Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study

The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe ar...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 64; p. 102365
Main Authors Nayak, Soumya Ranjan, Nayak, Deepak Ranjan, Sinha, Utkarsh, Arora, Vaibhav, Pachori, Ram Bilas
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection. •A deep learning assisted automated method is proposed for COVID-19 diagnosis.•A comprehensive study among eight pre-trained CNN models is performed.•The impact of several hyper-parameters have been analyzed.•The best performing model is obtained and compared with the state-of-the-art methods.•The model could assist radiologists for accurate and stable COVID-19 diagnosis.
AbstractList The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection.
The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection. • A deep learning assisted automated method is proposed for COVID-19 diagnosis. • A comprehensive study among eight pre-trained CNN models is performed. • The impact of several hyper-parameters have been analyzed. • The best performing model is obtained and compared with the state-of-the-art methods. • The model could assist radiologists for accurate and stable COVID-19 diagnosis.
The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection.The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection.
The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection. •A deep learning assisted automated method is proposed for COVID-19 diagnosis.•A comprehensive study among eight pre-trained CNN models is performed.•The impact of several hyper-parameters have been analyzed.•The best performing model is obtained and compared with the state-of-the-art methods.•The model could assist radiologists for accurate and stable COVID-19 diagnosis.
ArticleNumber 102365
Author Sinha, Utkarsh
Pachori, Ram Bilas
Nayak, Soumya Ranjan
Nayak, Deepak Ranjan
Arora, Vaibhav
Author_xml – sequence: 1
  givenname: Soumya Ranjan
  surname: Nayak
  fullname: Nayak, Soumya Ranjan
  email: srnayak@amity.edu
  organization: Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
– sequence: 2
  givenname: Deepak Ranjan
  surname: Nayak
  fullname: Nayak, Deepak Ranjan
  email: drnayak@ieee.org
  organization: Department of Computer Science and Engineering, Malaviya National Institute of Technology, Jaipur, India
– sequence: 3
  givenname: Utkarsh
  surname: Sinha
  fullname: Sinha, Utkarsh
  email: utkarsh.sinha1@student.amity.edu
  organization: Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
– sequence: 4
  givenname: Vaibhav
  surname: Arora
  fullname: Arora, Vaibhav
  email: vaibhav.arora4@student.amity.edu
  organization: Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
– sequence: 5
  givenname: Ram Bilas
  surname: Pachori
  fullname: Pachori, Ram Bilas
  email: pachori@iiti.ac.in
  organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33230398$$D View this record in MEDLINE/PubMed
BookMark eNp9UcuO0zAUtdAg5gE_wAJ5ySbFryQ2QkhVeY000mwAsbM89k3rKrWDnXTUv8ehUwQsZuWre8_DOucSnYUYAKGXlCwooc2b7eIuD3bBCJsXjDf1E3RBW9FUkhJ5dpqJEufoMuctIUK2VDxD55wzTriSF-h-OQy9t2b0MeDYYQcw4B5MCj6s8Qh2E_zPCTLuYirHsjghV7ffrz9UVGFrcrlPeSbYDeQR_6iSOWC_M2vIb_ES27gbEmwgZL8HnMfJHZ6jp53pM7x4eK_Qt08fv66-VDe3n69Xy5vK1oyOlQOnBEjJOyLK2LpW1s6ZuhOCOuqgkRI6BWreyk4JxziVruGKAyhWU36F3h91h-luB85CGJPp9ZDK79JBR-P1v5fgN3od97ptWkFrUgRePwikOAcx6p3PFvreBIhT1kw0ggpR06ZAX_3t9cfklHYByCPApphzgk5bP_6Ovlj7XlOi52L1Vs_F6rlYfSy2UNl_1JP6o6R3RxKUhPceks7WQ7DgfCpFahf9Y_Rf7Di9xg
CitedBy_id crossref_primary_10_1016_j_dajour_2024_100523
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1109_ACCESS_2023_3267492
crossref_primary_10_1002_hsr2_1257
crossref_primary_10_1007_s12553_022_00704_4
crossref_primary_10_1016_j_bspc_2021_103341
crossref_primary_10_1016_j_matpr_2022_05_199
crossref_primary_10_1111_exsy_13099
crossref_primary_10_3390_app12083895
crossref_primary_10_1089_big_2022_0042
crossref_primary_10_1109_ACCESS_2022_3229591
crossref_primary_10_1002_ima_22659
crossref_primary_10_1016_j_eswa_2021_115141
crossref_primary_10_1016_j_bspc_2022_103977
crossref_primary_10_1016_j_compbiomed_2021_104454
crossref_primary_10_1016_j_asoc_2024_111806
crossref_primary_10_1007_s42979_021_00695_5
crossref_primary_10_1007_s12652_022_04508_2
crossref_primary_10_1016_j_health_2022_100096
crossref_primary_10_1016_j_scs_2021_103252
crossref_primary_10_3390_diagnostics12123171
crossref_primary_10_1002_jbio_202300486
crossref_primary_10_1109_ACCESS_2024_3515160
crossref_primary_10_1109_TNNLS_2023_3280646
crossref_primary_10_1007_s11042_022_12500_3
crossref_primary_10_3390_ijms232416070
crossref_primary_10_1007_s11042_023_16826_4
crossref_primary_10_21923_jesd_1415150
crossref_primary_10_1016_j_bbe_2022_07_009
crossref_primary_10_1016_j_compbiomed_2022_105251
crossref_primary_10_1007_s00521_023_08236_2
crossref_primary_10_1016_j_eswa_2021_115805
crossref_primary_10_1016_j_bspc_2022_104172
crossref_primary_10_1038_s41598_022_20804_5
crossref_primary_10_3390_diagnostics13101821
crossref_primary_10_1155_2021_3281135
crossref_primary_10_1080_14756366_2021_1924165
crossref_primary_10_1016_j_bspc_2023_104647
crossref_primary_10_4018_IJRQEH_326765
crossref_primary_10_1007_s11277_024_11309_7
crossref_primary_10_3390_electronics11223798
crossref_primary_10_3390_s22093272
crossref_primary_10_1145_3558098
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1007_s00500_021_06137_x
crossref_primary_10_1016_j_bspc_2021_102812
crossref_primary_10_1108_MEQ_08_2023_0248
crossref_primary_10_34256_ijcci2315
crossref_primary_10_32604_iasc_2022_024172
crossref_primary_10_3390_healthcare10010175
crossref_primary_10_1038_s41598_022_15327_y
crossref_primary_10_7717_peerj_cs_555
crossref_primary_10_32604_cmc_2022_019876
crossref_primary_10_1038_s41598_021_95561_y
crossref_primary_10_1016_j_bspc_2024_106925
crossref_primary_10_1016_j_array_2022_100271
crossref_primary_10_1111_coin_12526
crossref_primary_10_3390_diagnostics12071628
crossref_primary_10_1016_j_bea_2023_100076
crossref_primary_10_3390_diagnostics14161699
crossref_primary_10_1016_j_compbiomed_2024_108118
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1016_j_phycom_2021_101337
crossref_primary_10_1016_j_ijleo_2021_167199
crossref_primary_10_1155_2022_8925930
crossref_primary_10_1016_j_bspc_2022_103703
crossref_primary_10_3390_diagnostics11101887
crossref_primary_10_3389_frai_2023_1232640
crossref_primary_10_3390_diagnostics13010159
crossref_primary_10_1007_s13369_021_05956_2
crossref_primary_10_3390_diagnostics13010131
crossref_primary_10_1007_s12539_021_00463_2
crossref_primary_10_1007_s11042_024_18434_2
crossref_primary_10_1080_00051144_2024_2314918
crossref_primary_10_1109_ACCESS_2023_3337424
crossref_primary_10_4018_IJACI_300793
crossref_primary_10_1007_s11042_023_18014_w
crossref_primary_10_1109_ACCESS_2024_3390564
crossref_primary_10_1038_s41598_024_80013_0
crossref_primary_10_1007_s00354_022_00194_y
crossref_primary_10_32604_cmc_2022_018547
crossref_primary_10_1007_s00521_022_08127_y
crossref_primary_10_47836_pjst_30_1_01
crossref_primary_10_1007_s12652_022_03756_6
crossref_primary_10_1155_2022_7672196
crossref_primary_10_3390_diagnostics12030652
crossref_primary_10_1016_j_imu_2023_101312
crossref_primary_10_3390_diagnostics12081880
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1049_ipr2_12690
crossref_primary_10_1109_JBHI_2022_3177854
crossref_primary_10_15446_ing_investig_v42n1_90289
crossref_primary_10_1007_s41939_023_00292_4
crossref_primary_10_1016_j_bspc_2021_103182
crossref_primary_10_1016_j_heliyon_2024_e27509
crossref_primary_10_1049_tje2_12226
crossref_primary_10_1109_ACCESS_2021_3136263
crossref_primary_10_1038_s41598_023_49337_1
crossref_primary_10_7717_peerj_cs_985
crossref_primary_10_1016_j_bspc_2021_102764
crossref_primary_10_1109_JBHI_2022_3196489
crossref_primary_10_1142_S0219467824500049
crossref_primary_10_1007_s11042_022_12385_2
crossref_primary_10_1080_0952813X_2023_2256733
crossref_primary_10_3390_su13126900
crossref_primary_10_1007_s00500_023_09111_x
crossref_primary_10_3390_s22197303
crossref_primary_10_1016_j_cmpbup_2022_100054
crossref_primary_10_3390_diagnostics13152562
crossref_primary_10_1007_s10479_022_05151_y
crossref_primary_10_1016_j_bspc_2022_103595
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_1016_j_bspc_2022_104559
crossref_primary_10_1016_j_compbiomed_2021_104984
crossref_primary_10_3390_mi13081349
crossref_primary_10_32604_csse_2023_024463
crossref_primary_10_3390_ijerph182111086
crossref_primary_10_1155_2022_9009406
crossref_primary_10_3389_fdgth_2021_799067
crossref_primary_10_1186_s12880_024_01394_2
crossref_primary_10_1145_3551647
crossref_primary_10_1177_20552076231200981
crossref_primary_10_1007_s11042_022_12214_6
crossref_primary_10_1007_s00521_023_08788_3
crossref_primary_10_1016_j_aej_2021_03_052
crossref_primary_10_1016_j_artmed_2024_102858
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_1007_s00354_024_00254_5
crossref_primary_10_1016_j_imed_2023_06_001
crossref_primary_10_1007_s00354_024_00289_8
crossref_primary_10_1016_j_neucom_2025_129577
crossref_primary_10_3390_bioengineering9110709
crossref_primary_10_3390_diagnostics12122943
crossref_primary_10_3390_electronics12010195
crossref_primary_10_2298_CSIS210209056V
crossref_primary_10_3233_JIFS_223704
crossref_primary_10_3390_electronics11223836
crossref_primary_10_1016_j_compbiomed_2022_106092
crossref_primary_10_37394_23209_2024_21_21
crossref_primary_10_1007_s42452_024_06048_0
crossref_primary_10_1515_bmt_2021_0272
crossref_primary_10_1016_j_ejim_2024_02_037
crossref_primary_10_1186_s13634_021_00755_1
crossref_primary_10_1016_j_bspc_2024_107018
crossref_primary_10_1007_s00530_022_01015_4
crossref_primary_10_1016_j_bspc_2021_103076
crossref_primary_10_1016_j_aei_2021_101317
crossref_primary_10_1002_ima_22904
crossref_primary_10_1002_jemt_24705
crossref_primary_10_1016_j_eswa_2023_119900
crossref_primary_10_1007_s12553_021_00609_8
crossref_primary_10_1080_00207160_2024_2405164
crossref_primary_10_1080_13682199_2023_2170768
crossref_primary_10_1016_j_jpha_2021_12_006
crossref_primary_10_1016_j_eswa_2023_121300
crossref_primary_10_1007_s00354_021_00143_1
crossref_primary_10_1016_j_scitotenv_2021_149834
crossref_primary_10_1016_j_bspc_2021_103263
crossref_primary_10_1016_j_chemolab_2022_104539
crossref_primary_10_1111_1754_9485_13273
crossref_primary_10_32604_cmc_2022_020698
crossref_primary_10_1007_s44174_024_00212_1
crossref_primary_10_1016_j_asoc_2023_110511
crossref_primary_10_1016_j_bspc_2021_102602
crossref_primary_10_1177_20552076231215915
crossref_primary_10_1016_j_bspc_2021_102605
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_32604_cmes_2021_015807
crossref_primary_10_1016_j_iswa_2022_200130
crossref_primary_10_3390_app112311423
crossref_primary_10_1109_JTEHM_2021_3077760
crossref_primary_10_1088_1742_6596_1963_1_012099
crossref_primary_10_59313_jsr_a_1219363
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_2174_1874120702115010226
crossref_primary_10_32604_jai_2022_032974
crossref_primary_10_3390_s22166312
crossref_primary_10_3389_fgene_2022_980338
crossref_primary_10_35940_ijitee_I9696_0812923
crossref_primary_10_1016_j_jksuci_2023_101596
crossref_primary_10_1080_21681163_2023_2219765
crossref_primary_10_1007_s42979_023_02467_9
crossref_primary_10_3390_su141912222
crossref_primary_10_3390_diagnostics12092132
crossref_primary_10_1007_s44196_024_00543_3
crossref_primary_10_1016_j_bspc_2023_104722
crossref_primary_10_1016_j_compbiomed_2022_105244
crossref_primary_10_1007_s11277_024_11171_7
crossref_primary_10_1080_21681163_2022_2083018
crossref_primary_10_1007_s11042_022_12059_z
crossref_primary_10_1007_s11517_022_02553_9
crossref_primary_10_1155_2022_1773259
crossref_primary_10_3390_s23010426
crossref_primary_10_1016_j_patrec_2024_07_022
crossref_primary_10_1007_s00354_023_00220_7
crossref_primary_10_1007_s11517_022_02758_y
crossref_primary_10_3390_math9222896
crossref_primary_10_3390_s21175813
crossref_primary_10_1007_s42979_022_01653_5
crossref_primary_10_1007_s13721_022_00367_1
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1109_ACCESS_2021_3113812
crossref_primary_10_1016_j_media_2021_101993
crossref_primary_10_1177_09544119241293007
Cites_doi 10.1109/CVPR.2016.308
10.1016/S0140-6736(20)30183-5
10.1016/j.mehy.2020.109761
10.1016/j.patrec.2020.04.018
10.1016/j.mehy.2019.109531
10.1016/j.physa.2019.123592
10.1016/j.compbiomed.2020.103792
10.1109/CVPR.2014.222
10.1145/3195588.3195597
10.1016/j.media.2017.07.005
10.1148/radiol.2020200432
10.1109/TMI.2016.2528162
10.1371/journal.pmed.1002686
10.1109/CVPR.2018.00474
10.3390/app10020559
10.1109/CVPR.2017.369
10.1109/CVPR.2016.90
10.1016/j.compmedimag.2019.05.001
10.1148/radiol.2017162326
10.1038/nature14539
10.1038/nature21056
10.1109/TMI.2020.2993291
10.1148/radiol.2020200230
10.1109/CVPR.2015.7298594
10.1148/radiol.2020200527
10.1016/j.bspc.2020.101860
10.1016/j.compbiomed.2020.103805
ContentType Journal Article
Copyright 2020 Elsevier Ltd
2020 Elsevier Ltd. All rights reserved.
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: 2020 Elsevier Ltd. All rights reserved.
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.bspc.2020.102365
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
1746-8094
EndPage 102365
ExternalDocumentID PMC7674150
33230398
10_1016_j_bspc_2020_102365
S1746809420304717
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-ded94e883f04ed97d785dda5f441d1de688ef9e985dd8f94d2318d6393ee92513
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Aug 21 18:02:08 EDT 2025
Fri Jul 11 16:52:21 EDT 2025
Thu Apr 03 07:07:56 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Tue Jul 01 01:34:08 EDT 2025
Fri Feb 23 02:45:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Optimization algorithms
SARS-CoV-2
Convolutional Neural Networks
Chest X-ray
Language English
License 2020 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-ded94e883f04ed97d785dda5f441d1de688ef9e985dd8f94d2318d6393ee92513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7674150
PMID 33230398
PQID 2464144516
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674150
proquest_miscellaneous_2464144516
pubmed_primary_33230398
crossref_citationtrail_10_1016_j_bspc_2020_102365
crossref_primary_10_1016_j_bspc_2020_102365
elsevier_sciencedirect_doi_10_1016_j_bspc_2020_102365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biomedical signal processing and control
PublicationTitleAlternate Biomed Signal Process Control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Wang, Shi, Wu, Wang, Tang, He, Shi, Shen (b4) 2020
LeCun, Bengio, Hinton (b13) 2015; 521
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2818–2826.
Toğaçar, Ergen, Cömert (b41) 2020; 134
Toğaçar, Özkurt, Ergen, Cömert (b42) 2020; 545
Hoo-Chang, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (b11) 2016; 35
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b15) 2017; 542
M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level image representations using convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1717–1724.
Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (b31) 2019; 75
Zeiler (b45) 2012
WHO (b1) 2020
X. Gu, L. Pan, H. Liang, R. Yang, Classification of bacterial and viral childhood pneumonia using deep learning in chest radiography, in: Proceedings of the 3rd International Conference on Multimedia and Image Processing, 2018, pp. 88–93.
I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147.
Wang, Wong (b22) 2020
Chung, Bernheim, Mei, Zhang, Huang, Zeng, Cui, Xu, Yang, Fayad (b9) 2020; 295
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
Oh, Park, Ye (b7) 2020; 39
Krizhevsky, Sutskever, Hinton (b34) 2012
Chouhan, Singh, Khamparia, Gupta, Tiwari, Moreira, Damaševičius, de Albuquerque (b17) 2020; 10
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, Van Ginneken, Sánchez (b12) 2017; 42
Kingma, Ba (b43) 2014
Nayak, Dash, Majhi, Pachori, Zhang (b14) 2020; 58
Nayak, Dash, Majhi (b32) 2020; 138
Ucar, Korkmaz (b26) 2020
Toğaçar, Ergen, Cömert (b27) 2020
Hinton, Srivastava, Swersky (b46) 2012
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (b2) 2020; 395
Rajpurkar, Irvin, Ball, Zhu, Yang, Mehta, Duan, Ding, Bagul, Langlotz (b19) 2018; 15
Cohen, Morrison, Dao (b29) 2020
Elasnaoui, Chawki (b3) 2020
X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097–2106.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Hemdan, Shouman, Karar (b21) 2020
Lakhani, Sundaram (b18) 2017; 284
Fang, Zhang, Xie, Lin, Ying, Pang, Ji (b5) 2020
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (b20) 2020
Kanne, Little, Chung, Elicker, Ketai (b8) 2020; 296
Sethy, Behera (b25) 2020
Dong, Tang, Wang, Hui, Gong, Lu, Xue, Liao, Chen, Yang (b6) 2020
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
Simonyan, Zisserman (b35) 2014
Zhang, Xie, Li, Shen, Xia (b10) 2020
Apostolopoulos, Mpesiana (b23) 2020
Farooq, Hafeez (b28) 2020
Narin, Kaya, Pamuk (b24) 2020
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b38) 2016
Chouhan (10.1016/j.bspc.2020.102365_b17) 2020; 10
10.1016/j.bspc.2020.102365_b30
Swati (10.1016/j.bspc.2020.102365_b31) 2019; 75
Dong (10.1016/j.bspc.2020.102365_b6) 2020
10.1016/j.bspc.2020.102365_b36
10.1016/j.bspc.2020.102365_b37
10.1016/j.bspc.2020.102365_b16
Narin (10.1016/j.bspc.2020.102365_b24) 2020
Toğaçar (10.1016/j.bspc.2020.102365_b42) 2020; 545
WHO (10.1016/j.bspc.2020.102365_b1) 2020
Toğaçar (10.1016/j.bspc.2020.102365_b27) 2020
Farooq (10.1016/j.bspc.2020.102365_b28) 2020
Elasnaoui (10.1016/j.bspc.2020.102365_b3) 2020
Cohen (10.1016/j.bspc.2020.102365_b29) 2020
10.1016/j.bspc.2020.102365_b33
Chung (10.1016/j.bspc.2020.102365_b9) 2020; 295
Sethy (10.1016/j.bspc.2020.102365_b25) 2020
Simonyan (10.1016/j.bspc.2020.102365_b35) 2014
10.1016/j.bspc.2020.102365_b39
Esteva (10.1016/j.bspc.2020.102365_b15) 2017; 542
Huang (10.1016/j.bspc.2020.102365_b2) 2020; 395
Iandola (10.1016/j.bspc.2020.102365_b38) 2016
Zhang (10.1016/j.bspc.2020.102365_b10) 2020
Ucar (10.1016/j.bspc.2020.102365_b26) 2020
Hinton (10.1016/j.bspc.2020.102365_b46) 2012
Kanne (10.1016/j.bspc.2020.102365_b8) 2020; 296
Litjens (10.1016/j.bspc.2020.102365_b12) 2017; 42
Lakhani (10.1016/j.bspc.2020.102365_b18) 2017; 284
Oh (10.1016/j.bspc.2020.102365_b7) 2020; 39
Nayak (10.1016/j.bspc.2020.102365_b32) 2020; 138
Krizhevsky (10.1016/j.bspc.2020.102365_b34) 2012
Ozturk (10.1016/j.bspc.2020.102365_b20) 2020
10.1016/j.bspc.2020.102365_b40
LeCun (10.1016/j.bspc.2020.102365_b13) 2015; 521
Kingma (10.1016/j.bspc.2020.102365_b43) 2014
Nayak (10.1016/j.bspc.2020.102365_b14) 2020; 58
Fang (10.1016/j.bspc.2020.102365_b5) 2020
10.1016/j.bspc.2020.102365_b44
Apostolopoulos (10.1016/j.bspc.2020.102365_b23) 2020
Wang (10.1016/j.bspc.2020.102365_b22) 2020
Rajpurkar (10.1016/j.bspc.2020.102365_b19) 2018; 15
Toğaçar (10.1016/j.bspc.2020.102365_b41) 2020; 134
Shi (10.1016/j.bspc.2020.102365_b4) 2020
Zeiler (10.1016/j.bspc.2020.102365_b45) 2012
Hoo-Chang (10.1016/j.bspc.2020.102365_b11) 2016; 35
Hemdan (10.1016/j.bspc.2020.102365_b21) 2020
References_xml – volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: b15
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2020
  ident: b29
  article-title: COVID-19 image data collection
– reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2818–2826.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 58
  year: 2020
  ident: b14
  article-title: A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer
  publication-title: Biomed. Signal Process. Control
– reference: X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097–2106.
– volume: 545
  year: 2020
  ident: b42
  article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Physica A
– reference: I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: b2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: The Lancet
– year: 2020
  ident: b22
  article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-Ray images
– year: 2020
  ident: b25
  article-title: Detection of coronavirus disease (COVID-19) based on deep features
– year: 2020
  ident: b1
  article-title: Coronavirus disease 2019 (COVID-19) situation report – 127
– start-page: 1
  year: 2020
  end-page: 22
  ident: b3
  article-title: Using X-ray images and deep learning for automated detection of coronavirus disease
  publication-title: J. Biomol. Struct. Dyn.
– reference: X. Gu, L. Pan, H. Liang, R. Yang, Classification of bacterial and viral childhood pneumonia using deep learning in chest radiography, in: Proceedings of the 3rd International Conference on Multimedia and Image Processing, 2018, pp. 88–93.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b12
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– year: 2020
  ident: b24
  article-title: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
– start-page: 1
  year: 2020
  ident: b23
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
– volume: 296
  start-page: 1
  year: 2020
  end-page: 2
  ident: b8
  article-title: Essentials for radiologists on COVID-19: An update—radiology scientific expert panel
  publication-title: Radiology
– volume: 39
  start-page: 2688
  year: 2020
  end-page: 2700
  ident: b7
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imaging
– year: 2020
  ident: b10
  article-title: COVID-19 screening on chest X-ray images using deep learning based anomaly detection
– year: 2020
  ident: b27
  article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
– volume: 134
  year: 2020
  ident: b41
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– volume: 295
  start-page: 202
  year: 2020
  end-page: 207
  ident: b9
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
– volume: 138
  start-page: 385
  year: 2020
  end-page: 391
  ident: b32
  article-title: Automated diagnosis of multi-class brain abnormalities using MRI images: A deep convolutional neural network based method
  publication-title: Pattern Recognit. Lett.
– year: 2020
  ident: b21
  article-title: COVIDX-Net: A framework of deep learning classifiers to diagnose covid-19 in X-ray images
– reference: M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level image representations using convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1717–1724.
– year: 2020
  ident: b26
  article-title: COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-Ray images
  publication-title: Med. Hypotheses
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b34
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2012
  ident: b45
  article-title: Adadelta: an adaptive learning rate method
– volume: 15
  year: 2018
  ident: b19
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med.
– year: 2020
  ident: b5
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
– volume: 75
  start-page: 34
  year: 2019
  end-page: 46
  ident: b31
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput. Med. Imaging Graph.
– year: 2020
  ident: b6
  article-title: The role of imaging in the detection and management of COVID-19: A review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 35
  start-page: 1285
  year: 2016
  ident: b11
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– year: 2014
  ident: b43
  article-title: Adam: A method for stochastic optimization
– volume: 521
  start-page: 436
  year: 2015
  ident: b13
  article-title: Deep learning
  publication-title: Nature
– year: 2016
  ident: b38
  article-title: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– year: 2014
  ident: b35
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 10
  start-page: 559
  year: 2020
  ident: b17
  article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images
  publication-title: Appl. Sci.
– year: 2020
  ident: b20
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: b4
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 284
  start-page: 574
  year: 2017
  end-page: 582
  ident: b18
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– year: 2012
  ident: b46
  article-title: Lecture 6a overview of mini-batch gradient descent course
  publication-title: Neural Networks for Machine Learning
– year: 2020
  ident: b28
  article-title: COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs
– ident: 10.1016/j.bspc.2020.102365_b40
  doi: 10.1109/CVPR.2016.308
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b26
  article-title: COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-Ray images
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– volume: 138
  start-page: 385
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b32
  article-title: Automated diagnosis of multi-class brain abnormalities using MRI images: A deep convolutional neural network based method
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.04.018
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b21
– year: 2014
  ident: 10.1016/j.bspc.2020.102365_b35
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b25
– volume: 134
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b41
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 545
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b42
  article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123592
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b1
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b20
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– ident: 10.1016/j.bspc.2020.102365_b33
  doi: 10.1109/CVPR.2014.222
– year: 2016
  ident: 10.1016/j.bspc.2020.102365_b38
– ident: 10.1016/j.bspc.2020.102365_b16
  doi: 10.1145/3195588.3195597
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b23
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b24
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.bspc.2020.102365_b12
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b5
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2020.102365_b11
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 10.1016/j.bspc.2020.102365_b44
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b28
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b6
  article-title: The role of imaging in the detection and management of COVID-19: A review
  publication-title: IEEE Rev. Biomed. Eng.
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b29
– volume: 15
  issue: 11
  year: 2018
  ident: 10.1016/j.bspc.2020.102365_b19
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002686
– year: 2014
  ident: 10.1016/j.bspc.2020.102365_b43
– ident: 10.1016/j.bspc.2020.102365_b37
  doi: 10.1109/CVPR.2018.00474
– volume: 10
  start-page: 559
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b17
  article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images
  publication-title: Appl. Sci.
  doi: 10.3390/app10020559
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b4
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
– ident: 10.1016/j.bspc.2020.102365_b30
  doi: 10.1109/CVPR.2017.369
– ident: 10.1016/j.bspc.2020.102365_b39
  doi: 10.1109/CVPR.2016.90
– year: 2012
  ident: 10.1016/j.bspc.2020.102365_b45
– volume: 75
  start-page: 34
  year: 2019
  ident: 10.1016/j.bspc.2020.102365_b31
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 284
  start-page: 574
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2020.102365_b18
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.bspc.2020.102365_b13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.bspc.2020.102365_b15
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 39
  start-page: 2688
  issue: 8
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b7
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2993291
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b3
  article-title: Using X-ray images and deep learning for automated detection of coronavirus disease
  publication-title: J. Biomol. Struct. Dyn.
– volume: 295
  start-page: 202
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b9
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
  doi: 10.1148/radiol.2020200230
– start-page: 1097
  year: 2012
  ident: 10.1016/j.bspc.2020.102365_b34
  article-title: ImageNet classification with deep convolutional neural networks
– ident: 10.1016/j.bspc.2020.102365_b36
  doi: 10.1109/CVPR.2015.7298594
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b22
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b10
– volume: 296
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b8
  article-title: Essentials for radiologists on COVID-19: An update—radiology scientific expert panel
  publication-title: Radiology
  doi: 10.1148/radiol.2020200527
– volume: 58
  year: 2020
  ident: 10.1016/j.bspc.2020.102365_b14
  article-title: A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101860
– year: 2012
  ident: 10.1016/j.bspc.2020.102365_b46
  article-title: Lecture 6a overview of mini-batch gradient descent course
– year: 2020
  ident: 10.1016/j.bspc.2020.102365_b27
  article-title: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103805
SSID ssj0048714
Score 2.6343997
Snippet The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102365
SubjectTerms Chest X-ray
Convolutional Neural Networks
COVID-19
Optimization algorithms
SARS-CoV-2
Title Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study
URI https://dx.doi.org/10.1016/j.bspc.2020.102365
https://www.ncbi.nlm.nih.gov/pubmed/33230398
https://www.proquest.com/docview/2464144516
https://pubmed.ncbi.nlm.nih.gov/PMC7674150
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9lIOqKU8Qh8yEjdksg-v1-YWpVQpVcsBinKzNvG4DYJNlE1V9cJv74z3QQOoB26WPZYsj-35LH_-hrG3aZSYyCUgjMomeEExSphEGeGkLJJcR15F9FH4_EKNLuWncTbeYMP2LwzRKpuzvz7Tw2nd1PSb2ewvZrP-F8TSSuPtJKHXPbyV0A92mdMqf_-ro3kgHg_63mQsyLr5OFNzvCbVgmQMk1rBgALMv4PT3-DzTw7lg6B0ssOeNmiSD-oB77INKJ-xJw80BvfY7eD3EzWfe-4AFrzJFXHFOwnXiiN6xcZVoGYFy-Hnb6fHIjZ8ipGu4sSQv-IhvxYfi2Vxx2c_8TCqPvABJ2L6Eq5rMjwPkrXP2eXJx6_DkWiyLYgpJTUQDpyRoHXqI4nF3OU6c67IPAImFztQWoM3YKhWeyMdIkPtEOCkAAZRUvqCbZbzEl4xrsGoItJG5WCkn-jC5B4iiGIvsZgVPRa302ynjRQ5ZcT4YVvO2XdLrrHkGlu7psfedX0WtRDHo9ZZ6z27tpwsRopH-71pXW1xn9HjSVHC_KayiVQyJjU31WMva9d340hTvMilRvdYvrYoOgPS8F5vKWfXQcubtJQQk7_-z_Hus-2ESDaBRn7ANlfLGzhElLSaHIVtcMS2Bqdno4t76zMRuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDfhuUhwQib2er3eReIQtVQJfXCgRbktTnbcpipOFKeqeuFP8QeZsR3TAOoBqTdrH9ZoZ3ce2m-_AXgdh9KGXmJgdTKiBMXqwEptA69UJlMT5jrkh8K7e7p_oD4Nk-Ea_Fy-hWFYZWP7a5teWeumpdusZnc2mXS_UCytDWUnkm_3KCtpkJXbeH5GeVv5YbBJSn4j5dbH_Y1-0JQWCMbM4B949FahMXEeKvpMfWoS77Mkp-jARx61MZhbtNxqcqs8hUHGkzePES2FBDH99xpcV2QuuGzCux8troQSgIpQnKULWLzmpU4NKhuVM-ZNlDVlAnu0f3vDv6PdP0GbF7zg1h243YSvolev0F1Yw-Ie3LpAangfznq_78TFNBcecSaa4hSHouWMLQWFy9S5qLBg1ciNz18Hm0FkxZhcaykYkn8oqoJeYhjMs3Mx-U7Wr3wveoKR8HM8qtH3ouLIfQAHV6KDh7BeTAt8DMKg1VlorE7RqnxkMpvmGGIY5Yo-k6wD0XKZ3bjhPucSHCduCXI7dqwax6pxtWo68LadM6uZPy4dnSy151b2ryPXdOm8V0tVOzrYfFuTFTg9LZ1UWkVMH6c78KhWfStHHFPmGFvTgXRlU7QDmDR8taeYHFXk4UzeREnAk_-U9yXc6O_v7ridwd72U7gpGeFTYdifwfpiforPKURbjF5UR0LAt6s-g78Aee5N-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+techniques+for+detection+of+COVID-19+cases+using+chest+X-ray+images%3A+A+comprehensive+study&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Nayak%2C+Soumya+Ranjan&rft.au=Nayak%2C+Deepak+Ranjan&rft.au=Sinha%2C+Utkarsh&rft.au=Arora%2C+Vaibhav&rft.date=2021-02-01&rft.issn=1746-8094&rft.volume=64&rft.spage=102365&rft_id=info:doi/10.1016%2Fj.bspc.2020.102365&rft_id=info%3Apmid%2F33230398&rft.externalDocID=33230398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon