTq5CKO4LIJ7EBf2FpJOgqs7PbLOHObfW5X0DD0K68WmT-n0I6lK8qXz5StCXtnMgk-2b73xsVUq8dZ4K9vBxEH3SsWuKN58PtOn5-rTRXcxC_WFnLAqD1wr7m0wXiYpPC7PKT4Ir4VhQzImMha4jdj7wpg3m0zVPhg63hJNVHAtWgGeNu2YqeSu1XKN4qdCFMFODPY9G5WKeP_B4PQ3-PyTQzkblE7ukjsTmqSLWop75FYa75PjxQgz6eWWvqaF31l-nB-TdzN-EF1l6ke6_HK2oNep8LJKct2NtaWAZCmSv7ZXPxKAww146QNyfvLx64fTdoqe0A4YpKBNaAbtxRBCSLYzkmepUu71wDLMS1lQuTcAwKLOWYROxuiTzoCvrM_Wey0fkqNxNabHhJrM-6gCHziLYINkfWCouxa85UKwviF8V3tumKTFMcLFldtxyL47rHGHNe4Ynqwhb_b3_KzCGjfmfo9G2edEUeySAK7iJldx_3KVhnQ7k7oJX1TcAI-6vPHlL3f2d9D4cEXFj2m1-eUATcJ0Cw7dkEfVH_afKDsJUNmIhvQHnnJQhsMr4-W3IvANGFJqxZ78j0I_JbexKMhu4-oZOVpfb9JzwFHr8KI0md_UlRn1 priority: 102 providerName: Directory of Open Access Journals |
Title | Development of an mRNA replacement therapy for phenylketonuria |
URI | https://dx.doi.org/10.1016/j.omtn.2022.02.020 https://www.ncbi.nlm.nih.gov/pubmed/35356682 https://www.proquest.com/docview/2645855556 https://pubmed.ncbi.nlm.nih.gov/PMC8933640 https://doaj.org/article/b8a3e32a565741c2a6280ce88d00b19d |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcuGCgPIIj8pIiAsK8iuOfQC0IKoKqT0gVurNsmMbCrsJbHcl9t8zdpKlgaoiyslxYscee76xx98g9FxH4mzQdWmV9aUQgZbKal42yjeyFsJXmfHm5FQez8XHs-psD43hjoYGvLjStEvxpOarxatfP7dvYcC__uOr1S3XicuUscy_ycCEvwGaSSYpPxngfj8zw3ScY4wyKlnJQP6GczRXf2aiqzKl_0Rl_QtJ__asvKSqjm6jWwPGxLNeKO6gvdDeRQezFuzr5Ra_wNnrMy-nH6A3l7yGcBexbfHy0-kMr0L21srJ_RmtLQZ8i5NL2HbxPQBk3IDs3kPzow-f3x-XQ0yFskmhC8qQOkda1jjngq4Up5GLEGvZkAjWKnEi1gpgmZcxMldx722QEVCXtlFbK_l9tN92bXiIsIq09sLRhhIvaBO0dSSxsTmrKWOkLhAdW880A-F4inuxMKNn2TeTWtykFjck3aRAL3fv_OjpNq7N_S51yi5nosrOCd3qixlGnnHK8sCZTfu7UE1mJVOkCUp5QhzVvkDV2KVmQB09moBPnV9b-LOx_w0MybTPYtvQbS4MYEwwwuCSBXrQy8OuirziAKAVK1A9kZTJP0yftOdfM-03IEsuBXn0H-U-RjdTTZNLGxVP0P56tQlPATyt3WFedDjM4-I3AE4Y2A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+mRNA+replacement+therapy+for+phenylketonuria&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Perez-Garcia%2C+Carlos+G&rft.au=Diaz-Trelles%2C+Ramon&rft.au=Vega%2C+Jerel+Boyd&rft.au=Bao%2C+Yanjie&rft.date=2022-06-14&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=28&rft.spage=87&rft_id=info:doi/10.1016%2Fj.omtn.2022.02.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |