Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut micr...
Saved in:
Published in | eLife Vol. 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
27.02.2024
eLife Sciences Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and
Tnfa
and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A’s beneficial effects likely reflect the metabolite’s direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). |
---|---|
AbstractList | Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and
Tnfa
and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A’s beneficial effects likely reflect the metabolite’s direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A’s beneficial effects likely reflect the metabolite’s direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and [beta]-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH). |
Audience | Academic |
Author | Hensel, Martha E Jayaraman, Arul Yanagi, Karin Callaway, Evelyn Lee, Kyongbum Cheng, Clint Alaniz, Robert C Menon, Rani Yang, Fang Ding, Yufang |
Author_xml | – sequence: 1 givenname: Yufang orcidid: 0000-0001-6633-8192 surname: Ding fullname: Ding, Yufang – sequence: 2 givenname: Karin surname: Yanagi fullname: Yanagi, Karin – sequence: 3 givenname: Fang surname: Yang fullname: Yang, Fang – sequence: 4 givenname: Evelyn surname: Callaway fullname: Callaway, Evelyn – sequence: 5 givenname: Clint surname: Cheng fullname: Cheng, Clint – sequence: 6 givenname: Martha E surname: Hensel fullname: Hensel, Martha E – sequence: 7 givenname: Rani surname: Menon fullname: Menon, Rani – sequence: 8 givenname: Robert C surname: Alaniz fullname: Alaniz, Robert C – sequence: 9 givenname: Kyongbum surname: Lee fullname: Lee, Kyongbum – sequence: 10 givenname: Arul orcidid: 0000-0001-9276-8284 surname: Jayaraman fullname: Jayaraman, Arul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38412016$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstr3DAQxk1JadJtTr0XQy8txVvJ8kM-htDHwkKgD-hNjKXRokW2tpZcWugf39ndNGRDpIOG4TefNKPveXY2hhGz7CVny7auq_e4dhaXsq1q-SS7KFnNCiarH2f34vPsMsYto9VWUvLuWXYuZMVLxpuL7O_NBD6P827nccAxQXJhzIPNN3PKB6en0DsCBkzQB-8S5m40wWMhCtCUpAR4j78cRTE3DlNBwKzR5DEhpBBdzGE0VGY9DMNR3417bXyRPbXgI17enovs-8cP364_F-ubT6vrq3Wh65KnwmiEtrdIzVgm-6YWAKZjZd1WoHmNUAKHrrXcAOcaG8kFaCO6vtM1WqjEIlsddU2ArdpNboDpjwrg1CERpo2CKTntUTWmZZZpUrO2Mlj22HRdX4maQmmxIa03R63dFH7OGJMaXNToPYwY5qjKTpSVaBgvCX39AN2GeRqpUyVYyaRoyvvUBuh-GlNIE-i9qLpq6Z8kb6mhRbZ8hKJtkCZJnrCO8icFb08KiEn4O21gjlGtvn45ZV_dPnTuBzR3E_pvEwLeHQHyQ4wT2juEM7X3oTr4UB18SDR_QGt3NBa92flHa_4BYeTgpQ |
CitedBy_id | crossref_primary_10_1016_j_carbpol_2024_123022 crossref_primary_10_1165_rcmb_2024_0159OC crossref_primary_10_3390_microorganisms12112342 crossref_primary_10_3390_nu16142372 crossref_primary_10_3390_metabo13111166 crossref_primary_10_3390_nu16121808 crossref_primary_10_1002_mnfr_202400754 crossref_primary_10_1016_j_fct_2024_114917 crossref_primary_10_1002_fft2_471 crossref_primary_10_1186_s13568_024_01756_7 crossref_primary_10_1097_IN9_0000000000000047 crossref_primary_10_1016_j_tips_2024_07_006 crossref_primary_10_3390_ijms25084527 |
Cites_doi | 10.1073/pnas.97.4.1444 10.1111/j.1872-034X.2008.00464.x 10.3390/nu11092062 10.1016/j.jhep.2016.05.005 10.3748/wjg.v18.i8.727 10.7861/clinmedicine.11-2-176 10.3390/ijms21051579 10.1093/ndt/gfx252 10.1007/s00216-010-4425-x 10.1111/hepr.12825 10.1038/s41598-019-47216-2 10.4049/jimmunol.181.12.8633 10.1016/j.phrs.2019.01.029 10.1002/hep.20701 10.1097/MOG.0000000000000349 10.1016/j.cmet.2011.11.004 10.3390/ijms19010322 10.3390/ijms17050774 10.1016/j.exphem.2015.08.010 10.1126/science.abb3763 10.1172/JCI21270 10.1146/annurev.nutr.21.1.193 10.1021/bi047773a 10.1186/1471-230X-14-81 10.1016/j.cellsig.2022.110442 10.1002/hep.27173 10.1097/MEG.0b013e328345c8c7 10.1038/s41596-022-00710-w 10.1002/hep.27332 10.1038/nrm.2017.95 10.1111/j.1478-3231.2009.02076.x 10.1074/jbc.M110.123620 10.1002/9781118445112.stat07841 10.1002/hep.29359 10.1016/j.tem.2017.05.004 10.1194/jlr.RA119000243 10.1124/mol.113.091165 10.1016/j.celrep.2018.03.109 10.1186/s10020-018-0008-7 10.1155/2014/784985 10.1371/journal.pone.0271308 10.1002/hep.28356 10.1089/met.2010.0121 10.3389/fmicb.2018.00061 10.1016/j.cmet.2017.04.001 10.1016/j.cmet.2016.06.005 10.1093/nar/gks1219 10.14218/JCTH.2021.00289 10.1155/2018/7328057 10.1038/s41591-018-0061-3 10.1038/nrgastro.2013.171 10.1074/jbc.M608310200 10.1186/s12934-020-01463-5 10.23736/S0391-1977.16.02565-7 10.1146/annurev-pathol-121808-102132 10.1038/s41575-020-0269-9 10.1136/gutjnl-2012-303816 10.4254/wjh.v8.i4.211 10.1111/j.1572-0241.2003.07725.x 10.1186/gb-2011-12-6-r60 10.1093/jn/136.12.3022 10.1136/gutjnl-2012-302789 10.1152/ajpendo.00225.2016 10.3389/fimmu.2021.645168 10.4049/jimmunol.1502615 10.1289/EHP464 10.1128/AEM.01043-13 |
ContentType | Journal Article |
Copyright | 2023, Ding, Yanagi et al. COPYRIGHT 2024 eLife Science Publications, Ltd. 2023, Ding, Yanagi et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023, Ding, Yanagi et al. – notice: COPYRIGHT 2024 eLife Science Publications, Ltd. – notice: 2023, Ding, Yanagi et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.7554/eLife.87458 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_6d70f0c97fff4de2be699b435e2b8fe6 A784181781 38412016 10_7554_eLife_87458 |
Genre | Journal Article |
GeographicLocations | United States Massachusetts California |
GeographicLocations_xml | – name: Massachusetts – name: California – name: United States |
GrantInformation_xml | – fundername: Tufts University grantid: Karol Family Professorship – fundername: Texas A and M University grantid: Ray B. Nesbitt Endowed Chair |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c521t-dcea7bfe084f08b653aad902574ac15ea2a1a97f1da11ce6813acd39b9c5efa43 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:26:30 EDT 2025 Thu Jul 10 19:24:58 EDT 2025 Fri Jul 25 11:56:01 EDT 2025 Tue Jun 17 22:18:40 EDT 2025 Tue Jun 10 21:13:31 EDT 2025 Fri Jun 27 05:55:29 EDT 2025 Thu Apr 03 07:05:14 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 04:08:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | microbiota mouse inflammation liver medicine immunology indole-3-acetic acid |
Language | English |
License | 2023, Ding, Yanagi et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-dcea7bfe084f08b653aad902574ac15ea2a1a97f1da11ce6813acd39b9c5efa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6633-8192 0000-0001-9276-8284 |
OpenAccessLink | https://www.proquest.com/docview/3020836212?pq-origsite=%requestingapplication% |
PMID | 38412016 |
PQID | 3020836212 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d70f0c97fff4de2be699b435e2b8fe6 proquest_miscellaneous_2932436012 proquest_journals_3020836212 gale_infotracmisc_A784181781 gale_infotracacademiconefile_A784181781 gale_incontextgauss_ISR_A784181781 pubmed_primary_38412016 crossref_primary_10_7554_eLife_87458 crossref_citationtrail_10_7554_eLife_87458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-27 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2024 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd |
References | Mitsuyoshi (bib43) 2009; 39 von Loeffelholz (bib63) 2017; 47 Brandl (bib8) 2017; 33 Wu (bib64) 2007; 282 Loomba (bib38) 2013; 10 Hoyles (bib27) 2018; 24 Eleftheriadis (bib23) 2016; 44 Kleiner (bib31) 2005; 41 Li (bib36) 2016; 197 Bedossa (bib5) 2014; 60 Dettmer (bib21) 2011; 399 Ji (bib28) 2019; 11 Saltzman (bib53) 2018; 9 De Juan (bib18) 2021; 12 Vela (bib62) 2018; 24 Ueda (bib61) 2022; 17 Seki (bib55) 2015; 61 Muse (bib44) 2004; 114 Dasarathy (bib13) 2011; 23 Miele (bib42) 2003; 98 Pang (bib47) 2022; 17 Smith (bib57) 2016; 311 Zhang (bib67) 2022; 99 Segata (bib54) 2011; 12 Asgharpour (bib4) 2016; 65 Braunersreuther (bib9) 2012; 18 Jin (bib30) 2014; 85 Del Ben (bib19) 2014; 2014 Anderson (bib2) 2017 Lu (bib40) 2016; 8 Datz (bib14) 2017; 42 Sunny (bib59) 2011; 14 Del Ben (bib20) 2014; 14 Ji (bib29) 2020; 21 Su (bib58) 2005; 44 Quast (bib50) 2013; 41 Senates (bib56) 2011; 9 Day (bib16) 2017; 28 Puri (bib49) 2018; 67 Manteiga (bib41) 2017; 125 Kotronen (bib32) 2009; 29 Enooku (bib24) 2019; 9 Krishnan (bib34) 2018; 23 Aron-Wisnewsky (bib3) 2020; 17 Palmieri (bib46) 2006; 136 Ding (bib22) 2019; 141 Loomba (bib39) 2017; 25 Sag (bib52) 2008; 181 Boursier (bib7) 2016; 63 Kozich (bib33) 2013; 79 Hamano (bib25) 2018; 33 Calzadilla Bertot (bib10) 2016; 17 Day (bib15) 2011; 11 Herzig (bib26) 2018; 19 Petersen (bib48) 2016; 24 Chen (bib11) 2022; 10 Le Roy (bib35) 2013; 62 Zhou (bib68) 2022; 14 Yang (bib65) 2010; 285 Bibbò (bib6) 2018; 2018 Reddy (bib51) 2001; 21 de Boer (bib17) 2020; 61 Natarajan (bib45) 2018; 19 Tiniakos (bib60) 2010; 5 Croci (bib12) 2013; 62 Lobel (bib37) 2020; 369 Abu-Elheiga (bib1) 2000; 97 Yang (bib66) 2020; 19 |
References_xml | – volume: 97 start-page: 1444 year: 2000 ident: bib1 article-title: The subcellular localization of acetyl-CoA carboxylase 2 publication-title: PNAS doi: 10.1073/pnas.97.4.1444 – volume: 39 start-page: 366 year: 2009 ident: bib43 article-title: Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease publication-title: Hepatology Research doi: 10.1111/j.1872-034X.2008.00464.x – volume: 11 year: 2019 ident: bib28 article-title: Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress publication-title: Nutrients doi: 10.3390/nu11092062 – volume: 65 start-page: 579 year: 2016 ident: bib4 article-title: A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer publication-title: Journal of Hepatology doi: 10.1016/j.jhep.2016.05.005 – volume: 18 start-page: 727 year: 2012 ident: bib9 article-title: Role of cytokines and chemokines in non-alcoholic fatty liver disease publication-title: World Journal of Gastroenterology doi: 10.3748/wjg.v18.i8.727 – volume: 11 start-page: 176 year: 2011 ident: bib15 article-title: Non-alcoholic fatty liver disease: a massive problem publication-title: Clinical Medicine doi: 10.7861/clinmedicine.11-2-176 – volume: 21 year: 2020 ident: bib29 article-title: Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21051579 – volume: 33 start-page: 586 year: 2018 ident: bib25 article-title: The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease publication-title: Nephrology, Dialysis, Transplantation doi: 10.1093/ndt/gfx252 – volume: 399 start-page: 1127 year: 2011 ident: bib21 article-title: Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-010-4425-x – volume: 47 start-page: 890 year: 2017 ident: bib63 article-title: Increased lipogenesis in spite of upregulated hepatic 5’AMP-activated protein kinase in human non-alcoholic fatty liver publication-title: Hepatology Research doi: 10.1111/hepr.12825 – volume: 14 start-page: 2593 year: 2022 ident: bib68 article-title: The correlation between lncRNA NEAT1 and serum hepcidin in the peripheral blood of non-alcoholic fatty liver disease patients publication-title: American Journal of Translational Research – volume: 9 year: 2019 ident: bib24 article-title: Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma publication-title: Scientific Reports doi: 10.1038/s41598-019-47216-2 – volume: 181 start-page: 8633 year: 2008 ident: bib52 article-title: Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype publication-title: The Journal of Immunology doi: 10.4049/jimmunol.181.12.8633 – volume: 141 start-page: 521 year: 2019 ident: bib22 article-title: Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites publication-title: Pharmacological Research doi: 10.1016/j.phrs.2019.01.029 – volume: 41 start-page: 1313 year: 2005 ident: bib31 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 33 start-page: 128 year: 2017 ident: bib8 article-title: Intestinal microbiota and nonalcoholic steatohepatitis publication-title: Current Opinion in Gastroenterology doi: 10.1097/MOG.0000000000000349 – volume: 14 start-page: 804 year: 2011 ident: bib59 article-title: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease publication-title: Cell Metabolism doi: 10.1016/j.cmet.2011.11.004 – volume: 19 year: 2018 ident: bib45 article-title: Role of 3-hydroxy fatty acid-induced hepatic lipotoxicity in acute fatty liver of pregnancy publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms19010322 – volume: 17 year: 2016 ident: bib10 article-title: The natural course of non-alcoholic fatty liver disease publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms17050774 – volume: 44 start-page: 60 year: 2016 ident: bib23 article-title: Kynurenine, by activating aryl hydrocarbon receptor, decreases erythropoietin and increases hepcidin production in HepG2 cells: a new mechanism for anemia of inflammation publication-title: Experimental Hematology doi: 10.1016/j.exphem.2015.08.010 – volume: 369 start-page: 1518 year: 2020 ident: bib37 article-title: Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function publication-title: Science doi: 10.1126/science.abb3763 – volume: 114 start-page: 232 year: 2004 ident: bib44 article-title: Role of resistin in diet-induced hepatic insulin resistance publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI21270 – volume: 21 start-page: 193 year: 2001 ident: bib51 article-title: Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system publication-title: Annual Review of Nutrition doi: 10.1146/annurev.nutr.21.1.193 – volume: 44 start-page: 5234 year: 2005 ident: bib58 article-title: Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics publication-title: Biochemistry doi: 10.1021/bi047773a – volume: 14 year: 2014 ident: bib20 article-title: NOX2-generated oxidative stress is associated with severity of ultrasound liver steatosis in patients with non-alcoholic fatty liver disease publication-title: BMC Gastroenterology doi: 10.1186/1471-230X-14-81 – volume: 99 year: 2022 ident: bib67 article-title: Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation publication-title: Cellular Signalling doi: 10.1016/j.cellsig.2022.110442 – volume: 60 start-page: 565 year: 2014 ident: bib5 article-title: Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.27173 – volume: 23 start-page: 382 year: 2011 ident: bib13 article-title: Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis publication-title: European Journal of Gastroenterology & Hepatology doi: 10.1097/MEG.0b013e328345c8c7 – volume: 17 start-page: 1735 year: 2022 ident: bib47 article-title: Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data publication-title: Nature Protocols doi: 10.1038/s41596-022-00710-w – volume: 61 start-page: 1066 year: 2015 ident: bib55 article-title: Hepatic inflammation and fibrosis: functional links and key pathways publication-title: Hepatology doi: 10.1002/hep.27332 – volume: 19 start-page: 121 year: 2018 ident: bib26 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm.2017.95 – volume: 29 start-page: 1439 year: 2009 ident: bib32 article-title: Liver fat and lipid oxidation in humans publication-title: Liver International doi: 10.1111/j.1478-3231.2009.02076.x – volume: 285 start-page: 19051 year: 2010 ident: bib65 article-title: Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1 publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M110.123620 – start-page: 1 volume-title: Wiley StatsRef: Statistics Reference Online year: 2017 ident: bib2 doi: 10.1002/9781118445112.stat07841 – volume: 67 start-page: 534 year: 2018 ident: bib49 article-title: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids publication-title: Hepatology doi: 10.1002/hep.29359 – volume: 28 start-page: 545 year: 2017 ident: bib16 article-title: AMPK as a therapeutic target for treating metabolic diseases publication-title: Trends in Endocrinology and Metabolism doi: 10.1016/j.tem.2017.05.004 – volume: 61 start-page: 291 year: 2020 ident: bib17 article-title: A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice publication-title: Journal of Lipid Research doi: 10.1194/jlr.RA119000243 – volume: 85 start-page: 777 year: 2014 ident: bib30 article-title: Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities publication-title: Molecular Pharmacology doi: 10.1124/mol.113.091165 – volume: 23 start-page: 1099 year: 2018 ident: bib34 article-title: Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages publication-title: Cell Reports doi: 10.1016/j.celrep.2018.03.109 – volume: 24 year: 2018 ident: bib62 article-title: Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker publication-title: Molecular Medicine doi: 10.1186/s10020-018-0008-7 – volume: 2014 year: 2014 ident: bib19 article-title: Serum cytokeratin-18 is associated with NOX2-generated oxidative stress in patients with nonalcoholic fatty liver publication-title: International Journal of Hepatology doi: 10.1155/2014/784985 – volume: 17 year: 2022 ident: bib61 article-title: Sex-, age-, and organ-dependent improvement of bile acid hydrophobicity by ursodeoxycholic acid treatment: A study using A mouse model with human-like bile acid composition publication-title: PLOS ONE doi: 10.1371/journal.pone.0271308 – volume: 63 start-page: 764 year: 2016 ident: bib7 article-title: The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota publication-title: Hepatology doi: 10.1002/hep.28356 – volume: 9 start-page: 287 year: 2011 ident: bib56 article-title: Serum levels of hepcidin in patients with biopsy-proven nonalcoholic fatty liver disease publication-title: Metabolic Syndrome and Related Disorders doi: 10.1089/met.2010.0121 – volume: 9 year: 2018 ident: bib53 article-title: Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2018.00061 – volume: 25 start-page: 1054 year: 2017 ident: bib39 article-title: Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease publication-title: Cell Metabolism doi: 10.1016/j.cmet.2017.04.001 – volume: 24 start-page: 167 year: 2016 ident: bib48 article-title: Assessment of Hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by (13)C magnetic resonance spectroscopy publication-title: Cell Metabolism doi: 10.1016/j.cmet.2016.06.005 – volume: 41 start-page: D590 year: 2013 ident: bib50 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Research doi: 10.1093/nar/gks1219 – volume: 10 start-page: 577 year: 2022 ident: bib11 article-title: Overexpression of hepcidin alleviates steatohepatitis and fibrosis in a diet-induced nonalcoholic steatohepatitis publication-title: Journal of Clinical and Translational Hepatology doi: 10.14218/JCTH.2021.00289 – volume: 2018 year: 2018 ident: bib6 article-title: Response to: comment on “Gut Microbiota as a driver of inflammation in nonalcoholic fatty liver disease.” publication-title: Mediators of Inflammation doi: 10.1155/2018/7328057 – volume: 24 start-page: 1070 year: 2018 ident: bib27 article-title: Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women publication-title: Nature Medicine doi: 10.1038/s41591-018-0061-3 – volume: 10 start-page: 686 year: 2013 ident: bib38 article-title: The global NAFLD epidemic publication-title: Nature Reviews. Gastroenterology & Hepatology doi: 10.1038/nrgastro.2013.171 – volume: 282 start-page: 9777 year: 2007 ident: bib64 article-title: Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M608310200 – volume: 19 year: 2020 ident: bib66 article-title: Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles publication-title: Microbial Cell Factories doi: 10.1186/s12934-020-01463-5 – volume: 42 start-page: 173 year: 2017 ident: bib14 article-title: Iron overload and non-alcoholic fatty liver disease publication-title: Minerva Endocrinologica doi: 10.23736/S0391-1977.16.02565-7 – volume: 5 start-page: 145 year: 2010 ident: bib60 article-title: Nonalcoholic fatty liver disease: pathology and pathogenesis publication-title: Annual Review of Pathology doi: 10.1146/annurev-pathol-121808-102132 – volume: 17 start-page: 279 year: 2020 ident: bib3 article-title: Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders publication-title: Nature Reviews. Gastroenterology & Hepatology doi: 10.1038/s41575-020-0269-9 – volume: 62 start-page: 1787 year: 2013 ident: bib35 article-title: Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice publication-title: Gut doi: 10.1136/gutjnl-2012-303816 – volume: 8 start-page: 211 year: 2016 ident: bib40 article-title: Lack of hepcidin expression attenuates steatosis and causes fibrosis in the liver publication-title: World Journal of Hepatology doi: 10.4254/wjh.v8.i4.211 – volume: 98 start-page: 2335 year: 2003 ident: bib42 article-title: Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test publication-title: The American Journal of Gastroenterology doi: 10.1111/j.1572-0241.2003.07725.x – volume: 12 year: 2011 ident: bib54 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biology doi: 10.1186/gb-2011-12-6-r60 – volume: 136 start-page: 3022 year: 2006 ident: bib46 article-title: Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome publication-title: The Journal of Nutrition doi: 10.1093/jn/136.12.3022 – volume: 62 start-page: 1625 year: 2013 ident: bib12 article-title: Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease publication-title: Gut doi: 10.1136/gutjnl-2012-302789 – volume: 311 start-page: E730 year: 2016 ident: bib57 article-title: Treatment of nonalcoholic fatty liver disease: role of AMPK publication-title: American Journal of Physiology. Endocrinology and Metabolism doi: 10.1152/ajpendo.00225.2016 – volume: 12 year: 2021 ident: bib18 article-title: Modulation of immune responses by nutritional ligands of aryl hydrocarbon receptor publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2021.645168 – volume: 197 start-page: 962 year: 2016 ident: bib36 article-title: Tolerogenic phenotype of IFN-γ–Induced IDO+ dendritic cells is maintained via an autocrine IDO–kynurenine/AhR–IDO Loop publication-title: The Journal of Immunology doi: 10.4049/jimmunol.1502615 – volume: 125 start-page: 615 year: 2017 ident: bib41 article-title: Monoethylhexyl Phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways publication-title: Environmental Health Perspectives doi: 10.1289/EHP464 – volume: 79 start-page: 5112 year: 2013 ident: bib33 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01043-13 |
SSID | ssj0000748819 |
Score | 2.4931924 |
Snippet | Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
SubjectTerms | Acetates Acetic acid AMP-activated protein kinase Analysis Animals Bile Cecum Cytokines Diet Diet, Western - adverse effects Dietary Supplements Digestive system Drinking water Dysbacteriosis Enzymes Fatty acids Fatty liver Feces Food Gastrointestinal Microbiome Gastrointestinal tract Hepatocytes High fat diet indole-3-acetic acid Indoles - pharmacology Inflammation Intestinal microflora Intestine Kinases Lipogenesis Liver Liver diseases Macrophages Mann-Whitney U test Metabolism Metabolites Metagenomics Mice Microbiomes Microbiota Microbiota (Symbiotic organisms) Non-alcoholic Fatty Liver Disease - drug therapy Oral administration Protein kinases Proteomes Scientific equipment and supplies industry Steatosis Triglycerides Tryptophan |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ta9YwEA8yEPwivts5JcpAEOqaJm2aj1McU3wBdbBvIU0uo7C1svYRBvvjvUu7hz0q-MVvbXMt6d019wu9-x1ju5HKIQGdV4UScqWUyZtQmNwbjwHIBV1Kqkb-9Lk-PFIfjqvja62-KCdspgeeFbdXB13EwhsdY1QByhZqY1oM8njYREhk2xjzrm2m0hqs0TGFmQvyNIbMPfjYRXhN5O7NRghKTP1_rse_ocwUbQ7usNsLTOT78_TushvQ32M358aRF_fZ5ZdzHB2pI-ec_U3q5UPkJ6uJn3WJXAkFzmBCG1OVMcet93AKucydpwRD4NRD5WdHSJOHDqYcBdDKgZPVp2HsRu76gLdFdJm5vBFP6NnwgB0dvPv-9jBf-ijkntoV5MGD022EolGxaNq6ks4F-r2olfOiAlc64VDBIjghPNSNkM4HaVrjK4hOyYdsqx96eMx4HSjniyhpjFBtgLaIulSVbIVThMYy9upKtdYvJOPU6-LU4maD7GCTHWyyQ8Z218I_Zm6Nv4u9IRutRYgQO11AN7GLm9h_uUnGXpCFLVFe9JRTc-JW42jff_tq9-nXayN0IzL2chGKA87au6VEAd-dWLI2JHc2JPGb9JvDV45klzVhtJL6oSJeEGXGnq-H6U7Kc-thWI0WwVepJG6SUebR7IDr95b4dIRr9fb_0McTdqtEeJaK8_UO25rOV_AU4dXUPktf0i8u4CXR priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA7nieCL-NvqKVUOBKFr06RN8ySneJziKagL9xbSZLIU9lrddsUD_3hn2u7CnodvbTMJTWbS-UJn5mPsMFA6JKDxSp9BIqXUSelTnTjt0AFZrzJB2cinn4uTufx4lp_tsQ0Z57SA3ZVHO-KTmq-Ws98_L97ghkf8OlPoDV_DpzrAjOq2l9fYdXRJiqgMTiecP3ySFdop12N-3uU-Ox5pKNz_7-f5EugcnM_xbXZrQo3x0ajmO2wPmrvsxsgjeXGP_fmywtaOCDrHYHBa7bgN8WLdx-f1UGsJBc6hR5VT0nGMJ_F2CYlIrKN4Q4iJUuVXTcAz9jX0CQqg0n1MRtC3Xd3FtvHYLaAFjdmOeENjw302P37__d1JMtEqJI7YCxLvwKoqQFrKkJZVkQtrPf1tVNI6noPNLLdaBe4t5w6KkgvrvNCVdjkEK8UDtt-0DTxiceEpBIwq1GguKw9VGlQmc1FxKwmcRezVZmmNm2qOE_XF0uDZg_RgBj2YQQ8RO9wK_xhLbVwt9pZ0tBWh-tjDg3a1MNN2M4VXaUgdziIE6SGroNC6QmiIl2WAImIvSMOGKmA0FGKzsOuuMx--fTVH9Ce25KrkEXs5CYUW39rZKWMB505Fs3YkD3YkcYu63eaNIZmNhRtB9KgIH3gWsefbZupJYW8NtOvOIBbLpMAzM8o8HA1wO2-BoyN6Kx7_f_An7GaGOGzIwlcHbL9freEp4qi-ejbskb944B5f priority: 102 providerName: Scholars Portal |
Title | Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38412016 https://www.proquest.com/docview/3020836212 https://www.proquest.com/docview/2932436012 https://doaj.org/article/6d70f0c97fff4de2be699b435e2b8fe6 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwEA-6IfiLzO9181FlIAh1TZs27U-yycYUN2U6eL-FNLk8Cls7X_sEwT_eu7Sv8lT8pby-XEPTu9xdkrvPMbbvKB0SUHiFTSASQpRRYeMyMqVBA6StTFLKRj47z08vxYd5Nh833LoxrHKtE72itq2hPfKDlKpJorblydubbxFVjaLT1bGExm22TdBlJNVyLqc9FjSPBVq8IS1PouE8gI-1gzcE8V5sGCKP1_-3Vv7D1_Q252SH3RudxfBw4O59dguaB-zOUD7yx0P289MSWzuqyznEgNNHDlsXLlZ9eF17iCUkuIYeOU25xiEuwNsriNJIGwozhJAqqXyvyd8MbQ19hATIaxsS7_u2q7tQNxYfcyg4Q5Ij3lDf8Ihdnhx_fXcajdUUIkNFCyJrQMvKQVwIFxdVnqVaWzpklEIbnoFONNeldNxqzg3kBU-1sWlZlSYDp0X6mG01bQNPWZhbivwiYJqSi8pCFTuZiCytuBbkkwXs9frTKjNCjVPFiyuFSw7ig_J8UJ4PAdufiG8GhI1_kx0RjyYSgsX2f7TLhRpnmcqtjF1scBTOCQtJBXlZVugR4s_CQR6wl8RhRcAXDUXWLPSq69T7LxfqkA5gCy4LHrBXI5Fr8a2NHhMVcOyElbVBubdBiTPTbDavBUmNmqFTv-U4YC-mZnqSot0aaFedQhcsESkulZHmySCA07hT7B2dtvzZ_zvfZXcTdL988r3cY1v9cgXP0X3qq5mfIzO2fXR8_vli5jch8Homil_3zR84 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIKXiW86Bhg0hIQUFidunDwgND6mlnVDgk3qm-fY56rSlowmBU3ib-Jv5C5JiwqIt72l8cWqc-f7iO9-x9i2p3JIQOGVLoJASpkFqQuzwGYWDZBxKoqpGvngMBkcy4_j_niN_VzUwlBa5UInNoralZa-ke_E1E0Sta2I3px_DahrFJ2uLlpotGKxDxffMWSrXg_fI3-fR9Heh6N3g6DrKhBYAu8PnAWjcg9hKn2Y5kk_NsbRYZuSxoo-mMgIkykvnBHCQpKK2FgXZ3lm--CNjHHeK-wqGt6Qgj01VstvOmiOU7SwbRmgQkO9A6Oph1cEKZ-uGL6mP8DfVuAP37axcXs32UbnnPLdVppusTUobrNrbbvKizvsx6cZjlbUB7TNOSem8tLzybzmZ9MG0gkJzqBGyaLaZo4Bf3kKQRwYS2mNwKlzy7cp-bfcTaEOkABly3GStbqsphU3hcPHPApqW1SJP2huuMuOL-U932PrRVnAA8YTR5lmBISTCZk7yEOvItmPc2Ek-YA99nLxarXtoM2pw8apxhCH-KAbPuiGDz22vSQ-bxE9_k32lni0JCEY7uZGOZvoblfrxKnQhxZX4b10EOWQZFmOHiheph6SHntGHNYEtFFQJs_EzKtKD7981rt04JsKlYoee9ER-RL_tTVdYQSunbC5Vii3VihRE9jV4YUg6U4TVfr3vumxp8thepKy6woo55VGly-SMYbmSHO_FcDlumOcHZ3EZPP_kz9h1wdHByM9Gh7uP2Q3InT9msJ_tcXW69kcHqHrVuePm_3C2cllb9BfMfla3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CAwwaQkIKjRM3Hw8IbWzVykaZBpP2Zhz7XFXaktGkoEn8Zfx13CVpUQHxtrc0vlh17ne-u_g-GNt0lA4JCF5pQ_CllJmf2iDzTWZQAWmbhBFlI38Yx3vH8v3J4GSN_VzkwlBY5WJPbDZqWxr6Rt6PqJsk7rYi7LsuLOJwZ_j2_KtPHaTopHXRTqOFyD5cfEf3rXoz2kFevwjD4e7nd3t-12HAN1TI37cGdJI7CFLpgjSPB5HWlg7eEqmNGIAOtdBZ4oTVQhiIUxFpY6Msz8wAnJYRznuFrSfkFfXY-vbu-PBo-YUHlXOK-rZNCkxQbffhYOrgNRWYT1fUYNMt4G-d8Iel22i84U12ozNV-VaLrVtsDYrb7GrbvPLiDvvxcYajFXUFbSPQicW8dHwyr_nZtCnwhARnUCPOKNOZo_tfnoIf-dpQkCNw6uPybUrWLrdTqH0kQKRZTsiry2pacV1YfMwhbNsUS_xBc8Nddnwpb_oe6xVlAQ8Yjy3FnVFZnEzI3EIeuCSUgygXWpJF6LFXi1erTFfonPptnCp0eIgPquGDavjgsc0l8Xlb3-PfZNvEoyUJFeVubpSziepkXMU2CVxgcBXOSQthDnGW5WiP4mXqIPbYc-KworIbBQF4oudVpUafjtQWHf-mIkmFx152RK7Ef210lyaBa6dKXSuUGyuUuC-Y1eEFkFS3L1XqtxR57NlymJ6kWLsCynml0AAMZYSOOtLcbwG4XHeEs6PJGD_8_-RP2TUUTnUwGu8_YtdDtAObKgDJBuvVszk8Rjuuzp90AsPZl8uW0V_51GB3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oral+supplementation+of+gut+microbial+metabolite+indole-3-acetate+alleviates+diet-induced+steatosis+and+inflammation+in+mice&rft.jtitle=eLife&rft.au=Ding+Yufang&rft.au=Yanagi%2C+Karin&rft.au=Yang%2C+Fang&rft.au=Callaway%2C+Evelyn&rft.date=2024-02-27&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.87458&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |