Development of an mRNA replacement therapy for phenylketonuria

Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 28; pp. 87 - 98
Main Authors Perez-Garcia, Carlos G., Diaz-Trelles, Ramon, Vega, Jerel Boyd, Bao, Yanjie, Sablad, Marciano, Limphong, Patty, Chikamatsu, Simon, Yu, Hailong, Taylor, Wendy, Karmali, Priya P., Tachikawa, Kiyoshi, Chivukula, Padmanabh
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.06.2022
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2022.02.020

Cover

Loading…
Abstract Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. [Display omitted] Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation.
AbstractList Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pah enu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pah enu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation.
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU. [Display omitted] Perez-Garcia-Trelles and colleagues have developed an mRNA replacement therapeutic approach to treat the underlying cause of phenylketonuria in patients carrying a phenylalanine hydroxylase mutation.
Author Yu, Hailong
Vega, Jerel Boyd
Chikamatsu, Simon
Taylor, Wendy
Limphong, Patty
Karmali, Priya P.
Chivukula, Padmanabh
Perez-Garcia, Carlos G.
Tachikawa, Kiyoshi
Diaz-Trelles, Ramon
Bao, Yanjie
Sablad, Marciano
Author_xml – sequence: 1
  givenname: Carlos G.
  surname: Perez-Garcia
  fullname: Perez-Garcia, Carlos G.
  email: carlos@arcturusrx.com
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 2
  givenname: Ramon
  orcidid: 0000-0002-2666-9728
  surname: Diaz-Trelles
  fullname: Diaz-Trelles, Ramon
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 3
  givenname: Jerel Boyd
  orcidid: 0000-0003-0998-4715
  surname: Vega
  fullname: Vega, Jerel Boyd
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 4
  givenname: Yanjie
  surname: Bao
  fullname: Bao, Yanjie
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 5
  givenname: Marciano
  surname: Sablad
  fullname: Sablad, Marciano
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 6
  givenname: Patty
  surname: Limphong
  fullname: Limphong, Patty
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 7
  givenname: Simon
  orcidid: 0000-0002-3165-4424
  surname: Chikamatsu
  fullname: Chikamatsu, Simon
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 8
  givenname: Hailong
  surname: Yu
  fullname: Yu, Hailong
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 9
  givenname: Wendy
  surname: Taylor
  fullname: Taylor, Wendy
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 10
  givenname: Priya P.
  surname: Karmali
  fullname: Karmali, Priya P.
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 11
  givenname: Kiyoshi
  surname: Tachikawa
  fullname: Tachikawa, Kiyoshi
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
– sequence: 12
  givenname: Padmanabh
  surname: Chivukula
  fullname: Chivukula, Padmanabh
  organization: Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35356682$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAQFSWlSdP8gR6Kj73sVh-WVoYSCEk_AqGF0p7FWB5ltbUlV9Yu7L-vnE1D0kOGAYnRvDdv9F6ToxADEvKW0SWjTH3YLOOQw5JTzpd0TvqCnHCm-IJLwY4e3Y_J2TRtaAlFGVf8FTkWUkilND8h51e4wz6OA4ZcRVdBqIYf3y6qhGMPFu_KeY0Jxn3lYqrGNYZ9_xtzDNvk4Q156aCf8Oz-PCW_Pn_6efl1cfP9y_Xlxc3CSs7yAhtHWwXctm2LjdSCOVGjWylLnRCatrVbaapFp5zjrRRdB6ic4HUDrgFQ4pRcH3i7CBszJj9A2psI3twVYro1kLK3PZpWg0DBQSq5qpnloLimFrXuKG1Z0xWu8wPXuG0H7GxZMUH_hPTpS_Brcxt3RjdCqJoWgvf3BCn-2eKUzeAni30PAeN2MlzVUssSs-53j2c9DPlnQGnghwab4jQldA8tjJrZaFO2K0ab2WhD55wF6P9A1mfIPs56ff889OMBisWtncdkJusxWOx8QpvLd_rn4H8B_jnEUw
CitedBy_id crossref_primary_10_1002_adhm_202203033
crossref_primary_10_3390_bioengineering9080392
crossref_primary_10_1261_rna_080334_124
crossref_primary_10_1038_s43586_023_00246_7
crossref_primary_10_1016_j_cclet_2024_109875
crossref_primary_10_3390_pharmaceutics16111366
crossref_primary_10_1038_s41573_024_00943_2
crossref_primary_10_30629_0023_2149_2024_102_5_6_410_414
crossref_primary_10_1007_s12038_023_00415_6
crossref_primary_10_3389_fbioe_2022_993298
crossref_primary_10_3390_pharmaceutics15010166
crossref_primary_10_1016_j_addr_2023_115054
crossref_primary_10_3390_metabo14070397
crossref_primary_10_1002_jimd_12651
crossref_primary_10_1093_brain_awae135
crossref_primary_10_1038_s41467_024_47460_9
crossref_primary_10_1039_D4BM00909F
crossref_primary_10_3724_abbs_2024241
crossref_primary_10_1016_j_yebeh_2023_109181
crossref_primary_10_1002_adhm_202401353
crossref_primary_10_1002_jimd_12803
crossref_primary_10_1039_D3SC03822J
crossref_primary_10_1038_s44222_024_00259_1
crossref_primary_10_1002_jimd_12709
crossref_primary_10_3390_cells11203328
crossref_primary_10_1016_j_apsb_2024_04_015
crossref_primary_10_1016_j_spen_2023_101073
crossref_primary_10_1016_j_smaim_2022_11_001
crossref_primary_10_1002_advs_202305769
crossref_primary_10_1042_BST20231061
crossref_primary_10_1016_j_ymthe_2024_11_020
crossref_primary_10_1128_aac_00201_24
crossref_primary_10_1124_jpet_123_001587
crossref_primary_10_1038_s41392_023_01579_1
crossref_primary_10_1212_WNL_0000000000207133
crossref_primary_10_3345_cep_2023_00535
Cites_doi 10.1073/pnas.0808421105
10.1002/ajmg.a.32562
10.1016/j.ymthe.2018.11.018
10.1073/pnas.1619653114
10.1038/nm1358
10.1089/hum.2016.160
10.1007/s10545-010-9073-y
10.1038/sj.gt.3302262
10.1002/jcph.1553
10.1007/s10545-007-9979-1
10.1007/s40265-019-01079-z
10.1542/peds.112.S4.1557
10.1203/01.PDR.0000132837.29067.0E
10.1016/j.omtm.2020.03.009
10.1073/pnas.96.5.2339
10.1016/S0140-6736(10)60961-0
10.1186/s13023-017-0685-2
10.1182/blood-2002-09-2889
10.1038/nbt.1733
10.5114/pedm.2018.80993
10.1517/14656566.2015.1013030
10.1016/j.ymgme.2009.09.002
10.1016/j.ymgme.2009.01.002
10.1089/humc.2017.239
10.1016/S0140-6736(07)61234-3
10.1093/genetics/134.4.1205
10.1016/j.ymgme.2011.08.005
10.1016/S0140-6736(80)90944-7
10.1016/j.ymgme.2017.06.005
10.1038/mt.2008.72
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.omtn.2022.02.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 98
ExternalDocumentID oai_doaj_org_article_b8a3e32a565741c2a6280ce88d00b19d
PMC8933640
35356682
10_1016_j_omtn_2022_02_020
S2162253122000488
Genre Journal Article
GroupedDBID 0R~
0SF
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFKRA
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
NCXOZ
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAMRU
AAYWO
AAYXX
ABUWG
ADRAZ
ADVLN
ALIPV
APXCP
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
RIG
UKHRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-e9f0b6a2cbbbe95831f34ef76c0f3380b4f78083d6ff2b53ddae6f3249af9aa63
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:05:27 EDT 2025
Thu Aug 21 13:48:33 EDT 2025
Fri Sep 05 09:40:42 EDT 2025
Thu Jan 02 22:55:28 EST 2025
Thu Apr 24 22:50:38 EDT 2025
Tue Jul 01 02:00:41 EDT 2025
Fri Feb 23 02:36:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords lipid nanoparticle
liver
therapy
PAH
mRNA
PKU
MT: Delivery Strategies
phenylketonuria
replacement
hepatocytes
LNP
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-e9f0b6a2cbbbe95831f34ef76c0f3380b4f78083d6ff2b53ddae6f3249af9aa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally
ORCID 0000-0002-3165-4424
0000-0002-2666-9728
0000-0003-0998-4715
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2022.02.020
PMID 35356682
PQID 2645855556
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_b8a3e32a565741c2a6280ce88d00b19d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933640
proquest_miscellaneous_2645855556
pubmed_primary_35356682
crossref_primary_10_1016_j_omtn_2022_02_020
crossref_citationtrail_10_1016_j_omtn_2022_02_020
elsevier_sciencedirect_doi_10_1016_j_omtn_2022_02_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-14
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2022
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Lee, Treacy, Crombez, Wasserstein, Waber, Wolff, Wendel, Dorenbaum, Bebchuk, Christ-Schmidt (bib21) 2008; 146A
Blau, van Spronsen, Levy (bib3) 2010; 376
Levy, Milanowski, Chakrapani, Cleary, Lee, Trefz, Whitley, Feillet, Feigenbaum, Debchuk (bib5) 2007; 370
Mochizuki, Mizukami, Ogura, Kure, Ichinohe, Kojima, Matsubara, Kobayahi, Okada, Hoshika (bib15) 2004; 11
Sarkissian, Shao, Blain, Peevers, Su, Heft, Chang, Scriver (bib25) 1999; 96
Ahmed, Rubin, Wang, Faulkner, Sengooba, Dollive, Avila, Ellsworth, Lamppu, Lobikin (bib17) 2020; 17
Lichter-Konecki, Vockley (bib2) 2019; 79
Shedlovsky, McDonald, Symula, Dove (bib8) 1993; 134
Cunningham, Dane, Spinoulas, Alexander (bib30) 2008; 16
Williams, Mamotte, Burnett (bib20) 2008; 29
Zhang, Goel, Robbie (bib10) 2019; 60
Szypowska, Franek, Grzeszczak, Filipow, Zieba, Kabicz, Wieckowska, Sykuy-Cegielska, Taybert (bib19) 2018; 2018
Kormann, Hasenpusch, Aneja, Nica, Flemmer, Herber-Jonat, Huppmann, Mays, Illenyi, Schams (bib32) 2011; 29
Erlandsen, Patch, Gamez, Straub, Stevens (bib11) 2003; 112
Ramaswamy, Tonnu, Tachikawa, Limphong, Vega, Karmali, Chivukula, Verma (bib9) 2017; 114
Jaffe (bib12) 2017; 121
van Wegberg, MacDonald, Ahring, Belanger-Quintana, Blau, Bosch, Burlone, Campistol, Feillet, Gizewska (bib4) 2017; 12
Oh, Park, Kang, Jo, Jung (bib14) 2004; 56
Ellsworth, O'Callaghan, Rubin, Seymour (bib18) 2018; 29
Blau (bib7) 2008; 31
Kattenhorn, Tipper, Stoica, Geraghty, Wright, Clark, Wadsworth (bib28) 2016; 27
Magadum, Kaur, Zangi (bib31) 2019; 27
Blau, Belanger-Quintana, Demirkol, Feillet, Giovannini, MacDonald, Trefz, van spronsen (bib6) 2009; 96
Scriver, Kaufman (bib1) 2001
Sarkissian, Gamez, Wang, Charbonneau, Fitzpatrick, Lemontt, Zhao, Vellard, Bell, Henschell (bib16) 2008; 105
Davidoff, Ng, Zhou, Spence, Nathwani (bib13) 2003; 102
Demirkol, Gizewska, Giovannini, Walter (bib23) 2011; 104
Blau, Longo (bib26) 2015; 16
Kang, Wang, Sarkissian, Gamez, Scriver, Stevens (bib27) 2010; 99
Manno, Pierce, Arruda, Glader, Ragni, Rasko, Ozelo, Hoots, Blatt, Konkle (bib29) 2006; 12
Hoskins, Jack, Wade, Peiris, Wright, Starr, Stern (bib24) 1980; 1
MacDonald, Gokmen-Ozel, van Rijn, Burgard (bib22) 2010; 33
Davidoff (10.1016/j.omtn.2022.02.020_bib13) 2003; 102
Oh (10.1016/j.omtn.2022.02.020_bib14) 2004; 56
Hoskins (10.1016/j.omtn.2022.02.020_bib24) 1980; 1
Cunningham (10.1016/j.omtn.2022.02.020_bib30) 2008; 16
Blau (10.1016/j.omtn.2022.02.020_bib7) 2008; 31
Williams (10.1016/j.omtn.2022.02.020_bib20) 2008; 29
Kormann (10.1016/j.omtn.2022.02.020_bib32) 2011; 29
Mochizuki (10.1016/j.omtn.2022.02.020_bib15) 2004; 11
Ahmed (10.1016/j.omtn.2022.02.020_bib17) 2020; 17
Sarkissian (10.1016/j.omtn.2022.02.020_bib16) 2008; 105
van Wegberg (10.1016/j.omtn.2022.02.020_bib4) 2017; 12
Szypowska (10.1016/j.omtn.2022.02.020_bib19) 2018; 2018
Kattenhorn (10.1016/j.omtn.2022.02.020_bib28) 2016; 27
Blau (10.1016/j.omtn.2022.02.020_bib6) 2009; 96
Ellsworth (10.1016/j.omtn.2022.02.020_bib18) 2018; 29
Sarkissian (10.1016/j.omtn.2022.02.020_bib25) 1999; 96
Jaffe (10.1016/j.omtn.2022.02.020_bib12) 2017; 121
Levy (10.1016/j.omtn.2022.02.020_bib5) 2007; 370
Shedlovsky (10.1016/j.omtn.2022.02.020_bib8) 1993; 134
Erlandsen (10.1016/j.omtn.2022.02.020_bib11) 2003; 112
Lee (10.1016/j.omtn.2022.02.020_bib21) 2008; 146A
Manno (10.1016/j.omtn.2022.02.020_bib29) 2006; 12
Demirkol (10.1016/j.omtn.2022.02.020_bib23) 2011; 104
Lichter-Konecki (10.1016/j.omtn.2022.02.020_bib2) 2019; 79
Blau (10.1016/j.omtn.2022.02.020_bib26) 2015; 16
Kang (10.1016/j.omtn.2022.02.020_bib27) 2010; 99
Scriver (10.1016/j.omtn.2022.02.020_bib1) 2001
Ramaswamy (10.1016/j.omtn.2022.02.020_bib9) 2017; 114
MacDonald (10.1016/j.omtn.2022.02.020_bib22) 2010; 33
Zhang (10.1016/j.omtn.2022.02.020_bib10) 2019; 60
Magadum (10.1016/j.omtn.2022.02.020_bib31) 2019; 27
Blau (10.1016/j.omtn.2022.02.020_bib3) 2010; 376
References_xml – volume: 1
  start-page: 392
  year: 1980
  end-page: 394
  ident: bib24
  article-title: Enzymatic control of phenylalanine intake in phenylketonuria
  publication-title: Lancet
– volume: 104
  start-page: S31
  year: 2011
  end-page: S39
  ident: bib23
  article-title: Follow up of phenylketonuria patients
  publication-title: Mol. Genet. Metab.
– volume: 27
  start-page: 947
  year: 2016
  end-page: 961
  ident: bib28
  article-title: Adeno-associated virus gene therapy for liver disease
  publication-title: Hum. Gene Ther.
– start-page: 1661
  year: 2001
  end-page: 1724
  ident: bib1
  article-title: Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency
– volume: 134
  start-page: 1205
  year: 1993
  end-page: 1210
  ident: bib8
  article-title: Mouse models of human phenylketonuria
  publication-title: Genetics
– volume: 27
  start-page: 785
  year: 2019
  end-page: 793
  ident: bib31
  article-title: mRNA-based protein replacement therapy for the heart
  publication-title: Mol. Ther.
– volume: 29
  start-page: 31
  year: 2008
  end-page: 41
  ident: bib20
  article-title: Phenylketonuria: an inborn error of phenylalanine metabolism
  publication-title: Clin. Biochem. Rev.
– volume: 96
  start-page: 2339
  year: 1999
  end-page: 2344
  ident: bib25
  article-title: A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 114
  start-page: E1941
  year: 2017
  end-page: E1950
  ident: bib9
  article-title: Systemic delivery of factor IX messenger RNA for protein replacement therapy
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 370
  start-page: 504
  year: 2007
  end-page: 510
  ident: bib5
  article-title: Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study
  publication-title: Lancet
– volume: 56
  start-page: 278
  year: 2004
  end-page: 284
  ident: bib14
  article-title: Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer
  publication-title: Pediatr. Res.
– volume: 376
  start-page: 1417
  year: 2010
  end-page: 1427
  ident: bib3
  article-title: Phenylketonuria
  publication-title: Lancet
– volume: 146A
  start-page: 2851
  year: 2008
  end-page: 2859
  ident: bib21
  article-title: Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria
  publication-title: Am. J. Med. Genet. A.
– volume: 31
  start-page: 2
  year: 2008
  end-page: 3
  ident: bib7
  article-title: Defining tetrahydrobiopterin (BH4)-responsiveness in PKU
  publication-title: J. Inherit. Metab. Dis.
– volume: 33
  start-page: 665
  year: 2010
  end-page: 670
  ident: bib22
  article-title: The reality of dietary compliance in the management of phenylketonuria
  publication-title: J. Inherit. Metab. Dis.
– volume: 16
  start-page: 1081
  year: 2008
  end-page: 1088
  ident: bib30
  article-title: Gene delivery to the juvenile mouse liver using AAV2/8 vectors
  publication-title: Mol. Ther.
– volume: 17
  start-page: 568
  year: 2020
  end-page: 580
  ident: bib17
  article-title: Sustained correction of a murine model of phenylketonuria following a single intravenous administration of AAVHSC15-PAH
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 12
  start-page: 162
  year: 2017
  ident: bib4
  article-title: The complete European guidelines on phenylketonuria: diagnosis and treatment
  publication-title: Orphanet J. Rare Dis.
– volume: 16
  start-page: 791
  year: 2015
  end-page: 800
  ident: bib26
  article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria
  publication-title: Expert Opin. Pharmacother.
– volume: 112
  start-page: 1557
  year: 2003
  end-page: 1565
  ident: bib11
  article-title: Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria
  publication-title: Pediatrics
– volume: 29
  start-page: 154
  year: 2011
  end-page: 157
  ident: bib32
  article-title: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 1081
  year: 2004
  end-page: 1086
  ident: bib15
  article-title: Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice
  publication-title: Gene Ther.
– volume: 96
  start-page: 158
  year: 2009
  end-page: 163
  ident: bib6
  article-title: Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria
  publication-title: Mol. Genet. Metab.
– volume: 99
  start-page: 4
  year: 2010
  end-page: 9
  ident: bib27
  article-title: Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria
  publication-title: Mol. Genet. Metab.
– volume: 102
  start-page: 480
  year: 2003
  end-page: 488
  ident: bib13
  article-title: Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway
  publication-title: Blood
– volume: 79
  start-page: 495
  year: 2019
  end-page: 500
  ident: bib2
  article-title: Phenylketonuria: current treatments and future developments
  publication-title: Drugs
– volume: 29
  start-page: 60
  year: 2018
  end-page: 67
  ident: bib18
  article-title: Low seroprevalence of neutralizing antibodies targeting two clade F AAV in humans
  publication-title: Hum. Gene Ther. Clin. Dev.
– volume: 12
  start-page: 342
  year: 2006
  end-page: 347
  ident: bib29
  article-title: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response
  publication-title: Nat. Med.
– volume: 121
  start-page: 289
  year: 2017
  end-page: 296
  ident: bib12
  article-title: New protein structures provide an updated understanding of phenylketonuria
  publication-title: Mol. Genet. Metab.
– volume: 60
  start-page: 573
  year: 2019
  end-page: 585
  ident: bib10
  article-title: Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis
  publication-title: J. Clin. Pharmacol.
– volume: 2018
  start-page: 118
  year: 2018
  end-page: 125
  ident: bib19
  article-title: Medical care of patients with disorders of aromatic amino acid metabolism: a report based on the Polish National Health Fund data records
  publication-title: Pediatr. Endocrinol. Diabetes Metab.
– volume: 105
  start-page: 20894
  year: 2008
  end-page: 20899
  ident: bib16
  article-title: Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 105
  start-page: 20894
  year: 2008
  ident: 10.1016/j.omtn.2022.02.020_bib16
  article-title: Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0808421105
– volume: 146A
  start-page: 2851
  year: 2008
  ident: 10.1016/j.omtn.2022.02.020_bib21
  article-title: Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria
  publication-title: Am. J. Med. Genet. A.
  doi: 10.1002/ajmg.a.32562
– volume: 27
  start-page: 785
  year: 2019
  ident: 10.1016/j.omtn.2022.02.020_bib31
  article-title: mRNA-based protein replacement therapy for the heart
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.11.018
– volume: 114
  start-page: E1941
  year: 2017
  ident: 10.1016/j.omtn.2022.02.020_bib9
  article-title: Systemic delivery of factor IX messenger RNA for protein replacement therapy
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1619653114
– volume: 12
  start-page: 342
  year: 2006
  ident: 10.1016/j.omtn.2022.02.020_bib29
  article-title: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response
  publication-title: Nat. Med.
  doi: 10.1038/nm1358
– volume: 27
  start-page: 947
  year: 2016
  ident: 10.1016/j.omtn.2022.02.020_bib28
  article-title: Adeno-associated virus gene therapy for liver disease
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2016.160
– volume: 33
  start-page: 665
  year: 2010
  ident: 10.1016/j.omtn.2022.02.020_bib22
  article-title: The reality of dietary compliance in the management of phenylketonuria
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-010-9073-y
– volume: 11
  start-page: 1081
  year: 2004
  ident: 10.1016/j.omtn.2022.02.020_bib15
  article-title: Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302262
– volume: 60
  start-page: 573
  year: 2019
  ident: 10.1016/j.omtn.2022.02.020_bib10
  article-title: Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/jcph.1553
– start-page: 1661
  year: 2001
  ident: 10.1016/j.omtn.2022.02.020_bib1
– volume: 29
  start-page: 31
  year: 2008
  ident: 10.1016/j.omtn.2022.02.020_bib20
  article-title: Phenylketonuria: an inborn error of phenylalanine metabolism
  publication-title: Clin. Biochem. Rev.
– volume: 31
  start-page: 2
  year: 2008
  ident: 10.1016/j.omtn.2022.02.020_bib7
  article-title: Defining tetrahydrobiopterin (BH4)-responsiveness in PKU
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-007-9979-1
– volume: 79
  start-page: 495
  year: 2019
  ident: 10.1016/j.omtn.2022.02.020_bib2
  article-title: Phenylketonuria: current treatments and future developments
  publication-title: Drugs
  doi: 10.1007/s40265-019-01079-z
– volume: 112
  start-page: 1557
  year: 2003
  ident: 10.1016/j.omtn.2022.02.020_bib11
  article-title: Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria
  publication-title: Pediatrics
  doi: 10.1542/peds.112.S4.1557
– volume: 56
  start-page: 278
  year: 2004
  ident: 10.1016/j.omtn.2022.02.020_bib14
  article-title: Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer
  publication-title: Pediatr. Res.
  doi: 10.1203/01.PDR.0000132837.29067.0E
– volume: 17
  start-page: 568
  year: 2020
  ident: 10.1016/j.omtn.2022.02.020_bib17
  article-title: Sustained correction of a murine model of phenylketonuria following a single intravenous administration of AAVHSC15-PAH
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.03.009
– volume: 96
  start-page: 2339
  year: 1999
  ident: 10.1016/j.omtn.2022.02.020_bib25
  article-title: A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.96.5.2339
– volume: 376
  start-page: 1417
  year: 2010
  ident: 10.1016/j.omtn.2022.02.020_bib3
  article-title: Phenylketonuria
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60961-0
– volume: 12
  start-page: 162
  year: 2017
  ident: 10.1016/j.omtn.2022.02.020_bib4
  article-title: The complete European guidelines on phenylketonuria: diagnosis and treatment
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/s13023-017-0685-2
– volume: 102
  start-page: 480
  year: 2003
  ident: 10.1016/j.omtn.2022.02.020_bib13
  article-title: Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway
  publication-title: Blood
  doi: 10.1182/blood-2002-09-2889
– volume: 29
  start-page: 154
  year: 2011
  ident: 10.1016/j.omtn.2022.02.020_bib32
  article-title: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1733
– volume: 2018
  start-page: 118
  year: 2018
  ident: 10.1016/j.omtn.2022.02.020_bib19
  article-title: Medical care of patients with disorders of aromatic amino acid metabolism: a report based on the Polish National Health Fund data records
  publication-title: Pediatr. Endocrinol. Diabetes Metab.
  doi: 10.5114/pedm.2018.80993
– volume: 16
  start-page: 791
  year: 2015
  ident: 10.1016/j.omtn.2022.02.020_bib26
  article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1517/14656566.2015.1013030
– volume: 99
  start-page: 4
  year: 2010
  ident: 10.1016/j.omtn.2022.02.020_bib27
  article-title: Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2009.09.002
– volume: 96
  start-page: 158
  year: 2009
  ident: 10.1016/j.omtn.2022.02.020_bib6
  article-title: Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2009.01.002
– volume: 29
  start-page: 60
  year: 2018
  ident: 10.1016/j.omtn.2022.02.020_bib18
  article-title: Low seroprevalence of neutralizing antibodies targeting two clade F AAV in humans
  publication-title: Hum. Gene Ther. Clin. Dev.
  doi: 10.1089/humc.2017.239
– volume: 370
  start-page: 504
  year: 2007
  ident: 10.1016/j.omtn.2022.02.020_bib5
  article-title: Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61234-3
– volume: 134
  start-page: 1205
  year: 1993
  ident: 10.1016/j.omtn.2022.02.020_bib8
  article-title: Mouse models of human phenylketonuria
  publication-title: Genetics
  doi: 10.1093/genetics/134.4.1205
– volume: 104
  start-page: S31
  year: 2011
  ident: 10.1016/j.omtn.2022.02.020_bib23
  article-title: Follow up of phenylketonuria patients
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2011.08.005
– volume: 1
  start-page: 392
  year: 1980
  ident: 10.1016/j.omtn.2022.02.020_bib24
  article-title: Enzymatic control of phenylalanine intake in phenylketonuria
  publication-title: Lancet
  doi: 10.1016/S0140-6736(80)90944-7
– volume: 121
  start-page: 289
  year: 2017
  ident: 10.1016/j.omtn.2022.02.020_bib12
  article-title: New protein structures provide an updated understanding of phenylketonuria
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2017.06.005
– volume: 16
  start-page: 1081
  year: 2008
  ident: 10.1016/j.omtn.2022.02.020_bib30
  article-title: Gene delivery to the juvenile mouse liver using AAV2/8 vectors
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.72
SSID ssj0000601262
Score 2.4649224
Snippet Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms hepatocytes
lipid nanoparticle
liver
LNP
mRNA
MT: Delivery Strategies
Original
PAH
phenylketonuria
PKU
replacement
therapy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_2RQTxIo15dTq5CKO4LIJ7EBf2FpJOgqs7PbLOHObfW5X0DD0K68WmT-n0I6lK8qXz5StCXtnMgk-2b73xsVUq8dZ4K9vBxEH3SsWuKN58PtOn5-rTRXcxC_WFnLAqD1wr7m0wXiYpPC7PKT4Ir4VhQzImMha4jdj7wpg3m0zVPhg63hJNVHAtWgGeNu2YqeSu1XKN4qdCFMFODPY9G5WKeP_B4PQ3-PyTQzkblE7ukjsTmqSLWop75FYa75PjxQgz6eWWvqaF31l-nB-TdzN-EF1l6ke6_HK2oNep8LJKct2NtaWAZCmSv7ZXPxKAww146QNyfvLx64fTdoqe0A4YpKBNaAbtxRBCSLYzkmepUu71wDLMS1lQuTcAwKLOWYROxuiTzoCvrM_Wey0fkqNxNabHhJrM-6gCHziLYINkfWCouxa85UKwviF8V3tumKTFMcLFldtxyL47rHGHNe4Ynqwhb_b3_KzCGjfmfo9G2edEUeySAK7iJldx_3KVhnQ7k7oJX1TcAI-6vPHlL3f2d9D4cEXFj2m1-eUATcJ0Cw7dkEfVH_afKDsJUNmIhvQHnnJQhsMr4-W3IvANGFJqxZ78j0I_JbexKMhu4-oZOVpfb9JzwFHr8KI0md_UlRn1
  priority: 102
  providerName: Directory of Open Access Journals
Title Development of an mRNA replacement therapy for phenylketonuria
URI https://dx.doi.org/10.1016/j.omtn.2022.02.020
https://www.ncbi.nlm.nih.gov/pubmed/35356682
https://www.proquest.com/docview/2645855556
https://pubmed.ncbi.nlm.nih.gov/PMC8933640
https://doaj.org/article/b8a3e32a565741c2a6280ce88d00b19d
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcuGCgPIIj8pIiAsK8iuOfQC0IKoKqT0gVurNsmMbCrsJbHcl9t8zdpKlgaoiyslxYscee76xx98g9FxH4mzQdWmV9aUQgZbKal42yjeyFsJXmfHm5FQez8XHs-psD43hjoYGvLjStEvxpOarxatfP7dvYcC__uOr1S3XicuUscy_ycCEvwGaSSYpPxngfj8zw3ScY4wyKlnJQP6GczRXf2aiqzKl_0Rl_QtJ__asvKSqjm6jWwPGxLNeKO6gvdDeRQezFuzr5Ra_wNnrMy-nH6A3l7yGcBexbfHy0-kMr0L21srJ_RmtLQZ8i5NL2HbxPQBk3IDs3kPzow-f3x-XQ0yFskmhC8qQOkda1jjngq4Up5GLEGvZkAjWKnEi1gpgmZcxMldx722QEVCXtlFbK_l9tN92bXiIsIq09sLRhhIvaBO0dSSxsTmrKWOkLhAdW880A-F4inuxMKNn2TeTWtykFjck3aRAL3fv_OjpNq7N_S51yi5nosrOCd3qixlGnnHK8sCZTfu7UE1mJVOkCUp5QhzVvkDV2KVmQB09moBPnV9b-LOx_w0MybTPYtvQbS4MYEwwwuCSBXrQy8OuirziAKAVK1A9kZTJP0yftOdfM-03IEsuBXn0H-U-RjdTTZNLGxVP0P56tQlPATyt3WFedDjM4-I3AE4Y2A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+mRNA+replacement+therapy+for+phenylketonuria&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Perez-Garcia%2C+Carlos+G&rft.au=Diaz-Trelles%2C+Ramon&rft.au=Vega%2C+Jerel+Boyd&rft.au=Bao%2C+Yanjie&rft.date=2022-06-14&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=28&rft.spage=87&rft_id=info:doi/10.1016%2Fj.omtn.2022.02.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon