PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy
Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-depend...
Saved in:
Published in | Cell stem cell Vol. 23; no. 5; pp. 700 - 713.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions.
[Display omitted]
[Display omitted]
•PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS•PPM1D mutations are associated with prior exposure to specific DNA-damaging agents•Mutant PPM1D confers a survival advantage after cisplatin-induced stress•PPM1D mutants lack an advantage under bone marrow transplantation stress
Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy. |
---|---|
AbstractList | Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn
/Mg
-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT. • PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS • PPM1D mutations are associated with prior exposure to specific DNA-damaging agents • Mutant PPM1D confers a survival advantage after cisplatin-induced stress • PPM1D mutants lack an advantage under bone marrow transplantation stress Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy. Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. [Display omitted] [Display omitted] •PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS•PPM1D mutations are associated with prior exposure to specific DNA-damaging agents•Mutant PPM1D confers a survival advantage after cisplatin-induced stress•PPM1D mutants lack an advantage under bone marrow transplantation stress Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy. Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT.Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT. |
Author | Bristow, Christopher Kantarjian, Hagop Garcia-Manero, Guillermo Goodell, Margaret A. Zhang, Jianhua Futreal, P. Andrew Heffernan, Timothy P. Kovacs, Jeffrey J. Jeong, Mira Yan, Yuanqing Wang, Feng Marszalek, Joseph R. Tovy, Ayala Gera, Sonal Takahashi, Koichi Dayaram, Tajhal De Braekeleer, Etienne Hsu, Joanne I. Vassiliou, George Donehower, Lawrence A. |
AuthorAffiliation | 5 Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK 9 Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA 10 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 3 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA 6 Wellcome-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK 8 Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 4 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA 7 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2 Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA 1 Translational Biology and Molecular Medicine Graduate Program and Medical Sci |
AuthorAffiliation_xml | – name: 6 Wellcome-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK – name: 2 Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA – name: 5 Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK – name: 7 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 8 Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 4 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA – name: 1 Translational Biology and Molecular Medicine Graduate Program and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA – name: 10 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 3 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA – name: 9 Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA |
Author_xml | – sequence: 1 givenname: Joanne I. surname: Hsu fullname: Hsu, Joanne I. organization: Translational Biology and Molecular Medicine Graduate Program and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 2 givenname: Tajhal surname: Dayaram fullname: Dayaram, Tajhal organization: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 3 givenname: Ayala surname: Tovy fullname: Tovy, Ayala organization: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 4 givenname: Etienne surname: De Braekeleer fullname: De Braekeleer, Etienne organization: Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK – sequence: 5 givenname: Mira surname: Jeong fullname: Jeong, Mira organization: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 6 givenname: Feng surname: Wang fullname: Wang, Feng organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 7 givenname: Jianhua surname: Zhang fullname: Zhang, Jianhua organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 8 givenname: Timothy P. surname: Heffernan fullname: Heffernan, Timothy P. organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 9 givenname: Sonal surname: Gera fullname: Gera, Sonal organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 10 givenname: Jeffrey J. surname: Kovacs fullname: Kovacs, Jeffrey J. organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 11 givenname: Joseph R. surname: Marszalek fullname: Marszalek, Joseph R. organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 12 givenname: Christopher surname: Bristow fullname: Bristow, Christopher organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 13 givenname: Yuanqing surname: Yan fullname: Yan, Yuanqing organization: Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA – sequence: 14 givenname: Guillermo surname: Garcia-Manero fullname: Garcia-Manero, Guillermo organization: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 15 givenname: Hagop surname: Kantarjian fullname: Kantarjian, Hagop organization: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 16 givenname: George surname: Vassiliou fullname: Vassiliou, George organization: Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK – sequence: 17 givenname: P. Andrew surname: Futreal fullname: Futreal, P. Andrew organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 18 givenname: Lawrence A. surname: Donehower fullname: Donehower, Lawrence A. organization: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 19 givenname: Koichi surname: Takahashi fullname: Takahashi, Koichi email: ktakahashi@mdanderson.org organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 20 givenname: Margaret A. surname: Goodell fullname: Goodell, Margaret A. email: goodell@bcm.edu organization: Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30388424$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVAr-gF_gAPykUsW27HjWEJIKKUUqRUrBGfLcSasV4kdbO-K_fdNtC2CHnqa0cz7kN67QCc-eEDoDSUrSmj1frtKGcYVI7SeDytC-At0TmspCiWlPJl3VfJCKKLO0EVKW0KEpES-RGclKeuaM36O1uv1Hb3Cd7tssgs-4avo9oCbIXgz4BsYTQ5TcJBcws7j75CmGQU4B9wccsjhj7O42cAY8gaimQ6v0GlvhgSvH-Yl-nn9-UdzU9x--_K1-XRbWMFoLjopWN9xwwhIW3etKoW0wFrVqb5se0W6qhd9KavWdKBKBVy0FSOKKg5GElleoo9H3WnXjtBZ8DmaQU_RjSYedDBO___xbqN_hb2uGOOVWATePQjE8HsHKevRJQvDYDyEXdKMMiU4YRWdoW__9fpr8hjjDKiPABtDShF6bd0x0NnaDZoSvTSmt3ppTC-NLbe5sZnKnlAf1Z8lfTiSYE547yDqZB14C52LYLPugnuOfg_tebEI |
CitedBy_id | crossref_primary_10_1016_S2152_2650_23_00310_5 crossref_primary_10_1097_HS9_0000000000000171 crossref_primary_10_1186_s12979_022_00278_9 crossref_primary_10_1038_s41409_023_01970_0 crossref_primary_10_1016_j_beha_2021_101249 crossref_primary_10_1111_eva_13039 crossref_primary_10_1172_jci_insight_165609 crossref_primary_10_1016_j_ccell_2022_12_005 crossref_primary_10_1146_annurev_pathmechdis_051222_122724 crossref_primary_10_1007_s00740_022_00472_x crossref_primary_10_1038_s41580_022_00538_y crossref_primary_10_1016_j_stem_2021_03_002 crossref_primary_10_1182_bloodadvances_2023010098 crossref_primary_10_1016_j_trecan_2020_03_008 crossref_primary_10_3390_cancers13194887 crossref_primary_10_1038_s41467_022_28198_8 crossref_primary_10_1016_j_bcp_2020_114362 crossref_primary_10_1001_jamanetworkopen_2022_54221 crossref_primary_10_1126_science_aay9333 crossref_primary_10_3390_neurolint17020019 crossref_primary_10_1002_jcla_23171 crossref_primary_10_1038_s41591_019_0652_7 crossref_primary_10_1158_2643_3230_BCD_24_0235 crossref_primary_10_1038_s41408_022_00703_8 crossref_primary_10_1146_annurev_genom_120722_100409 crossref_primary_10_1002_aac2_12061 crossref_primary_10_1016_j_bulcan_2023_02_022 crossref_primary_10_1002_mog2_47 crossref_primary_10_1080_10428194_2022_2027401 crossref_primary_10_1038_s41467_020_16805_5 crossref_primary_10_1038_s41467_020_19119_8 crossref_primary_10_1016_j_isci_2022_104892 crossref_primary_10_1016_j_stem_2022_05_006 crossref_primary_10_1038_s41375_024_02253_3 crossref_primary_10_1016_j_pathol_2021_02_005 crossref_primary_10_1093_clinchem_hvab105 crossref_primary_10_3390_biomedicines9040388 crossref_primary_10_1016_j_celrep_2019_04_064 crossref_primary_10_1093_nar_gkac1269 crossref_primary_10_20517_jca_2023_39 crossref_primary_10_1002_ajh_26589 crossref_primary_10_1016_j_exphem_2022_02_005 crossref_primary_10_1016_j_toxlet_2023_05_009 crossref_primary_10_1038_s43856_023_00408_4 crossref_primary_10_1007_s11654_019_0141_y crossref_primary_10_7554_eLife_91611_3 crossref_primary_10_3390_genes11070749 crossref_primary_10_1016_j_mad_2020_111279 crossref_primary_10_1016_j_tcb_2020_10_002 crossref_primary_10_1186_s40246_023_00458_8 crossref_primary_10_3324_haematol_2023_282992 crossref_primary_10_1080_07357907_2024_2316297 crossref_primary_10_3390_biology10020128 crossref_primary_10_1016_j_jmoldx_2019_10_002 crossref_primary_10_1016_j_beha_2020_101191 crossref_primary_10_1182_bloodadvances_2022007497 crossref_primary_10_1182_blood_2021010764 crossref_primary_10_7554_eLife_96951_3 crossref_primary_10_1253_circj_CJ_21_0505 crossref_primary_10_1053_j_seminhematol_2021_10_004 crossref_primary_10_1016_j_exphem_2020_01_008 crossref_primary_10_1182_blood_2022018108 crossref_primary_10_1097_HS9_0000000000000632 crossref_primary_10_1016_j_cellsig_2021_110061 crossref_primary_10_1101_cshperspect_a035519 crossref_primary_10_1084_jem_20200560 crossref_primary_10_1111_trf_16123 crossref_primary_10_1016_j_exphem_2020_01_002 crossref_primary_10_1038_s43856_025_00761_6 crossref_primary_10_3390_cells10081962 crossref_primary_10_1038_s41576_024_00715_z crossref_primary_10_1016_j_beha_2021_101327 crossref_primary_10_3390_diagnostics12071613 crossref_primary_10_1016_j_hoc_2020_11_007 crossref_primary_10_1016_j_beha_2019_05_007 crossref_primary_10_1093_eurheartj_ehae682 crossref_primary_10_1111_bjh_17120 crossref_primary_10_1186_s13073_023_01266_4 crossref_primary_10_1007_s00108_022_01404_x crossref_primary_10_1016_j_bbrc_2020_04_143 crossref_primary_10_1016_j_ejmech_2023_115780 crossref_primary_10_1038_s41419_019_2057_4 crossref_primary_10_1093_ajcp_aqz079 crossref_primary_10_1182_bloodadvances_2019001157 crossref_primary_10_1038_s41467_021_24858_3 crossref_primary_10_1111_bjh_19656 crossref_primary_10_1158_1078_0432_CCR_21_2451 crossref_primary_10_1007_s11912_023_01398_1 crossref_primary_10_3390_cancers12082100 crossref_primary_10_3389_fonc_2024_1400461 crossref_primary_10_1158_1078_0432_CCR_22_2598 crossref_primary_10_1016_j_semcancer_2025_02_007 crossref_primary_10_1016_j_leukres_2020_106457 crossref_primary_10_1038_s41467_023_39248_0 crossref_primary_10_1053_j_semdp_2023_04_001 crossref_primary_10_1182_bloodadvances_2019000731 crossref_primary_10_1016_j_isci_2023_106574 crossref_primary_10_1172_jci_insight_146076 crossref_primary_10_1182_blood_2023022222 crossref_primary_10_1038_s41588_020_00710_0 crossref_primary_10_1038_s41467_021_21255_8 crossref_primary_10_1007_s11886_022_01724_2 crossref_primary_10_1172_JCI180065 crossref_primary_10_1016_j_thromres_2021_12_009 crossref_primary_10_1172_JCI180069 crossref_primary_10_1172_JCI180068 crossref_primary_10_1038_s41375_021_01155_y crossref_primary_10_1097_MOH_0000000000000509 crossref_primary_10_1186_s13046_022_02496_x crossref_primary_10_1053_j_seminoncol_2022_11_001 crossref_primary_10_1200_PO_22_00400 crossref_primary_10_1016_j_exphem_2022_03_008 crossref_primary_10_1186_s12964_022_00850_2 crossref_primary_10_1182_bloodadvances_2023011761 crossref_primary_10_1002_pros_24712 crossref_primary_10_3390_cancers11020260 crossref_primary_10_1200_PO_21_00309 crossref_primary_10_1007_s11654_019_00167_6 crossref_primary_10_1007_s00391_023_02162_7 crossref_primary_10_1182_blood_2023021943 crossref_primary_10_7554_eLife_96951 crossref_primary_10_1002_ajh_26812 crossref_primary_10_3389_fonc_2021_743703 crossref_primary_10_1007_s13752_024_00484_2 crossref_primary_10_1007_s00018_022_04356_5 crossref_primary_10_1126_science_aan4673 crossref_primary_10_1111_his_15353 crossref_primary_10_1053_j_seminhematol_2024_01_005 crossref_primary_10_2217_imt_2022_0205 crossref_primary_10_1158_2159_8290_CD_23_1416 crossref_primary_10_1053_j_seminhematol_2024_01_006 crossref_primary_10_1038_s41598_023_37325_4 crossref_primary_10_1146_annurev_cancerbio_060121_120026 crossref_primary_10_1146_annurev_cancerbio_061421_012447 crossref_primary_10_21638_spbu03_2021_308 crossref_primary_10_3389_fped_2022_957944 crossref_primary_10_1038_s41375_024_02258_y crossref_primary_10_3390_life12081135 crossref_primary_10_1016_j_canlet_2024_216767 crossref_primary_10_1111_bjh_19862 crossref_primary_10_1182_bloodadvances_2021004856 crossref_primary_10_1093_eurheartj_ehad670 crossref_primary_10_1158_1541_7786_MCR_19_0507 crossref_primary_10_3390_life14101251 crossref_primary_10_1038_s41467_019_13542_2 crossref_primary_10_7554_eLife_91611 crossref_primary_10_1007_s00108_022_01409_6 crossref_primary_10_1016_j_canlet_2025_217460 crossref_primary_10_18097_PBMCR1495 crossref_primary_10_3390_therapeutics1020009 crossref_primary_10_1016_j_jgo_2020_09_006 crossref_primary_10_1002_gcc_22756 crossref_primary_10_1515_labmed_2022_0050 crossref_primary_10_1007_s00018_019_03084_7 crossref_primary_10_1073_pnas_2319364121 crossref_primary_10_1111_ijlh_13022 crossref_primary_10_1007_s40487_020_00111_7 crossref_primary_10_3390_ijms26052052 crossref_primary_10_1016_j_stem_2023_09_011 crossref_primary_10_1084_jem_20230011 crossref_primary_10_3390_curroncol30120762 crossref_primary_10_1016_j_stem_2023_09_008 crossref_primary_10_1016_j_ebiom_2019_05_028 crossref_primary_10_1161_CIRCRESAHA_121_319314 crossref_primary_10_1002_ajh_26989 crossref_primary_10_1007_s00108_022_01388_8 crossref_primary_10_1002_ijc_35125 crossref_primary_10_1016_j_molcel_2021_01_020 crossref_primary_10_1016_j_blre_2020_100708 crossref_primary_10_1016_j_celrep_2024_114542 crossref_primary_10_3389_fonc_2023_1210528 crossref_primary_10_1134_S1990519X19050043 crossref_primary_10_1158_2159_8290_CD_21_0901 crossref_primary_10_1016_j_pharmthera_2020_107622 crossref_primary_10_1111_ijlh_13284 crossref_primary_10_1007_s00108_022_01401_0 crossref_primary_10_1016_j_isci_2025_112069 crossref_primary_10_1038_s41375_021_01337_8 crossref_primary_10_1200_PO_24_00143 crossref_primary_10_1016_j_revmed_2019_05_005 crossref_primary_10_1182_blood_2019004292 crossref_primary_10_1038_s41416_019_0721_1 crossref_primary_10_1016_j_molmed_2024_10_005 crossref_primary_10_2174_1568009620666200424150321 crossref_primary_10_1182_bloodadvances_2023009817 crossref_primary_10_1053_j_seminoncol_2022_01_009 crossref_primary_10_1016_j_canlet_2022_215691 crossref_primary_10_1016_j_tig_2020_04_003 crossref_primary_10_1097_QAD_0000000000002894 crossref_primary_10_1146_annurev_physiol_061121_040048 crossref_primary_10_1016_j_stem_2018_10_003 crossref_primary_10_3390_cells9092068 crossref_primary_10_38025_2078_1962_2020_97_3_45_49 crossref_primary_10_1093_jrr_rrae003 crossref_primary_10_1016_j_stemcr_2020_07_008 crossref_primary_10_3390_cancers12082194 crossref_primary_10_1038_s41467_021_23330_6 crossref_primary_10_1038_s41467_022_31878_0 crossref_primary_10_1053_j_seminhematol_2020_05_003 crossref_primary_10_1097_MOH_0000000000000568 crossref_primary_10_1016_j_blre_2025_101269 crossref_primary_10_1016_j_stem_2019_03_020 crossref_primary_10_1182_blood_2021014956 crossref_primary_10_1093_infdis_jiae212 crossref_primary_10_1038_s41375_022_01520_5 crossref_primary_10_3390_cancers11030376 crossref_primary_10_3390_cancers16152634 crossref_primary_10_1038_s41576_021_00356_6 crossref_primary_10_1016_j_exphem_2024_104215 crossref_primary_10_1111_cas_15094 crossref_primary_10_1002_ana_26754 crossref_primary_10_1016_j_molmed_2022_03_002 crossref_primary_10_3324_haematol_2023_283727 crossref_primary_10_1007_s00395_022_00969_w crossref_primary_10_1038_s41375_023_02030_8 crossref_primary_10_1016_j_hfc_2022_02_010 crossref_primary_10_1158_2643_3230_BCD_23_0144 crossref_primary_10_1111_bjh_18724 crossref_primary_10_1016_j_leukres_2024_107546 crossref_primary_10_1002_1878_0261_13222 crossref_primary_10_1007_s00774_022_01380_0 crossref_primary_10_1042_CS20200306 crossref_primary_10_1097_MOH_0000000000000675 crossref_primary_10_1016_j_tcb_2022_12_001 crossref_primary_10_1093_jnci_djad065 crossref_primary_10_3390_medicina59071209 crossref_primary_10_1016_j_exphem_2019_11_008 crossref_primary_10_1038_s41388_024_03149_3 crossref_primary_10_1001_jamacardio_2019_0302 crossref_primary_10_1182_blood_2021011314 crossref_primary_10_1016_j_beha_2021_101273 crossref_primary_10_1038_s41568_020_0260_3 crossref_primary_10_1016_j_yjmcc_2021_07_004 crossref_primary_10_3390_hemato3030038 crossref_primary_10_35509_01239015_726 crossref_primary_10_3390_genes11121528 crossref_primary_10_1016_j_ydbio_2021_02_013 crossref_primary_10_3389_fonc_2023_1303785 crossref_primary_10_1515_cclm_2023_0261 crossref_primary_10_3390_biomedicines12051054 crossref_primary_10_1152_physrev_00004_2022 crossref_primary_10_1016_j_trsl_2022_11_009 crossref_primary_10_1371_journal_pone_0217521 crossref_primary_10_1002_ame2_12076 crossref_primary_10_1111_bjh_19925 crossref_primary_10_1016_j_blre_2022_101001 crossref_primary_10_17802_2306_1278_2024_13_3_105_110 crossref_primary_10_1016_j_trsl_2022_11_004 crossref_primary_10_1093_jnci_djab231 crossref_primary_10_3389_fonc_2022_794021 crossref_primary_10_1007_s00761_022_01183_y crossref_primary_10_1016_j_exphem_2020_09_192 crossref_primary_10_1158_1541_7786_MCR_21_1018 crossref_primary_10_1093_jnci_djab234 crossref_primary_10_1158_2643_3230_BCD_24_0103 crossref_primary_10_1016_j_beha_2019_02_006 crossref_primary_10_1038_s41420_023_01590_z crossref_primary_10_1080_15384101_2020_1717025 crossref_primary_10_1200_PO_23_00132 crossref_primary_10_1016_j_leukres_2022_106787 crossref_primary_10_1016_j_exphem_2019_12_001 crossref_primary_10_1016_j_stem_2022_02_010 crossref_primary_10_3390_ijms23041948 crossref_primary_10_1016_j_beha_2019_02_005 crossref_primary_10_1016_j_exphem_2019_12_005 crossref_primary_10_1101_cshperspect_a034876 crossref_primary_10_1016_j_beha_2019_02_001 crossref_primary_10_3390_ijms22115421 crossref_primary_10_1016_j_jtct_2023_07_021 crossref_primary_10_1182_blood_2023020331 crossref_primary_10_1200_JCO_23_02547 crossref_primary_10_1016_j_critrevonc_2024_104589 crossref_primary_10_1097_MOH_0000000000000699 crossref_primary_10_1007_s12015_020_10065_y crossref_primary_10_1007_s11912_023_01362_z crossref_primary_10_1038_s41409_022_01567_z crossref_primary_10_1093_cvr_cvab215 crossref_primary_10_3389_fgene_2021_760039 crossref_primary_10_1002_1878_0261_13433 crossref_primary_10_1016_j_jacbts_2019_08_006 crossref_primary_10_1016_j_leukres_2023_107020 |
Cites_doi | 10.1200/JCO.2016.71.6712 10.1016/j.stem.2010.03.002 10.1056/NEJMoa1408617 10.1158/1078-0432.CCR-08-2403 10.1038/modpathol.2010.121 10.1038/nature11725 10.1016/S1470-2045(16)30626-X 10.1093/jnci/djv347 10.1007/s10555-008-9127-x 10.1038/nature13968 10.1083/jcb.201210031 10.1182/blood-2018-05-850339 10.1038/s41467-018-02858-0 10.1038/onc.2011.399 10.1038/ng.1009 10.1016/j.stem.2017.07.010 10.1056/NEJMoa1301689 10.1053/j.seminoncol.2008.04.012 10.1038/nature03546 10.1007/s11060-007-9470-8 10.1016/j.celrep.2016.09.092 10.1182/blood-2017-09-805879 10.1016/j.cell.2014.09.050 10.1200/JCO.2001.19.5.1405 10.1200/JCO.2017.77.6757 10.1038/srep00273 10.1038/ncomms12484 10.1016/j.stem.2018.01.011 10.1038/ng.2995 10.1101/gad.1771409 10.1016/S1470-2045(16)30627-1 10.1056/NEJMoa1409405 10.1016/j.ccr.2011.06.001 10.1038/bjc.2015.79 10.1073/pnas.94.12.6048 10.1182/blood-2006-03-010413 10.1186/s13045-015-0176-7 10.1038/ncomms7808 10.1126/science.1241628 10.4161/cc.25694 10.1038/nchembio.1427 10.1001/jamaoncol.2015.6053 10.1056/NEJMoa1611604 10.1038/s41586-018-0125-z 10.1038/nature13824 10.1038/nm.3733 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.stem.2018.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 713.e6 |
ExternalDocumentID | PMC6224657 30388424 10_1016_j_stem_2018_10_004 S1934590918304855 |
Genre | Video-Audio Media Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: F30 DK116428 – fundername: NIAID NIH HHS grantid: P30 AI036211 – fundername: NIDDK NIH HHS grantid: R01 DK092883 – fundername: NCI NIH HHS grantid: P30 CA125123 – fundername: Medical Research Council grantid: MC_PC_12009 – fundername: NCRR NIH HHS grantid: S10 RR024574 – fundername: NIDDK NIH HHS grantid: R56 DK092883 – fundername: Cancer Research UK grantid: 23015 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: Cancer Research UK grantid: C22324/A23015 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAEDT AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-d752fd4a20e7c8db9357ce2b9d9f3bf90d6f5f376bade939e45b6209194ea7073 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Thu Aug 21 18:22:25 EDT 2025 Mon Jul 21 11:40:31 EDT 2025 Mon Jul 21 06:08:13 EDT 2025 Tue Jul 01 01:08:30 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Fri Feb 23 02:30:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | clonal hematopoiesis CHIP topoisomerase inhibitors DNA damage response etoposide t-MDS doxorubicin PPM1D cisplatin t-AML |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-d752fd4a20e7c8db9357ce2b9d9f3bf90d6f5f376bade939e45b6209194ea7073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590918304855 |
PMID | 30388424 |
PQID | 2129540261 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224657 proquest_miscellaneous_2129540261 pubmed_primary_30388424 crossref_citationtrail_10_1016_j_stem_2018_10_004 crossref_primary_10_1016_j_stem_2018_10_004 elsevier_sciencedirect_doi_10_1016_j_stem_2018_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Dumble, Moore, Chambers, Geiger, Van Zant, Goodell, Donehower (bib15) 2007; 109 Pharoah, Song, Dicks, Intermaggio, Harrington, Baynes, Alsop, Bogdanova, Cicek, Cunningham (bib34) 2016; 108 Gillis, Ball, Zhang, Ma, Zhao, Yoder, Balasis, Mesa, Sallman, Lancet (bib19) 2017; 18 Fiscella, Zhang, Fan, Sakaguchi, Shen, Mercer, Vande Woude, O’Connor, Appella (bib16) 1997; 94 Kleiblova, Shaltiel, Benada, Ševčík, Pecháčková, Pohlreich, Voest, Dundr, Bartek, Kleibl (bib26) 2013; 201 Berger, Kroeze, Koorenhof-Scheele, de Graaf, Yoshida, Ueno, Shiraishi, Miyano, van den Berg, Schepers (bib2) 2018; 131 Lambros, Natrajan, Geyer, Lopez-Garcia, Dedes, Savage, Lacroix-Triki, Jones, Lord, Linardopoulos (bib28) 2010; 23 Wong, Miller, Jotte, Bagegni, Baty, Schmidt, Cashen, Duncavage, Helton, Fiala (bib42) 2018; 9 Challen, Sun, Jeong, Luo, Jelinek, Berg, Bock, Vasanthakumar, Gu, Xi (bib8) 2011; 44 Chen, Yi, Morita, Wang, Cong, Liu, Xiao, Rudolph, Cheng, Ju (bib10) 2015; 6 Christiansen, Andersen, Pedersen-Bjergaard (bib11) 2001; 19 Gibson, Lindsley, Tchekmedyian, Mar, Shi, Jaiswal, Bosworth, Francisco, He, Bansal (bib18) 2017; 35 Kahn, Miller, Silver, Sellar, Bhatt, Gibson, McConkey, Adams, Mar, Mertins (bib25) 2018; 132 Godley, Larson (bib21) 2008; 35 Bowman, Busque, Levine (bib4) 2018; 22 Gilmartin, Faitg, Richter, Groy, Seefeld, Darcy, Peng, Federowicz, Yang, Zhang (bib20) 2014; 10 Sun, Ramos, Chapman, Johnnidis, Le, Ho, Klein, Hofmann, Camargo (bib36) 2014; 514 Xie, Lu, Wang, McLellan, Johnson, Wendl, McMichael, Schmidt, Yellapantula, Miller (bib43) 2014; 20 Bondar, Medzhitov (bib3) 2010; 6 Dejosez, Ura, Brandt, Zwaka (bib13) 2013; 341 Gundry, Brunetti, Lin, Mayle, Kitano, Wagner, Hsu, Hoegenauer, Rooney, Goodell, Nakada (bib22) 2016; 17 Castellino, De Bortoli, Lu, Moon, Nguyen, Shepard, Rao, Donehower, Kim (bib7) 2008; 86 Zuber, Radtke, Pardee, Zhao, Rappaport, Luo, McCurrach, Yang, Dolan, Kogan (bib47) 2009; 23 Morita, Kantarjian, Wang, Yan, Bueso-Ramos, Sasaki, Issa, Wang, Jorgensen, Song (bib33) 2018; 36 Brunetti, Gundry, Kitano, Nakada, Goodell (bib5) 2018 Moran-Crusio, Reavie, Shih, Abdel-Wahab, Ndiaye-Lobry, Lobry, Figueroa, Vasanthakumar, Patel, Zhao (bib32) 2011; 20 Tan, Lambros, Rayter, Natrajan, Vatcheva, Gao, Marchiò, Geyer, Savage, Parry (bib39) 2009; 15 James, Ugo, Le Couédic, Staerk, Delhommeau, Lacout, Garçon, Raslova, Berger, Bennaceur-Griscelli (bib24) 2005; 434 Young, Challen, Birmann, Druley (bib44) 2016; 7 Jaiswal, Fontanillas, Flannick, Manning, Grauman, Mar, Lindsley, Mermel, Burtt, Chavez (bib23) 2014; 371 Ruark, Snape, Humburg, Loveday, Bajrami, Brough, Rodrigues, Renwick, Seal, Ramsay (bib35) 2013; 493 Kunimoto, Fukuchi, Sakurai, Sadahira, Ikeda, Okamoto, Nakajima (bib27) 2012; 2 Lu, Nguyen, Moon, Darlington, Sommer, Donehower (bib30) 2008; 27 Genovese, Kähler, Handsaker, Lindberg, Rose, Bakhoum, Chambert, Mick, Neale, Fromer (bib17) 2014; 371 Zhang, Chen, Wan, Yang, Wang, Feng, Yang, Jones, Wang, Zhou (bib46) 2014; 46 Chao, Lai, Liou, Chang, Wang, Pan, Teng (bib9) 2015; 8 Wong, Ramsingh, Young, Miller, Touma, Welch, Lamprecht, Shen, Hundal, Fulton (bib41) 2015; 518 Zajkowicz, Butkiewicz, Drosik, Giglok, Suwiński, Rusin (bib45) 2015; 112 Coombs, Zehir, Devlin, Kishtagari, Syed, Jonsson, Hyman, Solit, Robson, Baselga (bib12) 2017; 21 Ali, Abedini, Tsang (bib1) 2012; 31 Swisher, Harrell, Norquist, Walsh, Brady, Lee, Hershberg, Kalli, Lankes, Konnick (bib37) 2016; 2 (bib40) 2013; 368 (bib6) 2014; 159 Lindsley, Saber, Mar, Redd, Wang, Haagenson, Grauman, Hu, Spellman, Lee (bib29) 2017; 376 Takahashi, Wang, Kantarjian, Doss, Khanna, Thompson, Zhao, Patel, Neelapu, Gumbs (bib38) 2017; 18 Dudgeon, Shreeram, Tanoue, Mazur, Sayadi, Robinson, Appella, Bulavin (bib14) 2013; 12 Meisel, Hinterleitner, Pacis, Chen, Earley, Mayassi, Pierre, Ernest, Galipeau, Thuille (bib31) 2018; 557 Takahashi (10.1016/j.stem.2018.10.004_bib38) 2017; 18 Godley (10.1016/j.stem.2018.10.004_bib21) 2008; 35 Meisel (10.1016/j.stem.2018.10.004_bib31) 2018; 557 (10.1016/j.stem.2018.10.004_bib6) 2014; 159 Lambros (10.1016/j.stem.2018.10.004_bib28) 2010; 23 Kleiblova (10.1016/j.stem.2018.10.004_bib26) 2013; 201 Gundry (10.1016/j.stem.2018.10.004_bib22) 2016; 17 Bowman (10.1016/j.stem.2018.10.004_bib4) 2018; 22 Gilmartin (10.1016/j.stem.2018.10.004_bib20) 2014; 10 Challen (10.1016/j.stem.2018.10.004_bib8) 2011; 44 Dudgeon (10.1016/j.stem.2018.10.004_bib14) 2013; 12 James (10.1016/j.stem.2018.10.004_bib24) 2005; 434 Ruark (10.1016/j.stem.2018.10.004_bib35) 2013; 493 Young (10.1016/j.stem.2018.10.004_bib44) 2016; 7 Jaiswal (10.1016/j.stem.2018.10.004_bib23) 2014; 371 Pharoah (10.1016/j.stem.2018.10.004_bib34) 2016; 108 Swisher (10.1016/j.stem.2018.10.004_bib37) 2016; 2 Lindsley (10.1016/j.stem.2018.10.004_bib29) 2017; 376 Tan (10.1016/j.stem.2018.10.004_bib39) 2009; 15 Chao (10.1016/j.stem.2018.10.004_bib9) 2015; 8 Kahn (10.1016/j.stem.2018.10.004_bib25) 2018; 132 Zuber (10.1016/j.stem.2018.10.004_bib47) 2009; 23 Gibson (10.1016/j.stem.2018.10.004_bib18) 2017; 35 Xie (10.1016/j.stem.2018.10.004_bib43) 2014; 20 Berger (10.1016/j.stem.2018.10.004_bib2) 2018; 131 Bondar (10.1016/j.stem.2018.10.004_bib3) 2010; 6 Dejosez (10.1016/j.stem.2018.10.004_bib13) 2013; 341 Morita (10.1016/j.stem.2018.10.004_bib33) 2018; 36 Castellino (10.1016/j.stem.2018.10.004_bib7) 2008; 86 Coombs (10.1016/j.stem.2018.10.004_bib12) 2017; 21 Fiscella (10.1016/j.stem.2018.10.004_bib16) 1997; 94 (10.1016/j.stem.2018.10.004_bib40) 2013; 368 Moran-Crusio (10.1016/j.stem.2018.10.004_bib32) 2011; 20 Chen (10.1016/j.stem.2018.10.004_bib10) 2015; 6 Dumble (10.1016/j.stem.2018.10.004_bib15) 2007; 109 Wong (10.1016/j.stem.2018.10.004_bib42) 2018; 9 Kunimoto (10.1016/j.stem.2018.10.004_bib27) 2012; 2 Gillis (10.1016/j.stem.2018.10.004_bib19) 2017; 18 Genovese (10.1016/j.stem.2018.10.004_bib17) 2014; 371 Ali (10.1016/j.stem.2018.10.004_bib1) 2012; 31 Christiansen (10.1016/j.stem.2018.10.004_bib11) 2001; 19 Sun (10.1016/j.stem.2018.10.004_bib36) 2014; 514 Brunetti (10.1016/j.stem.2018.10.004_bib5) 2018 Zajkowicz (10.1016/j.stem.2018.10.004_bib45) 2015; 112 Lu (10.1016/j.stem.2018.10.004_bib30) 2008; 27 Wong (10.1016/j.stem.2018.10.004_bib41) 2015; 518 Zhang (10.1016/j.stem.2018.10.004_bib46) 2014; 46 30388419 - Cell Stem Cell. 2018 Nov 1;23(5):634-635. doi: 10.1016/j.stem.2018.10.003. |
References_xml | – volume: 22 start-page: 157 year: 2018 end-page: 170 ident: bib4 article-title: Clonal hematopoiesis and evolution to hematopoietic malignancies publication-title: Cell Stem Cell – volume: 368 start-page: 2059 year: 2013 end-page: 2074 ident: bib40 article-title: Genomic and epigenomic landscapes of adult publication-title: N. Engl. J. Med. – volume: 159 start-page: 676 year: 2014 end-page: 690 ident: bib6 article-title: Integrated genomic characterization of papillary thyroid carcinoma publication-title: Cell – volume: 17 start-page: 1453 year: 2016 end-page: 1461 ident: bib22 article-title: Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9 publication-title: Cell Rep. – volume: 376 start-page: 536 year: 2017 end-page: 547 ident: bib29 article-title: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation publication-title: N. Engl. J. Med. – volume: 7 start-page: 12484 year: 2016 ident: bib44 article-title: Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults publication-title: Nat. Commun. – volume: 35 start-page: 1598 year: 2017 end-page: 1605 ident: bib18 article-title: Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma publication-title: J. Clin. Oncol. – volume: 21 start-page: 374 year: 2017 end-page: 382 ident: bib12 article-title: Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes publication-title: Cell Stem Cell – volume: 132 start-page: 1095 year: 2018 end-page: 1105 ident: bib25 article-title: -truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells publication-title: Blood – volume: 371 start-page: 2488 year: 2014 end-page: 2498 ident: bib23 article-title: Age-related clonal hematopoiesis associated with adverse outcomes publication-title: N. Engl. J. Med. – volume: 518 start-page: 552 year: 2015 end-page: 555 ident: bib41 article-title: Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia publication-title: Nature – volume: 20 start-page: 1472 year: 2014 end-page: 1478 ident: bib43 article-title: Age-related mutations associated with clonal hematopoietic expansion and malignancies publication-title: Nat. Med. – volume: 2 start-page: 273 year: 2012 ident: bib27 article-title: Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells publication-title: Sci. Rep. – volume: 109 start-page: 1736 year: 2007 end-page: 1742 ident: bib15 article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging publication-title: Blood – volume: 15 start-page: 2269 year: 2009 end-page: 2280 ident: bib39 article-title: PPM1D is a potential therapeutic target in ovarian clear cell carcinomas publication-title: Clin. Cancer Res. – volume: 371 start-page: 2477 year: 2014 end-page: 2487 ident: bib17 article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence publication-title: N. Engl. J. Med. – volume: 9 start-page: 455 year: 2018 ident: bib42 article-title: Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential publication-title: Nat. Commun. – volume: 23 start-page: 1334 year: 2010 end-page: 1345 ident: bib28 article-title: PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study publication-title: Mod. Pathol. – volume: 20 start-page: 11 year: 2011 end-page: 24 ident: bib32 article-title: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation publication-title: Cancer Cell – volume: 6 start-page: 309 year: 2010 end-page: 322 ident: bib3 article-title: p53-mediated hematopoietic stem and progenitor cell competition publication-title: Cell Stem Cell – volume: 18 start-page: 100 year: 2017 end-page: 111 ident: bib38 article-title: Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study publication-title: Lancet Oncol. – volume: 12 start-page: 2656 year: 2013 end-page: 2664 ident: bib14 article-title: Genetic variants and mutations of PPM1D control the response to DNA damage publication-title: Cell Cycle – volume: 108 year: 2016 ident: bib34 article-title: PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations publication-title: J. Natl. Cancer Inst. – volume: 27 start-page: 123 year: 2008 end-page: 135 ident: bib30 article-title: The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways publication-title: Cancer Metastasis Rev. – volume: 36 start-page: 1788 year: 2018 end-page: 1797 ident: bib33 article-title: Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia publication-title: J. Clin. Oncol. – volume: 6 start-page: 6808 year: 2015 ident: bib10 article-title: Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways publication-title: Nat. Commun. – volume: 31 start-page: 2175 year: 2012 end-page: 2186 ident: bib1 article-title: The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation publication-title: Oncogene – volume: 434 start-page: 1144 year: 2005 end-page: 1148 ident: bib24 article-title: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera publication-title: Nature – volume: 493 start-page: 406 year: 2013 end-page: 410 ident: bib35 article-title: Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer publication-title: Nature – year: 2018 ident: bib5 article-title: Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9 publication-title: J. Vis. Exp. – volume: 35 start-page: 418 year: 2008 end-page: 429 ident: bib21 article-title: Therapy-related myeloid leukemia publication-title: Semin. Oncol. – volume: 557 start-page: 580 year: 2018 end-page: 584 ident: bib31 article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host publication-title: Nature – volume: 2 start-page: 370 year: 2016 end-page: 372 ident: bib37 article-title: Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma publication-title: JAMA Oncol. – volume: 19 start-page: 1405 year: 2001 end-page: 1413 ident: bib11 article-title: Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis publication-title: J. Clin. Oncol. – volume: 341 start-page: 1511 year: 2013 end-page: 1514 ident: bib13 article-title: Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen publication-title: Science – volume: 131 start-page: 1846 year: 2018 end-page: 1857 ident: bib2 article-title: Early detection and evolution of preleukemic clones in therapy-related myeloid neoplasms following autologous SCT publication-title: Blood – volume: 86 start-page: 245 year: 2008 end-page: 256 ident: bib7 article-title: Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D publication-title: J. Neurooncol. – volume: 8 start-page: 82 year: 2015 ident: bib9 article-title: The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo publication-title: J. Hematol. Oncol. – volume: 112 start-page: 1114 year: 2015 end-page: 1120 ident: bib45 article-title: Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients publication-title: Br. J. Cancer – volume: 10 start-page: 181 year: 2014 end-page: 187 ident: bib20 article-title: Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction publication-title: Nat. Chem. Biol. – volume: 44 start-page: 23 year: 2011 end-page: 31 ident: bib8 article-title: Dnmt3a is essential for hematopoietic stem cell differentiation publication-title: Nat. Genet. – volume: 94 start-page: 6048 year: 1997 end-page: 6053 ident: bib16 article-title: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 112 year: 2017 end-page: 121 ident: bib19 article-title: Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study publication-title: Lancet Oncol. – volume: 514 start-page: 322 year: 2014 end-page: 327 ident: bib36 article-title: Clonal dynamics of native haematopoiesis publication-title: Nature – volume: 46 start-page: 726 year: 2014 end-page: 730 ident: bib46 article-title: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas publication-title: Nat. Genet. – volume: 201 start-page: 511 year: 2013 end-page: 521 ident: bib26 article-title: Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint publication-title: J. Cell Biol. – volume: 23 start-page: 877 year: 2009 end-page: 889 ident: bib47 article-title: Mouse models of human AML accurately predict chemotherapy response publication-title: Genes Dev. – volume: 35 start-page: 1598 year: 2017 ident: 10.1016/j.stem.2018.10.004_bib18 article-title: Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.71.6712 – volume: 6 start-page: 309 year: 2010 ident: 10.1016/j.stem.2018.10.004_bib3 article-title: p53-mediated hematopoietic stem and progenitor cell competition publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.03.002 – volume: 371 start-page: 2488 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib23 article-title: Age-related clonal hematopoiesis associated with adverse outcomes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1408617 – volume: 15 start-page: 2269 year: 2009 ident: 10.1016/j.stem.2018.10.004_bib39 article-title: PPM1D is a potential therapeutic target in ovarian clear cell carcinomas publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-2403 – volume: 23 start-page: 1334 year: 2010 ident: 10.1016/j.stem.2018.10.004_bib28 article-title: PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study publication-title: Mod. Pathol. doi: 10.1038/modpathol.2010.121 – volume: 493 start-page: 406 year: 2013 ident: 10.1016/j.stem.2018.10.004_bib35 article-title: Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer publication-title: Nature doi: 10.1038/nature11725 – volume: 18 start-page: 100 year: 2017 ident: 10.1016/j.stem.2018.10.004_bib38 article-title: Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30626-X – volume: 108 year: 2016 ident: 10.1016/j.stem.2018.10.004_bib34 article-title: PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djv347 – volume: 27 start-page: 123 year: 2008 ident: 10.1016/j.stem.2018.10.004_bib30 article-title: The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-008-9127-x – volume: 518 start-page: 552 year: 2015 ident: 10.1016/j.stem.2018.10.004_bib41 article-title: Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia publication-title: Nature doi: 10.1038/nature13968 – volume: 201 start-page: 511 year: 2013 ident: 10.1016/j.stem.2018.10.004_bib26 article-title: Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint publication-title: J. Cell Biol. doi: 10.1083/jcb.201210031 – volume: 132 start-page: 1095 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib25 article-title: PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells publication-title: Blood doi: 10.1182/blood-2018-05-850339 – volume: 9 start-page: 455 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib42 article-title: Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential publication-title: Nat. Commun. doi: 10.1038/s41467-018-02858-0 – volume: 31 start-page: 2175 year: 2012 ident: 10.1016/j.stem.2018.10.004_bib1 article-title: The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation publication-title: Oncogene doi: 10.1038/onc.2011.399 – volume: 44 start-page: 23 year: 2011 ident: 10.1016/j.stem.2018.10.004_bib8 article-title: Dnmt3a is essential for hematopoietic stem cell differentiation publication-title: Nat. Genet. doi: 10.1038/ng.1009 – volume: 21 start-page: 374 year: 2017 ident: 10.1016/j.stem.2018.10.004_bib12 article-title: Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.010 – volume: 368 start-page: 2059 year: 2013 ident: 10.1016/j.stem.2018.10.004_bib40 article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1301689 – volume: 35 start-page: 418 year: 2008 ident: 10.1016/j.stem.2018.10.004_bib21 article-title: Therapy-related myeloid leukemia publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2008.04.012 – volume: 434 start-page: 1144 year: 2005 ident: 10.1016/j.stem.2018.10.004_bib24 article-title: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera publication-title: Nature doi: 10.1038/nature03546 – volume: 86 start-page: 245 year: 2008 ident: 10.1016/j.stem.2018.10.004_bib7 article-title: Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D publication-title: J. Neurooncol. doi: 10.1007/s11060-007-9470-8 – volume: 17 start-page: 1453 year: 2016 ident: 10.1016/j.stem.2018.10.004_bib22 article-title: Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.092 – volume: 131 start-page: 1846 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib2 article-title: Early detection and evolution of preleukemic clones in therapy-related myeloid neoplasms following autologous SCT publication-title: Blood doi: 10.1182/blood-2017-09-805879 – volume: 159 start-page: 676 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib6 article-title: Integrated genomic characterization of papillary thyroid carcinoma publication-title: Cell doi: 10.1016/j.cell.2014.09.050 – volume: 19 start-page: 1405 year: 2001 ident: 10.1016/j.stem.2018.10.004_bib11 article-title: Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2001.19.5.1405 – volume: 36 start-page: 1788 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib33 article-title: Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.77.6757 – volume: 2 start-page: 273 year: 2012 ident: 10.1016/j.stem.2018.10.004_bib27 article-title: Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells publication-title: Sci. Rep. doi: 10.1038/srep00273 – volume: 7 start-page: 12484 year: 2016 ident: 10.1016/j.stem.2018.10.004_bib44 article-title: Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults publication-title: Nat. Commun. doi: 10.1038/ncomms12484 – volume: 22 start-page: 157 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib4 article-title: Clonal hematopoiesis and evolution to hematopoietic malignancies publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.01.011 – volume: 46 start-page: 726 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib46 article-title: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas publication-title: Nat. Genet. doi: 10.1038/ng.2995 – volume: 23 start-page: 877 year: 2009 ident: 10.1016/j.stem.2018.10.004_bib47 article-title: Mouse models of human AML accurately predict chemotherapy response publication-title: Genes Dev. doi: 10.1101/gad.1771409 – volume: 18 start-page: 112 year: 2017 ident: 10.1016/j.stem.2018.10.004_bib19 article-title: Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30627-1 – volume: 371 start-page: 2477 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib17 article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1409405 – volume: 20 start-page: 11 year: 2011 ident: 10.1016/j.stem.2018.10.004_bib32 article-title: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.06.001 – volume: 112 start-page: 1114 year: 2015 ident: 10.1016/j.stem.2018.10.004_bib45 article-title: Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients publication-title: Br. J. Cancer doi: 10.1038/bjc.2015.79 – volume: 94 start-page: 6048 year: 1997 ident: 10.1016/j.stem.2018.10.004_bib16 article-title: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.12.6048 – volume: 109 start-page: 1736 year: 2007 ident: 10.1016/j.stem.2018.10.004_bib15 article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging publication-title: Blood doi: 10.1182/blood-2006-03-010413 – volume: 8 start-page: 82 year: 2015 ident: 10.1016/j.stem.2018.10.004_bib9 article-title: The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-015-0176-7 – volume: 6 start-page: 6808 year: 2015 ident: 10.1016/j.stem.2018.10.004_bib10 article-title: Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways publication-title: Nat. Commun. doi: 10.1038/ncomms7808 – volume: 341 start-page: 1511 year: 2013 ident: 10.1016/j.stem.2018.10.004_bib13 article-title: Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen publication-title: Science doi: 10.1126/science.1241628 – volume: 12 start-page: 2656 year: 2013 ident: 10.1016/j.stem.2018.10.004_bib14 article-title: Genetic variants and mutations of PPM1D control the response to DNA damage publication-title: Cell Cycle doi: 10.4161/cc.25694 – volume: 10 start-page: 181 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib20 article-title: Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1427 – issue: 134 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib5 article-title: Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9 publication-title: J. Vis. Exp. – volume: 2 start-page: 370 year: 2016 ident: 10.1016/j.stem.2018.10.004_bib37 article-title: Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2015.6053 – volume: 376 start-page: 536 year: 2017 ident: 10.1016/j.stem.2018.10.004_bib29 article-title: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1611604 – volume: 557 start-page: 580 year: 2018 ident: 10.1016/j.stem.2018.10.004_bib31 article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host publication-title: Nature doi: 10.1038/s41586-018-0125-z – volume: 514 start-page: 322 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib36 article-title: Clonal dynamics of native haematopoiesis publication-title: Nature doi: 10.1038/nature13824 – volume: 20 start-page: 1472 year: 2014 ident: 10.1016/j.stem.2018.10.004_bib43 article-title: Age-related mutations associated with clonal hematopoietic expansion and malignancies publication-title: Nat. Med. doi: 10.1038/nm.3733 – reference: 30388419 - Cell Stem Cell. 2018 Nov 1;23(5):634-635. doi: 10.1016/j.stem.2018.10.003. |
SSID | ssj0057107 |
Score | 2.6582723 |
Snippet | Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development.... • PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS • PPM1D mutations are associated with prior exposure to specific DNA-damaging agents •... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 700 |
SubjectTerms | Aged Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Cell Proliferation - drug effects CHIP cisplatin Cisplatin - chemistry Cisplatin - pharmacology clonal hematopoiesis Clone Cells - drug effects DNA damage response doxorubicin Doxorubicin - chemistry Doxorubicin - pharmacology Drug Screening Assays, Antitumor etoposide Female HEK293 Cells Hematopoiesis - drug effects Hematopoiesis - genetics Humans Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - metabolism Leukemia, Myeloid, Acute - pathology Male Mice Mice, Inbred C57BL Mice, Inbred NOD Middle Aged Mutation Neoplasms, Experimental - drug therapy Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology PPM1D Protein Phosphatase 2C - genetics Protein Phosphatase 2C - metabolism t-AML t-MDS topoisomerase inhibitors |
Title | PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy |
URI | https://dx.doi.org/10.1016/j.stem.2018.10.004 https://www.ncbi.nlm.nih.gov/pubmed/30388424 https://www.proquest.com/docview/2129540261 https://pubmed.ncbi.nlm.nih.gov/PMC6224657 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iHNyL3J2nrqcSwTfpbZsmTfKo68kirCx-wL6Vpk2wh7SL24Xb__5mmnZxPc4H3_qRQJhJZn5hZn5DyJmKXMitMIGQJg_gyQVKsyyIAMmFiWFhnmFEd3KbjB_5zUzMtsior4XBtMrO9nub3lrr7suwk-ZwXpbDe4AeXGjwdwqu5EpgoXnMVVvEN7vsrbEADyp9ZJkHOLornPE5XsiVjOld6meb4cX_55z-BZ9vcyhfOaXrL2SnQ5P0wi_4K9my1TfyyfeXXO2S6XQ6ia7oZOnj7Qt69QLGjY6eEX7TMdK11vMa7srlgpYVvfP5spY2NR2tmrqp_5Q5RUqBrkxr9Z08Xv96GI2DroVCkGOngqCQgrmCZyy0MleF0bGQuWVGF9rFxumwSJxwYGRMVlgda8uFSRjIVHObSTj-e2S7qit7QKgzisWxjCPHNHcRz0ykwLXZyHDHcp0MSNTLLs07fnFsc_Gc9olkv1OUd4ryxm8g7wE5X8-Ze3aNd0eLXiXpxh5Jwfy_O--0118KhwcjIlll6-UiBb-tAbLCLXJA9r0-1-uIkSeHM5gtNzS9HoDE3Jt_qvKpJehOkKVPyMMPrvcH-YxvvuLxiGw3L0t7DNCnMSft3v4LsHYCUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviG_Kp5F4Q6GJY8fxI3RMHaxTBZvUNytObBE0JdWaSvS_565OKgpiD7xFji1Zd_bdz7q73wG8zRMfCydtJJUtI_zyUa55ESWI5OLM8rgsKKI7O8umF-LzQi4OYDLUwlBaZW_7g03fWut-ZNxLc7ys6_E3hB5CavR3OT7JcylvwE1EA4pu58ni42COJbpQFULLIqLpfeVMSPIismTK78rfb1O8xL-809_o888kyt-80vE9uNvDSfYh7Pg-HLjmAdwKDSY3D2E-n8-SIzZbh4D7ih1doXVjk0vC32xKfK3tssXHcr1idcO-hoRZx7qWTTZd27U_65IRp0Bfp7V5BBfHn84n06jvoRCV1KogqpTkvhIFj50q88rqVKrScasr7VPrdVxlXnq0MraonE61E9JmHIWqhSsU3v_HcNi0jXsKzNucp6lKE8-18IkobJKjb3OJFZ6XOhtBMsjOlD3BOPW5uDRDJtkPQ_I2JG8aQ3mP4N1uzTLQa1w7Ww4qMXuHxKD9v3bdm0F_Bm8PhUSKxrXrlUHHrRGz4jNyBE-CPnf7SIkoR3BcrfY0vZtAzNz7f5r6-5ahOyOaPqme_ed-X8Pt6fns1JyenH15DnfoTyh_fAGH3dXavUQc1NlX23P-C69EBXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPM1D+Mutations+Drive+Clonal+Hematopoiesis+in+Response+to+Cytotoxic+Chemotherapy&rft.jtitle=Cell+stem+cell&rft.au=Hsu%2C+Joanne+I.&rft.au=Dayaram%2C+Tajhal&rft.au=Tovy%2C+Ayala&rft.au=De+Braekeleer%2C+Etienne&rft.date=2018-11-01&rft.pub=Cell+Press&rft.issn=1934-5909&rft.eissn=1875-9777&rft.volume=23&rft.issue=5&rft.spage=700&rft.epage=713.e6&rft_id=info:doi/10.1016%2Fj.stem.2018.10.004&rft_id=info%3Apmid%2F30388424&rft.externalDocID=PMC6224657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |