A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement

Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic m...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 22; pp. 16 - 27
Main Authors Zhang, Hong, Li, Xuming, Yu, Haiyan, Zhang, Yongbing, Li, Meihua, Wang, Haojie, Wang, Dengming, Wang, Huaisong, Fu, Qiushi, Liu, Min, Ji, Changmian, Ma, Liming, Tang, Juan, Li, Song, Miao, Jianshun, Zheng, Hongkun, Yi, Hongping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.12.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.10.049

Cover

Loading…
Abstract Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. [Display omitted] •Provides a high-quality assembly for melon genome•Explains a considerable proportion of epidermis thickness•Melons in China are introduced from different routes•Haplotypes of alleles associated with agronomic traits enable efficient breeding Biological Sciences; Genetics; Plant Genetics; Plant Evolution
AbstractList Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. [Display omitted] •Provides a high-quality assembly for melon genome•Explains a considerable proportion of epidermis thickness•Melons in China are introduced from different routes•Haplotypes of alleles associated with agronomic traits enable efficient breeding Biological Sciences; Genetics; Plant Genetics; Plant Evolution
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding.Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding.
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. : Biological Sciences; Genetics; Plant Genetics; Plant Evolution Subject Areas: Biological Sciences, Genetics, Plant Genetics, Plant Evolution
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding.
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. • Provides a high-quality assembly for melon genome • Explains a considerable proportion of epidermis thickness • Melons in China are introduced from different routes • Haplotypes of alleles associated with agronomic traits enable efficient breeding Biological Sciences; Genetics; Plant Genetics; Plant Evolution
Author Li, Song
Wang, Dengming
Wang, Haojie
Ji, Changmian
Zhang, Hong
Yu, Haiyan
Li, Xuming
Li, Meihua
Liu, Min
Zheng, Hongkun
Yi, Hongping
Ma, Liming
Miao, Jianshun
Fu, Qiushi
Tang, Juan
Zhang, Yongbing
Wang, Huaisong
AuthorAffiliation 3 Biomarker Technologies Corporation, Beijing 101200, China
2 The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
1 Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
AuthorAffiliation_xml – name: 3 Biomarker Technologies Corporation, Beijing 101200, China
– name: 2 The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– name: 1 Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
Author_xml – sequence: 1
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
– sequence: 2
  givenname: Xuming
  surname: Li
  fullname: Li, Xuming
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 3
  givenname: Haiyan
  surname: Yu
  fullname: Yu, Haiyan
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 4
  givenname: Yongbing
  surname: Zhang
  fullname: Zhang, Yongbing
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
– sequence: 5
  givenname: Meihua
  surname: Li
  fullname: Li, Meihua
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
– sequence: 6
  givenname: Haojie
  surname: Wang
  fullname: Wang, Haojie
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
– sequence: 7
  givenname: Dengming
  surname: Wang
  fullname: Wang, Dengming
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
– sequence: 8
  givenname: Huaisong
  surname: Wang
  fullname: Wang, Huaisong
  organization: The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 9
  givenname: Qiushi
  surname: Fu
  fullname: Fu, Qiushi
  organization: The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 10
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 11
  givenname: Changmian
  surname: Ji
  fullname: Ji, Changmian
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 12
  givenname: Liming
  surname: Ma
  fullname: Ma, Liming
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 13
  givenname: Juan
  surname: Tang
  fullname: Tang, Juan
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 14
  givenname: Song
  surname: Li
  fullname: Li, Song
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 15
  givenname: Jianshun
  surname: Miao
  fullname: Miao, Jianshun
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 16
  givenname: Hongkun
  surname: Zheng
  fullname: Zheng, Hongkun
  email: zhenghk@biomarker.com.cn
  organization: Biomarker Technologies Corporation, Beijing 101200, China
– sequence: 17
  givenname: Hongping
  surname: Yi
  fullname: Yi, Hongping
  email: hpyi1223@163.com
  organization: Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31739171$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWlSdP8gR6Kjr14oy9_CEphG5pkIaUtpGchS-ONFtvaSvLC_vvK2SQkPQSEJEbvvRnNm_foaPQjIPSRkgUltDrfLFw0bsEIlTmwIEK-QSesbGRBiGBHz-7H6CzGDSGE5SVk9Q4dc1pzSWt6guwSX7v1XfF70r1Le_wDej_iKxj9AHgZIwxtv8e_gt85CxGvxpjRKWI3Jj_DIDmDv-noIvYdvgyTS_g26Lyvhm1mwQBj-oDedrqPcPZwnqI_l99vL66Lm59Xq4vlTWFKRlNhTVlaW3EBom2obCgtW8tpxVvWNcJ2hFogXcuA60ozCWULnFIp61bWVFjBT9HqoGu93qhtcIMOe-W1U_cBH9ZKh1xwD6oFonMiklW5MLJpc0NMwyyzWtqG86z19aC1ndoBrMnfCLp_IfryZXR3au13qmoqwYXMAp8fBIL_O0FMasiOQd_rEfwUFeO0lDUjss7QT89zPSV5tCkD2AFggo8xQPcEoUTN46A2ah4HNY_DHCP3BTT_kYxLOjk_1-v616lfDlTIbu0cBJURMBqwLoBJuZ3uNfo_P67Q1A
CitedBy_id crossref_primary_10_1111_tpj_16021
crossref_primary_10_3390_ijms25136906
crossref_primary_10_1038_s42003_020_01172_0
crossref_primary_10_1016_j_hpj_2024_02_007
crossref_primary_10_1093_nar_gkac921
crossref_primary_10_1155_2022_1351908
crossref_primary_10_1111_tpj_15279
crossref_primary_10_3390_agronomy11122427
crossref_primary_10_1016_j_jia_2024_11_004
crossref_primary_10_1016_j_ijbiomac_2024_133313
crossref_primary_10_1111_aab_12919
crossref_primary_10_1093_hr_uhad182
crossref_primary_10_1093_hr_uhab081
crossref_primary_10_1111_tpj_16705
crossref_primary_10_17221_20_2023_RAE
crossref_primary_10_1007_s11427_022_2248_6
crossref_primary_10_1007_s00122_023_04381_3
crossref_primary_10_1093_hr_uhad189
crossref_primary_10_1093_hr_uhae113
crossref_primary_10_1007_s00122_024_04647_4
crossref_primary_10_1016_j_isci_2021_103696
crossref_primary_10_1093_dnares_dsab018
crossref_primary_10_3390_plants13060758
crossref_primary_10_3390_agriculture14010090
crossref_primary_10_1038_s41438_020_00423_9
crossref_primary_10_1007_s11105_025_01552_y
crossref_primary_10_1016_j_tifs_2024_104785
crossref_primary_10_1038_s41438_021_00507_0
crossref_primary_10_1016_j_isci_2020_101422
crossref_primary_10_1080_07352689_2024_2315710
crossref_primary_10_1038_s41438_021_00487_1
crossref_primary_10_3389_fpls_2020_01243
crossref_primary_10_3390_agronomy12112891
crossref_primary_10_1093_plphys_kiad405
crossref_primary_10_1016_j_ygeno_2022_110306
crossref_primary_10_1093_hr_uhac228
Cites_doi 10.1023/A:1016086206423
10.1111/tpj.13838
10.1038/srep31900
10.1093/mp/sss121
10.1126/science.1159023
10.1038/ncomms5026
10.1111/pbi.12484
10.1126/science.aac8370
10.3389/fpls.2017.01679
10.1007/s00122-017-2928-y
10.1038/nature21370
10.1038/ng.3839
10.1038/s41467-019-09142-9
10.5511/plantbiotechnology.13.0813a
10.1002/ajb2.1172
10.1016/S1360-1385(01)02045-3
10.1186/1471-2229-11-111
10.1186/s13059-015-0767-1
10.1111/pbi.12737
10.1126/science.aae0344
10.1038/s41467-019-09518-x
10.1093/bioinformatics/btv351
10.1270/jsbbs.55.197
10.1038/s41598-018-26416-2
10.1371/journal.pone.0096537
10.1101/gr.215087.116
10.1111/tpj.12814
10.1038/s41588-018-0182-0
10.1038/ng.3802
10.1007/s00425-004-1246-1
10.1111/tpj.13596
10.1073/pnas.1205415109
10.1186/s12864-014-1196-3
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.10.049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 27
ExternalDocumentID oai_doaj_org_article_be0a34e0df034c98b739c82d2da9d833
PMC6864349
31739171
10_1016_j_isci_2019_10_049
S2589004219304304
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-dc55dd634e4b8198115bd3163b2f84df01de0fb2e3a6a29e5be311997b9714d43
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:04:47 EDT 2025
Thu Aug 21 18:24:47 EDT 2025
Fri Jul 11 00:18:32 EDT 2025
Thu Apr 03 07:11:10 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 01:03:26 EDT 2025
Wed May 17 00:04:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant Evolution
Biological Sciences
Genetics
Plant Genetics
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-dc55dd634e4b8198115bd3163b2f84df01de0fb2e3a6a29e5be311997b9714d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://doaj.org/article/be0a34e0df034c98b739c82d2da9d833
PMID 31739171
PQID 2315972097
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_be0a34e0df034c98b739c82d2da9d833
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6864349
proquest_miscellaneous_2315972097
pubmed_primary_31739171
crossref_primary_10_1016_j_isci_2019_10_049
crossref_citationtrail_10_1016_j_isci_2019_10_049
elsevier_sciencedirect_doi_10_1016_j_isci_2019_10_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-20
PublicationDateYYYYMMDD 2019-12-20
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jeon, Cho, Park, Han, Choi, Ko (bib20) 2016; 14
Akdemir, Chin (bib2) 2015; 16
Garcia-Mas, Benjak, Sanseverino, Bourgeois, Mir, González, Hénaff, Câmara, Cozzuto, Lowy (bib17) 2012; 109
Kitamura (bib21) 1951; 14
Koren, Walenz, Berlin, Miller, Bergman, Phillippy (bib22) 2017; 27
Tzuri, Zhou, Chayut, Yuan, Portnoy, Meir, Sa'ar, Baumkoler, Mazourek, Lewinsohn (bib29) 2015; 82
Galpaz, Gonda, Shem-Tov, Barad, Tzuri, Lev, Fei, Xu, Mao, Jiao, Harel-Beja (bib16) 2018; 94
Akashi, Fukuda, Wako, Masuda, Kato (bib1) 2002; 125
Boualem, Fergany, Fernandez, Troadec, Martin, Morin, Sari, Collin, Flowers, Pitrat (bib9) 2008; 321
Feder, Burger, Gao, Lewinsohn, Katzir, Schaffer, Meir, Davidovich-Rikanati, Portnoy, Gal-On (bib15) 2015; 169
Diaz, Fergany, Formisano, Ziarsolo, Blanca, Fei, Staub, Zalapa, Cuevas, Dace (bib6) 2011; 11
Xie, Chung, Li, Wong, Wang, Liu, Wang, Leung, Wong, Tong (bib31) 2019; 10
Gordon, Huddleston, Chaisson, Hill, Kronenberg, Munson, Malig, Raja, Fiddes, Hillier (bib18) 2016; 352
Wang, Xu, Zhang, Cao, Huang, Cheng, Wu, Tian, Chen, Liu (bib30) 2017; 49
Argyris, Díaz, Ruggieri, Fernández, Jahrmann, Gibon, Picó, Martín-Hernández, Monforte, Garcia-Mas (bib5) 2017; 8
Bai, Xiao, Zhao, Song, Hu, Zeng, Li, Hou, Luo, Li, Pei (bib7) 2014; 9
Endl, Achigandako, Pandey, Monforte, Pico, Schaefer (bib14) 2018; 105
Zhang, Hu, Han, Gao, Richards, Zhang, Tian, Liu, Gul (bib35) 2019; 10
Micheli (bib23) 2001; 6
Alqsous, Carpentier, Kleineude, Burel, Mareck, Dauchel, Gomord, Balangé (bib3) 2004; 219
Bickhart, Rosen, Koren, Sayre, Hastie, Chan, Lee, Lam, Liachko, Sullivan (bib8) 2017; 49
Pitrat (bib24) 2013; 30
Yang, Huang, Xiong, Xian, Su, Ren, Li (bib32) 2017; 15
Yashiro, Iwata, Akashi, Tomita, Kuzuya, Tsumura, Kato (bib33) 2005; 55
Jarvis, Ho, Lightfoot, Schmockel, Li, Borm, Ohyanagi, Mineta, Michell, Saber (bib19) 2017; 542
Ríos, Argyris, Vegas, Leida, Kenigswald, Tzuri, Troadec, Bendahmane, Katzir, Picó (bib25) 2017; 91
Cohen, Itkin, Yeselson, Tzuri, Portnoy, Harel-Baja, Lev, Sa'ar, Davidovitz-Rikanati, Baranes (bib12) 2014; 5
Simao, Waterhouse, Ioannidis, Kriventseva, Zdobnov (bib27) 2015; 31
Argyris, Ruiz-Herrera, Madriz-Masis, Sanseverino, Morata, Pujol, Ramos-Onsins, Garcia-Mas (bib4) 2015; 16
Ye, Hill, Wu, Ruan, Ma (bib34) 2016; 6
Ruggieri, Alexiou, Morata, Argyris, Pujol, Yano, Nonaka, Ezura, Latrasse, Boualem (bib26) 2018; 8
Brotman, Normantovich, Goldenberg, Zvirin, Kovalski, Stovbun, Doniger, Bolger, Troadec, Bendahmane (bib11) 2013; 6
Boualem, Troadec, Céline, Lemhemdi, Morin, Sari, Fraenkel-Zagouri, Kovalski, Dogimont, Perl-Treves, Bendahmane (bib10) 2015; 350
Diaz, Martinhernandez, Dolcetsanjuan, Garcesclaver, Alvarez, Garciamas, Monforte (bib13) 2017; 130
Sun, Zhou, Chen, Shi, Zhao, Zhao, Song, Zhang, Cui, Dong (bib28) 2018; 50
Xie (10.1016/j.isci.2019.10.049_bib31) 2019; 10
Sun (10.1016/j.isci.2019.10.049_bib28) 2018; 50
Boualem (10.1016/j.isci.2019.10.049_bib9) 2008; 321
Boualem (10.1016/j.isci.2019.10.049_bib10) 2015; 350
Koren (10.1016/j.isci.2019.10.049_bib22) 2017; 27
Ríos (10.1016/j.isci.2019.10.049_bib25) 2017; 91
Zhang (10.1016/j.isci.2019.10.049_bib35) 2019; 10
Diaz (10.1016/j.isci.2019.10.049_bib13) 2017; 130
Galpaz (10.1016/j.isci.2019.10.049_bib16) 2018; 94
Feder (10.1016/j.isci.2019.10.049_bib15) 2015; 169
Kitamura (10.1016/j.isci.2019.10.049_bib21) 1951; 14
Simao (10.1016/j.isci.2019.10.049_bib27) 2015; 31
Yang (10.1016/j.isci.2019.10.049_bib32) 2017; 15
Akashi (10.1016/j.isci.2019.10.049_bib1) 2002; 125
Wang (10.1016/j.isci.2019.10.049_bib30) 2017; 49
Tzuri (10.1016/j.isci.2019.10.049_bib29) 2015; 82
Argyris (10.1016/j.isci.2019.10.049_bib5) 2017; 8
Bickhart (10.1016/j.isci.2019.10.049_bib8) 2017; 49
Akdemir (10.1016/j.isci.2019.10.049_bib2) 2015; 16
Argyris (10.1016/j.isci.2019.10.049_bib4) 2015; 16
Cohen (10.1016/j.isci.2019.10.049_bib12) 2014; 5
Ruggieri (10.1016/j.isci.2019.10.049_bib26) 2018; 8
Jeon (10.1016/j.isci.2019.10.049_bib20) 2016; 14
Micheli (10.1016/j.isci.2019.10.049_bib23) 2001; 6
Diaz (10.1016/j.isci.2019.10.049_bib6) 2011; 11
Jarvis (10.1016/j.isci.2019.10.049_bib19) 2017; 542
Alqsous (10.1016/j.isci.2019.10.049_bib3) 2004; 219
Pitrat (10.1016/j.isci.2019.10.049_bib24) 2013; 30
Gordon (10.1016/j.isci.2019.10.049_bib18) 2016; 352
Endl (10.1016/j.isci.2019.10.049_bib14) 2018; 105
Garcia-Mas (10.1016/j.isci.2019.10.049_bib17) 2012; 109
Bai (10.1016/j.isci.2019.10.049_bib7) 2014; 9
Brotman (10.1016/j.isci.2019.10.049_bib11) 2013; 6
Yashiro (10.1016/j.isci.2019.10.049_bib33) 2005; 55
Ye (10.1016/j.isci.2019.10.049_bib34) 2016; 6
References_xml – volume: 219
  start-page: 369
  year: 2004
  end-page: 378
  ident: bib3
  article-title: Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening
  publication-title: Planta
– volume: 321
  start-page: 836
  year: 2008
  end-page: 838
  ident: bib9
  article-title: A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons
  publication-title: Science
– volume: 6
  start-page: 414
  year: 2001
  end-page: 419
  ident: bib23
  article-title: Pectin methylesterases: cell wall enzymes with important roles in plant physiology
  publication-title: Trends Plant Sci.
– volume: 16
  start-page: 198
  year: 2015
  ident: bib2
  article-title: HiCPlotter integrates genomic data with interaction matrices
  publication-title: Genome Biol.
– volume: 130
  start-page: 1837
  year: 2017
  end-page: 1856
  ident: bib13
  article-title: Quantitative trait loci analysis of melon (
  publication-title: Theor. Appl. Genet.
– volume: 8
  start-page: 8088
  year: 2018
  ident: bib26
  article-title: An improved assembly and annotation of the melon (
  publication-title: Sci. Rep.
– volume: 94
  start-page: 169
  year: 2018
  end-page: 191
  ident: bib16
  article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-seq-based high-resolution QTL and eQTL mapping
  publication-title: Plant J.
– volume: 169
  start-page: 1714
  year: 2015
  end-page: 1726
  ident: bib15
  article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in
  publication-title: Plant Physiol.
– volume: 10
  start-page: 1494
  year: 2019
  ident: bib35
  article-title: A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1544
  year: 2017
  end-page: 1555
  ident: bib32
  article-title: Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould
  publication-title: Plant Biotechnol. J.
– volume: 9
  start-page: e96537
  year: 2014
  ident: bib7
  article-title: Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers
  publication-title: PLoS One
– volume: 109
  start-page: 11872
  year: 2012
  ident: bib17
  article-title: The genome of melon (
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 82
  start-page: 267
  year: 2015
  end-page: 279
  ident: bib29
  article-title: A 'golden' SNP in CmOr governs the fruit flesh color of melon (
  publication-title: Plant J. Cell Mol. Biol.
– volume: 49
  start-page: 643
  year: 2017
  end-page: 650
  ident: bib8
  article-title: Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome
  publication-title: Nat. Genet.
– volume: 50
  start-page: 1289
  year: 2018
  end-page: 1295
  ident: bib28
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
– volume: 16
  start-page: 4
  year: 2015
  ident: bib4
  article-title: Use of targeted SNP selection for an improved anchoring of the melon (
  publication-title: BMC Genomics
– volume: 352
  start-page: aae0344
  year: 2016
  ident: bib18
  article-title: Long-read sequence assembly of the gorilla genome
  publication-title: Science
– volume: 350
  start-page: 688
  year: 2015
  end-page: 691
  ident: bib10
  article-title: A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges
  publication-title: Science
– volume: 27
  start-page: 722
  year: 2017
  end-page: 736
  ident: bib22
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
– volume: 49
  start-page: 765
  year: 2017
  end-page: 772
  ident: bib30
  article-title: Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction
  publication-title: Nat. Genet.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib31
  article-title: A reference-grade wild soybean genome
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1679
  year: 2017
  ident: bib5
  article-title: QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (
  publication-title: Front. Plant Sci.
– volume: 105
  start-page: 1662
  year: 2018
  end-page: 1671
  ident: bib14
  article-title: Repeated domestication of melon (
  publication-title: Am. J. Bot.
– volume: 5
  start-page: 4026
  year: 2014
  ident: bib12
  article-title: The PH gene determines fruit acidity and contributes to the evolution of sweet melons
  publication-title: Nat. Commun.
– volume: 91
  start-page: 671
  year: 2017
  end-page: 683
  ident: bib25
  article-title: ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor
  publication-title: Plant J.
– volume: 31
  start-page: 3210
  year: 2015
  end-page: 3212
  ident: bib27
  article-title: 1,440 BUSCO embryophyta subset of genes: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
– volume: 6
  start-page: 31900
  year: 2016
  ident: bib34
  article-title: DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies
  publication-title: Sci. Rep.
– volume: 125
  start-page: 385
  year: 2002
  end-page: 396
  ident: bib1
  article-title: Genetic variation and phylogenetic relationships in East and South Asian melons,
  publication-title: Euphytica
– volume: 30
  start-page: 273
  year: 2013
  end-page: 278
  ident: bib24
  article-title: Phenotypic diversity in wild and cultivated melons (
  publication-title: Plant Biotechnol.
– volume: 55
  start-page: 197
  year: 2005
  end-page: 206
  ident: bib33
  article-title: Genetic relationship among East and South Asian melon (
  publication-title: Breed. Sci.
– volume: 542
  start-page: 307
  year: 2017
  end-page: 312
  ident: bib19
  article-title: The genome of
  publication-title: Nature
– volume: 14
  start-page: 1161
  year: 2016
  end-page: 1170
  ident: bib20
  article-title: Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from
  publication-title: Plant Biotechnol. J.
– volume: 14
  start-page: 81
  year: 1951
  end-page: 86
  ident: bib21
  article-title: The origin of cultivated plants of China
  publication-title: Acta Phyotaxon. Geobot.
– volume: 6
  start-page: 235
  year: 2013
  end-page: 238
  ident: bib11
  article-title: Dual resistance of melon to
  publication-title: Mol. Plant
– volume: 11
  start-page: 111
  year: 2011
  ident: bib6
  article-title: A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (
  publication-title: BMC Plant Biol.
– volume: 125
  start-page: 385
  year: 2002
  ident: 10.1016/j.isci.2019.10.049_bib1
  article-title: Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L. based on the analysis of five isozymes
  publication-title: Euphytica
  doi: 10.1023/A:1016086206423
– volume: 94
  start-page: 169
  year: 2018
  ident: 10.1016/j.isci.2019.10.049_bib16
  article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-seq-based high-resolution QTL and eQTL mapping
  publication-title: Plant J.
  doi: 10.1111/tpj.13838
– volume: 6
  start-page: 31900
  year: 2016
  ident: 10.1016/j.isci.2019.10.049_bib34
  article-title: DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies
  publication-title: Sci. Rep.
  doi: 10.1038/srep31900
– volume: 6
  start-page: 235
  year: 2013
  ident: 10.1016/j.isci.2019.10.049_bib11
  article-title: Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture
  publication-title: Mol. Plant
  doi: 10.1093/mp/sss121
– volume: 321
  start-page: 836
  year: 2008
  ident: 10.1016/j.isci.2019.10.049_bib9
  article-title: A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons
  publication-title: Science
  doi: 10.1126/science.1159023
– volume: 5
  start-page: 4026
  year: 2014
  ident: 10.1016/j.isci.2019.10.049_bib12
  article-title: The PH gene determines fruit acidity and contributes to the evolution of sweet melons
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5026
– volume: 14
  start-page: 1161
  year: 2016
  ident: 10.1016/j.isci.2019.10.049_bib20
  article-title: Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12484
– volume: 169
  start-page: 1714
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib15
  article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo L
  publication-title: Plant Physiol.
– volume: 350
  start-page: 688
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib10
  article-title: A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges
  publication-title: Science
  doi: 10.1126/science.aac8370
– volume: 8
  start-page: 1679
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib5
  article-title: QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01679
– volume: 130
  start-page: 1837
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib13
  article-title: Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-017-2928-y
– volume: 542
  start-page: 307
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib19
  article-title: The genome of Chenopodium quinoa
  publication-title: Nature
  doi: 10.1038/nature21370
– volume: 49
  start-page: 765
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib30
  article-title: Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3839
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2019.10.049_bib31
  article-title: A reference-grade wild soybean genome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09142-9
– volume: 30
  start-page: 273
  year: 2013
  ident: 10.1016/j.isci.2019.10.049_bib24
  article-title: Phenotypic diversity in wild and cultivated melons (Cucumis melo)
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.13.0813a
– volume: 105
  start-page: 1662
  year: 2018
  ident: 10.1016/j.isci.2019.10.049_bib14
  article-title: Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India
  publication-title: Am. J. Bot.
  doi: 10.1002/ajb2.1172
– volume: 14
  start-page: 81
  year: 1951
  ident: 10.1016/j.isci.2019.10.049_bib21
  article-title: The origin of cultivated plants of China
  publication-title: Acta Phyotaxon. Geobot.
– volume: 6
  start-page: 414
  year: 2001
  ident: 10.1016/j.isci.2019.10.049_bib23
  article-title: Pectin methylesterases: cell wall enzymes with important roles in plant physiology
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)02045-3
– volume: 11
  start-page: 111
  year: 2011
  ident: 10.1016/j.isci.2019.10.049_bib6
  article-title: A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-111
– volume: 16
  start-page: 198
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib2
  article-title: HiCPlotter integrates genomic data with interaction matrices
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0767-1
– volume: 15
  start-page: 1544
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib32
  article-title: Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12737
– volume: 352
  start-page: aae0344
  year: 2016
  ident: 10.1016/j.isci.2019.10.049_bib18
  article-title: Long-read sequence assembly of the gorilla genome
  publication-title: Science
  doi: 10.1126/science.aae0344
– volume: 10
  start-page: 1494
  year: 2019
  ident: 10.1016/j.isci.2019.10.049_bib35
  article-title: A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09518-x
– volume: 31
  start-page: 3210
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib27
  article-title: 1,440 BUSCO embryophyta subset of genes: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 55
  start-page: 197
  year: 2005
  ident: 10.1016/j.isci.2019.10.049_bib33
  article-title: Genetic relationship among East and South Asian melon (Cucumis melo L.) revealed by AFLP analysis
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.55.197
– volume: 8
  start-page: 8088
  year: 2018
  ident: 10.1016/j.isci.2019.10.049_bib26
  article-title: An improved assembly and annotation of the melon (Cucumis melo L.) reference genome
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26416-2
– volume: 9
  start-page: e96537
  year: 2014
  ident: 10.1016/j.isci.2019.10.049_bib7
  article-title: Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096537
– volume: 27
  start-page: 722
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib22
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
  doi: 10.1101/gr.215087.116
– volume: 82
  start-page: 267
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib29
  article-title: A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo)
  publication-title: Plant J. Cell Mol. Biol.
  doi: 10.1111/tpj.12814
– volume: 50
  start-page: 1289
  year: 2018
  ident: 10.1016/j.isci.2019.10.049_bib28
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0182-0
– volume: 49
  start-page: 643
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib8
  article-title: Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3802
– volume: 219
  start-page: 369
  year: 2004
  ident: 10.1016/j.isci.2019.10.049_bib3
  article-title: Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening
  publication-title: Planta
  doi: 10.1007/s00425-004-1246-1
– volume: 91
  start-page: 671
  year: 2017
  ident: 10.1016/j.isci.2019.10.049_bib25
  article-title: ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor
  publication-title: Plant J.
  doi: 10.1111/tpj.13596
– volume: 109
  start-page: 11872
  year: 2012
  ident: 10.1016/j.isci.2019.10.049_bib17
  article-title: The genome of melon (Cucumis melo L.)
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1205415109
– volume: 16
  start-page: 4
  year: 2015
  ident: 10.1016/j.isci.2019.10.049_bib4
  article-title: Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly
  publication-title: BMC Genomics
  doi: 10.1186/s12864-014-1196-3
SSID ssj0002002496
Score 2.3287456
Snippet Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Biological Sciences
Genetics
Plant Evolution
Plant Genetics
Title A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement
URI https://dx.doi.org/10.1016/j.isci.2019.10.049
https://www.ncbi.nlm.nih.gov/pubmed/31739171
https://www.proquest.com/docview/2315972097
https://pubmed.ncbi.nlm.nih.gov/PMC6864349
https://doaj.org/article/be0a34e0df034c98b739c82d2da9d833
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCN6k2jbpI0cV1wcoHhS8haRJsbKmst09-O-dabrLroJevPSQZttNZsp8k3z5hpBjDa1aCBUKnfOQ54qHRSaqUCSJsCKvcOkN2RYP2c0zv3tJX-ZKfSEnzMsD-4k70zZSjNvIVBHjpSh0zkRZJCYxSpiCdTqfEPPmkqm3bnsNpfC6ynIpcoLANfsTM57chSdekdclTpHahUKac1GpE-9fCE4_wed3DuVcUBqskdUeTdJzP4p1smTdBjHnFNkboZfH-KT3dtg4em1d824pbvK-6-EnffRH8Fp661pM0Ftau3GD3fBYI71Qbd3SpqKD0aQeUwhpcPUrEN2C4iZ5Hlw9Xd6EfTGFsMSaBaEp09SYDKaSa0ABBSBBbRigMZ1UBYfZjY2NKp1YpjIFdkq1ZTGyULTIY2442yLLrnF2h1CrRZQaZmMjSl7aXKUGEmwVK1VB9qJ1QOLpZMqyVxrHghdDOaWUvUk0gEQDYBsYICAns998eJ2NX3tfoI1mPVEju2sAz5G958i_PCcg6dTCsocbHkbAo-pfX340dQcJ3yJusChnm0krAStDfgbumAdk27vH7C8CTmOQGscByRccZ2EMi3dc_drpfWcFwEYudv9j0HtkBYeChJwk2ifL49HEHgCsGuvD7gv6Aro5IIM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Quality+Melon+Genome+Assembly+Provides+Insights+into+Genetic+Basis+of+Fruit+Trait+Improvement&rft.jtitle=iScience&rft.au=Zhang%2C+Hong&rft.au=Li%2C+Xuming&rft.au=Yu%2C+Haiyan&rft.au=Zhang%2C+Yongbing&rft.date=2019-12-20&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=22&rft.spage=16&rft.epage=27&rft_id=info:doi/10.1016%2Fj.isci.2019.10.049&rft.externalDocID=S2589004219304304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon