White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication

Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Spec...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 1; p. 100752
Main Authors Wang, Sheng, Li, Haoyang, Weng, Shaoping, Li, Chaozheng, He, Jianguo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.01.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. [Display omitted] •Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene•The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK•IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication•wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop Biological Sciences; Molecular Biology; Virology; Molecular Microbiology
AbstractList Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. : Biological Sciences; Molecular Biology; Virology; Molecular Microbiology Subject Areas: Biological Sciences, Molecular Biology, Virology, Molecular Microbiology
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1 , which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056 , wsv249 , and wsv403 , in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK , c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. • Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene • The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK • IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication • wsv056 , wsv249 , and wsv403 are also benefit from this positive feedback loop Biological Sciences; Molecular Biology; Virology; Molecular Microbiology
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. [Display omitted] •Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene•The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK•IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication•wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop Biological Sciences; Molecular Biology; Virology; Molecular Microbiology
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection.
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection.Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection.
ArticleNumber 100752
Author Li, Chaozheng
He, Jianguo
Li, Haoyang
Weng, Shaoping
Wang, Sheng
AuthorAffiliation 3 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
1 State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
2 Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
AuthorAffiliation_xml – name: 3 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
– name: 1 State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
– name: 2 Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
Author_xml – sequence: 1
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
  organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
– sequence: 2
  givenname: Haoyang
  surname: Li
  fullname: Li, Haoyang
  organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
– sequence: 3
  givenname: Shaoping
  surname: Weng
  fullname: Weng, Shaoping
  organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
– sequence: 4
  givenname: Chaozheng
  surname: Li
  fullname: Li, Chaozheng
  email: lichaozh@mail2.sysu.edu.cn
  organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
– sequence: 5
  givenname: Jianguo
  surname: He
  fullname: He, Jianguo
  email: lsshjg@mail.sysu.edu.cn
  organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31884168$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9rGzEQxZeS0KRpvkAPRcdebEtaSauFUiiJ0zg1aWn65yhkadaWu165ktaQb185m5Skh4BAYvTeb2DmvSoOOt9BUbwheEwwEZP12EXjxhSTOhdwxemL4phyWY8wZvTg0fuoOI1xjTGm-bBavCyOSiIlI0IeF8tfK5cA3Wx9Qje3nQ1-A-inC31E05j0onVxBRFpdO130KLZlEyurj9PzOiq79BXH11yO0AXAHahzW80936LkkfnYV_-BtvWGZ2c714Xh41uI5ze3yfFj4vp97PL0fzLp9nZx_nIcErSCJgFWnJZSi5lg0XDS5ovbi2hTDPDZFXbumFWC80lJXyhSyFsDbasZJPVJ8Vs4Fqv12ob3EaHW-W1U3cFH5ZKh-RMC8rKCje0poIRwsSC1hWWuiSktFxyTZvM-jCwtv1iA9ZAl4Jun0Cf_nRupZZ-p0TNiKxEBry7BwT_p4eY1CYvDdpWd-D7qGhZEkZrJliWvn3c61-Th01lgRwEJvgYAzTKuHQ32tzatYpgtc-FWqt9LtQ-F2rIRbbS_6wP9GdN7wcT5G3tHASVFdAZsC6ASXmc7jn7Xw18zwk
CitedBy_id crossref_primary_10_3389_fimmu_2021_698697
crossref_primary_10_1016_j_aquaculture_2020_736324
crossref_primary_10_3390_ijms23158176
crossref_primary_10_4049_jimmunol_2400240
crossref_primary_10_1016_j_dci_2020_103757
crossref_primary_10_1016_j_dci_2020_103878
crossref_primary_10_1186_s12964_023_01059_7
crossref_primary_10_3354_dao03762
crossref_primary_10_1111_raq_13005
crossref_primary_10_1016_j_aquaculture_2022_739178
crossref_primary_10_1016_j_fsi_2022_03_008
crossref_primary_10_1111_raq_12643
crossref_primary_10_1016_j_dci_2020_103808
crossref_primary_10_1016_j_aquaculture_2023_740139
crossref_primary_10_1111_raq_12482
crossref_primary_10_1016_j_aquaculture_2022_738080
crossref_primary_10_4049_jimmunol_2200817
crossref_primary_10_4049_jimmunol_2300871
crossref_primary_10_3390_ijms22179640
crossref_primary_10_1128_JVI_01715_21
crossref_primary_10_4049_jimmunol_2400425
crossref_primary_10_1016_j_ijbiomac_2023_128333
crossref_primary_10_3389_fphar_2022_958687
crossref_primary_10_4049_jimmunol_2300669
crossref_primary_10_1016_j_vetmic_2021_109061
crossref_primary_10_1007_s10126_024_10358_0
crossref_primary_10_1016_j_fsi_2024_110073
crossref_primary_10_1016_j_fsi_2022_01_038
crossref_primary_10_1080_21505594_2022_2078471
crossref_primary_10_1016_j_fsi_2023_108571
crossref_primary_10_1016_j_ijbiomac_2024_132482
crossref_primary_10_1038_s41598_021_97828_w
crossref_primary_10_3390_ijms24043823
crossref_primary_10_1016_j_fsi_2020_08_034
crossref_primary_10_1016_j_jip_2024_108179
crossref_primary_10_3389_fimmu_2022_977327
crossref_primary_10_3389_fimmu_2023_1119879
Cites_doi 10.1016/j.fsi.2016.10.051
10.1146/annurev.immunol.20.091301.131133
10.1016/j.sbi.2015.03.004
10.1016/j.dci.2014.12.012
10.1128/JVI.01794-09
10.1016/j.cell.2018.11.028
10.1007/s13238-011-1113-3
10.1089/ars.2011.4264
10.1128/JVI.00640-17
10.1186/s13568-018-0553-z
10.1074/jbc.M304229200
10.1128/JVI.00001-17
10.1016/j.dci.2014.02.016
10.1128/MCB.00409-17
10.1038/nri3495
10.1146/annurev.bi.46.070177.003041
10.1074/jbc.M412165200
10.1016/j.neuropharm.2009.07.021
10.1016/j.celrep.2014.04.052
10.1007/s00705-013-1602-1
10.1007/s00705-011-1004-1
10.1016/j.virol.2008.12.007
10.1016/j.virol.2005.01.047
10.1016/j.dci.2012.03.002
10.1016/j.dci.2015.04.009
10.1073/pnas.1404067111
10.1016/j.dci.2017.09.015
10.1038/ni1253
10.1128/JVI.01551-13
10.7554/eLife.26591
10.1371/journal.pone.0026999
10.1016/j.virol.2010.06.046
10.1128/JVI.02314-16
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.100752
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_d870f292641146b29708a3113d585a2f
PMC6941876
31884168
10_1016_j_isci_2019_100752
S2589004219304973
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-e4de235838588f06f532f065dd124a4c4879d9f4da6a58215ba366d9ed378ff53
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:23:38 EDT 2025
Thu Aug 21 14:11:29 EDT 2025
Fri Jul 11 08:33:48 EDT 2025
Thu Apr 03 06:59:07 EDT 2025
Tue Jul 01 01:03:27 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 25 20:58:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biological Sciences
Molecular Biology
Virology
Molecular Microbiology
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-e4de235838588f06f532f065dd124a4c4879d9f4da6a58215ba366d9ed378ff53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/d870f292641146b29708a3113d585a2f
PMID 31884168
PQID 2331429464
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d870f292641146b29708a3113d585a2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6941876
proquest_miscellaneous_2331429464
pubmed_primary_31884168
crossref_citationtrail_10_1016_j_isci_2019_100752
crossref_primary_10_1016_j_isci_2019_100752
elsevier_sciencedirect_doi_10_1016_j_isci_2019_100752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-24
PublicationDateYYYYMMDD 2020-01-24
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Li, Li, Ke, Ji, Bian, Yan (bib15) 2009; 385
Shah, Link, Jang, Sharp, Zhu, Swaney, Johnson, Von Dollen, Ramage, Satkamp (bib23) 2018; 175
Hagai, Azia, Babu, Andino (bib6) 2014; 7
Li, Li, Wang, Song, Zhang, Qian, Zuo, Xu, Weng, He (bib14) 2015; 52
Siddique, Haque, Sanyal, Hossain, Nandi, Alam, Sultana, Hasan, Hossain (bib25) 2018; 8
Ausubel (bib2) 2005; 6
Kurapati, Sadaoka, Rajbhandari, Jagdish, Shukla, Ali, Kim, Lee, Cohen, Venkatesan (bib12) 2017; 91
Sluss, Han, Barrett, Goberdhan, Wilson, Davis, Ip (bib26) 1996; 10
Wang, Yin, Li, Xiao, Lu, Feng, He, Li (bib30) 2018; 78
Lin, Huang, Xu, Li, Yang (bib17) 2011; 156
Troell, Naylor, Metian, Beveridge, Tyedmers (bib28) 2014; 111
Vogel, Anand, Ludwig, Nawoschik, Dunlop, Braithwaite (bib29) 2009; 57
Yao, Ruan, Lu, Shi, Xu (bib33) 2016; 59
Thapa, Nichols, Bassi, Martin, Verma, Conte, De Santis, De Nicola (bib27) 2018; 38
Shi, Yan, Ruan, Xu (bib24) 2012; 37
Leu, Yang, Zhang, Xu, Kou, Lo (bib13) 2009; 328
Arthur, Ley (bib1) 2013; 13
Hussain, Asgari (bib11) 2010; 84
Ho, Bardwell, Abdollahi, Bardwell (bib7) 2003; 278
Ran, Bian, Ji, Yan, Yang, Li (bib21) 2013; 87
Liu, Chang, Wang, Kou, Lo (bib18) 2005; 334
Wang, Zhao, Li, Luo, Kang (bib31) 2017; 6
Cui, Holgado-Madruga, Su, Tsuiki, Wedegaertner, Wong (bib4) 2005; 280
Dong, Davis, Flavell (bib5) 2002; 20
Huang, Huang, Cai, Chang (bib9) 2017; 91
Wilson, Carlson, White (bib32) 1977; 46
Yao, Ruan, Xu, Shi (bib34) 2015; 49
Rana, Sreejith, Gulati, Bharti, Jain, Gupta (bib22) 2013; 158
Huang, Liu, Wang, Lee, Leu, Wang, Tsai, Kang, Chen, Kou (bib8) 2012; 17
Huang, Zhao, Zhang, Xu, Jia, Chen, Wang, Weng, Yu, Yin, He (bib10) 2010; 406
Meng, Xia (bib19) 2011; 2
Chemes, de Prat-Gay, Sanchez (bib3) 2015; 32
Li, Liu, Zhang (bib16) 2011; 6
Qiu, Zhang, Chen, Wang, Xu, Li, Chen, Fan, Yan, Weng (bib20) 2014; 45
Zhong, Shu, Dai, Gao, Xiong (bib35) 2017; 91
Ho (10.1016/j.isci.2019.100752_bib7) 2003; 278
Troell (10.1016/j.isci.2019.100752_bib28) 2014; 111
Li (10.1016/j.isci.2019.100752_bib15) 2009; 385
Arthur (10.1016/j.isci.2019.100752_bib1) 2013; 13
Hagai (10.1016/j.isci.2019.100752_bib6) 2014; 7
Yao (10.1016/j.isci.2019.100752_bib34) 2015; 49
Shi (10.1016/j.isci.2019.100752_bib24) 2012; 37
Wilson (10.1016/j.isci.2019.100752_bib32) 1977; 46
Leu (10.1016/j.isci.2019.100752_bib13) 2009; 328
Ran (10.1016/j.isci.2019.100752_bib21) 2013; 87
Sluss (10.1016/j.isci.2019.100752_bib26) 1996; 10
Li (10.1016/j.isci.2019.100752_bib16) 2011; 6
Meng (10.1016/j.isci.2019.100752_bib19) 2011; 2
Dong (10.1016/j.isci.2019.100752_bib5) 2002; 20
Huang (10.1016/j.isci.2019.100752_bib10) 2010; 406
Thapa (10.1016/j.isci.2019.100752_bib27) 2018; 38
Kurapati (10.1016/j.isci.2019.100752_bib12) 2017; 91
Liu (10.1016/j.isci.2019.100752_bib18) 2005; 334
Huang (10.1016/j.isci.2019.100752_bib8) 2012; 17
Qiu (10.1016/j.isci.2019.100752_bib20) 2014; 45
Zhong (10.1016/j.isci.2019.100752_bib35) 2017; 91
Cui (10.1016/j.isci.2019.100752_bib4) 2005; 280
Li (10.1016/j.isci.2019.100752_bib14) 2015; 52
Huang (10.1016/j.isci.2019.100752_bib9) 2017; 91
Wang (10.1016/j.isci.2019.100752_bib31) 2017; 6
Lin (10.1016/j.isci.2019.100752_bib17) 2011; 156
Rana (10.1016/j.isci.2019.100752_bib22) 2013; 158
Siddique (10.1016/j.isci.2019.100752_bib25) 2018; 8
Shah (10.1016/j.isci.2019.100752_bib23) 2018; 175
Hussain (10.1016/j.isci.2019.100752_bib11) 2010; 84
Vogel (10.1016/j.isci.2019.100752_bib29) 2009; 57
Chemes (10.1016/j.isci.2019.100752_bib3) 2015; 32
Wang (10.1016/j.isci.2019.100752_bib30) 2018; 78
Yao (10.1016/j.isci.2019.100752_bib33) 2016; 59
Ausubel (10.1016/j.isci.2019.100752_bib2) 2005; 6
References_xml – volume: 328
  start-page: 197
  year: 2009
  end-page: 227
  ident: bib13
  article-title: Whispovirus
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 91
  year: 2017
  ident: bib9
  article-title: Role of Litopenaeus vannamei Yin Yang 1 in the regulation of the white spot syndrome virus immediate early gene ie1
  publication-title: J. Virol.
– volume: 46
  start-page: 573
  year: 1977
  end-page: 639
  ident: bib32
  article-title: Biochemical evolution
  publication-title: Annu. Rev. Biochem.
– volume: 87
  start-page: 12576
  year: 2013
  end-page: 12582
  ident: bib21
  article-title: White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein
  publication-title: J. Virol.
– volume: 6
  start-page: e26591
  year: 2017
  ident: bib31
  article-title: The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication
  publication-title: Elife
– volume: 2
  start-page: 889
  year: 2011
  end-page: 898
  ident: bib19
  article-title: c-Jun, at the crossroad of the signaling network
  publication-title: Protein Cell
– volume: 45
  start-page: 156
  year: 2014
  end-page: 162
  ident: bib20
  article-title: Litopenaeus vannamei NF-kappaB is required for WSSV replication
  publication-title: Dev. Comp. Immunol.
– volume: 175
  start-page: 1931
  year: 2018
  end-page: 1945.e18
  ident: bib23
  article-title: Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis
  publication-title: Cell
– volume: 8
  start-page: 25
  year: 2018
  ident: bib25
  article-title: Circulatory white spot syndrome virus in South-West region of Bangladesh from 2014 to 2017: molecular characterization and genetic variation
  publication-title: AMB Express
– volume: 406
  start-page: 176
  year: 2010
  end-page: 180
  ident: bib10
  article-title: Shrimp NF-kappaB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity
  publication-title: Virology
– volume: 57
  start-page: 539
  year: 2009
  end-page: 550
  ident: bib29
  article-title: The JNK pathway amplifies and drives subcellular changes in tau phosphorylation
  publication-title: Neuropharmacology
– volume: 278
  start-page: 32662
  year: 2003
  end-page: 32672
  ident: bib7
  article-title: A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates
  publication-title: J. Biol. Chem.
– volume: 91
  year: 2017
  ident: bib12
  article-title: Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation
  publication-title: J. Virol.
– volume: 10
  start-page: 2745
  year: 1996
  end-page: 2758
  ident: bib26
  article-title: A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila
  publication-title: Genes Immunol.
– volume: 7
  start-page: 1729
  year: 2014
  end-page: 1739
  ident: bib6
  article-title: Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions
  publication-title: Cell Rep.
– volume: 78
  start-page: 61
  year: 2018
  end-page: 70
  ident: bib30
  article-title: MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response
  publication-title: Dev. Comp. Immunol.
– volume: 49
  start-page: 282
  year: 2015
  end-page: 289
  ident: bib34
  article-title: Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection
  publication-title: Dev. Comp. Immunol.
– volume: 59
  start-page: 268
  year: 2016
  end-page: 275
  ident: bib33
  article-title: Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes
  publication-title: Fish Shellfish Immunol.
– volume: 91
  year: 2017
  ident: bib35
  article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the beclin-1/Bcl-2 interaction
  publication-title: J. Virol.
– volume: 17
  start-page: 914
  year: 2012
  end-page: 926
  ident: bib8
  article-title: Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1
  publication-title: Antioxid. Redox Signal.
– volume: 38
  year: 2018
  ident: bib27
  article-title: TAB1-Induced autoactivation of p38alpha mitogen-activated protein kinase is crucially dependent on threonine 185
  publication-title: Mol. Cell Biol.
– volume: 52
  start-page: 26
  year: 2015
  end-page: 36
  ident: bib14
  article-title: The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection
  publication-title: Dev. Comp. Immunol.
– volume: 32
  start-page: 91
  year: 2015
  end-page: 101
  ident: bib3
  article-title: Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions
  publication-title: Curr. Opin. Struct. Biol.
– volume: 156
  start-page: 1611
  year: 2011
  end-page: 1614
  ident: bib17
  article-title: Identification of three immediate-early genes of white spot syndrome virus
  publication-title: Arch. Virol.
– volume: 37
  start-page: 421
  year: 2012
  end-page: 428
  ident: bib24
  article-title: A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection
  publication-title: Dev. Comp. Immunol.
– volume: 84
  start-page: 612
  year: 2010
  end-page: 620
  ident: bib11
  article-title: Functional analysis of a cellular microRNA in insect host-ascovirus interaction
  publication-title: J. Virol.
– volume: 385
  start-page: 267
  year: 2009
  end-page: 274
  ident: bib15
  article-title: Identification of the immediate-early genes of white spot syndrome virus
  publication-title: Virology
– volume: 13
  start-page: 679
  year: 2013
  end-page: 692
  ident: bib1
  article-title: Mitogen-activated protein kinases in innate immunity
  publication-title: Nat. Rev. Immunol.
– volume: 6
  start-page: 973
  year: 2005
  end-page: 979
  ident: bib2
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nat. Immunol.
– volume: 280
  start-page: 9913
  year: 2005
  end-page: 9920
  ident: bib4
  article-title: Identification of a specific domain responsible for JNK2alpha2 autophosphorylation
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 13257
  year: 2014
  end-page: 13263
  ident: bib28
  article-title: Does aquaculture add resilience to the global food system?
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 158
  start-page: 1159
  year: 2013
  end-page: 1172
  ident: bib22
  article-title: Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness
  publication-title: Arch. Virol.
– volume: 20
  start-page: 55
  year: 2002
  end-page: 72
  ident: bib5
  article-title: MAP kinases in the immune response
  publication-title: Annu. Rev. Immunol.
– volume: 6
  start-page: e26999
  year: 2011
  ident: bib16
  article-title: Evolutionary history of the vertebrate mitogen activated protein kinases family
  publication-title: PLoS One
– volume: 334
  start-page: 327
  year: 2005
  end-page: 341
  ident: bib18
  article-title: Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp
  publication-title: Virology
– volume: 59
  start-page: 268
  year: 2016
  ident: 10.1016/j.isci.2019.100752_bib33
  article-title: Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes
  publication-title: Fish Shellfish Immunol.
  doi: 10.1016/j.fsi.2016.10.051
– volume: 20
  start-page: 55
  year: 2002
  ident: 10.1016/j.isci.2019.100752_bib5
  article-title: MAP kinases in the immune response
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.20.091301.131133
– volume: 32
  start-page: 91
  year: 2015
  ident: 10.1016/j.isci.2019.100752_bib3
  article-title: Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.03.004
– volume: 10
  start-page: 2745
  year: 1996
  ident: 10.1016/j.isci.2019.100752_bib26
  article-title: A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila
  publication-title: Genes Immunol.
– volume: 49
  start-page: 282
  year: 2015
  ident: 10.1016/j.isci.2019.100752_bib34
  article-title: Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2014.12.012
– volume: 84
  start-page: 612
  year: 2010
  ident: 10.1016/j.isci.2019.100752_bib11
  article-title: Functional analysis of a cellular microRNA in insect host-ascovirus interaction
  publication-title: J. Virol.
  doi: 10.1128/JVI.01794-09
– volume: 175
  start-page: 1931
  year: 2018
  ident: 10.1016/j.isci.2019.100752_bib23
  article-title: Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.028
– volume: 2
  start-page: 889
  year: 2011
  ident: 10.1016/j.isci.2019.100752_bib19
  article-title: c-Jun, at the crossroad of the signaling network
  publication-title: Protein Cell
  doi: 10.1007/s13238-011-1113-3
– volume: 17
  start-page: 914
  year: 2012
  ident: 10.1016/j.isci.2019.100752_bib8
  article-title: Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4264
– volume: 91
  year: 2017
  ident: 10.1016/j.isci.2019.100752_bib12
  article-title: Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation
  publication-title: J. Virol.
  doi: 10.1128/JVI.00640-17
– volume: 8
  start-page: 25
  year: 2018
  ident: 10.1016/j.isci.2019.100752_bib25
  article-title: Circulatory white spot syndrome virus in South-West region of Bangladesh from 2014 to 2017: molecular characterization and genetic variation
  publication-title: AMB Express
  doi: 10.1186/s13568-018-0553-z
– volume: 278
  start-page: 32662
  year: 2003
  ident: 10.1016/j.isci.2019.100752_bib7
  article-title: A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304229200
– volume: 91
  year: 2017
  ident: 10.1016/j.isci.2019.100752_bib35
  article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the beclin-1/Bcl-2 interaction
  publication-title: J. Virol.
  doi: 10.1128/JVI.00001-17
– volume: 45
  start-page: 156
  year: 2014
  ident: 10.1016/j.isci.2019.100752_bib20
  article-title: Litopenaeus vannamei NF-kappaB is required for WSSV replication
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2014.02.016
– volume: 38
  year: 2018
  ident: 10.1016/j.isci.2019.100752_bib27
  article-title: TAB1-Induced autoactivation of p38alpha mitogen-activated protein kinase is crucially dependent on threonine 185
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00409-17
– volume: 13
  start-page: 679
  year: 2013
  ident: 10.1016/j.isci.2019.100752_bib1
  article-title: Mitogen-activated protein kinases in innate immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3495
– volume: 46
  start-page: 573
  year: 1977
  ident: 10.1016/j.isci.2019.100752_bib32
  article-title: Biochemical evolution
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.46.070177.003041
– volume: 280
  start-page: 9913
  year: 2005
  ident: 10.1016/j.isci.2019.100752_bib4
  article-title: Identification of a specific domain responsible for JNK2alpha2 autophosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412165200
– volume: 328
  start-page: 197
  year: 2009
  ident: 10.1016/j.isci.2019.100752_bib13
  article-title: Whispovirus
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 57
  start-page: 539
  year: 2009
  ident: 10.1016/j.isci.2019.100752_bib29
  article-title: The JNK pathway amplifies and drives subcellular changes in tau phosphorylation
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2009.07.021
– volume: 7
  start-page: 1729
  year: 2014
  ident: 10.1016/j.isci.2019.100752_bib6
  article-title: Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.052
– volume: 158
  start-page: 1159
  year: 2013
  ident: 10.1016/j.isci.2019.100752_bib22
  article-title: Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-013-1602-1
– volume: 156
  start-page: 1611
  year: 2011
  ident: 10.1016/j.isci.2019.100752_bib17
  article-title: Identification of three immediate-early genes of white spot syndrome virus
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-011-1004-1
– volume: 385
  start-page: 267
  year: 2009
  ident: 10.1016/j.isci.2019.100752_bib15
  article-title: Identification of the immediate-early genes of white spot syndrome virus
  publication-title: Virology
  doi: 10.1016/j.virol.2008.12.007
– volume: 334
  start-page: 327
  year: 2005
  ident: 10.1016/j.isci.2019.100752_bib18
  article-title: Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp
  publication-title: Virology
  doi: 10.1016/j.virol.2005.01.047
– volume: 37
  start-page: 421
  year: 2012
  ident: 10.1016/j.isci.2019.100752_bib24
  article-title: A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2012.03.002
– volume: 52
  start-page: 26
  year: 2015
  ident: 10.1016/j.isci.2019.100752_bib14
  article-title: The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2015.04.009
– volume: 111
  start-page: 13257
  year: 2014
  ident: 10.1016/j.isci.2019.100752_bib28
  article-title: Does aquaculture add resilience to the global food system?
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1404067111
– volume: 78
  start-page: 61
  year: 2018
  ident: 10.1016/j.isci.2019.100752_bib30
  article-title: MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2017.09.015
– volume: 6
  start-page: 973
  year: 2005
  ident: 10.1016/j.isci.2019.100752_bib2
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1253
– volume: 87
  start-page: 12576
  year: 2013
  ident: 10.1016/j.isci.2019.100752_bib21
  article-title: White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.01551-13
– volume: 6
  start-page: e26591
  year: 2017
  ident: 10.1016/j.isci.2019.100752_bib31
  article-title: The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication
  publication-title: Elife
  doi: 10.7554/eLife.26591
– volume: 6
  start-page: e26999
  year: 2011
  ident: 10.1016/j.isci.2019.100752_bib16
  article-title: Evolutionary history of the vertebrate mitogen activated protein kinases family
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026999
– volume: 406
  start-page: 176
  year: 2010
  ident: 10.1016/j.isci.2019.100752_bib10
  article-title: Shrimp NF-kappaB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity
  publication-title: Virology
  doi: 10.1016/j.virol.2010.06.046
– volume: 91
  year: 2017
  ident: 10.1016/j.isci.2019.100752_bib9
  article-title: Role of Litopenaeus vannamei Yin Yang 1 in the regulation of the white spot syndrome virus immediate early gene ie1
  publication-title: J. Virol.
  doi: 10.1128/JVI.02314-16
SSID ssj0002002496
Score 2.352038
Snippet Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100752
SubjectTerms Biological Sciences
Molecular Biology
Molecular Microbiology
Virology
Title White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication
URI https://dx.doi.org/10.1016/j.isci.2019.100752
https://www.ncbi.nlm.nih.gov/pubmed/31884168
https://www.proquest.com/docview/2331429464
https://pubmed.ncbi.nlm.nih.gov/PMC6941876
https://doaj.org/article/d870f292641146b29708a3113d585a2f
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dT9swFLWmPu1lGgJGxpg8iTcUNXESN3kco1XpRjUJmPpmObENLVVS9ev3c6-dVM2Q4IWnSqn74dyTnOv43HMJOS-A0wIeKF_rNIMFSi_ypclSPw9NAYQHCLJWSjdjPryPR5NkstfqCzVhzh7YnbiuAkAZlgFvY_1szrJekMooDCMFia5kBu--wHl7i6mZ3V5DKzzbWS5BTRBAs66YceIurHhFXVdmVQIJa7GSNe9vkdPL5PN_DeUeKQ0-k091Nkl_ulkckA-6PCQPtukdvV1Ua3pbGxLQf9PlZkX7kAs6GfyKSjqutnpOr_thdzT-3S380aakf62Ia6vpAGgtl8UT_VNVC7qu6NUSD0PC3jzmOyL3g_7dr6Ff91PwC2xb4OtYaayMxb3A1ATcJBGDl0QpIHkZF7B2yVRmYiW5xPrZJJcR5yrTKuqlBkYfk05ZlfqEUG2kTg3PFSxfYhglIaaKYzd2YEUdMo-EzfkURW02jj0v5qJRlc0ExkBgDISLgUcudp9ZOKuNV0dfYph2I9Em2x4A8IgaPOIt8HgkaYIs6ozDZRLwVdNXf_xHgwgBlyPuschSV5uVYFEUAsXHPPbIF4eQ3V-E2ydu8qYe6bWw05pD-51y-mgtv7HcGHjr63tM-pR8ZPjQIAh9Fn8jnfVyo88gs1rn3-1F9AyJQhrV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+Spot+Syndrome+Virus+Establishes+a+Novel+IE1%2FJNK%2Fc-Jun+Positive+Feedback+Loop+to+Drive+Replication&rft.jtitle=iScience&rft.au=Wang%2C+Sheng&rft.au=Li%2C+Haoyang&rft.au=Weng%2C+Shaoping&rft.au=Li%2C+Chaozheng&rft.date=2020-01-24&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=1&rft.spage=100752&rft_id=info:doi/10.1016%2Fj.isci.2019.100752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon