Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes

Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 3; p. 100898
Main Authors Xiao, Lei, Ding, Zhengping, Chen, Cheng, Han, Zhen, Wang, Peng, Huang, Qun, Gao, Peng, Wei, Weifeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. [Display omitted] •The intrinsic structural disorder in Na3Ni2SbO6 is unambiguously revealed•Detailed atomic-resolution STEM imaging and crystallography analysis are conducted•The structural disorder is associated with three variants of a monoclinic phase Imaging Methods in Chemistry; Materials Science; Energy Materials
AbstractList Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials.Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials.
Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. [Display omitted] •The intrinsic structural disorder in Na3Ni2SbO6 is unambiguously revealed•Detailed atomic-resolution STEM imaging and crystallography analysis are conducted•The structural disorder is associated with three variants of a monoclinic phase Imaging Methods in Chemistry; Materials Science; Energy Materials
Honeycomb-layered phases Na 3 M 2 XO 6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na 3 Ni 2 SbO 6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na 3 Ni 2 SbO 6 , characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni 2 SbO 6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. • The intrinsic structural disorder in Na 3 Ni 2 SbO 6 is unambiguously revealed • Detailed atomic-resolution STEM imaging and crystallography analysis are conducted • The structural disorder is associated with three variants of a monoclinic phase Imaging Methods in Chemistry; Materials Science; Energy Materials
Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na3Ni2SbO6 material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na3Ni2SbO6, characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni2SbO6 layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials. : Imaging Methods in Chemistry; Materials Science; Energy Materials Subject Areas: Imaging Methods in Chemistry, Materials Science, Energy Materials
Honeycomb-layered phases Na M XO (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for Na-ion batteries (NIBs), but the crystal structure is not well elucidated. Herein, structural analysis was conducted on pristine Na Ni SbO material using electron microscopy and associated spectroscopies to reveal its crystallographic features. Experimental observations along multiple zone axes indicate that structural disorder is intrinsic in the pristine Na Ni SbO , characteristic of randomly stacked layers with three variants of monoclinic structure. Stacking disorder is demonstrated by the non-vertical relationship of adjacent Ni SbO layers in [100] zone axis, the different Ni/Sb atomic arrangements in [010] zone axis, and the Ni/Sb random overlap in [001] zone axis. The insight on the structural disorder may inspire studies on their phase transformations upon cycling and provide some clues to potentially solve the voltage/capacity decay problems of these honeycomb-layered materials.
ArticleNumber 100898
Author Han, Zhen
Wang, Peng
Wei, Weifeng
Huang, Qun
Ding, Zhengping
Chen, Cheng
Gao, Peng
Xiao, Lei
AuthorAffiliation 1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
2 International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
3 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
– name: 2 International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
– name: 3 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
Author_xml – sequence: 1
  givenname: Lei
  surname: Xiao
  fullname: Xiao, Lei
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
– sequence: 2
  givenname: Zhengping
  surname: Ding
  fullname: Ding, Zhengping
  organization: International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
– sequence: 4
  givenname: Zhen
  surname: Han
  fullname: Han, Zhen
  organization: National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
– sequence: 6
  givenname: Qun
  surname: Huang
  fullname: Huang, Qun
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
– sequence: 7
  givenname: Peng
  surname: Gao
  fullname: Gao, Peng
  email: p-gao@pku.edu.cn
  organization: International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China
– sequence: 8
  givenname: Weifeng
  surname: Wei
  fullname: Wei, Weifeng
  email: weifengwei@csu.edu.cn
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32092700$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQtlARfdA_wAHlyCXL-LF5SAgJLZSutNIeCuJoOfZk16skLrZTsf8epylVy6EHy_bM9xjNzDk5GdyAhLyjsKBAi4-HhQ3aLhiwKQBVXb0iZ2xZ1TmAYCdP3qfkMoQDQEICE3XxhpxyBjUrAc7Ir_UQ7G4fMztEl8U9ZjfRjzqOXnXZVxucN-hTMrtO9kft-ibfTiE02Y0zduzzjTref7d_rMFspeLeGQxvyetWdQEvH-4L8vPq24_Vdb7Zfl-vvmxyvWQ05sihNUhVycQSjRBANSjDeVtASWvVsKYsjEpHI102qq1QmYa1vBC0LXhCXpD1rGucOshbb3vlj9IpK-8Dzu-k8tHqDqUBwYu2aAowTKCoGmNYBaIFDUVdqTppfZ61bsemx2Q5xNSFZ6LPM4Pdy527kyXwCoAngQ8PAt79HjFE2achYdepAd0YJEt1J2jFWYK-f-r1aPJvMgnAZoD2LgSP7SOEgpw2QB7ktAFy2gA5b0AiVf-RtI0qWjfVa7uXqZ9mKqZp3Vn0MiFw0GisRx1TO-1L9L-Nd8yc
CitedBy_id crossref_primary_10_1039_D0EE03295F
crossref_primary_10_1111_ijac_14508
crossref_primary_10_1039_D2NA00265E
crossref_primary_10_1111_ijac_13847
crossref_primary_10_1039_D0CS00320D
crossref_primary_10_1016_j_mtla_2021_101003
crossref_primary_10_1016_j_xcrp_2021_100631
crossref_primary_10_1039_D3CS00929G
crossref_primary_10_1016_j_electacta_2024_145159
crossref_primary_10_1016_j_actamat_2020_08_015
crossref_primary_10_1002_smtd_202201555
crossref_primary_10_1002_smll_202006259
crossref_primary_10_1016_j_commatsci_2022_111322
crossref_primary_10_1021_acsanm_0c02601
Cites_doi 10.1016/j.scriptamat.2015.12.020
10.1016/0378-4363(80)90214-4
10.1021/cm504339y
10.1016/j.electacta.2017.10.072
10.1002/adma.201903483
10.1016/j.electacta.2015.01.118
10.1021/cm047779m
10.1103/PhysRevB.92.144401
10.1021/acs.chemmater.5b03276
10.1021/cr3001862
10.1016/j.jssc.2007.01.002
10.1016/j.jssc.2009.12.002
10.1039/C1DT11322D
10.1021/acsami.6b10841
10.1039/C4TA06688J
10.1038/ncomms9711
10.1038/ncomms7954
10.1002/anie.201602202
10.1016/j.nanoen.2017.02.046
10.1038/ncomms11397
10.1021/acsenergylett.7b00930
10.1021/cr500192f
10.1039/C3CC47351A
10.1021/am502343s
10.1021/acs.inorgchem.6b01078
10.1039/C6CS00776G
10.1039/C6TA07392A
10.1126/science.1212741
10.1039/C4EE03192J
10.1021/ic402131e
10.1039/c1ee01782a
10.1038/nmat3309
10.1002/aenm.201601698
10.1039/C4CP02957G
10.1016/j.jpowsour.2014.02.048
10.1002/adfm.201603439
10.1002/adma.201401946
10.1021/jp411382r
10.1016/j.ensm.2019.07.032
10.1007/s12274-017-1863-1
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2020.100898
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_d0436f6b60d24e48bdd2804f0c0698a9
PMC7038003
32092700
10_1016_j_isci_2020_100898
S2589004220300821
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-e30fde1a7245ed4401c0ad33f60719ab2b76da76dce15baf8eadb2f3641f63ad3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:24:54 EDT 2025
Thu Aug 21 14:12:47 EDT 2025
Fri Jul 11 03:58:51 EDT 2025
Thu Jan 02 22:57:52 EST 2025
Tue Jul 01 01:03:28 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Tue Jul 25 21:04:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Imaging Methods in Chemistry
Energy Materials
Materials Science
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-e30fde1a7245ed4401c0ad33f60719ab2b76da76dce15baf8eadb2f3641f63ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://doaj.org/article/d0436f6b60d24e48bdd2804f0c0698a9
PMID 32092700
PQID 2364038832
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d0436f6b60d24e48bdd2804f0c0698a9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7038003
proquest_miscellaneous_2364038832
pubmed_primary_32092700
crossref_primary_10_1016_j_isci_2020_100898
crossref_citationtrail_10_1016_j_isci_2020_100898
elsevier_sciencedirect_doi_10_1016_j_isci_2020_100898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-27
PublicationDateYYYYMMDD 2020-03-27
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Yuan, Liang, Wu, Cao, Ai, Feng, Yang (bib37) 2014; 26
Yabuuchi, Kajiyama, Iwatate, Nishikawa, Hitomi, Okuyama, Usui, Yamada, Komaba (bib33) 2012; 11
Ma, Bo, Wu, Zhu, Grey, Khalifah (bib17) 2015; 27
Aidhy, Lu, Jin, Bei, Zhang, Wang, Weber (bib1) 2016; 114
Wang, You, Yin, Wang, Wan, Gu, Guo (bib28) 2016; 55
Wang, Liu, Iwao, Okubo, Yamada (bib26) 2014; 118
Viciu, Huang, Morosan, Zandbergen, Greenbaum, McQueen, Cava (bib25) 2007; 180
Kalluri, Seng, Pang, Guo, Chen, Liu, Dou (bib13) 2014; 6
Liu, Yin, Wu, Bai, Bak, Yu, Zhu, Yang, Khalifah (bib15) 2016; 55
Wang, Xiao, Hu, Avdeev, Chen (bib27) 2015; 6
Zhao, Wang, Hu, Liu, Yu, Olguin, Wynn, Meng, Page, Wang (bib38) 2020; 24
Han, Gonzalo, Sharma, Lopez delAmo, Armand, Avdeev, Garitaonandia, Rojo (bib8) 2016; 28
Hwang, Myung, Yoon, Kim, Aurbach, Sun (bib10) 2016; 26
Hwang, Belharouak, Sun (bib11) 2016; 4
Dai, Yang, Ou, Liang, Xue, Wang, Xu (bib3) 2017; 257
Wang, Yao, You, Sun, Yin, Guo (bib31) 2018; 11
Huon Han, Gonzalo, Casas-Cabanas, Rojo (bib9) 2014; 258
Mortemard de Boisse, Liu, Ma, Nishimura, Chung, Kiuchi, Harada, Kikkawa, Kobayashi, Okubo (bib20) 2016; 7
Yabuuchi, Kubota, Dahbi, Komaba (bib34) 2014; 114
Zvereva, Stratan, Ovchenkov, Nalbandyan, Lin, Vavilova, Iakovleva, Abdel-Hafiez, Silhanek, Chen (bib40) 2015; 92
Lu, Wang, Liu, Gu, Hu, Li, Demopoulos, Chen (bib16) 2014; 16
Wang, Weng, Xiao, Hu, Li, Li, Wang, Chen, Yang, Wen (bib32) 2019; 31
de Boisse, Cheng, Carlier, Guignard, Pan, Bordere, Filimonov, Drathen, Suard, Hwang (bib2) 2015; 3
Dunn, Kamath, Tarascon (bib5) 2011; 334
Kang, Yu, Lee, Zhang, Bian, Li, Ng, Zhang, Lee (bib14) 2016; 8
Hwang, Myung, Sun (bib12) 2017; 46
Shukla, Ramasse, Ophus, Duncan, Hage, Chen (bib24) 2015; 6
Ong, Chevrier, Hautier, Jain, Moore, Kim, Ma, Ceder (bib21) 2011; 4
Wang, Zhang, Ren, Zuo, Yin, Wang (bib29) 2017; 34
Masquelier, Croguennec (bib18) 2013; 113
Politaev, Nalbandyan, Petrenko, Shukaev, Volotchaev, Medvedev (bib22) 2010; 183
You, Kim, Manthiram (bib35) 2017; 7
Guo, Wang, Han, Yu, Qi, Sun, Hu, Liu, Chen, Chen (bib6) 2015; 158
Delmas, Hagenmuller (bib4) 1980; 99
Han, Gonzalo, Singh, Rojo (bib7) 2015; 8
Yu, Guo, Zhu, Ishida, Zhou (bib36) 2014; 50
Meng, Grey, Yoon, Jiang, Bre'ger, Shao-Horn (bib19) 2005; 17
Wang, Guo, Duan, Zuo, Hu, Attenkofer, Li, Zhao, Yin, Yu (bib30) 2017; 2
Zvereva, Evstigneeva, Nalbandyan, Savelieva, Ibragimov, Volkova, Medvedeva, Vasiliev, Klingeler, Buechner (bib39) 2012; 41
Seibel, Roudebush, Wu, Huang, Ali, Ji, Cava (bib23) 2013; 52
Kalluri (10.1016/j.isci.2020.100898_bib13) 2014; 6
Han (10.1016/j.isci.2020.100898_bib7) 2015; 8
Politaev (10.1016/j.isci.2020.100898_bib22) 2010; 183
de Boisse (10.1016/j.isci.2020.100898_bib2) 2015; 3
Hwang (10.1016/j.isci.2020.100898_bib10) 2016; 26
Ong (10.1016/j.isci.2020.100898_bib21) 2011; 4
Masquelier (10.1016/j.isci.2020.100898_bib18) 2013; 113
Kang (10.1016/j.isci.2020.100898_bib14) 2016; 8
Lu (10.1016/j.isci.2020.100898_bib16) 2014; 16
Seibel (10.1016/j.isci.2020.100898_bib23) 2013; 52
Wang (10.1016/j.isci.2020.100898_bib27) 2015; 6
Wang (10.1016/j.isci.2020.100898_bib30) 2017; 2
Wang (10.1016/j.isci.2020.100898_bib32) 2019; 31
Aidhy (10.1016/j.isci.2020.100898_bib1) 2016; 114
Dunn (10.1016/j.isci.2020.100898_bib5) 2011; 334
Huon Han (10.1016/j.isci.2020.100898_bib9) 2014; 258
Wang (10.1016/j.isci.2020.100898_bib26) 2014; 118
Hwang (10.1016/j.isci.2020.100898_bib12) 2017; 46
Zhao (10.1016/j.isci.2020.100898_bib38) 2020; 24
You (10.1016/j.isci.2020.100898_bib35) 2017; 7
Yuan (10.1016/j.isci.2020.100898_bib37) 2014; 26
Liu (10.1016/j.isci.2020.100898_bib15) 2016; 55
Ma (10.1016/j.isci.2020.100898_bib17) 2015; 27
Wang (10.1016/j.isci.2020.100898_bib31) 2018; 11
Yabuuchi (10.1016/j.isci.2020.100898_bib34) 2014; 114
Yu (10.1016/j.isci.2020.100898_bib36) 2014; 50
Hwang (10.1016/j.isci.2020.100898_bib11) 2016; 4
Wang (10.1016/j.isci.2020.100898_bib29) 2017; 34
Wang (10.1016/j.isci.2020.100898_bib28) 2016; 55
Yabuuchi (10.1016/j.isci.2020.100898_bib33) 2012; 11
Zvereva (10.1016/j.isci.2020.100898_bib39) 2012; 41
Guo (10.1016/j.isci.2020.100898_bib6) 2015; 158
Dai (10.1016/j.isci.2020.100898_bib3) 2017; 257
Mortemard de Boisse (10.1016/j.isci.2020.100898_bib20) 2016; 7
Viciu (10.1016/j.isci.2020.100898_bib25) 2007; 180
Shukla (10.1016/j.isci.2020.100898_bib24) 2015; 6
Delmas (10.1016/j.isci.2020.100898_bib4) 1980; 99
Meng (10.1016/j.isci.2020.100898_bib19) 2005; 17
Han (10.1016/j.isci.2020.100898_bib8) 2016; 28
Zvereva (10.1016/j.isci.2020.100898_bib40) 2015; 92
References_xml – volume: 113
  start-page: 6552
  year: 2013
  end-page: 6591
  ident: bib18
  article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
  publication-title: Chem. Rev.
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: bib5
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
– volume: 6
  start-page: 8953
  year: 2014
  end-page: 8958
  ident: bib13
  article-title: Electrospun P2-type Na-2/3(Fe1/2Mn1/2)O-2 hierarchical nanofibers as cathode material for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2715
  year: 2017
  end-page: 2722
  ident: bib30
  article-title: Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries
  publication-title: ACS Energy Lett.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  ident: bib34
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
– volume: 257
  start-page: 146
  year: 2017
  end-page: 154
  ident: bib3
  article-title: Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation
  publication-title: Electrochim. Acta
– volume: 24
  start-page: 384
  year: 2020
  end-page: 393
  ident: bib38
  article-title: Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides
  publication-title: Energy Storage Mater.
– volume: 99
  start-page: 81
  year: 1980
  end-page: 85
  ident: bib4
  article-title: Structural classification and properties of the layered oxides
  publication-title: Phys. B+C
– volume: 6
  start-page: 8711
  year: 2015
  ident: bib24
  article-title: Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6954
  year: 2015
  ident: bib27
  article-title: P2-Na-0.6 Cr0.6Ti0.4 O-2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries
  publication-title: Nat. Commun.
– volume: 8
  start-page: 31661
  year: 2016
  end-page: 31668
  ident: bib14
  article-title: P2-Type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  start-page: 2970
  year: 2014
  end-page: 2976
  ident: bib26
  article-title: Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 17952
  year: 2016
  end-page: 17959
  ident: bib11
  article-title: A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 92
  start-page: 144401
  year: 2015
  ident: bib40
  article-title: Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonatesA3Ni2SbO6(A=Li,Na)
  publication-title: Phys. Rev. B
– volume: 41
  start-page: 572
  year: 2012
  end-page: 580
  ident: bib39
  article-title: Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties
  publication-title: Dalton Trans.
– volume: 258
  start-page: 266
  year: 2014
  end-page: 271
  ident: bib9
  article-title: Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process
  publication-title: J. Power Sources
– volume: 28
  start-page: 106
  year: 2016
  ident: bib8
  article-title: High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries
  publication-title: Chem. Mater.
– volume: 7
  start-page: 1601698
  year: 2017
  ident: bib35
  article-title: A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 457
  year: 2014
  end-page: 459
  ident: bib36
  article-title: Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries
  publication-title: Chem. Commun. (Camb.)
– volume: 52
  start-page: 13605
  year: 2013
  end-page: 13611
  ident: bib23
  article-title: Structure and magnetic properties of the alpha-NaFeO2-type honeycomb compound Na3Ni2BiO6
  publication-title: Inorg. Chem.
– volume: 16
  start-page: 21946
  year: 2014
  end-page: 21952
  ident: bib16
  article-title: Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: e1903483
  year: 2019
  ident: bib32
  article-title: An ordered Ni6 -ring superstructure enables a highly stable sodium oxide cathode
  publication-title: Adv. Mater.
– volume: 55
  start-page: 7445
  year: 2016
  end-page: 7449
  ident: bib28
  article-title: Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 10976
  year: 2015
  end-page: 10989
  ident: bib2
  article-title: O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de) intercalation
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 2386
  year: 2005
  end-page: 2394
  ident: bib19
  article-title: Cation Ordering in Layered O3 Li[NixLi1/32x/3Mn2/3-x/3]O2(0 e x e 1/2) Compounds
  publication-title: Chem. Mater.
– volume: 7
  start-page: 11397
  year: 2016
  ident: bib20
  article-title: Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
  publication-title: Nat. Commun.
– volume: 27
  start-page: 2387
  year: 2015
  end-page: 2399
  ident: bib17
  article-title: Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries
  publication-title: Chem. Mater.
– volume: 180
  start-page: 1060
  year: 2007
  end-page: 1067
  ident: bib25
  article-title: Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6
  publication-title: J. Solid State Chem.
– volume: 26
  start-page: 6301
  year: 2014
  end-page: 6306
  ident: bib37
  article-title: A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries
  publication-title: Adv. Mater.
– volume: 158
  start-page: 258
  year: 2015
  end-page: 263
  ident: bib6
  article-title: Na-deficient O3-type cathode material Na-0.8 Ni0.3Co0.2Ti0.5 O-2 for room-temperature sodium-ion batteries
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 8083
  year: 2016
  end-page: 8093
  ident: bib10
  article-title: Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na Ni0.61Co0.12Mn0.27 O-2 assembled in spherical secondary particles
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 8478
  year: 2016
  end-page: 8492
  ident: bib15
  article-title: Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 81
  year: 2015
  end-page: 102
  ident: bib7
  article-title: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 3680
  year: 2011
  end-page: 3688
  ident: bib21
  article-title: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3258
  year: 2018
  end-page: 3271
  ident: bib31
  article-title: Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes
  publication-title: Nano Res.
– volume: 11
  start-page: 512
  year: 2012
  ident: bib33
  article-title: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
  publication-title: Nat. Mater.
– volume: 114
  start-page: 137
  year: 2016
  end-page: 141
  ident: bib1
  article-title: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism
  publication-title: Scripta Mater.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: bib12
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
– volume: 183
  start-page: 684
  year: 2010
  end-page: 691
  ident: bib22
  article-title: Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg)
  publication-title: J. Solid State Chem.
– volume: 34
  start-page: 215
  year: 2017
  end-page: 223
  ident: bib29
  article-title: Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries
  publication-title: Nano Energy
– volume: 114
  start-page: 137
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib1
  article-title: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2015.12.020
– volume: 99
  start-page: 81
  year: 1980
  ident: 10.1016/j.isci.2020.100898_bib4
  article-title: Structural classification and properties of the layered oxides
  publication-title: Phys. B+C
  doi: 10.1016/0378-4363(80)90214-4
– volume: 27
  start-page: 2387
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib17
  article-title: Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm504339y
– volume: 257
  start-page: 146
  year: 2017
  ident: 10.1016/j.isci.2020.100898_bib3
  article-title: Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.072
– volume: 31
  start-page: e1903483
  year: 2019
  ident: 10.1016/j.isci.2020.100898_bib32
  article-title: An ordered Ni6 -ring superstructure enables a highly stable sodium oxide cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903483
– volume: 158
  start-page: 258
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib6
  article-title: Na-deficient O3-type cathode material Na-0.8 Ni0.3Co0.2Ti0.5 O-2 for room-temperature sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.118
– volume: 17
  start-page: 2386
  year: 2005
  ident: 10.1016/j.isci.2020.100898_bib19
  article-title: Cation Ordering in Layered O3 Li[NixLi1/32x/3Mn2/3-x/3]O2(0 e x e 1/2) Compounds
  publication-title: Chem. Mater.
  doi: 10.1021/cm047779m
– volume: 92
  start-page: 144401
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib40
  article-title: Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonatesA3Ni2SbO6(A=Li,Na)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.144401
– volume: 28
  start-page: 106
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib8
  article-title: High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03276
– volume: 113
  start-page: 6552
  year: 2013
  ident: 10.1016/j.isci.2020.100898_bib18
  article-title: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001862
– volume: 180
  start-page: 1060
  year: 2007
  ident: 10.1016/j.isci.2020.100898_bib25
  article-title: Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2007.01.002
– volume: 183
  start-page: 684
  year: 2010
  ident: 10.1016/j.isci.2020.100898_bib22
  article-title: Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg)
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.12.002
– volume: 41
  start-page: 572
  year: 2012
  ident: 10.1016/j.isci.2020.100898_bib39
  article-title: Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties
  publication-title: Dalton Trans.
  doi: 10.1039/C1DT11322D
– volume: 8
  start-page: 31661
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib14
  article-title: P2-Type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10841
– volume: 3
  start-page: 10976
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib2
  article-title: O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de) intercalation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06688J
– volume: 6
  start-page: 8711
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib24
  article-title: Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9711
– volume: 6
  start-page: 6954
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib27
  article-title: P2-Na-0.6 Cr0.6Ti0.4 O-2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7954
– volume: 55
  start-page: 7445
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib28
  article-title: Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602202
– volume: 34
  start-page: 215
  year: 2017
  ident: 10.1016/j.isci.2020.100898_bib29
  article-title: Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.046
– volume: 7
  start-page: 11397
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib20
  article-title: Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11397
– volume: 2
  start-page: 2715
  year: 2017
  ident: 10.1016/j.isci.2020.100898_bib30
  article-title: Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00930
– volume: 114
  start-page: 11636
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib34
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 50
  start-page: 457
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib36
  article-title: Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C3CC47351A
– volume: 6
  start-page: 8953
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib13
  article-title: Electrospun P2-type Na-2/3(Fe1/2Mn1/2)O-2 hierarchical nanofibers as cathode material for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502343s
– volume: 55
  start-page: 8478
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib15
  article-title: Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01078
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.isci.2020.100898_bib12
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 4
  start-page: 17952
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib11
  article-title: A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07392A
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.isci.2020.100898_bib5
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 8
  start-page: 81
  year: 2015
  ident: 10.1016/j.isci.2020.100898_bib7
  article-title: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03192J
– volume: 52
  start-page: 13605
  year: 2013
  ident: 10.1016/j.isci.2020.100898_bib23
  article-title: Structure and magnetic properties of the alpha-NaFeO2-type honeycomb compound Na3Ni2BiO6
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402131e
– volume: 4
  start-page: 3680
  year: 2011
  ident: 10.1016/j.isci.2020.100898_bib21
  article-title: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01782a
– volume: 11
  start-page: 512
  year: 2012
  ident: 10.1016/j.isci.2020.100898_bib33
  article-title: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3309
– volume: 7
  start-page: 1601698
  year: 2017
  ident: 10.1016/j.isci.2020.100898_bib35
  article-title: A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601698
– volume: 16
  start-page: 21946
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib16
  article-title: Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02957G
– volume: 258
  start-page: 266
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib9
  article-title: Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.048
– volume: 26
  start-page: 8083
  year: 2016
  ident: 10.1016/j.isci.2020.100898_bib10
  article-title: Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na Ni0.61Co0.12Mn0.27 O-2 assembled in spherical secondary particles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603439
– volume: 26
  start-page: 6301
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib37
  article-title: A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401946
– volume: 118
  start-page: 2970
  year: 2014
  ident: 10.1016/j.isci.2020.100898_bib26
  article-title: Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411382r
– volume: 24
  start-page: 384
  year: 2020
  ident: 10.1016/j.isci.2020.100898_bib38
  article-title: Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.032
– volume: 11
  start-page: 3258
  year: 2018
  ident: 10.1016/j.isci.2020.100898_bib31
  article-title: Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1863-1
SSID ssj0002002496
Score 2.2328126
Snippet Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for...
Honeycomb-layered phases Na M XO (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for...
Honeycomb-layered phases Na3M2XO6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode materials for...
Honeycomb-layered phases Na 3 M 2 XO 6 (M = Ni, Cu, Co; X = Sb, Bietc.) have been intensively pursued as high-voltage and high-rate capability cathode...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100898
SubjectTerms Energy Materials
Imaging Methods in Chemistry
Materials Science
Title Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes
URI https://dx.doi.org/10.1016/j.isci.2020.100898
https://www.ncbi.nlm.nih.gov/pubmed/32092700
https://www.proquest.com/docview/2364038832
https://pubmed.ncbi.nlm.nih.gov/PMC7038003
https://doaj.org/article/d0436f6b60d24e48bdd2804f0c0698a9
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA_iyYso60fdDyJ4k2InadP2qIsyih8HFb2FpEnYDrut7MyA_ve-l7TDdIXZi4dS2qZt8vJL8h557_cIOQJLh3GHe-oiqWKY8PJYVTAeuSvyXIlKCIvByTe3YvyYXj1nz0upvtAnLNADB8GdGORId0KLxLDUpoU2hhVJ6pIqEWWhfOgerHlLxtTEb68hFZ7PLJehTxBAs4uYCc5dGPEKxiHzXgJFWQxWJU_eP1icPiqf__pQLi1KF1tks9Mm6WloxTZZs80X8nTZTNHkpnUzaykoePTek8QiwQbt2TbhIR23jX0DxOn47q_P2UnvW1PP_8TX6s1f3r3WxlIMEmyNne6Qx4vzh5_juMufEFeYpiC2PHHGjlTO0syaFCypKlGGc4eccqXSTOfCKDgqO8q0cgWgSjPHRTpygkPJXbLeQE32CUXPKqS1KS0vUuT6FU7bklk459g_ERn18pNVRy6OOS5-y96LbCJR5hJlLoPMI3K8eOclUGusLH2G3bIoibTY_gaARXZgkf8DS0SyvlNlp2EEzQE-Va_8-WGPAAnDD_dUVGPb-VQi_z4S6nAWkb2AiEUVOQAT9_Ujkg-wMmjD8ElT__IU3zAPgybPDz6j0V_JBjYlOM59I-sAOfsdNKmZ_uEHzTuuLhlx
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Structural+Disorder+in+Honeycomb-Ordered+Sodium-Layered+Oxide+Cathodes&rft.jtitle=iScience&rft.au=Xiao%2C+Lei&rft.au=Ding%2C+Zhengping&rft.au=Chen%2C+Cheng&rft.au=Han%2C+Zhen&rft.date=2020-03-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2020.100898&rft.externalDocID=S2589004220300821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon