White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Spec...
Saved in:
Published in | iScience Vol. 23; no. 1; p. 100752 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.01.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection.
[Display omitted]
•Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene•The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK•IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication•wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop
Biological Sciences; Molecular Biology; Virology; Molecular Microbiology |
---|---|
AbstractList | Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. : Biological Sciences; Molecular Biology; Virology; Molecular Microbiology Subject Areas: Biological Sciences, Molecular Biology, Virology, Molecular Microbiology Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1 , which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056 , wsv249 , and wsv403 , in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK , c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. • Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene • The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK • IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication • wsv056 , wsv249 , and wsv403 are also benefit from this positive feedback loop Biological Sciences; Molecular Biology; Virology; Molecular Microbiology Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. [Display omitted] •Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene•The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK•IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication•wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop Biological Sciences; Molecular Biology; Virology; Molecular Microbiology Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection.Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. |
ArticleNumber | 100752 |
Author | Li, Chaozheng He, Jianguo Li, Haoyang Weng, Shaoping Wang, Sheng |
AuthorAffiliation | 3 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China 1 State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China 2 Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China |
AuthorAffiliation_xml | – name: 3 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China – name: 1 State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China – name: 2 Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China |
Author_xml | – sequence: 1 givenname: Sheng surname: Wang fullname: Wang, Sheng organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China – sequence: 2 givenname: Haoyang surname: Li fullname: Li, Haoyang organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China – sequence: 3 givenname: Shaoping surname: Weng fullname: Weng, Shaoping organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China – sequence: 4 givenname: Chaozheng surname: Li fullname: Li, Chaozheng email: lichaozh@mail2.sysu.edu.cn organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China – sequence: 5 givenname: Jianguo surname: He fullname: He, Jianguo email: lsshjg@mail.sysu.edu.cn organization: State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31884168$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9rGzEQxZeS0KRpvkAPRcdebEtaSauFUiiJ0zg1aWn65yhkadaWu165ktaQb185m5Skh4BAYvTeb2DmvSoOOt9BUbwheEwwEZP12EXjxhSTOhdwxemL4phyWY8wZvTg0fuoOI1xjTGm-bBavCyOSiIlI0IeF8tfK5cA3Wx9Qje3nQ1-A-inC31E05j0onVxBRFpdO130KLZlEyurj9PzOiq79BXH11yO0AXAHahzW80936LkkfnYV_-BtvWGZ2c714Xh41uI5ze3yfFj4vp97PL0fzLp9nZx_nIcErSCJgFWnJZSi5lg0XDS5ovbi2hTDPDZFXbumFWC80lJXyhSyFsDbasZJPVJ8Vs4Fqv12ob3EaHW-W1U3cFH5ZKh-RMC8rKCje0poIRwsSC1hWWuiSktFxyTZvM-jCwtv1iA9ZAl4Jun0Cf_nRupZZ-p0TNiKxEBry7BwT_p4eY1CYvDdpWd-D7qGhZEkZrJliWvn3c61-Th01lgRwEJvgYAzTKuHQ32tzatYpgtc-FWqt9LtQ-F2rIRbbS_6wP9GdN7wcT5G3tHASVFdAZsC6ASXmc7jn7Xw18zwk |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_698697 crossref_primary_10_1016_j_aquaculture_2020_736324 crossref_primary_10_3390_ijms23158176 crossref_primary_10_4049_jimmunol_2400240 crossref_primary_10_1016_j_dci_2020_103757 crossref_primary_10_1016_j_dci_2020_103878 crossref_primary_10_1186_s12964_023_01059_7 crossref_primary_10_3354_dao03762 crossref_primary_10_1111_raq_13005 crossref_primary_10_1016_j_aquaculture_2022_739178 crossref_primary_10_1016_j_fsi_2022_03_008 crossref_primary_10_1111_raq_12643 crossref_primary_10_1016_j_dci_2020_103808 crossref_primary_10_1016_j_aquaculture_2023_740139 crossref_primary_10_1111_raq_12482 crossref_primary_10_1016_j_aquaculture_2022_738080 crossref_primary_10_4049_jimmunol_2200817 crossref_primary_10_4049_jimmunol_2300871 crossref_primary_10_3390_ijms22179640 crossref_primary_10_1128_JVI_01715_21 crossref_primary_10_4049_jimmunol_2400425 crossref_primary_10_1016_j_ijbiomac_2023_128333 crossref_primary_10_3389_fphar_2022_958687 crossref_primary_10_4049_jimmunol_2300669 crossref_primary_10_1016_j_vetmic_2021_109061 crossref_primary_10_1007_s10126_024_10358_0 crossref_primary_10_1016_j_fsi_2024_110073 crossref_primary_10_1016_j_fsi_2022_01_038 crossref_primary_10_1080_21505594_2022_2078471 crossref_primary_10_1016_j_fsi_2023_108571 crossref_primary_10_1016_j_ijbiomac_2024_132482 crossref_primary_10_1038_s41598_021_97828_w crossref_primary_10_3390_ijms24043823 crossref_primary_10_1016_j_fsi_2020_08_034 crossref_primary_10_1016_j_jip_2024_108179 crossref_primary_10_3389_fimmu_2022_977327 crossref_primary_10_3389_fimmu_2023_1119879 |
Cites_doi | 10.1016/j.fsi.2016.10.051 10.1146/annurev.immunol.20.091301.131133 10.1016/j.sbi.2015.03.004 10.1016/j.dci.2014.12.012 10.1128/JVI.01794-09 10.1016/j.cell.2018.11.028 10.1007/s13238-011-1113-3 10.1089/ars.2011.4264 10.1128/JVI.00640-17 10.1186/s13568-018-0553-z 10.1074/jbc.M304229200 10.1128/JVI.00001-17 10.1016/j.dci.2014.02.016 10.1128/MCB.00409-17 10.1038/nri3495 10.1146/annurev.bi.46.070177.003041 10.1074/jbc.M412165200 10.1016/j.neuropharm.2009.07.021 10.1016/j.celrep.2014.04.052 10.1007/s00705-013-1602-1 10.1007/s00705-011-1004-1 10.1016/j.virol.2008.12.007 10.1016/j.virol.2005.01.047 10.1016/j.dci.2012.03.002 10.1016/j.dci.2015.04.009 10.1073/pnas.1404067111 10.1016/j.dci.2017.09.015 10.1038/ni1253 10.1128/JVI.01551-13 10.7554/eLife.26591 10.1371/journal.pone.0026999 10.1016/j.virol.2010.06.046 10.1128/JVI.02314-16 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.100752 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_d870f292641146b29708a3113d585a2f PMC6941876 31884168 10_1016_j_isci_2019_100752 S2589004219304973 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-e4de235838588f06f532f065dd124a4c4879d9f4da6a58215ba366d9ed378ff53 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:23:38 EDT 2025 Thu Aug 21 14:11:29 EDT 2025 Fri Jul 11 08:33:48 EDT 2025 Thu Apr 03 06:59:07 EDT 2025 Tue Jul 01 01:03:27 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Tue Jul 25 20:58:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biological Sciences Molecular Biology Virology Molecular Microbiology |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-e4de235838588f06f532f065dd124a4c4879d9f4da6a58215ba366d9ed378ff53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/d870f292641146b29708a3113d585a2f |
PMID | 31884168 |
PQID | 2331429464 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d870f292641146b29708a3113d585a2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6941876 proquest_miscellaneous_2331429464 pubmed_primary_31884168 crossref_citationtrail_10_1016_j_isci_2019_100752 crossref_primary_10_1016_j_isci_2019_100752 elsevier_sciencedirect_doi_10_1016_j_isci_2019_100752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-24 |
PublicationDateYYYYMMDD | 2020-01-24 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Li, Li, Ke, Ji, Bian, Yan (bib15) 2009; 385 Shah, Link, Jang, Sharp, Zhu, Swaney, Johnson, Von Dollen, Ramage, Satkamp (bib23) 2018; 175 Hagai, Azia, Babu, Andino (bib6) 2014; 7 Li, Li, Wang, Song, Zhang, Qian, Zuo, Xu, Weng, He (bib14) 2015; 52 Siddique, Haque, Sanyal, Hossain, Nandi, Alam, Sultana, Hasan, Hossain (bib25) 2018; 8 Ausubel (bib2) 2005; 6 Kurapati, Sadaoka, Rajbhandari, Jagdish, Shukla, Ali, Kim, Lee, Cohen, Venkatesan (bib12) 2017; 91 Sluss, Han, Barrett, Goberdhan, Wilson, Davis, Ip (bib26) 1996; 10 Wang, Yin, Li, Xiao, Lu, Feng, He, Li (bib30) 2018; 78 Lin, Huang, Xu, Li, Yang (bib17) 2011; 156 Troell, Naylor, Metian, Beveridge, Tyedmers (bib28) 2014; 111 Vogel, Anand, Ludwig, Nawoschik, Dunlop, Braithwaite (bib29) 2009; 57 Yao, Ruan, Lu, Shi, Xu (bib33) 2016; 59 Thapa, Nichols, Bassi, Martin, Verma, Conte, De Santis, De Nicola (bib27) 2018; 38 Shi, Yan, Ruan, Xu (bib24) 2012; 37 Leu, Yang, Zhang, Xu, Kou, Lo (bib13) 2009; 328 Arthur, Ley (bib1) 2013; 13 Hussain, Asgari (bib11) 2010; 84 Ho, Bardwell, Abdollahi, Bardwell (bib7) 2003; 278 Ran, Bian, Ji, Yan, Yang, Li (bib21) 2013; 87 Liu, Chang, Wang, Kou, Lo (bib18) 2005; 334 Wang, Zhao, Li, Luo, Kang (bib31) 2017; 6 Cui, Holgado-Madruga, Su, Tsuiki, Wedegaertner, Wong (bib4) 2005; 280 Dong, Davis, Flavell (bib5) 2002; 20 Huang, Huang, Cai, Chang (bib9) 2017; 91 Wilson, Carlson, White (bib32) 1977; 46 Yao, Ruan, Xu, Shi (bib34) 2015; 49 Rana, Sreejith, Gulati, Bharti, Jain, Gupta (bib22) 2013; 158 Huang, Liu, Wang, Lee, Leu, Wang, Tsai, Kang, Chen, Kou (bib8) 2012; 17 Huang, Zhao, Zhang, Xu, Jia, Chen, Wang, Weng, Yu, Yin, He (bib10) 2010; 406 Meng, Xia (bib19) 2011; 2 Chemes, de Prat-Gay, Sanchez (bib3) 2015; 32 Li, Liu, Zhang (bib16) 2011; 6 Qiu, Zhang, Chen, Wang, Xu, Li, Chen, Fan, Yan, Weng (bib20) 2014; 45 Zhong, Shu, Dai, Gao, Xiong (bib35) 2017; 91 Ho (10.1016/j.isci.2019.100752_bib7) 2003; 278 Troell (10.1016/j.isci.2019.100752_bib28) 2014; 111 Li (10.1016/j.isci.2019.100752_bib15) 2009; 385 Arthur (10.1016/j.isci.2019.100752_bib1) 2013; 13 Hagai (10.1016/j.isci.2019.100752_bib6) 2014; 7 Yao (10.1016/j.isci.2019.100752_bib34) 2015; 49 Shi (10.1016/j.isci.2019.100752_bib24) 2012; 37 Wilson (10.1016/j.isci.2019.100752_bib32) 1977; 46 Leu (10.1016/j.isci.2019.100752_bib13) 2009; 328 Ran (10.1016/j.isci.2019.100752_bib21) 2013; 87 Sluss (10.1016/j.isci.2019.100752_bib26) 1996; 10 Li (10.1016/j.isci.2019.100752_bib16) 2011; 6 Meng (10.1016/j.isci.2019.100752_bib19) 2011; 2 Dong (10.1016/j.isci.2019.100752_bib5) 2002; 20 Huang (10.1016/j.isci.2019.100752_bib10) 2010; 406 Thapa (10.1016/j.isci.2019.100752_bib27) 2018; 38 Kurapati (10.1016/j.isci.2019.100752_bib12) 2017; 91 Liu (10.1016/j.isci.2019.100752_bib18) 2005; 334 Huang (10.1016/j.isci.2019.100752_bib8) 2012; 17 Qiu (10.1016/j.isci.2019.100752_bib20) 2014; 45 Zhong (10.1016/j.isci.2019.100752_bib35) 2017; 91 Cui (10.1016/j.isci.2019.100752_bib4) 2005; 280 Li (10.1016/j.isci.2019.100752_bib14) 2015; 52 Huang (10.1016/j.isci.2019.100752_bib9) 2017; 91 Wang (10.1016/j.isci.2019.100752_bib31) 2017; 6 Lin (10.1016/j.isci.2019.100752_bib17) 2011; 156 Rana (10.1016/j.isci.2019.100752_bib22) 2013; 158 Siddique (10.1016/j.isci.2019.100752_bib25) 2018; 8 Shah (10.1016/j.isci.2019.100752_bib23) 2018; 175 Hussain (10.1016/j.isci.2019.100752_bib11) 2010; 84 Vogel (10.1016/j.isci.2019.100752_bib29) 2009; 57 Chemes (10.1016/j.isci.2019.100752_bib3) 2015; 32 Wang (10.1016/j.isci.2019.100752_bib30) 2018; 78 Yao (10.1016/j.isci.2019.100752_bib33) 2016; 59 Ausubel (10.1016/j.isci.2019.100752_bib2) 2005; 6 |
References_xml | – volume: 328 start-page: 197 year: 2009 end-page: 227 ident: bib13 article-title: Whispovirus publication-title: Curr. Top. Microbiol. Immunol. – volume: 91 year: 2017 ident: bib9 article-title: Role of Litopenaeus vannamei Yin Yang 1 in the regulation of the white spot syndrome virus immediate early gene ie1 publication-title: J. Virol. – volume: 46 start-page: 573 year: 1977 end-page: 639 ident: bib32 article-title: Biochemical evolution publication-title: Annu. Rev. Biochem. – volume: 87 start-page: 12576 year: 2013 end-page: 12582 ident: bib21 article-title: White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein publication-title: J. Virol. – volume: 6 start-page: e26591 year: 2017 ident: bib31 article-title: The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication publication-title: Elife – volume: 2 start-page: 889 year: 2011 end-page: 898 ident: bib19 article-title: c-Jun, at the crossroad of the signaling network publication-title: Protein Cell – volume: 45 start-page: 156 year: 2014 end-page: 162 ident: bib20 article-title: Litopenaeus vannamei NF-kappaB is required for WSSV replication publication-title: Dev. Comp. Immunol. – volume: 175 start-page: 1931 year: 2018 end-page: 1945.e18 ident: bib23 article-title: Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis publication-title: Cell – volume: 8 start-page: 25 year: 2018 ident: bib25 article-title: Circulatory white spot syndrome virus in South-West region of Bangladesh from 2014 to 2017: molecular characterization and genetic variation publication-title: AMB Express – volume: 406 start-page: 176 year: 2010 end-page: 180 ident: bib10 article-title: Shrimp NF-kappaB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity publication-title: Virology – volume: 57 start-page: 539 year: 2009 end-page: 550 ident: bib29 article-title: The JNK pathway amplifies and drives subcellular changes in tau phosphorylation publication-title: Neuropharmacology – volume: 278 start-page: 32662 year: 2003 end-page: 32672 ident: bib7 article-title: A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates publication-title: J. Biol. Chem. – volume: 91 year: 2017 ident: bib12 article-title: Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation publication-title: J. Virol. – volume: 10 start-page: 2745 year: 1996 end-page: 2758 ident: bib26 article-title: A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila publication-title: Genes Immunol. – volume: 7 start-page: 1729 year: 2014 end-page: 1739 ident: bib6 article-title: Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions publication-title: Cell Rep. – volume: 78 start-page: 61 year: 2018 end-page: 70 ident: bib30 article-title: MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response publication-title: Dev. Comp. Immunol. – volume: 49 start-page: 282 year: 2015 end-page: 289 ident: bib34 article-title: Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection publication-title: Dev. Comp. Immunol. – volume: 59 start-page: 268 year: 2016 end-page: 275 ident: bib33 article-title: Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes publication-title: Fish Shellfish Immunol. – volume: 91 year: 2017 ident: bib35 article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the beclin-1/Bcl-2 interaction publication-title: J. Virol. – volume: 17 start-page: 914 year: 2012 end-page: 926 ident: bib8 article-title: Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1 publication-title: Antioxid. Redox Signal. – volume: 38 year: 2018 ident: bib27 article-title: TAB1-Induced autoactivation of p38alpha mitogen-activated protein kinase is crucially dependent on threonine 185 publication-title: Mol. Cell Biol. – volume: 52 start-page: 26 year: 2015 end-page: 36 ident: bib14 article-title: The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection publication-title: Dev. Comp. Immunol. – volume: 32 start-page: 91 year: 2015 end-page: 101 ident: bib3 article-title: Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions publication-title: Curr. Opin. Struct. Biol. – volume: 156 start-page: 1611 year: 2011 end-page: 1614 ident: bib17 article-title: Identification of three immediate-early genes of white spot syndrome virus publication-title: Arch. Virol. – volume: 37 start-page: 421 year: 2012 end-page: 428 ident: bib24 article-title: A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection publication-title: Dev. Comp. Immunol. – volume: 84 start-page: 612 year: 2010 end-page: 620 ident: bib11 article-title: Functional analysis of a cellular microRNA in insect host-ascovirus interaction publication-title: J. Virol. – volume: 385 start-page: 267 year: 2009 end-page: 274 ident: bib15 article-title: Identification of the immediate-early genes of white spot syndrome virus publication-title: Virology – volume: 13 start-page: 679 year: 2013 end-page: 692 ident: bib1 article-title: Mitogen-activated protein kinases in innate immunity publication-title: Nat. Rev. Immunol. – volume: 6 start-page: 973 year: 2005 end-page: 979 ident: bib2 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nat. Immunol. – volume: 280 start-page: 9913 year: 2005 end-page: 9920 ident: bib4 article-title: Identification of a specific domain responsible for JNK2alpha2 autophosphorylation publication-title: J. Biol. Chem. – volume: 111 start-page: 13257 year: 2014 end-page: 13263 ident: bib28 article-title: Does aquaculture add resilience to the global food system? publication-title: Proc. Natl. Acad. Sci. U S A – volume: 158 start-page: 1159 year: 2013 end-page: 1172 ident: bib22 article-title: Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness publication-title: Arch. Virol. – volume: 20 start-page: 55 year: 2002 end-page: 72 ident: bib5 article-title: MAP kinases in the immune response publication-title: Annu. Rev. Immunol. – volume: 6 start-page: e26999 year: 2011 ident: bib16 article-title: Evolutionary history of the vertebrate mitogen activated protein kinases family publication-title: PLoS One – volume: 334 start-page: 327 year: 2005 end-page: 341 ident: bib18 article-title: Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp publication-title: Virology – volume: 59 start-page: 268 year: 2016 ident: 10.1016/j.isci.2019.100752_bib33 article-title: Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2016.10.051 – volume: 20 start-page: 55 year: 2002 ident: 10.1016/j.isci.2019.100752_bib5 article-title: MAP kinases in the immune response publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.20.091301.131133 – volume: 32 start-page: 91 year: 2015 ident: 10.1016/j.isci.2019.100752_bib3 article-title: Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.03.004 – volume: 10 start-page: 2745 year: 1996 ident: 10.1016/j.isci.2019.100752_bib26 article-title: A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila publication-title: Genes Immunol. – volume: 49 start-page: 282 year: 2015 ident: 10.1016/j.isci.2019.100752_bib34 article-title: Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2014.12.012 – volume: 84 start-page: 612 year: 2010 ident: 10.1016/j.isci.2019.100752_bib11 article-title: Functional analysis of a cellular microRNA in insect host-ascovirus interaction publication-title: J. Virol. doi: 10.1128/JVI.01794-09 – volume: 175 start-page: 1931 year: 2018 ident: 10.1016/j.isci.2019.100752_bib23 article-title: Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis publication-title: Cell doi: 10.1016/j.cell.2018.11.028 – volume: 2 start-page: 889 year: 2011 ident: 10.1016/j.isci.2019.100752_bib19 article-title: c-Jun, at the crossroad of the signaling network publication-title: Protein Cell doi: 10.1007/s13238-011-1113-3 – volume: 17 start-page: 914 year: 2012 ident: 10.1016/j.isci.2019.100752_bib8 article-title: Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4264 – volume: 91 year: 2017 ident: 10.1016/j.isci.2019.100752_bib12 article-title: Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation publication-title: J. Virol. doi: 10.1128/JVI.00640-17 – volume: 8 start-page: 25 year: 2018 ident: 10.1016/j.isci.2019.100752_bib25 article-title: Circulatory white spot syndrome virus in South-West region of Bangladesh from 2014 to 2017: molecular characterization and genetic variation publication-title: AMB Express doi: 10.1186/s13568-018-0553-z – volume: 278 start-page: 32662 year: 2003 ident: 10.1016/j.isci.2019.100752_bib7 article-title: A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304229200 – volume: 91 year: 2017 ident: 10.1016/j.isci.2019.100752_bib35 article-title: Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the beclin-1/Bcl-2 interaction publication-title: J. Virol. doi: 10.1128/JVI.00001-17 – volume: 45 start-page: 156 year: 2014 ident: 10.1016/j.isci.2019.100752_bib20 article-title: Litopenaeus vannamei NF-kappaB is required for WSSV replication publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2014.02.016 – volume: 38 year: 2018 ident: 10.1016/j.isci.2019.100752_bib27 article-title: TAB1-Induced autoactivation of p38alpha mitogen-activated protein kinase is crucially dependent on threonine 185 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00409-17 – volume: 13 start-page: 679 year: 2013 ident: 10.1016/j.isci.2019.100752_bib1 article-title: Mitogen-activated protein kinases in innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3495 – volume: 46 start-page: 573 year: 1977 ident: 10.1016/j.isci.2019.100752_bib32 article-title: Biochemical evolution publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.46.070177.003041 – volume: 280 start-page: 9913 year: 2005 ident: 10.1016/j.isci.2019.100752_bib4 article-title: Identification of a specific domain responsible for JNK2alpha2 autophosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412165200 – volume: 328 start-page: 197 year: 2009 ident: 10.1016/j.isci.2019.100752_bib13 article-title: Whispovirus publication-title: Curr. Top. Microbiol. Immunol. – volume: 57 start-page: 539 year: 2009 ident: 10.1016/j.isci.2019.100752_bib29 article-title: The JNK pathway amplifies and drives subcellular changes in tau phosphorylation publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2009.07.021 – volume: 7 start-page: 1729 year: 2014 ident: 10.1016/j.isci.2019.100752_bib6 article-title: Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.052 – volume: 158 start-page: 1159 year: 2013 ident: 10.1016/j.isci.2019.100752_bib22 article-title: Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness publication-title: Arch. Virol. doi: 10.1007/s00705-013-1602-1 – volume: 156 start-page: 1611 year: 2011 ident: 10.1016/j.isci.2019.100752_bib17 article-title: Identification of three immediate-early genes of white spot syndrome virus publication-title: Arch. Virol. doi: 10.1007/s00705-011-1004-1 – volume: 385 start-page: 267 year: 2009 ident: 10.1016/j.isci.2019.100752_bib15 article-title: Identification of the immediate-early genes of white spot syndrome virus publication-title: Virology doi: 10.1016/j.virol.2008.12.007 – volume: 334 start-page: 327 year: 2005 ident: 10.1016/j.isci.2019.100752_bib18 article-title: Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp publication-title: Virology doi: 10.1016/j.virol.2005.01.047 – volume: 37 start-page: 421 year: 2012 ident: 10.1016/j.isci.2019.100752_bib24 article-title: A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2012.03.002 – volume: 52 start-page: 26 year: 2015 ident: 10.1016/j.isci.2019.100752_bib14 article-title: The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2015.04.009 – volume: 111 start-page: 13257 year: 2014 ident: 10.1016/j.isci.2019.100752_bib28 article-title: Does aquaculture add resilience to the global food system? publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1404067111 – volume: 78 start-page: 61 year: 2018 ident: 10.1016/j.isci.2019.100752_bib30 article-title: MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2017.09.015 – volume: 6 start-page: 973 year: 2005 ident: 10.1016/j.isci.2019.100752_bib2 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nat. Immunol. doi: 10.1038/ni1253 – volume: 87 start-page: 12576 year: 2013 ident: 10.1016/j.isci.2019.100752_bib21 article-title: White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein publication-title: J. Virol. doi: 10.1128/JVI.01551-13 – volume: 6 start-page: e26591 year: 2017 ident: 10.1016/j.isci.2019.100752_bib31 article-title: The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication publication-title: Elife doi: 10.7554/eLife.26591 – volume: 6 start-page: e26999 year: 2011 ident: 10.1016/j.isci.2019.100752_bib16 article-title: Evolutionary history of the vertebrate mitogen activated protein kinases family publication-title: PLoS One doi: 10.1371/journal.pone.0026999 – volume: 406 start-page: 176 year: 2010 ident: 10.1016/j.isci.2019.100752_bib10 article-title: Shrimp NF-kappaB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity publication-title: Virology doi: 10.1016/j.virol.2010.06.046 – volume: 91 year: 2017 ident: 10.1016/j.isci.2019.100752_bib9 article-title: Role of Litopenaeus vannamei Yin Yang 1 in the regulation of the white spot syndrome virus immediate early gene ie1 publication-title: J. Virol. doi: 10.1128/JVI.02314-16 |
SSID | ssj0002002496 |
Score | 2.352038 |
Snippet | Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV)... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100752 |
SubjectTerms | Biological Sciences Molecular Biology Molecular Microbiology Virology |
Title | White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication |
URI | https://dx.doi.org/10.1016/j.isci.2019.100752 https://www.ncbi.nlm.nih.gov/pubmed/31884168 https://www.proquest.com/docview/2331429464 https://pubmed.ncbi.nlm.nih.gov/PMC6941876 https://doaj.org/article/d870f292641146b29708a3113d585a2f |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dT9swFLWmPu1lGgJGxpg8iTcUNXESN3kco1XpRjUJmPpmObENLVVS9ev3c6-dVM2Q4IWnSqn74dyTnOv43HMJOS-A0wIeKF_rNIMFSi_ypclSPw9NAYQHCLJWSjdjPryPR5NkstfqCzVhzh7YnbiuAkAZlgFvY_1szrJekMooDCMFia5kBu--wHl7i6mZ3V5DKzzbWS5BTRBAs66YceIurHhFXVdmVQIJa7GSNe9vkdPL5PN_DeUeKQ0-k091Nkl_ulkckA-6PCQPtukdvV1Ua3pbGxLQf9PlZkX7kAs6GfyKSjqutnpOr_thdzT-3S380aakf62Ia6vpAGgtl8UT_VNVC7qu6NUSD0PC3jzmOyL3g_7dr6Ff91PwC2xb4OtYaayMxb3A1ATcJBGDl0QpIHkZF7B2yVRmYiW5xPrZJJcR5yrTKuqlBkYfk05ZlfqEUG2kTg3PFSxfYhglIaaKYzd2YEUdMo-EzfkURW02jj0v5qJRlc0ExkBgDISLgUcudp9ZOKuNV0dfYph2I9Em2x4A8IgaPOIt8HgkaYIs6ozDZRLwVdNXf_xHgwgBlyPuschSV5uVYFEUAsXHPPbIF4eQ3V-E2ydu8qYe6bWw05pD-51y-mgtv7HcGHjr63tM-pR8ZPjQIAh9Fn8jnfVyo88gs1rn3-1F9AyJQhrV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+Spot+Syndrome+Virus+Establishes+a+Novel+IE1%2FJNK%2Fc-Jun+Positive+Feedback+Loop+to+Drive+Replication&rft.jtitle=iScience&rft.au=Wang%2C+Sheng&rft.au=Li%2C+Haoyang&rft.au=Weng%2C+Shaoping&rft.au=Li%2C+Chaozheng&rft.date=2020-01-24&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=1&rft.spage=100752&rft_id=info:doi/10.1016%2Fj.isci.2019.100752&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |