LC–MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages

Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant im...

Full description

Saved in:
Bibliographic Details
Published inProteome science Vol. 22; no. 1; pp. 13 - 10
Main Authors Wu, Yi-Lin, Li, Yuan-Ting, Liu, Gan-Bin, Wu, Jin-Lin, Liu, Xiao-Ran, Gao, Xin-Xuan, Huang, Qi-Dan, Liang, Jin, Ouyang, Jia-Yi, Ding, Yi-Ran, Wu, Jun-Yi, Lu, Yuan-Bin, Gao, Yu-Chi, Cai, Xiao-Zhen, Zhang, Jun-Ai
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.12.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
AbstractList Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb -infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC–MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb -infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 [mu]g/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 [mu]g/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings. Keywords: Norcantharidin, Mycobacterium tuberculosis, H37Ra, Macrophage, Proteome
Abstract Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC–MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
ArticleNumber 13
Audience Academic
Author Liang, Jin
Liu, Gan-Bin
Li, Yuan-Ting
Huang, Qi-Dan
Gao, Xin-Xuan
Ouyang, Jia-Yi
Wu, Jun-Yi
Zhang, Jun-Ai
Wu, Jin-Lin
Cai, Xiao-Zhen
Gao, Yu-Chi
Wu, Yi-Lin
Ding, Yi-Ran
Lu, Yuan-Bin
Liu, Xiao-Ran
Author_xml – sequence: 1
  givenname: Yi-Lin
  surname: Wu
  fullname: Wu, Yi-Lin
– sequence: 2
  givenname: Yuan-Ting
  surname: Li
  fullname: Li, Yuan-Ting
– sequence: 3
  givenname: Gan-Bin
  surname: Liu
  fullname: Liu, Gan-Bin
– sequence: 4
  givenname: Jin-Lin
  surname: Wu
  fullname: Wu, Jin-Lin
– sequence: 5
  givenname: Xiao-Ran
  surname: Liu
  fullname: Liu, Xiao-Ran
– sequence: 6
  givenname: Xin-Xuan
  surname: Gao
  fullname: Gao, Xin-Xuan
– sequence: 7
  givenname: Qi-Dan
  surname: Huang
  fullname: Huang, Qi-Dan
– sequence: 8
  givenname: Jin
  surname: Liang
  fullname: Liang, Jin
– sequence: 9
  givenname: Jia-Yi
  surname: Ouyang
  fullname: Ouyang, Jia-Yi
– sequence: 10
  givenname: Yi-Ran
  surname: Ding
  fullname: Ding, Yi-Ran
– sequence: 11
  givenname: Jun-Yi
  surname: Wu
  fullname: Wu, Jun-Yi
– sequence: 12
  givenname: Yuan-Bin
  surname: Lu
  fullname: Lu, Yuan-Bin
– sequence: 13
  givenname: Yu-Chi
  surname: Gao
  fullname: Gao, Yu-Chi
– sequence: 14
  givenname: Xiao-Zhen
  surname: Cai
  fullname: Cai, Xiao-Zhen
– sequence: 15
  givenname: Jun-Ai
  surname: Zhang
  fullname: Zhang, Jun-Ai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39633431$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEQx1eoiH7AC3BAK3Ghhy2etde7PqE24iNSChINZ8tfm7hK7NTeReTWd-ANeRKmTakaCfkw1sxv_vZo_sfFQYjBFcVrIGcAHX-foRYNrUjNKkJq2lTbZ8URsLatGtHwgyf3w-I452uEalHzF8UhFZxSRuGosLPJn9vfl1eVVtnZ8mZUYfCDGnwMZezLTYqDi2tvSrNUYeFy6YMdDZJ6W36NySC-VMlbH7BSXs4vqnlyakBgrUyKm6XCppfF816tsnv1EE-KH58-zidfqtm3z9PJ-awyTQ1DZXsqKCMauKmFA6Z1w2ytrOWGMdYyYqxyhLe8dQRjI7Trweq-JZQ0AJqeFNOdro3qWm6SX6u0lVF5eZ-IaSFVGrxZOWkY1z1pXUMNMMG6DngtSK_BcEbxedT6sNPajHrtrHFhSGq1J7pfCX4pF_GnBOAggHSo8O5BIcWb0eVBrn02brVSwcUxSwqM49ysqxF9u0MXCv_mQx9R0tzh8ryDTghGW0Dq7D8UHutwQ-iN3mN-r-F0rwGZwf0aFmrMWU6vvu-zb57O-zjoP6sgUO8AXGvOyfWPCBB550e586NEP8p7P8ot_Qu5ltG9
Cites_doi 10.1080/14760584.2019.1704263
10.1186/s13018-024-04678-z
10.3389/fcimb.2016.00147
10.1038/s41467-022-28506-2
10.1080/15548627.2018.1483806
10.1128/mbio.00272-23
10.3390/microorganisms11071846
10.1016/j.febslet.2009.11.096
10.1038/s41598-021-85477-y
10.4103/1673-5374.371368
10.3389/fimmu.2020.01609
10.1128/mbio.02073-23
10.3892/or.2017.5775
10.1038/ncomms11364
10.1371/journal.pone.0044956
10.1158/0008-5472.CAN-22-1270
10.1128/iai.00495-23
10.1016/j.cell.2024.03.011
10.1016/j.lfs.2008.11.020
10.1172/JCI161944
10.1016/j.bbamcr.2020.118665
10.1186/s12885-015-1521-5
10.1128/MCB.25.10.4211-4220.2005
10.1016/j.molimm.2023.12.011
10.1186/s12885-016-3039-x
10.1126/science.1171529
10.1080/13510002.2022.2088011
10.1016/j.neuroscience.2024.02.014
10.1038/s41467-019-12384-2
10.1016/0959-8049(95)00050-X
10.1074/jbc.M111.265082
10.7554/eLife.41517
10.1080/14786419.2023.2298383
10.1016/S2666-5247(22)00359-7
10.4049/jimmunol.180.5.3329
10.1038/s41419-024-06455-6
10.3892/mmr.2024.13195
10.3389/fphar.2022.906043
10.1021/acsami.2c21529
10.1080/10717544.2022.2111480
10.1016/j.abb.2023.109673
10.1371/journal.pone.0041024
10.4049/jimmunol.2300107
10.1126/sciadv.adh2358
10.3389/fimmu.2023.1233630
10.3389/fimmu.2022.946929
10.1016/j.molimm.2022.12.007
10.1021/acsinfecdis.4c00079
10.1111/jcmm.16980
10.1016/j.cell.2016.02.034
10.1016/j.biopha.2020.110755
10.1186/s12951-022-01703-3
10.1038/s41401-021-00773-7
10.4049/jimmunol.2200555
10.1177/1533034615624583
10.1038/s41565-024-01618-0
10.3389/fmicb.2022.829870
10.1016/j.micpath.2023.106021
10.3389/fimmu.2022.1044592
10.1128/mbio.01535-23
10.3390/microorganisms11122998
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12953-024-00235-y
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1477-5956
EndPage 10
ExternalDocumentID oai_doaj_org_article_c46bf07e53c14948816290fb1c643c29
PMC11619108
A818994371
39633431
10_1186_s12953_024_00235_y
Genre Journal Article
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GroupedDBID ---
0R~
29P
2WC
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KQ8
LK8
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
FRP
NPM
PMFND
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c521t-df39340b16c29e14bb54d2add6c444740cdae06767e0e0659bef1dbf7030511b3
IEDL.DBID M48
ISSN 1477-5956
IngestDate Wed Aug 27 01:19:35 EDT 2025
Thu Aug 21 18:34:58 EDT 2025
Fri Jul 11 16:57:39 EDT 2025
Tue Jun 17 21:56:09 EDT 2025
Tue Jun 10 21:04:58 EDT 2025
Fri Jun 27 05:14:38 EDT 2025
Thu Jan 02 22:28:38 EST 2025
Tue Jul 01 01:18:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Proteome
Mycobacterium tuberculosis
H37Ra
Norcantharidin
Macrophage
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-df39340b16c29e14bb54d2add6c444740cdae06767e0e0659bef1dbf7030511b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12953-024-00235-y
PMID 39633431
PQID 3146521482
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c46bf07e53c14948816290fb1c643c29
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11619108
proquest_miscellaneous_3146521482
gale_infotracmisc_A818994371
gale_infotracacademiconefile_A818994371
gale_incontextgauss_ISR_A818994371
pubmed_primary_39633431
crossref_primary_10_1186_s12953_024_00235_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-04
PublicationDateYYYYMMDD 2024-12-04
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Proteome science
PublicationTitleAlternate Proteome Sci
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References Z Zhang (235_CR19) 2024; 29
D Cruz-Zarate (235_CR58) 2021; 11
DJ Cox (235_CR30) 2020; 11
SA Hwang (235_CR6) 2020; 50
S Vassilopoulos (235_CR46) 2009; 324
I Mwebaza (235_CR26) 2023; 211
Y Ye (235_CR33) 2022; 13
Y Zhang (235_CR42) 2024; 15
YC Chen (235_CR22) 2009; 84
LE Mendonca (235_CR41) 2022; 13
SH Son (235_CR43) 2023; 14
J Pan (235_CR54) 2024; 15
KN Bhengu (235_CR34) 2023; 11
B Olety (235_CR57) 2010; 584
J Zheng (235_CR14) 2023; 38
XP Li (235_CR20) 2015; 15
Z Palcekova (235_CR36) 2024; 10
Q Xu (235_CR51) 2024; 19
PJ Maglione (235_CR29) 2008; 180
PK Gupta (235_CR32) 2023; 14
SO Rahaman (235_CR48) 2011; 286
X Zheng (235_CR53) 2023; 83
XH Liu (235_CR13) 1995; 31A
EA Latomanski (235_CR47) 2018; 14
P Babele (235_CR44) 2023; 11
P Qiu (235_CR18) 2017; 17
X Mao (235_CR61) 2023; 9
NR Patel (235_CR59) 2012; 7
M Fumagalli (235_CR45) 2019; 8
S Bagcchi (235_CR1) 2023; 4
A Gupta (235_CR24) 2024; 92
B Ge (235_CR27) 2023; 2023
V Vedham (235_CR49) 2005; 25
A Lovey (235_CR3) 2022; 13
J Zhou (235_CR11) 2020; 131
H Guo (235_CR52) 2024; 544
T Yu (235_CR56) 2019; 10
M Zeng (235_CR63) 2016; 7
H Su (235_CR5) 2016; 6
Q Zhao (235_CR12) 2012; 7
M Zeng (235_CR62) 2020; 1867
S Paik (235_CR4) 2022; 13
J Qiu (235_CR50) 2023; 18
LJ Du (235_CR17) 2022; 43
M Bedard (235_CR28) 2023; 133
H Li (235_CR40) 2023; 744
S Xiao (235_CR10) 2022; 29
S Zhang (235_CR31) 2023; 14
B Li (235_CR23) 2024; 19
X Yu (235_CR38) 2023; 154
J Zheng (235_CR15) 2022; 27
AH Alvarez (235_CR2) 2019; 18
Y Gao (235_CR21) 2017; 38
235_CR8
JY Park (235_CR25) 2024; 166
RD Berg (235_CR60) 2016; 165
L Wang (235_CR7) 2022; 13
W Pu (235_CR39) 2021; 25
YKT de Menezes (235_CR37) 2023; 211
BT Zhai (235_CR9) 2022; 20
Z Han (235_CR16) 2017; 16
T Cao (235_CR55) 2024; 187
235_CR35
References_xml – volume: 18
  start-page: 1219
  issue: 12
  year: 2019
  ident: 235_CR2
  publication-title: Expert Rev Vaccines
  doi: 10.1080/14760584.2019.1704263
– volume: 19
  start-page: 230
  issue: 1
  year: 2024
  ident: 235_CR51
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-024-04678-z
– volume: 6
  start-page: 147
  year: 2016
  ident: 235_CR5
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2016.00147
– volume: 50
  start-page: 429
  issue: 4
  year: 2020
  ident: 235_CR6
  publication-title: Ann Clin Lab Sci
– volume: 13
  start-page: 884
  issue: 1
  year: 2022
  ident: 235_CR3
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28506-2
– volume: 14
  start-page: 1710
  issue: 10
  year: 2018
  ident: 235_CR47
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1483806
– volume: 14
  start-page: e0027223
  issue: 4
  year: 2023
  ident: 235_CR31
  publication-title: mBio
  doi: 10.1128/mbio.00272-23
– volume: 11
  start-page: 1846
  issue: 7
  year: 2023
  ident: 235_CR34
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11071846
– volume: 584
  start-page: 493
  issue: 3
  year: 2010
  ident: 235_CR57
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.11.096
– volume: 11
  start-page: 7197
  issue: 1
  year: 2021
  ident: 235_CR58
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85477-y
– volume: 18
  start-page: 2436
  issue: 11
  year: 2023
  ident: 235_CR50
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.371368
– volume: 11
  start-page: 1609
  year: 2020
  ident: 235_CR30
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.01609
– volume: 15
  start-page: e0207323
  issue: 2
  year: 2024
  ident: 235_CR42
  publication-title: mBio
  doi: 10.1128/mbio.02073-23
– volume: 38
  start-page: 1224
  issue: 2
  year: 2017
  ident: 235_CR21
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5775
– volume: 7
  start-page: 11364
  year: 2016
  ident: 235_CR63
  publication-title: Nat Commun
  doi: 10.1038/ncomms11364
– volume: 7
  start-page: e44956
  issue: 9
  year: 2012
  ident: 235_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044956
– volume: 83
  start-page: 2345
  issue: 14
  year: 2023
  ident: 235_CR53
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-22-1270
– volume: 92
  start-page: e0049523
  issue: 4
  year: 2024
  ident: 235_CR24
  publication-title: Infect Immun
  doi: 10.1128/iai.00495-23
– volume: 187
  start-page: 2288
  issue: 9
  year: 2024
  ident: 235_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2024.03.011
– volume: 84
  start-page: 218
  issue: 7–8
  year: 2009
  ident: 235_CR22
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2008.11.020
– volume: 133
  start-page: e161944
  issue: 6
  year: 2023
  ident: 235_CR28
  publication-title: J Clin Invest
  doi: 10.1172/JCI161944
– volume: 1867
  start-page: 118665
  issue: 5
  year: 2020
  ident: 235_CR62
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2020.118665
– volume: 15
  start-page: 527
  year: 2015
  ident: 235_CR20
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1521-5
– volume: 25
  start-page: 4211
  issue: 10
  year: 2005
  ident: 235_CR49
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.10.4211-4220.2005
– volume: 166
  start-page: 50
  year: 2024
  ident: 235_CR25
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2023.12.011
– volume: 17
  start-page: 55
  issue: 1
  year: 2017
  ident: 235_CR18
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-3039-x
– volume: 324
  start-page: 1192
  issue: 5931
  year: 2009
  ident: 235_CR46
  publication-title: Science
  doi: 10.1126/science.1171529
– volume: 27
  start-page: 119
  issue: 1
  year: 2022
  ident: 235_CR15
  publication-title: Redox Rep
  doi: 10.1080/13510002.2022.2088011
– volume: 544
  start-page: 50
  year: 2024
  ident: 235_CR52
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2024.02.014
– volume: 10
  start-page: 4353
  issue: 1
  year: 2019
  ident: 235_CR56
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12384-2
– volume: 31A
  start-page: 953
  issue: 6
  year: 1995
  ident: 235_CR13
  publication-title: Eur J Cancer
  doi: 10.1016/0959-8049(95)00050-X
– volume: 286
  start-page: 36011
  issue: 41
  year: 2011
  ident: 235_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.265082
– volume: 8
  start-page: e41517
  year: 2019
  ident: 235_CR45
  publication-title: eLife
  doi: 10.7554/eLife.41517
– volume: 38
  start-page: 1
  issue: 4
  year: 2023
  ident: 235_CR14
  publication-title: Nat Prod Res
  doi: 10.1080/14786419.2023.2298383
– volume: 4
  start-page: e20
  issue: 1
  year: 2023
  ident: 235_CR1
  publication-title: Lancet Microb
  doi: 10.1016/S2666-5247(22)00359-7
– volume: 180
  start-page: 3329
  issue: 5
  year: 2008
  ident: 235_CR29
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.5.3329
– volume: 15
  start-page: 66
  issue: 1
  year: 2024
  ident: 235_CR54
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-024-06455-6
– volume: 29
  start-page: 71
  issue: 5
  year: 2024
  ident: 235_CR19
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2024.13195
– volume: 13
  start-page: 906043
  year: 2022
  ident: 235_CR7
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.906043
– ident: 235_CR8
  doi: 10.1021/acsami.2c21529
– volume: 29
  start-page: 2713
  issue: 1
  year: 2022
  ident: 235_CR10
  publication-title: Drug Delivery
  doi: 10.1080/10717544.2022.2111480
– volume: 744
  start-page: 109673
  year: 2023
  ident: 235_CR40
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2023.109673
– volume: 7
  start-page: e41024
  issue: 9
  year: 2012
  ident: 235_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0041024
– volume: 211
  start-page: 1385
  issue: 9
  year: 2023
  ident: 235_CR26
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2300107
– volume: 9
  start-page: eadh2358
  issue: 36
  year: 2023
  ident: 235_CR61
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adh2358
– volume: 14
  start-page: 1233630
  year: 2023
  ident: 235_CR32
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1233630
– volume: 13
  start-page: 946929
  year: 2022
  ident: 235_CR4
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.946929
– volume: 154
  start-page: 24
  year: 2023
  ident: 235_CR38
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2022.12.007
– volume: 10
  start-page: 1379
  issue: 4
  year: 2024
  ident: 235_CR36
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.4c00079
– volume: 25
  start-page: 10504
  issue: 22
  year: 2021
  ident: 235_CR39
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16980
– volume: 165
  start-page: 139
  issue: 1
  year: 2016
  ident: 235_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.034
– volume: 131
  start-page: 110755
  year: 2020
  ident: 235_CR11
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2020.110755
– volume: 20
  start-page: 509
  issue: 1
  year: 2022
  ident: 235_CR9
  publication-title: J Nanobiotechnology
  doi: 10.1186/s12951-022-01703-3
– volume: 43
  start-page: 1521
  issue: 6
  year: 2022
  ident: 235_CR17
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-021-00773-7
– volume: 211
  start-page: 601
  issue: 4
  year: 2023
  ident: 235_CR37
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2200555
– volume: 16
  start-page: 33
  issue: 1
  year: 2017
  ident: 235_CR16
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/1533034615624583
– volume: 19
  start-page: 834
  issue: 6
  year: 2024
  ident: 235_CR23
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-024-01618-0
– volume: 2023
  start-page: 1
  issue: 31
  year: 2023
  ident: 235_CR27
  publication-title: Cell Host Microbe
– volume: 13
  start-page: 829870
  year: 2022
  ident: 235_CR33
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.829870
– ident: 235_CR35
  doi: 10.1016/j.micpath.2023.106021
– volume: 13
  start-page: 1044592
  year: 2022
  ident: 235_CR41
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1044592
– volume: 14
  start-page: e0153523
  issue: 5
  year: 2023
  ident: 235_CR43
  publication-title: mBio
  doi: 10.1128/mbio.01535-23
– volume: 11
  start-page: 2998
  issue: 12
  year: 2023
  ident: 235_CR44
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11122998
SSID ssj0022926
Score 2.3544905
Snippet Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation...
Abstract Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 13
SubjectTerms BCG
BCG vaccines
Chromatin
Drug resistance in microorganisms
Enzymes
G proteins
H37Ra
Immunotherapy
Liquid chromatography
Macrophage
Macrophages
Mycobacterium tuberculosis
Norcantharidin
Patient compliance
Proteome
T cells
Tuberculosis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnrggaHkYCloQggNadV_Z2Me0oiqI9EBTqbfVvkw41IY6OeTW_8A_5Jcws3aqWBy4cPVOpOzM7Hwz9sy3hLw1TtUpSsViiFCgpKgYJEeRJWegGItR8jwkNj83Z5f689XkaueqL-wJ6-mBe8UdBW18zadpooJAKpNSGFnx2osAWBpkHt0DzNsWU0OpJStptiMypTnqANUm-L1Ss0zwwjYjGMps_X_H5B1QGjdM7iDQ6UPyYEgd6az_y4_IvdTsk4NZA2Xz9Ya-o7mZM78lPyDxy8nv21_zC4YoFenPtWtWAxs3bWua2RlwHpn2g78dhdIcjByp39Dz9gb1vYQqGoANVuh8ccwWmF2CwLXDS7-WEIa6x-Ty9OPi5IwNFyqwgPcWsFirSmnuhQHFJaG9n-goIcKZoLWeah6iSxwp3BJP-MHVp1pEX-eoIIRXT8he0zbpGaEll0lL7iYcfipTWfEUIdV01VQ5H-qyIB-2-rU_et4Mm-uN0tjeGhasYbM17KYgx2iCO0nkvM4PwBPs4An2X55QkDdoQIusFg22zXxz666zny6-2hmkJVWl1VQU5P0gVLdgyuCGKQTYFRJhjSQPR5Jw7MJo-fXWTywuYa9ak9p1ZxWAD6hbl7IgT3u_uduYgninIGcrSDnyqNHOxyvN92Vm_RaQm0NuVz7_H7p6Qe5LPA3Yl6MPyd7qZp1eQna18q_yQfoDRtQhmQ
  priority: 102
  providerName: Directory of Open Access Journals
Title LC–MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages
URI https://www.ncbi.nlm.nih.gov/pubmed/39633431
https://www.proquest.com/docview/3146521482
https://pubmed.ncbi.nlm.nih.gov/PMC11619108
https://doaj.org/article/c46bf07e53c14948816290fb1c643c29
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELb6uHBBlPJYKJFBCA7I4LW9rwNCSdWqIBKhNJEiLtb6sU0luttmE4nc-A_8Q34JY-8m6opeuOwhnqxkz3s98w1Cr-OcF9YwTow2kKBYwwkER4bYPIZkzBhGfZPYcBSfTcWXWTTbQZtxR-0B1nemdm6e1HTx4_3Pm_UnUPiPXuHT-EMNPityt5GCePgWst5F--CZEqeoQ7G9VWAsY023UZKQCBKDTRPNne_oOCqP5_-v1b7ltrollbd81OkDdL8NLnG_kYYDtGPLh-iwX0JifbXGb7Av9_Tf0Q-R-Xr859fv4Tlxfszgm1VeLlu8blwV2OM3uI5l3LQG1xiSdxADg9Uaj6qF48gc8mxwfbCCh5MBmbj4EwiucjcWbA6Gqn6Epqcnk-Mz0o5cINpNNiCm4BkXVIWxZpkNhVKRMAxsYKyFEImg2uSWOpA3S627klW2CI0qvN0IQ8Ufo72yKu1ThFPKrGA0jyj8ldk0o9ZAMJpnCc-VLtIAvducr7xukDWkz0jSWDbckMAN6bkh1wEaOBZsKR0qtv-hWlzIVsmkFrEqaGIjrkMHe5OGMctooUINcRdsKECvHAOlw70oXWHNRb6qa_n5fCz7ELhkmeBJGKC3LVFRASt13vYpwK4cVFaH8qhDCYqpO8svN3Ii3ZKrZitttaolB_cExy1SFqAnjdxsN8bBInKI6gKUdiSqs_PuSnk597jgIUTvEP2lz_7rZJ-je8yJvSvREUdob7lY2RcQaC1VD-0ms6SH9gcno2_jnv9c0fMaBc_x4Ptf73sn-Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LC%E2%80%93MS-based+quantitation+of+proteomic+changes+induced+by+Norcantharidin+in+MTB-Treated+macrophages&rft.jtitle=Proteome+science&rft.au=Wu%2C+Yi-Lin&rft.au=Li%2C+Yuan-Ting&rft.au=Liu%2C+Gan-Bin&rft.au=Wu%2C+Jin-Lin&rft.date=2024-12-04&rft.issn=1477-5956&rft.eissn=1477-5956&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12953-024-00235-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12953_024_00235_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-5956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-5956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-5956&client=summon