Mean-Independent Noise Control of Cell Fates via Intermediate States

Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonst...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 3; pp. 11 - 20
Main Authors Rackauckas, Christopher, Schilling, Thomas, Nie, Qing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.05.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2018.04.002

Cover

Abstract Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination. [Display omitted] •Mean-independent noise control allows noise attenuation without affecting the mean•Intermediate states enable such control through proportional coupling•This controls spatial gene expression noise without shifting boundary locations•Specific noise levels are required for successful downstream boundary sharpening Developmental Biology; Bioinformatics; Systems Biology
AbstractList Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination. : Developmental Biology; Bioinformatics; Systems Biology Subject Areas: Developmental Biology, Bioinformatics, Systems Biology
Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination. [Display omitted] •Mean-independent noise control allows noise attenuation without affecting the mean•Intermediate states enable such control through proportional coupling•This controls spatial gene expression noise without shifting boundary locations•Specific noise levels are required for successful downstream boundary sharpening Developmental Biology; Bioinformatics; Systems Biology
Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination.
Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination. • Mean-independent noise control allows noise attenuation without affecting the mean • Intermediate states enable such control through proportional coupling • This controls spatial gene expression noise without shifting boundary locations • Specific noise levels are required for successful downstream boundary sharpening Developmental Biology; Bioinformatics; Systems Biology
Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination.Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination.
Author Nie, Qing
Schilling, Thomas
Rackauckas, Christopher
AuthorAffiliation 2 Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
3 Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
1 Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
AuthorAffiliation_xml – name: 3 Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
– name: 1 Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
– name: 2 Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
Author_xml – sequence: 1
  givenname: Christopher
  surname: Rackauckas
  fullname: Rackauckas, Christopher
  organization: Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
– sequence: 2
  givenname: Thomas
  surname: Schilling
  fullname: Schilling, Thomas
  organization: Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
– sequence: 3
  givenname: Qing
  surname: Nie
  fullname: Nie, Qing
  email: qnie@uci.edu
  organization: Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30428314$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFvFCEUhSemxtbaP-CDmUdfZoULyzKJMTFbq5tUfVCfCcNcKptZWGF2E_-9d5zWtD40IUAu5xzgfs-rk5giVtVLzhaccfVmuwjFhQUwrhdMLhiDJ9UZLHXbMCbh5N7-tLooZctIQUO26ll1KqisBZdn1eVntLHZxB73SFMc6y8pFKzXKY45DXXy9RqHob6yI5b6GGy9iSPmHfaBKvW3caq_qJ56OxS8uF3Pqx9XH76vPzXXXz9u1u-vG7cEPjZ96xzzzHul5BKs1p2SfimU5gg9KK5bpUEJwZTuO1CuW0kPNLNVD723TpxXmzm3T3Zr9jnsbP5tkg3mbyHlG2PzGNyABpRt0becyw6ka6FD2yvhOk0PQCkEZb2bs_aHjn7j6OvZDg9CH57E8NPcpKNRXKxgJSng9W1ATr8OWEazIyLUKxsxHYoBLoQGmKWv7t_175I7DCTQs8DlVEpGb1ygzoYJgg2D4cxM0M3WTNDNBN0waYgnWeE_6136o6a3swmJ1jFgNqTA6IhqRjdSO8Nj9j_ufsSR
CitedBy_id crossref_primary_10_1088_1478_3975_aaf928
crossref_primary_10_1093_nar_gkaa725
crossref_primary_10_1007_s11425_019_1633_1
crossref_primary_10_1142_S0219720019500094
crossref_primary_10_1371_journal_pcbi_1009077
crossref_primary_10_1002_dvg_23303
crossref_primary_10_1016_j_isci_2019_02_030
Cites_doi 10.1101/cshperspect.a001255
10.1016/j.gde.2012.11.012
10.7554/eLife.14034
10.1038/nrg2340
10.1073/pnas.1305423110
10.1038/nrg1615
10.1242/dev.120.2.265
10.1371/journal.pbio.0050304
10.1038/srep20214
10.1038/msb.2012.45
10.1038/msb.2012.38
10.1242/dev.01845
10.7554/eLife.23702
10.1126/science.1070919
10.1016/j.stem.2013.11.021
10.1038/nature02257
10.3934/dcdsb.2017133
10.1371/journal.pone.0004872
10.1101/gr.161034.113
10.1529/biophysj.107.122200
10.3934/dcdsb.2016047
10.1016/S0006-3495(01)75949-8
10.1371/journal.pcbi.1001069
10.1016/j.celrep.2016.05.024
10.1038/s41467-017-00752-9
10.1016/j.cell.2007.05.025
10.1371/journal.pcbi.1005307
10.1088/1751-8121/aa5db4
10.1002/dvdy.21695
10.1242/dev.077065
10.1073/pnas.151588598
10.1101/cshperspect.a001362
10.1016/j.cell.2008.09.050
10.1016/j.tig.2012.01.006
10.1016/j.cels.2016.10.006
10.1101/gr.191635.115
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018 The Author(s) 2018
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author(s) 2018
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.04.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 20
ExternalDocumentID oai_doaj_org_article_26a9ef9114b24c92bead63cb80f0e433
PMC6137274
30428314
10_1016_j_isci_2018_04_002
S2589004218300348
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-d9cc0f0ff66452a88b64f53681e2d26189682633068db26cb74f2cb707d2dfac3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:29:44 EDT 2025
Thu Aug 21 13:26:57 EDT 2025
Fri Jul 11 03:20:01 EDT 2025
Wed Feb 19 02:44:13 EST 2025
Thu Apr 24 23:13:15 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Wed May 17 01:19:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Developmental Biology
Bioinformatics
Systems Biology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-d9cc0f0ff66452a88b64f53681e2d26189682633068db26cb74f2cb707d2dfac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/26a9ef9114b24c92bead63cb80f0e433
PMID 30428314
PQID 2133822274
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_26a9ef9114b24c92bead63cb80f0e433
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137274
proquest_miscellaneous_2133822274
pubmed_primary_30428314
crossref_citationtrail_10_1016_j_isci_2018_04_002
crossref_primary_10_1016_j_isci_2018_04_002
elsevier_sciencedirect_doi_10_1016_j_isci_2018_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-25
PublicationDateYYYYMMDD 2018-05-25
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sirbu, Gresh, Barra, Duester (bib25) 2005; 132
Chalancon, Ravarani, Balaji, Martinez-Arias, Aravind, Jothi, Babu (bib3) 2012; 28
Holloway, Lopes, da Fontoura Costa, Travencolo, Golyandina, Usevich, Spirov (bib9) 2011; 7
Filippi, Barnes, Kirk, Kudo, Kunida, McMahon, Tsuchiya, Wada, Kuroda, Stumpf (bib5) 2016; 15
Cai, Radtke, Linville, Lander, Nie, Schilling (bib1) 2012; 139
Gregor, Tank, Wieschaus, Bialek (bib7) 2007; 130
Zhang, Radtke, Zheng, Cai, Schilling, Nie (bib37) 2012; 8
Elowitz, Levine, Siggia, Swain (bib4) 2002; 297
Koseska, Zaikin, Kurths, García-Ojalvo (bib14) 2009; 4
van Galen, Kreso, Wienholds, Laurenti, Eppert, Lechman, Dick (bib6) 2014; 14
Cardelli, Csikász-Nagy, Dalchau, Tribastone, Tschaikowski (bib2) 2016; 6
Meinhardt (bib17) 2009; 1
Raj, van Oudenaarden (bib22) 2008; 135
Thattai, van Oudenaarden (bib28) 2001; 98
Schilling, Nie, Lander (bib23) 2012; 22
White, Schilling (bib33) 2008; 237
Sosnik, Zheng, Rackauckas, Digman, Gratton, Nie, Schilling (bib26) 2016; 5
Liu, Song, Elison, Peng, Acar (bib15) 2017; 8
Marinov, Williams, McCue, Schroth, Gertz, Myers, Wold (bib16) 2014; 24
Keren, Dijk, Weingarten-Gabbay, Davidi, Jona, Weinberger, Milo, Segal (bib12) 2015; 25
Wu, Su, Li, Ellis, Lai, Wang (bib35) 2013; 110
Gupta, Hepp, Khammash (bib8) 2016; 3
Rackauckas, Nie (bib21) 2017; 22
Wang, Holmes, Sosnik, Schilling, Nie (bib31) 2017; 13
Paul (bib19) 2017; 50
Wang, Errede, Elston (bib30) 2008; 94
Ta, Nie, Hong (bib27) 2016; 21
Kaern, Elston, Blake, Collins (bib10) 2005; 6
Toral, Colet (bib29) 2014
Wu, Su, Lai, Wang (bib36) 2017; 6
Paulsson (bib20) 2004; 427
Kimmel, Warga, Kane (bib13) 1994; 120
Singh, Razooky, Dar, Weinberger (bib24) 2012; 8
Wartlick, Kicheva, Gonzalez-Gaitan (bib32) 2009; 1
Kepler, Elston (bib11) 2001; 81
Niederreither, Dolle (bib18) 2008; 9
White, Nie, Lander, Schilling (bib34) 2007; 5
Ta (10.1016/j.isci.2018.04.002_bib27) 2016; 21
Raj (10.1016/j.isci.2018.04.002_bib22) 2008; 135
Sosnik (10.1016/j.isci.2018.04.002_bib26) 2016; 5
Thattai (10.1016/j.isci.2018.04.002_bib28) 2001; 98
Marinov (10.1016/j.isci.2018.04.002_bib16) 2014; 24
Meinhardt (10.1016/j.isci.2018.04.002_bib17) 2009; 1
Kepler (10.1016/j.isci.2018.04.002_bib11) 2001; 81
Rackauckas (10.1016/j.isci.2018.04.002_bib21) 2017; 22
Wang (10.1016/j.isci.2018.04.002_bib30) 2008; 94
Gregor (10.1016/j.isci.2018.04.002_bib7) 2007; 130
Holloway (10.1016/j.isci.2018.04.002_bib9) 2011; 7
Wu (10.1016/j.isci.2018.04.002_bib36) 2017; 6
Wang (10.1016/j.isci.2018.04.002_bib31) 2017; 13
White (10.1016/j.isci.2018.04.002_bib34) 2007; 5
Niederreither (10.1016/j.isci.2018.04.002_bib18) 2008; 9
White (10.1016/j.isci.2018.04.002_bib33) 2008; 237
Cardelli (10.1016/j.isci.2018.04.002_bib2) 2016; 6
Filippi (10.1016/j.isci.2018.04.002_bib5) 2016; 15
Zhang (10.1016/j.isci.2018.04.002_bib37) 2012; 8
Gupta (10.1016/j.isci.2018.04.002_bib8) 2016; 3
Schilling (10.1016/j.isci.2018.04.002_bib23) 2012; 22
Wartlick (10.1016/j.isci.2018.04.002_bib32) 2009; 1
Keren (10.1016/j.isci.2018.04.002_bib12) 2015; 25
Elowitz (10.1016/j.isci.2018.04.002_bib4) 2002; 297
Kaern (10.1016/j.isci.2018.04.002_bib10) 2005; 6
Paulsson (10.1016/j.isci.2018.04.002_bib20) 2004; 427
Kimmel (10.1016/j.isci.2018.04.002_bib13) 1994; 120
Koseska (10.1016/j.isci.2018.04.002_bib14) 2009; 4
Liu (10.1016/j.isci.2018.04.002_bib15) 2017; 8
Chalancon (10.1016/j.isci.2018.04.002_bib3) 2012; 28
Singh (10.1016/j.isci.2018.04.002_bib24) 2012; 8
Toral (10.1016/j.isci.2018.04.002_bib29) 2014
van Galen (10.1016/j.isci.2018.04.002_bib6) 2014; 14
Wu (10.1016/j.isci.2018.04.002_bib35) 2013; 110
Paul (10.1016/j.isci.2018.04.002_bib19) 2017; 50
Cai (10.1016/j.isci.2018.04.002_bib1) 2012; 139
Sirbu (10.1016/j.isci.2018.04.002_bib25) 2005; 132
8149908 - Development. 1994 Feb;120(2):265-76
17632062 - Cell. 2007 Jul 13;130(1):153-64
18065460 - Biophys J. 2008 Mar 15;94(6):2017-26
27264188 - Cell Rep. 2016 Jun 14;15(11):2524-35
23754391 - Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10610-5
28135279 - PLoS Comput Biol. 2017 Jan 30;13(1):e1005307
24388174 - Cell Stem Cell. 2014 Jan 2;14(1):94-106
22929617 - Mol Syst Biol. 2012;8:607
26355006 - Genome Res. 2015 Dec;25(12):1893-902
22619388 - Development. 2012 Jun;139(12):2150-5
28397688 - Elife. 2017 Apr 11;6
12183631 - Science. 2002 Aug 16;297(5584):1183-6
26853830 - Sci Rep. 2016 Feb 08;6:20214
21304932 - PLoS Comput Biol. 2011 Feb 03;7(2):e1001069
20066104 - Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a001255
15872003 - Development. 2005 Jun;132(11):2611-22
11720979 - Biophys J. 2001 Dec;81(6):3116-36
11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
23266215 - Curr Opin Genet Dev. 2012 Dec;22(6):562-9
29527134 - Discrete Continuous Dyn Syst Ser B. 2017;22(7):2731-2761
20066097 - Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a001362
15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64
27818082 - Cell Syst. 2016 Dec 21;3(6):521-531.e13
29497351 - Discrete Continuous Dyn Syst Ser B. 2016 Sep;21(7):2275-2291
14749823 - Nature. 2004 Jan 29;427(6973):415-8
22365642 - Trends Genet. 2012 May;28(5):221-32
28947742 - Nat Commun. 2017 Sep 25;8(1):680
18816852 - Dev Dyn. 2008 Oct;237(10):2775-90
18542081 - Nat Rev Genet. 2008 Jul;9(7):541-53
18957198 - Cell. 2008 Oct 17;135(2):216-26
18031199 - PLoS Biol. 2007 Nov;5(11):e304
27067377 - Elife. 2016 Apr 12;5:e14034
19283068 - PLoS One. 2009;4(3):e4872
23010996 - Mol Syst Biol. 2012;8:613
24299736 - Genome Res. 2014 Mar;24(3):496-510
References_xml – volume: 139
  start-page: 2150
  year: 2012
  end-page: 2155
  ident: bib1
  article-title: Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish
  publication-title: Development
– volume: 50
  start-page: 133001
  year: 2017
  ident: bib19
  article-title: Stochastic switching in biology: from genotype to phenotype
  publication-title: J. Phys. A Math. Theor.
– volume: 1
  start-page: a001362
  year: 2009
  ident: bib17
  article-title: Models for the generation and interpretation of gradients
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 8
  start-page: 607
  year: 2012
  ident: bib24
  article-title: Dynamics of protein noise can distinguish between alternate sources of gene-expression variability
  publication-title: Mol. Syst. Biol.
– volume: 110
  start-page: 10610
  year: 2013
  end-page: 10615
  ident: bib35
  article-title: Engineering of regulated stochastic cell fate determination
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 2524
  year: 2016
  end-page: 2535
  ident: bib5
  article-title: Robustness of MEK-ERK dynamics and origins of cell-to-cell variability in MAPK signaling
  publication-title: Cell Rep.
– volume: 297
  start-page: 1183
  year: 2002
  ident: bib4
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
– volume: 9
  start-page: 541
  year: 2008
  end-page: 553
  ident: bib18
  article-title: Retinoic acid in development: towards an integrated view
  publication-title: Nat. Rev. Genet.
– volume: 8
  start-page: 680
  year: 2017
  ident: bib15
  article-title: Noise reduction as an emergent property of single-cell aging
  publication-title: Nat. Commun.
– volume: 8
  start-page: 613
  year: 2012
  ident: bib37
  article-title: Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain
  publication-title: Mol. Syst. Biol.
– volume: 25
  start-page: 1893
  year: 2015
  end-page: 1902
  ident: bib12
  article-title: Noise in gene expression is coupled to growth rate
  publication-title: Genome Res.
– volume: 6
  start-page: 20214
  year: 2016
  ident: bib2
  article-title: Noise reduction in complex biological switches
  publication-title: Sci. Rep.
– volume: 6
  start-page: 451
  year: 2005
  end-page: 464
  ident: bib10
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nat. Rev. Genet.
– volume: 22
  start-page: 2731
  year: 2017
  end-page: 2761
  ident: bib21
  article-title: Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory
  publication-title: Discrete Continuous Dyn. Syst. Ser. B
– volume: 94
  start-page: 2017
  year: 2008
  end-page: 2026
  ident: bib30
  article-title: Mathematical Analysis and quantification of fluorescent proteins as transcriptional reporters
  publication-title: Biophys. J.
– volume: 427
  start-page: 415
  year: 2004
  end-page: 418
  ident: bib20
  article-title: Summing up the noise in gene networks
  publication-title: Nature
– volume: 5
  start-page: e304
  year: 2007
  ident: bib34
  article-title: Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo
  publication-title: PLoS Biol.
– volume: 1
  start-page: a001255
  year: 2009
  ident: bib32
  article-title: Morphogen gradient formation
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 4
  start-page: e4872
  year: 2009
  ident: bib14
  article-title: Timing cellular decision making under noise via cell–cell communication
  publication-title: PLoS One
– volume: 7
  start-page: e1001069
  year: 2011
  ident: bib9
  article-title: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation
  publication-title: PLoS Comput. Biol.
– volume: 14
  start-page: 94
  year: 2014
  end-page: 106
  ident: bib6
  article-title: Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion
  publication-title: Cell Stem Cell
– volume: 130
  start-page: 153
  year: 2007
  end-page: 164
  ident: bib7
  article-title: Probing the limits to positional information
  publication-title: Cell
– volume: 22
  start-page: 562
  year: 2012
  end-page: 569
  ident: bib23
  article-title: Dynamics and precision in retinoic acid morphogen gradients
  publication-title: Curr. Opin. Genet. Dev.
– volume: 24
  start-page: 496
  year: 2014
  end-page: 510
  ident: bib16
  article-title: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
  publication-title: Genome Res.
– volume: 6
  start-page: e23702
  year: 2017
  ident: bib36
  article-title: Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination
  publication-title: ELife
– volume: 3
  start-page: 521
  year: 2016
  end-page: 531.e13
  ident: bib8
  article-title: Noise induces the population-level entrainment of incoherent, uncoupled intracellular oscillators
  publication-title: Cell Syst.
– volume: 98
  start-page: 8614
  year: 2001
  end-page: 8619
  ident: bib28
  article-title: Intrinsic noise in gene regulatory networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 221
  year: 2012
  end-page: 232
  ident: bib3
  article-title: Interplay between gene expression noise and regulatory network architecture
  publication-title: Trends Genet.
– volume: 120
  start-page: 265
  year: 1994
  end-page: 276
  ident: bib13
  article-title: Cell cycles and clonal strings during formation of the zebrafish central nervous system
  publication-title: Development
– volume: 5
  year: 2016
  ident: bib26
  article-title: Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain
  publication-title: ELife
– volume: 135
  start-page: 216
  year: 2008
  end-page: 226
  ident: bib22
  article-title: Nature, nurture, or chance: stochastic gene expression and its consequences
  publication-title: Cell
– start-page: 235
  year: 2014
  end-page: 257
  ident: bib29
  article-title: Introduction to master equations
  publication-title: Stochastic Numerical Methods: An Introduction for Students and Scientists
– volume: 132
  start-page: 2611
  year: 2005
  ident: bib25
  article-title: Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression
  publication-title: Development
– volume: 81
  start-page: 3116
  year: 2001
  end-page: 3136
  ident: bib11
  article-title: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations
  publication-title: Biophys. J.
– volume: 21
  start-page: 2275
  year: 2016
  end-page: 2291
  ident: bib27
  article-title: Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states
  publication-title: Discrete Continuous Dyn. Syst. Ser. B
– volume: 237
  start-page: 2775
  year: 2008
  end-page: 2790
  ident: bib33
  article-title: How degrading: cyp26s in hindbrain development
  publication-title: Dev. Dyn.
– volume: 13
  start-page: e1005307
  year: 2017
  ident: bib31
  article-title: Cell sorting and noise-induced cell plasticity coordinate to sharpen boundaries between gene expression domains
  publication-title: PLoS Comput. Biol.
– volume: 1
  start-page: a001255
  year: 2009
  ident: 10.1016/j.isci.2018.04.002_bib32
  article-title: Morphogen gradient formation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001255
– volume: 22
  start-page: 562
  year: 2012
  ident: 10.1016/j.isci.2018.04.002_bib23
  article-title: Dynamics and precision in retinoic acid morphogen gradients
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2012.11.012
– volume: 5
  year: 2016
  ident: 10.1016/j.isci.2018.04.002_bib26
  article-title: Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain
  publication-title: ELife
  doi: 10.7554/eLife.14034
– volume: 9
  start-page: 541
  year: 2008
  ident: 10.1016/j.isci.2018.04.002_bib18
  article-title: Retinoic acid in development: towards an integrated view
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2340
– volume: 110
  start-page: 10610
  year: 2013
  ident: 10.1016/j.isci.2018.04.002_bib35
  article-title: Engineering of regulated stochastic cell fate determination
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305423110
– volume: 6
  start-page: 451
  year: 2005
  ident: 10.1016/j.isci.2018.04.002_bib10
  article-title: Stochasticity in gene expression: from theories to phenotypes
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1615
– volume: 120
  start-page: 265
  year: 1994
  ident: 10.1016/j.isci.2018.04.002_bib13
  article-title: Cell cycles and clonal strings during formation of the zebrafish central nervous system
  publication-title: Development
  doi: 10.1242/dev.120.2.265
– volume: 5
  start-page: e304
  year: 2007
  ident: 10.1016/j.isci.2018.04.002_bib34
  article-title: Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050304
– volume: 6
  start-page: 20214
  year: 2016
  ident: 10.1016/j.isci.2018.04.002_bib2
  article-title: Noise reduction in complex biological switches
  publication-title: Sci. Rep.
  doi: 10.1038/srep20214
– volume: 8
  start-page: 613
  year: 2012
  ident: 10.1016/j.isci.2018.04.002_bib37
  article-title: Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2012.45
– volume: 8
  start-page: 607
  year: 2012
  ident: 10.1016/j.isci.2018.04.002_bib24
  article-title: Dynamics of protein noise can distinguish between alternate sources of gene-expression variability
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2012.38
– volume: 132
  start-page: 2611
  year: 2005
  ident: 10.1016/j.isci.2018.04.002_bib25
  article-title: Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression
  publication-title: Development
  doi: 10.1242/dev.01845
– volume: 6
  start-page: e23702
  year: 2017
  ident: 10.1016/j.isci.2018.04.002_bib36
  article-title: Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination
  publication-title: ELife
  doi: 10.7554/eLife.23702
– volume: 297
  start-page: 1183
  year: 2002
  ident: 10.1016/j.isci.2018.04.002_bib4
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
  doi: 10.1126/science.1070919
– volume: 14
  start-page: 94
  year: 2014
  ident: 10.1016/j.isci.2018.04.002_bib6
  article-title: Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.021
– volume: 427
  start-page: 415
  year: 2004
  ident: 10.1016/j.isci.2018.04.002_bib20
  article-title: Summing up the noise in gene networks
  publication-title: Nature
  doi: 10.1038/nature02257
– start-page: 235
  year: 2014
  ident: 10.1016/j.isci.2018.04.002_bib29
  article-title: Introduction to master equations
– volume: 22
  start-page: 2731
  year: 2017
  ident: 10.1016/j.isci.2018.04.002_bib21
  article-title: Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory
  publication-title: Discrete Continuous Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2017133
– volume: 4
  start-page: e4872
  year: 2009
  ident: 10.1016/j.isci.2018.04.002_bib14
  article-title: Timing cellular decision making under noise via cell–cell communication
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004872
– volume: 24
  start-page: 496
  year: 2014
  ident: 10.1016/j.isci.2018.04.002_bib16
  article-title: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
  publication-title: Genome Res.
  doi: 10.1101/gr.161034.113
– volume: 94
  start-page: 2017
  year: 2008
  ident: 10.1016/j.isci.2018.04.002_bib30
  article-title: Mathematical Analysis and quantification of fluorescent proteins as transcriptional reporters
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.122200
– volume: 21
  start-page: 2275
  year: 2016
  ident: 10.1016/j.isci.2018.04.002_bib27
  article-title: Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states
  publication-title: Discrete Continuous Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2016047
– volume: 81
  start-page: 3116
  year: 2001
  ident: 10.1016/j.isci.2018.04.002_bib11
  article-title: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)75949-8
– volume: 7
  start-page: e1001069
  year: 2011
  ident: 10.1016/j.isci.2018.04.002_bib9
  article-title: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001069
– volume: 15
  start-page: 2524
  year: 2016
  ident: 10.1016/j.isci.2018.04.002_bib5
  article-title: Robustness of MEK-ERK dynamics and origins of cell-to-cell variability in MAPK signaling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.05.024
– volume: 8
  start-page: 680
  year: 2017
  ident: 10.1016/j.isci.2018.04.002_bib15
  article-title: Noise reduction as an emergent property of single-cell aging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00752-9
– volume: 130
  start-page: 153
  year: 2007
  ident: 10.1016/j.isci.2018.04.002_bib7
  article-title: Probing the limits to positional information
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.025
– volume: 13
  start-page: e1005307
  year: 2017
  ident: 10.1016/j.isci.2018.04.002_bib31
  article-title: Cell sorting and noise-induced cell plasticity coordinate to sharpen boundaries between gene expression domains
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005307
– volume: 50
  start-page: 133001
  year: 2017
  ident: 10.1016/j.isci.2018.04.002_bib19
  article-title: Stochastic switching in biology: from genotype to phenotype
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8121/aa5db4
– volume: 237
  start-page: 2775
  year: 2008
  ident: 10.1016/j.isci.2018.04.002_bib33
  article-title: How degrading: cyp26s in hindbrain development
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21695
– volume: 139
  start-page: 2150
  year: 2012
  ident: 10.1016/j.isci.2018.04.002_bib1
  article-title: Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish
  publication-title: Development
  doi: 10.1242/dev.077065
– volume: 98
  start-page: 8614
  year: 2001
  ident: 10.1016/j.isci.2018.04.002_bib28
  article-title: Intrinsic noise in gene regulatory networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.151588598
– volume: 1
  start-page: a001362
  year: 2009
  ident: 10.1016/j.isci.2018.04.002_bib17
  article-title: Models for the generation and interpretation of gradients
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001362
– volume: 135
  start-page: 216
  year: 2008
  ident: 10.1016/j.isci.2018.04.002_bib22
  article-title: Nature, nurture, or chance: stochastic gene expression and its consequences
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.050
– volume: 28
  start-page: 221
  year: 2012
  ident: 10.1016/j.isci.2018.04.002_bib3
  article-title: Interplay between gene expression noise and regulatory network architecture
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2012.01.006
– volume: 3
  start-page: 521
  year: 2016
  ident: 10.1016/j.isci.2018.04.002_bib8
  article-title: Noise induces the population-level entrainment of incoherent, uncoupled intracellular oscillators
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.10.006
– volume: 25
  start-page: 1893
  year: 2015
  ident: 10.1016/j.isci.2018.04.002_bib12
  article-title: Noise in gene expression is coupled to growth rate
  publication-title: Genome Res.
  doi: 10.1101/gr.191635.115
– reference: 20066104 - Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a001255
– reference: 20066097 - Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a001362
– reference: 12183631 - Science. 2002 Aug 16;297(5584):1183-6
– reference: 24388174 - Cell Stem Cell. 2014 Jan 2;14(1):94-106
– reference: 18031199 - PLoS Biol. 2007 Nov;5(11):e304
– reference: 28397688 - Elife. 2017 Apr 11;6:
– reference: 27818082 - Cell Syst. 2016 Dec 21;3(6):521-531.e13
– reference: 17632062 - Cell. 2007 Jul 13;130(1):153-64
– reference: 29527134 - Discrete Continuous Dyn Syst Ser B. 2017;22(7):2731-2761
– reference: 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
– reference: 29497351 - Discrete Continuous Dyn Syst Ser B. 2016 Sep;21(7):2275-2291
– reference: 26853830 - Sci Rep. 2016 Feb 08;6:20214
– reference: 15883588 - Nat Rev Genet. 2005 Jun;6(6):451-64
– reference: 18816852 - Dev Dyn. 2008 Oct;237(10):2775-90
– reference: 15872003 - Development. 2005 Jun;132(11):2611-22
– reference: 27067377 - Elife. 2016 Apr 12;5:e14034
– reference: 24299736 - Genome Res. 2014 Mar;24(3):496-510
– reference: 18957198 - Cell. 2008 Oct 17;135(2):216-26
– reference: 18065460 - Biophys J. 2008 Mar 15;94(6):2017-26
– reference: 26355006 - Genome Res. 2015 Dec;25(12):1893-902
– reference: 23010996 - Mol Syst Biol. 2012;8:613
– reference: 22929617 - Mol Syst Biol. 2012;8:607
– reference: 11720979 - Biophys J. 2001 Dec;81(6):3116-36
– reference: 22619388 - Development. 2012 Jun;139(12):2150-5
– reference: 21304932 - PLoS Comput Biol. 2011 Feb 03;7(2):e1001069
– reference: 23266215 - Curr Opin Genet Dev. 2012 Dec;22(6):562-9
– reference: 28947742 - Nat Commun. 2017 Sep 25;8(1):680
– reference: 8149908 - Development. 1994 Feb;120(2):265-76
– reference: 27264188 - Cell Rep. 2016 Jun 14;15(11):2524-35
– reference: 14749823 - Nature. 2004 Jan 29;427(6973):415-8
– reference: 23754391 - Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10610-5
– reference: 18542081 - Nat Rev Genet. 2008 Jul;9(7):541-53
– reference: 28135279 - PLoS Comput Biol. 2017 Jan 30;13(1):e1005307
– reference: 19283068 - PLoS One. 2009;4(3):e4872
– reference: 22365642 - Trends Genet. 2012 May;28(5):221-32
SSID ssj0002002496
Score 2.124599
Snippet Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Bioinformatics
Developmental Biology
Systems Biology
Title Mean-Independent Noise Control of Cell Fates via Intermediate States
URI https://dx.doi.org/10.1016/j.isci.2018.04.002
https://www.ncbi.nlm.nih.gov/pubmed/30428314
https://www.proquest.com/docview/2133822274
https://pubmed.ncbi.nlm.nih.gov/PMC6137274
https://doaj.org/article/26a9ef9114b24c92bead63cb80f0e433
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsovuqLCN5kcZvNZrNHrRYV9KTgLeSJlbIVW_39ziS7pVXQi5c97HseId8k38wQclo7APEmLzIntct4pUVmHNdZEGDtvsVszMi2eBA3T_zuuXxeaPWFnLBUHjgp7pwJXfsAQ5Ibxm3NDIguCmtkHnLPi1jnM6_zhWDqNW6vYSm82FmuRE4QuGabMZPIXZjxirwuGeuctmsq3awUi_cvTU4_wed3DuXCpDTcIOstmqQXSYpNsuKbLXJ173WT3c77287ow2Q09XSQWOl0EujAj8d0iDCTfo40jcuCMYdk5mmCn9vkaXj9OLjJ2mYJmcWeBJmrrQWVhCBwq1JLaQQPZSFk3zMHYZKsBUQSBUQI0hkmrKl4YHDMK8dc0LbYIavNpPF7hNYuVJ4hdIFoS8IY1boSpuqXBsJZXege6XfKUratJI4NLcaqo4y9KlSwQgWrnCtQcI-czZ95S3U0fr37Em0wvxNrYMcT4Bmq9Qz1l2f0SNlZULVwIsEEeNXo14-fdOZWMNZwA0U3fvIxVQwDekwe5j2ym8w__0VcFgJdwZVqyTGWZFi-0oxeYj1vQFSAIvn-fwh9QNZQFOQ3sPKQrM7eP_wRwKaZOY4j5AtgkBK6
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean-Independent+Noise+Control+of+Cell+Fates+via+Intermediate+States&rft.jtitle=iScience&rft.au=Rackauckas%2C+Christopher&rft.au=Schilling%2C+Thomas&rft.au=Nie%2C+Qing&rft.date=2018-05-25&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=3&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1016%2Fj.isci.2018.04.002&rft.externalDocID=S2589004218300348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon