Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes
Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100898 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials.
[Display omitted]
•The intrinsic structural disorder in Na3Ni2SbO6 is unambiguously revealed•Detailed atomic-resolution STEM imaging and crystallography analysis are conducted•The structural disorder is associated with three variants of a monoclinic phase
Imaging Methods in Chemistry; Materials Science; Energy Materials |
---|---|
AbstractList | Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials.Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. [Display omitted] •The intrinsic structural disorder in Na3Ni2SbO6 is unambiguously revealed•Detailed atomic-resolution STEM imaging and crystallography analysis are conducted•The structural disorder is associated with three variants of a monoclinic phase Imaging Methods in Chemistry; Materials Science; Energy Materials Honeycomb-layered phases Na 3 M 2 XO 6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na 3 Ni 2 SbO 6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na 3 Ni 2 SbO 6 , characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni 2 SbO 6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. • The intrinsic structural disorder in Na 3 Ni 2 SbO 6 is unambiguously revealed • Detailed atomic-resolution STEM imaging and crystallography analysis are conducted • The structural disorder is associated with three variants of a monoclinic phase Imaging Methods in Chemistry; Materials Science; Energy Materials Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. : Imaging Methods in Chemistry; Materials Science; Energy Materials Subject Areas: Imaging Methods in Chemistry, Materials Science, Energy Materials Honeycomb-layered phases Na M XO (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na Ni SbO material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na Ni SbO , characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni SbO layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. |
ArticleNumber | 100898 |
Author | Han, Zhen Wang, Peng Wei, Weifeng Huang, Qun Ding, Zhengping Chen, Cheng Gao, Peng Xiao, Lei |
AuthorAffiliation | 1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China 2 International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China 3 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China – name: 2 International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China – name: 3 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China |
Author_xml | – sequence: 1 givenname: Lei surname: Xiao fullname: Xiao, Lei organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China – sequence: 2 givenname: Zhengping surname: Ding fullname: Ding, Zhengping organization: International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China – sequence: 3 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China – sequence: 4 givenname: Zhen surname: Han fullname: Han, Zhen organization: National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China – sequence: 5 givenname: Peng surname: Wang fullname: Wang, Peng organization: National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China – sequence: 6 givenname: Qun surname: Huang fullname: Huang, Qun organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China – sequence: 7 givenname: Peng surname: Gao fullname: Gao, Peng email: p-gao@pku.edu.cn organization: International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China – sequence: 8 givenname: Weifeng surname: Wei fullname: Wei, Weifeng email: weifengwei@csu.edu.cn organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32092700$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAQtlARfdA_wAHlyCXL-LF5SAgJLZSutNIeCuJoOfZk16skLrZTsf8epylVy6EHy_bM9xjNzDk5GdyAhLyjsKBAi4-HhQ3aLhiwKQBVXb0iZ2xZ1TmAYCdP3qfkMoQDQEICE3XxhpxyBjUrAc7Ir_UQ7G4fMztEl8U9ZjfRjzqOXnXZVxucN-hTMrtO9kft-ibfTiE02Y0zduzzjTref7d_rMFspeLeGQxvyetWdQEvH-4L8vPq24_Vdb7Zfl-vvmxyvWQ05sihNUhVycQSjRBANSjDeVtASWvVsKYsjEpHI102qq1QmYa1vBC0LXhCXpD1rGucOshbb3vlj9IpK-8Dzu-k8tHqDqUBwYu2aAowTKCoGmNYBaIFDUVdqTppfZ61bsemx2Q5xNSFZ6LPM4Pdy527kyXwCoAngQ8PAt79HjFE2achYdepAd0YJEt1J2jFWYK-f-r1aPJvMgnAZoD2LgSP7SOEgpw2QB7ktAFy2gA5b0AiVf-RtI0qWjfVa7uXqZ9mKqZp3Vn0MiFw0GisRx1TO-1L9L-Nd8yc |
CitedBy_id | crossref_primary_10_1039_D0EE03295F crossref_primary_10_1111_ijac_14508 crossref_primary_10_1039_D2NA00265E crossref_primary_10_1111_ijac_13847 crossref_primary_10_1039_D0CS00320D crossref_primary_10_1016_j_mtla_2021_101003 crossref_primary_10_1016_j_xcrp_2021_100631 crossref_primary_10_1039_D3CS00929G crossref_primary_10_1016_j_electacta_2024_145159 crossref_primary_10_1016_j_actamat_2020_08_015 crossref_primary_10_1002_smtd_202201555 crossref_primary_10_1002_smll_202006259 crossref_primary_10_1016_j_commatsci_2022_111322 crossref_primary_10_1021_acsanm_0c02601 |
Cites_doi | 10.1016/j.scriptamat.2015.12.020 10.1016/0378-4363(80)90214-4 10.1021/cm504339y 10.1016/j.electacta.2017.10.072 10.1002/adma.201903483 10.1016/j.electacta.2015.01.118 10.1021/cm047779m 10.1103/PhysRevB.92.144401 10.1021/acs.chemmater.5b03276 10.1021/cr3001862 10.1016/j.jssc.2007.01.002 10.1016/j.jssc.2009.12.002 10.1039/C1DT11322D 10.1021/acsami.6b10841 10.1039/C4TA06688J 10.1038/ncomms9711 10.1038/ncomms7954 10.1002/anie.201602202 10.1016/j.nanoen.2017.02.046 10.1038/ncomms11397 10.1021/acsenergylett.7b00930 10.1021/cr500192f 10.1039/C3CC47351A 10.1021/am502343s 10.1021/acs.inorgchem.6b01078 10.1039/C6CS00776G 10.1039/C6TA07392A 10.1126/science.1212741 10.1039/C4EE03192J 10.1021/ic402131e 10.1039/c1ee01782a 10.1038/nmat3309 10.1002/aenm.201601698 10.1039/C4CP02957G 10.1016/j.jpowsour.2014.02.048 10.1002/adfm.201603439 10.1002/adma.201401946 10.1021/jp411382r 10.1016/j.ensm.2019.07.032 10.1007/s12274-017-1863-1 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100898 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_d0436f6b60d24e48bdd2804f0c0698a9 PMC7038003 32092700 10_1016_j_isci_2020_100898 S2589004220300821 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-e30fde1a7245ed4401c0ad33f60719ab2b76da76dce15baf8eadb2f3641f63ad3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:24:54 EDT 2025 Thu Aug 21 14:12:47 EDT 2025 Fri Jul 11 03:58:51 EDT 2025 Thu Jan 02 22:57:52 EST 2025 Tue Jul 01 01:03:28 EDT 2025 Thu Apr 24 22:56:01 EDT 2025 Tue Jul 25 21:04:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Imaging Methods in Chemistry Energy Materials Materials Science |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-e30fde1a7245ed4401c0ad33f60719ab2b76da76dce15baf8eadb2f3641f63ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://doaj.org/article/d0436f6b60d24e48bdd2804f0c0698a9 |
PMID | 32092700 |
PQID | 2364038832 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0436f6b60d24e48bdd2804f0c0698a9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7038003 proquest_miscellaneous_2364038832 pubmed_primary_32092700 crossref_primary_10_1016_j_isci_2020_100898 crossref_citationtrail_10_1016_j_isci_2020_100898 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Yuan, Liang, Wu, Cao, Ai, Feng, Yang (bib37) 2014; 26 Yabuuchi, Kajiyama, Iwatate, Nishikawa, Hitomi, Okuyama, Usui, Yamada, Komaba (bib33) 2012; 11 Ma, Bo, Wu, Zhu, Grey, Khalifah (bib17) 2015; 27 Aidhy, Lu, Jin, Bei, Zhang, Wang, Weber (bib1) 2016; 114 Wang, You, Yin, Wang, Wan, Gu, Guo (bib28) 2016; 55 Wang, Liu, Iwao, Okubo, Yamada (bib26) 2014; 118 Viciu, Huang, Morosan, Zandbergen, Greenbaum, McQueen, Cava (bib25) 2007; 180 Kalluri, Seng, Pang, Guo, Chen, Liu, Dou (bib13) 2014; 6 Liu, Yin, Wu, Bai, Bak, Yu, Zhu, Yang, Khalifah (bib15) 2016; 55 Wang, Xiao, Hu, Avdeev, Chen (bib27) 2015; 6 Zhao, Wang, Hu, Liu, Yu, Olguin, Wynn, Meng, Page, Wang (bib38) 2020; 24 Han, Gonzalo, Sharma, Lopez delAmo, Armand, Avdeev, Garitaonandia, Rojo (bib8) 2016; 28 Hwang, Myung, Yoon, Kim, Aurbach, Sun (bib10) 2016; 26 Hwang, Belharouak, Sun (bib11) 2016; 4 Dai, Yang, Ou, Liang, Xue, Wang, Xu (bib3) 2017; 257 Wang, Yao, You, Sun, Yin, Guo (bib31) 2018; 11 Huon Han, Gonzalo, Casas-Cabanas, Rojo (bib9) 2014; 258 Mortemard de Boisse, Liu, Ma, Nishimura, Chung, Kiuchi, Harada, Kikkawa, Kobayashi, Okubo (bib20) 2016; 7 Yabuuchi, Kubota, Dahbi, Komaba (bib34) 2014; 114 Zvereva, Stratan, Ovchenkov, Nalbandyan, Lin, Vavilova, Iakovleva, Abdel-Hafiez, Silhanek, Chen (bib40) 2015; 92 Lu, Wang, Liu, Gu, Hu, Li, Demopoulos, Chen (bib16) 2014; 16 Wang, Weng, Xiao, Hu, Li, Li, Wang, Chen, Yang, Wen (bib32) 2019; 31 de Boisse, Cheng, Carlier, Guignard, Pan, Bordere, Filimonov, Drathen, Suard, Hwang (bib2) 2015; 3 Dunn, Kamath, Tarascon (bib5) 2011; 334 Kang, Yu, Lee, Zhang, Bian, Li, Ng, Zhang, Lee (bib14) 2016; 8 Hwang, Myung, Sun (bib12) 2017; 46 Shukla, Ramasse, Ophus, Duncan, Hage, Chen (bib24) 2015; 6 Ong, Chevrier, Hautier, Jain, Moore, Kim, Ma, Ceder (bib21) 2011; 4 Wang, Zhang, Ren, Zuo, Yin, Wang (bib29) 2017; 34 Masquelier, Croguennec (bib18) 2013; 113 Politaev, Nalbandyan, Petrenko, Shukaev, Volotchaev, Medvedev (bib22) 2010; 183 You, Kim, Manthiram (bib35) 2017; 7 Guo, Wang, Han, Yu, Qi, Sun, Hu, Liu, Chen, Chen (bib6) 2015; 158 Delmas, Hagenmuller (bib4) 1980; 99 Han, Gonzalo, Singh, Rojo (bib7) 2015; 8 Yu, Guo, Zhu, Ishida, Zhou (bib36) 2014; 50 Meng, Grey, Yoon, Jiang, Bre'ger, Shao-Horn (bib19) 2005; 17 Wang, Guo, Duan, Zuo, Hu, Attenkofer, Li, Zhao, Yin, Yu (bib30) 2017; 2 Zvereva, Evstigneeva, Nalbandyan, Savelieva, Ibragimov, Volkova, Medvedeva, Vasiliev, Klingeler, Buechner (bib39) 2012; 41 Seibel, Roudebush, Wu, Huang, Ali, Ji, Cava (bib23) 2013; 52 Kalluri (10.1016/j.isci.2020.100898_bib13) 2014; 6 Han (10.1016/j.isci.2020.100898_bib7) 2015; 8 Politaev (10.1016/j.isci.2020.100898_bib22) 2010; 183 de Boisse (10.1016/j.isci.2020.100898_bib2) 2015; 3 Hwang (10.1016/j.isci.2020.100898_bib10) 2016; 26 Ong (10.1016/j.isci.2020.100898_bib21) 2011; 4 Masquelier (10.1016/j.isci.2020.100898_bib18) 2013; 113 Kang (10.1016/j.isci.2020.100898_bib14) 2016; 8 Lu (10.1016/j.isci.2020.100898_bib16) 2014; 16 Seibel (10.1016/j.isci.2020.100898_bib23) 2013; 52 Wang (10.1016/j.isci.2020.100898_bib27) 2015; 6 Wang (10.1016/j.isci.2020.100898_bib30) 2017; 2 Wang (10.1016/j.isci.2020.100898_bib32) 2019; 31 Aidhy (10.1016/j.isci.2020.100898_bib1) 2016; 114 Dunn (10.1016/j.isci.2020.100898_bib5) 2011; 334 Huon Han (10.1016/j.isci.2020.100898_bib9) 2014; 258 Wang (10.1016/j.isci.2020.100898_bib26) 2014; 118 Hwang (10.1016/j.isci.2020.100898_bib12) 2017; 46 Zhao (10.1016/j.isci.2020.100898_bib38) 2020; 24 You (10.1016/j.isci.2020.100898_bib35) 2017; 7 Yuan (10.1016/j.isci.2020.100898_bib37) 2014; 26 Liu (10.1016/j.isci.2020.100898_bib15) 2016; 55 Ma (10.1016/j.isci.2020.100898_bib17) 2015; 27 Wang (10.1016/j.isci.2020.100898_bib31) 2018; 11 Yabuuchi (10.1016/j.isci.2020.100898_bib34) 2014; 114 Yu (10.1016/j.isci.2020.100898_bib36) 2014; 50 Hwang (10.1016/j.isci.2020.100898_bib11) 2016; 4 Wang (10.1016/j.isci.2020.100898_bib29) 2017; 34 Wang (10.1016/j.isci.2020.100898_bib28) 2016; 55 Yabuuchi (10.1016/j.isci.2020.100898_bib33) 2012; 11 Zvereva (10.1016/j.isci.2020.100898_bib39) 2012; 41 Guo (10.1016/j.isci.2020.100898_bib6) 2015; 158 Dai (10.1016/j.isci.2020.100898_bib3) 2017; 257 Mortemard de Boisse (10.1016/j.isci.2020.100898_bib20) 2016; 7 Viciu (10.1016/j.isci.2020.100898_bib25) 2007; 180 Shukla (10.1016/j.isci.2020.100898_bib24) 2015; 6 Delmas (10.1016/j.isci.2020.100898_bib4) 1980; 99 Meng (10.1016/j.isci.2020.100898_bib19) 2005; 17 Han (10.1016/j.isci.2020.100898_bib8) 2016; 28 Zvereva (10.1016/j.isci.2020.100898_bib40) 2015; 92 |
References_xml | – volume: 113 start-page: 6552 year: 2013 end-page: 6591 ident: bib18 article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries publication-title: Chem. Rev. – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: bib5 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science – volume: 6 start-page: 8953 year: 2014 end-page: 8958 ident: bib13 article-title: Electrospun P2-type Na-2/3(Fe1/2Mn1/2)O-2 hierarchical nanofibers as cathode material for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2715 year: 2017 end-page: 2722 ident: bib30 article-title: Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries publication-title: ACS Energy Lett. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 ident: bib34 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. – volume: 257 start-page: 146 year: 2017 end-page: 154 ident: bib3 article-title: Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation publication-title: Electrochim. Acta – volume: 24 start-page: 384 year: 2020 end-page: 393 ident: bib38 article-title: Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides publication-title: Energy Storage Mater. – volume: 99 start-page: 81 year: 1980 end-page: 85 ident: bib4 article-title: Structural classification and properties of the layered oxides publication-title: Phys. B+C – volume: 6 start-page: 8711 year: 2015 ident: bib24 article-title: Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides publication-title: Nat. Commun. – volume: 6 start-page: 6954 year: 2015 ident: bib27 article-title: P2-Na-0.6 Cr0.6Ti0.4 O-2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries publication-title: Nat. Commun. – volume: 8 start-page: 31661 year: 2016 end-page: 31668 ident: bib14 article-title: P2-Type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 118 start-page: 2970 year: 2014 end-page: 2976 ident: bib26 article-title: Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties publication-title: J. Phys. Chem. C – volume: 4 start-page: 17952 year: 2016 end-page: 17959 ident: bib11 article-title: A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 92 start-page: 144401 year: 2015 ident: bib40 article-title: Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonatesA3Ni2SbO6(A=Li,Na) publication-title: Phys. Rev. B – volume: 41 start-page: 572 year: 2012 end-page: 580 ident: bib39 article-title: Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties publication-title: Dalton Trans. – volume: 258 start-page: 266 year: 2014 end-page: 271 ident: bib9 article-title: Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process publication-title: J. Power Sources – volume: 28 start-page: 106 year: 2016 ident: bib8 article-title: High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries publication-title: Chem. Mater. – volume: 7 start-page: 1601698 year: 2017 ident: bib35 article-title: A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition publication-title: Adv. Energy Mater. – volume: 50 start-page: 457 year: 2014 end-page: 459 ident: bib36 article-title: Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries publication-title: Chem. Commun. (Camb.) – volume: 52 start-page: 13605 year: 2013 end-page: 13611 ident: bib23 article-title: Structure and magnetic properties of the alpha-NaFeO2-type honeycomb compound Na3Ni2BiO6 publication-title: Inorg. Chem. – volume: 16 start-page: 21946 year: 2014 end-page: 21952 ident: bib16 article-title: Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale publication-title: Phys. Chem. Chem. Phys. – volume: 31 start-page: e1903483 year: 2019 ident: bib32 article-title: An ordered Ni6 -ring superstructure enables a highly stable sodium oxide cathode publication-title: Adv. Mater. – volume: 55 start-page: 7445 year: 2016 end-page: 7449 ident: bib28 article-title: Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 10976 year: 2015 end-page: 10989 ident: bib2 article-title: O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de) intercalation publication-title: J. Mater. Chem. A – volume: 17 start-page: 2386 year: 2005 end-page: 2394 ident: bib19 article-title: Cation Ordering in Layered O3 Li[NixLi1/32x/3Mn2/3-x/3]O2(0 e x e 1/2) Compounds publication-title: Chem. Mater. – volume: 7 start-page: 11397 year: 2016 ident: bib20 article-title: Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode publication-title: Nat. Commun. – volume: 27 start-page: 2387 year: 2015 end-page: 2399 ident: bib17 article-title: Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries publication-title: Chem. Mater. – volume: 180 start-page: 1060 year: 2007 end-page: 1067 ident: bib25 article-title: Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6 publication-title: J. Solid State Chem. – volume: 26 start-page: 6301 year: 2014 end-page: 6306 ident: bib37 article-title: A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries publication-title: Adv. Mater. – volume: 158 start-page: 258 year: 2015 end-page: 263 ident: bib6 article-title: Na-deficient O3-type cathode material Na-0.8 Ni0.3Co0.2Ti0.5 O-2 for room-temperature sodium-ion batteries publication-title: Electrochim. Acta – volume: 26 start-page: 8083 year: 2016 end-page: 8093 ident: bib10 article-title: Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na Ni0.61Co0.12Mn0.27 O-2 assembled in spherical secondary particles publication-title: Adv. Funct. Mater. – volume: 55 start-page: 8478 year: 2016 end-page: 8492 ident: bib15 article-title: Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries publication-title: Inorg. Chem. – volume: 8 start-page: 81 year: 2015 end-page: 102 ident: bib7 article-title: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries publication-title: Energy Environ. Sci. – volume: 4 start-page: 3680 year: 2011 end-page: 3688 ident: bib21 article-title: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials publication-title: Energy Environ. Sci. – volume: 11 start-page: 3258 year: 2018 end-page: 3271 ident: bib31 article-title: Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes publication-title: Nano Res. – volume: 11 start-page: 512 year: 2012 ident: bib33 article-title: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries publication-title: Nat. Mater. – volume: 114 start-page: 137 year: 2016 end-page: 141 ident: bib1 article-title: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism publication-title: Scripta Mater. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: bib12 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – volume: 183 start-page: 684 year: 2010 end-page: 691 ident: bib22 article-title: Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg) publication-title: J. Solid State Chem. – volume: 34 start-page: 215 year: 2017 end-page: 223 ident: bib29 article-title: Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries publication-title: Nano Energy – volume: 114 start-page: 137 year: 2016 ident: 10.1016/j.isci.2020.100898_bib1 article-title: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2015.12.020 – volume: 99 start-page: 81 year: 1980 ident: 10.1016/j.isci.2020.100898_bib4 article-title: Structural classification and properties of the layered oxides publication-title: Phys. B+C doi: 10.1016/0378-4363(80)90214-4 – volume: 27 start-page: 2387 year: 2015 ident: 10.1016/j.isci.2020.100898_bib17 article-title: Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries publication-title: Chem. Mater. doi: 10.1021/cm504339y – volume: 257 start-page: 146 year: 2017 ident: 10.1016/j.isci.2020.100898_bib3 article-title: Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.072 – volume: 31 start-page: e1903483 year: 2019 ident: 10.1016/j.isci.2020.100898_bib32 article-title: An ordered Ni6 -ring superstructure enables a highly stable sodium oxide cathode publication-title: Adv. Mater. doi: 10.1002/adma.201903483 – volume: 158 start-page: 258 year: 2015 ident: 10.1016/j.isci.2020.100898_bib6 article-title: Na-deficient O3-type cathode material Na-0.8 Ni0.3Co0.2Ti0.5 O-2 for room-temperature sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.118 – volume: 17 start-page: 2386 year: 2005 ident: 10.1016/j.isci.2020.100898_bib19 article-title: Cation Ordering in Layered O3 Li[NixLi1/32x/3Mn2/3-x/3]O2(0 e x e 1/2) Compounds publication-title: Chem. Mater. doi: 10.1021/cm047779m – volume: 92 start-page: 144401 year: 2015 ident: 10.1016/j.isci.2020.100898_bib40 article-title: Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonatesA3Ni2SbO6(A=Li,Na) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.144401 – volume: 28 start-page: 106 year: 2016 ident: 10.1016/j.isci.2020.100898_bib8 article-title: High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03276 – volume: 113 start-page: 6552 year: 2013 ident: 10.1016/j.isci.2020.100898_bib18 article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries publication-title: Chem. Rev. doi: 10.1021/cr3001862 – volume: 180 start-page: 1060 year: 2007 ident: 10.1016/j.isci.2020.100898_bib25 article-title: Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2007.01.002 – volume: 183 start-page: 684 year: 2010 ident: 10.1016/j.isci.2020.100898_bib22 article-title: Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.12.002 – volume: 41 start-page: 572 year: 2012 ident: 10.1016/j.isci.2020.100898_bib39 article-title: Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties publication-title: Dalton Trans. doi: 10.1039/C1DT11322D – volume: 8 start-page: 31661 year: 2016 ident: 10.1016/j.isci.2020.100898_bib14 article-title: P2-Type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10841 – volume: 3 start-page: 10976 year: 2015 ident: 10.1016/j.isci.2020.100898_bib2 article-title: O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de) intercalation publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06688J – volume: 6 start-page: 8711 year: 2015 ident: 10.1016/j.isci.2020.100898_bib24 article-title: Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides publication-title: Nat. Commun. doi: 10.1038/ncomms9711 – volume: 6 start-page: 6954 year: 2015 ident: 10.1016/j.isci.2020.100898_bib27 article-title: P2-Na-0.6 Cr0.6Ti0.4 O-2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms7954 – volume: 55 start-page: 7445 year: 2016 ident: 10.1016/j.isci.2020.100898_bib28 article-title: Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602202 – volume: 34 start-page: 215 year: 2017 ident: 10.1016/j.isci.2020.100898_bib29 article-title: Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.046 – volume: 7 start-page: 11397 year: 2016 ident: 10.1016/j.isci.2020.100898_bib20 article-title: Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode publication-title: Nat. Commun. doi: 10.1038/ncomms11397 – volume: 2 start-page: 2715 year: 2017 ident: 10.1016/j.isci.2020.100898_bib30 article-title: Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00930 – volume: 114 start-page: 11636 year: 2014 ident: 10.1016/j.isci.2020.100898_bib34 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500192f – volume: 50 start-page: 457 year: 2014 ident: 10.1016/j.isci.2020.100898_bib36 article-title: Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries publication-title: Chem. Commun. (Camb.) doi: 10.1039/C3CC47351A – volume: 6 start-page: 8953 year: 2014 ident: 10.1016/j.isci.2020.100898_bib13 article-title: Electrospun P2-type Na-2/3(Fe1/2Mn1/2)O-2 hierarchical nanofibers as cathode material for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502343s – volume: 55 start-page: 8478 year: 2016 ident: 10.1016/j.isci.2020.100898_bib15 article-title: Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01078 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.isci.2020.100898_bib12 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 4 start-page: 17952 year: 2016 ident: 10.1016/j.isci.2020.100898_bib11 article-title: A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07392A – volume: 334 start-page: 928 year: 2011 ident: 10.1016/j.isci.2020.100898_bib5 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 8 start-page: 81 year: 2015 ident: 10.1016/j.isci.2020.100898_bib7 article-title: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03192J – volume: 52 start-page: 13605 year: 2013 ident: 10.1016/j.isci.2020.100898_bib23 article-title: Structure and magnetic properties of the alpha-NaFeO2-type honeycomb compound Na3Ni2BiO6 publication-title: Inorg. Chem. doi: 10.1021/ic402131e – volume: 4 start-page: 3680 year: 2011 ident: 10.1016/j.isci.2020.100898_bib21 article-title: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01782a – volume: 11 start-page: 512 year: 2012 ident: 10.1016/j.isci.2020.100898_bib33 article-title: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries publication-title: Nat. Mater. doi: 10.1038/nmat3309 – volume: 7 start-page: 1601698 year: 2017 ident: 10.1016/j.isci.2020.100898_bib35 article-title: A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601698 – volume: 16 start-page: 21946 year: 2014 ident: 10.1016/j.isci.2020.100898_bib16 article-title: Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02957G – volume: 258 start-page: 266 year: 2014 ident: 10.1016/j.isci.2020.100898_bib9 article-title: Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.048 – volume: 26 start-page: 8083 year: 2016 ident: 10.1016/j.isci.2020.100898_bib10 article-title: Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na Ni0.61Co0.12Mn0.27 O-2 assembled in spherical secondary particles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603439 – volume: 26 start-page: 6301 year: 2014 ident: 10.1016/j.isci.2020.100898_bib37 article-title: A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201401946 – volume: 118 start-page: 2970 year: 2014 ident: 10.1016/j.isci.2020.100898_bib26 article-title: Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties publication-title: J. Phys. Chem. C doi: 10.1021/jp411382r – volume: 24 start-page: 384 year: 2020 ident: 10.1016/j.isci.2020.100898_bib38 article-title: Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.032 – volume: 11 start-page: 3258 year: 2018 ident: 10.1016/j.isci.2020.100898_bib31 article-title: Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes publication-title: Nano Res. doi: 10.1007/s12274-017-1863-1 |
SSID | ssj0002002496 |
Score | 2.2328126 |
Snippet | Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for... Honeycomb-layered phases Na M XO (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for... Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for... Honeycomb-layered phases Na 3 M 2 XO 6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100898 |
SubjectTerms | Energy Materials Imaging Methods in Chemistry Materials Science |
Title | Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes |
URI | https://dx.doi.org/10.1016/j.isci.2020.100898 https://www.ncbi.nlm.nih.gov/pubmed/32092700 https://www.proquest.com/docview/2364038832 https://pubmed.ncbi.nlm.nih.gov/PMC7038003 https://doaj.org/article/d0436f6b60d24e48bdd2804f0c0698a9 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA_iyYso60fdDyJ4k2InadP2qIsyih8HFb2FpEnYDrut7MyA_ve-l7TDdIXZi4dS2qZt8vJL8h557_cIOQJLh3GHe-oiqWKY8PJYVTAeuSvyXIlKCIvByTe3YvyYXj1nz0upvtAnLNADB8GdGORId0KLxLDUpoU2hhVJ6pIqEWWhfOgerHlLxtTEb68hFZ7PLJehTxBAs4uYCc5dGPEKxiHzXgJFWQxWJU_eP1icPiqf__pQLi1KF1tks9Mm6WloxTZZs80X8nTZTNHkpnUzaykoePTek8QiwQbt2TbhIR23jX0DxOn47q_P2UnvW1PP_8TX6s1f3r3WxlIMEmyNne6Qx4vzh5_juMufEFeYpiC2PHHGjlTO0syaFCypKlGGc4eccqXSTOfCKDgqO8q0cgWgSjPHRTpygkPJXbLeQE32CUXPKqS1KS0vUuT6FU7bklk459g_ERn18pNVRy6OOS5-y96LbCJR5hJlLoPMI3K8eOclUGusLH2G3bIoibTY_gaARXZgkf8DS0SyvlNlp2EEzQE-Va_8-WGPAAnDD_dUVGPb-VQi_z4S6nAWkb2AiEUVOQAT9_Ujkg-wMmjD8ElT__IU3zAPgybPDz6j0V_JBjYlOM59I-sAOfsdNKmZ_uEHzTuuLhlx |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Structural+Disorder+in+Honeycomb-Ordered+Sodium-Layered+Oxide+Cathodes&rft.jtitle=iScience&rft.au=Xiao%2C+Lei&rft.au=Ding%2C+Zhengping&rft.au=Chen%2C+Cheng&rft.au=Han%2C+Zhen&rft.date=2020-03-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2020.100898&rft.externalDocID=S2589004220300821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |