PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy

Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-depend...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 23; no. 5; pp. 700 - 713.e6
Main Authors Hsu, Joanne I., Dayaram, Tajhal, Tovy, Ayala, De Braekeleer, Etienne, Jeong, Mira, Wang, Feng, Zhang, Jianhua, Heffernan, Timothy P., Gera, Sonal, Kovacs, Jeffrey J., Marszalek, Joseph R., Bristow, Christopher, Yan, Yuanqing, Garcia-Manero, Guillermo, Kantarjian, Hagop, Vassiliou, George, Futreal, P. Andrew, Donehower, Lawrence A., Takahashi, Koichi, Goodell, Margaret A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. [Display omitted] [Display omitted] •PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS•PPM1D mutations are associated with prior exposure to specific DNA-damaging agents•Mutant PPM1D confers a survival advantage after cisplatin-induced stress•PPM1D mutants lack an advantage under bone marrow transplantation stress Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy.
AbstractList Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn /Mg -dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT.
• PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS • PPM1D mutations are associated with prior exposure to specific DNA-damaging agents • Mutant PPM1D confers a survival advantage after cisplatin-induced stress • PPM1D mutants lack an advantage under bone marrow transplantation stress Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy.
Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. [Display omitted] [Display omitted] •PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS•PPM1D mutations are associated with prior exposure to specific DNA-damaging agents•Mutant PPM1D confers a survival advantage after cisplatin-induced stress•PPM1D mutants lack an advantage under bone marrow transplantation stress Cytotoxic chemotherapies put patients at risk for future hematopoietic malignancies. Goodell and colleagues show that PPM1D mutations confer a survival advantage onto hematopoietic clones by rendering them resistant to DNA-damaging agents such as cisplatin. Selective pressures will be specific to different mutations and should be considered in choice of chemotherapy.
Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT.Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT.
Author Bristow, Christopher
Kantarjian, Hagop
Garcia-Manero, Guillermo
Goodell, Margaret A.
Zhang, Jianhua
Futreal, P. Andrew
Heffernan, Timothy P.
Kovacs, Jeffrey J.
Jeong, Mira
Yan, Yuanqing
Wang, Feng
Marszalek, Joseph R.
Tovy, Ayala
Gera, Sonal
Takahashi, Koichi
Dayaram, Tajhal
De Braekeleer, Etienne
Hsu, Joanne I.
Vassiliou, George
Donehower, Lawrence A.
AuthorAffiliation 5 Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
9 Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
10 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
3 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
6 Wellcome-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
8 Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
4 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
7 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2 Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
1 Translational Biology and Molecular Medicine Graduate Program and Medical Sci
AuthorAffiliation_xml – name: 6 Wellcome-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
– name: 2 Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
– name: 5 Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
– name: 7 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 8 Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 4 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
– name: 1 Translational Biology and Molecular Medicine Graduate Program and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
– name: 10 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 3 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
– name: 9 Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Joanne I.
  surname: Hsu
  fullname: Hsu, Joanne I.
  organization: Translational Biology and Molecular Medicine Graduate Program and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 2
  givenname: Tajhal
  surname: Dayaram
  fullname: Dayaram, Tajhal
  organization: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 3
  givenname: Ayala
  surname: Tovy
  fullname: Tovy, Ayala
  organization: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 4
  givenname: Etienne
  surname: De Braekeleer
  fullname: De Braekeleer, Etienne
  organization: Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
– sequence: 5
  givenname: Mira
  surname: Jeong
  fullname: Jeong, Mira
  organization: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 6
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 7
  givenname: Jianhua
  surname: Zhang
  fullname: Zhang, Jianhua
  organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 8
  givenname: Timothy P.
  surname: Heffernan
  fullname: Heffernan, Timothy P.
  organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 9
  givenname: Sonal
  surname: Gera
  fullname: Gera, Sonal
  organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 10
  givenname: Jeffrey J.
  surname: Kovacs
  fullname: Kovacs, Jeffrey J.
  organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 11
  givenname: Joseph R.
  surname: Marszalek
  fullname: Marszalek, Joseph R.
  organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 12
  givenname: Christopher
  surname: Bristow
  fullname: Bristow, Christopher
  organization: Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 13
  givenname: Yuanqing
  surname: Yan
  fullname: Yan, Yuanqing
  organization: Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
– sequence: 14
  givenname: Guillermo
  surname: Garcia-Manero
  fullname: Garcia-Manero, Guillermo
  organization: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 15
  givenname: Hagop
  surname: Kantarjian
  fullname: Kantarjian, Hagop
  organization: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 16
  givenname: George
  surname: Vassiliou
  fullname: Vassiliou, George
  organization: Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
– sequence: 17
  givenname: P. Andrew
  surname: Futreal
  fullname: Futreal, P. Andrew
  organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 18
  givenname: Lawrence A.
  surname: Donehower
  fullname: Donehower, Lawrence A.
  organization: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 19
  givenname: Koichi
  surname: Takahashi
  fullname: Takahashi, Koichi
  email: ktakahashi@mdanderson.org
  organization: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 20
  givenname: Margaret A.
  surname: Goodell
  fullname: Goodell, Margaret A.
  email: goodell@bcm.edu
  organization: Department of Pediatrics, Section of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30388424$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAr-gF_gAPykUsW27HjWEJIKKUUqRUrBGfLcSasV4kdbO-K_fdNtC2CHnqa0cz7kN67QCc-eEDoDSUrSmj1frtKGcYVI7SeDytC-At0TmspCiWlPJl3VfJCKKLO0EVKW0KEpES-RGclKeuaM36O1uv1Hb3Cd7tssgs-4avo9oCbIXgz4BsYTQ5TcJBcws7j75CmGQU4B9wccsjhj7O42cAY8gaimQ6v0GlvhgSvH-Yl-nn9-UdzU9x--_K1-XRbWMFoLjopWN9xwwhIW3etKoW0wFrVqb5se0W6qhd9KavWdKBKBVy0FSOKKg5GElleoo9H3WnXjtBZ8DmaQU_RjSYedDBO___xbqN_hb2uGOOVWATePQjE8HsHKevRJQvDYDyEXdKMMiU4YRWdoW__9fpr8hjjDKiPABtDShF6bd0x0NnaDZoSvTSmt3ppTC-NLbe5sZnKnlAf1Z8lfTiSYE547yDqZB14C52LYLPugnuOfg_tebEI
CitedBy_id crossref_primary_10_1016_S2152_2650_23_00310_5
crossref_primary_10_1097_HS9_0000000000000171
crossref_primary_10_1186_s12979_022_00278_9
crossref_primary_10_1038_s41409_023_01970_0
crossref_primary_10_1016_j_beha_2021_101249
crossref_primary_10_1111_eva_13039
crossref_primary_10_1172_jci_insight_165609
crossref_primary_10_1016_j_ccell_2022_12_005
crossref_primary_10_1146_annurev_pathmechdis_051222_122724
crossref_primary_10_1007_s00740_022_00472_x
crossref_primary_10_1038_s41580_022_00538_y
crossref_primary_10_1016_j_stem_2021_03_002
crossref_primary_10_1182_bloodadvances_2023010098
crossref_primary_10_1016_j_trecan_2020_03_008
crossref_primary_10_3390_cancers13194887
crossref_primary_10_1038_s41467_022_28198_8
crossref_primary_10_1016_j_bcp_2020_114362
crossref_primary_10_1001_jamanetworkopen_2022_54221
crossref_primary_10_1126_science_aay9333
crossref_primary_10_3390_neurolint17020019
crossref_primary_10_1002_jcla_23171
crossref_primary_10_1038_s41591_019_0652_7
crossref_primary_10_1158_2643_3230_BCD_24_0235
crossref_primary_10_1038_s41408_022_00703_8
crossref_primary_10_1146_annurev_genom_120722_100409
crossref_primary_10_1002_aac2_12061
crossref_primary_10_1016_j_bulcan_2023_02_022
crossref_primary_10_1002_mog2_47
crossref_primary_10_1080_10428194_2022_2027401
crossref_primary_10_1038_s41467_020_16805_5
crossref_primary_10_1038_s41467_020_19119_8
crossref_primary_10_1016_j_isci_2022_104892
crossref_primary_10_1016_j_stem_2022_05_006
crossref_primary_10_1038_s41375_024_02253_3
crossref_primary_10_1016_j_pathol_2021_02_005
crossref_primary_10_1093_clinchem_hvab105
crossref_primary_10_3390_biomedicines9040388
crossref_primary_10_1016_j_celrep_2019_04_064
crossref_primary_10_1093_nar_gkac1269
crossref_primary_10_20517_jca_2023_39
crossref_primary_10_1002_ajh_26589
crossref_primary_10_1016_j_exphem_2022_02_005
crossref_primary_10_1016_j_toxlet_2023_05_009
crossref_primary_10_1038_s43856_023_00408_4
crossref_primary_10_1007_s11654_019_0141_y
crossref_primary_10_7554_eLife_91611_3
crossref_primary_10_3390_genes11070749
crossref_primary_10_1016_j_mad_2020_111279
crossref_primary_10_1016_j_tcb_2020_10_002
crossref_primary_10_1186_s40246_023_00458_8
crossref_primary_10_3324_haematol_2023_282992
crossref_primary_10_1080_07357907_2024_2316297
crossref_primary_10_3390_biology10020128
crossref_primary_10_1016_j_jmoldx_2019_10_002
crossref_primary_10_1016_j_beha_2020_101191
crossref_primary_10_1182_bloodadvances_2022007497
crossref_primary_10_1182_blood_2021010764
crossref_primary_10_7554_eLife_96951_3
crossref_primary_10_1253_circj_CJ_21_0505
crossref_primary_10_1053_j_seminhematol_2021_10_004
crossref_primary_10_1016_j_exphem_2020_01_008
crossref_primary_10_1182_blood_2022018108
crossref_primary_10_1097_HS9_0000000000000632
crossref_primary_10_1016_j_cellsig_2021_110061
crossref_primary_10_1101_cshperspect_a035519
crossref_primary_10_1084_jem_20200560
crossref_primary_10_1111_trf_16123
crossref_primary_10_1016_j_exphem_2020_01_002
crossref_primary_10_1038_s43856_025_00761_6
crossref_primary_10_3390_cells10081962
crossref_primary_10_1038_s41576_024_00715_z
crossref_primary_10_1016_j_beha_2021_101327
crossref_primary_10_3390_diagnostics12071613
crossref_primary_10_1016_j_hoc_2020_11_007
crossref_primary_10_1016_j_beha_2019_05_007
crossref_primary_10_1093_eurheartj_ehae682
crossref_primary_10_1111_bjh_17120
crossref_primary_10_1186_s13073_023_01266_4
crossref_primary_10_1007_s00108_022_01404_x
crossref_primary_10_1016_j_bbrc_2020_04_143
crossref_primary_10_1016_j_ejmech_2023_115780
crossref_primary_10_1038_s41419_019_2057_4
crossref_primary_10_1093_ajcp_aqz079
crossref_primary_10_1182_bloodadvances_2019001157
crossref_primary_10_1038_s41467_021_24858_3
crossref_primary_10_1111_bjh_19656
crossref_primary_10_1158_1078_0432_CCR_21_2451
crossref_primary_10_1007_s11912_023_01398_1
crossref_primary_10_3390_cancers12082100
crossref_primary_10_3389_fonc_2024_1400461
crossref_primary_10_1158_1078_0432_CCR_22_2598
crossref_primary_10_1016_j_semcancer_2025_02_007
crossref_primary_10_1016_j_leukres_2020_106457
crossref_primary_10_1038_s41467_023_39248_0
crossref_primary_10_1053_j_semdp_2023_04_001
crossref_primary_10_1182_bloodadvances_2019000731
crossref_primary_10_1016_j_isci_2023_106574
crossref_primary_10_1172_jci_insight_146076
crossref_primary_10_1182_blood_2023022222
crossref_primary_10_1038_s41588_020_00710_0
crossref_primary_10_1038_s41467_021_21255_8
crossref_primary_10_1007_s11886_022_01724_2
crossref_primary_10_1172_JCI180065
crossref_primary_10_1016_j_thromres_2021_12_009
crossref_primary_10_1172_JCI180069
crossref_primary_10_1172_JCI180068
crossref_primary_10_1038_s41375_021_01155_y
crossref_primary_10_1097_MOH_0000000000000509
crossref_primary_10_1186_s13046_022_02496_x
crossref_primary_10_1053_j_seminoncol_2022_11_001
crossref_primary_10_1200_PO_22_00400
crossref_primary_10_1016_j_exphem_2022_03_008
crossref_primary_10_1186_s12964_022_00850_2
crossref_primary_10_1182_bloodadvances_2023011761
crossref_primary_10_1002_pros_24712
crossref_primary_10_3390_cancers11020260
crossref_primary_10_1200_PO_21_00309
crossref_primary_10_1007_s11654_019_00167_6
crossref_primary_10_1007_s00391_023_02162_7
crossref_primary_10_1182_blood_2023021943
crossref_primary_10_7554_eLife_96951
crossref_primary_10_1002_ajh_26812
crossref_primary_10_3389_fonc_2021_743703
crossref_primary_10_1007_s13752_024_00484_2
crossref_primary_10_1007_s00018_022_04356_5
crossref_primary_10_1126_science_aan4673
crossref_primary_10_1111_his_15353
crossref_primary_10_1053_j_seminhematol_2024_01_005
crossref_primary_10_2217_imt_2022_0205
crossref_primary_10_1158_2159_8290_CD_23_1416
crossref_primary_10_1053_j_seminhematol_2024_01_006
crossref_primary_10_1038_s41598_023_37325_4
crossref_primary_10_1146_annurev_cancerbio_060121_120026
crossref_primary_10_1146_annurev_cancerbio_061421_012447
crossref_primary_10_21638_spbu03_2021_308
crossref_primary_10_3389_fped_2022_957944
crossref_primary_10_1038_s41375_024_02258_y
crossref_primary_10_3390_life12081135
crossref_primary_10_1016_j_canlet_2024_216767
crossref_primary_10_1111_bjh_19862
crossref_primary_10_1182_bloodadvances_2021004856
crossref_primary_10_1093_eurheartj_ehad670
crossref_primary_10_1158_1541_7786_MCR_19_0507
crossref_primary_10_3390_life14101251
crossref_primary_10_1038_s41467_019_13542_2
crossref_primary_10_7554_eLife_91611
crossref_primary_10_1007_s00108_022_01409_6
crossref_primary_10_1016_j_canlet_2025_217460
crossref_primary_10_18097_PBMCR1495
crossref_primary_10_3390_therapeutics1020009
crossref_primary_10_1016_j_jgo_2020_09_006
crossref_primary_10_1002_gcc_22756
crossref_primary_10_1515_labmed_2022_0050
crossref_primary_10_1007_s00018_019_03084_7
crossref_primary_10_1073_pnas_2319364121
crossref_primary_10_1111_ijlh_13022
crossref_primary_10_1007_s40487_020_00111_7
crossref_primary_10_3390_ijms26052052
crossref_primary_10_1016_j_stem_2023_09_011
crossref_primary_10_1084_jem_20230011
crossref_primary_10_3390_curroncol30120762
crossref_primary_10_1016_j_stem_2023_09_008
crossref_primary_10_1016_j_ebiom_2019_05_028
crossref_primary_10_1161_CIRCRESAHA_121_319314
crossref_primary_10_1002_ajh_26989
crossref_primary_10_1007_s00108_022_01388_8
crossref_primary_10_1002_ijc_35125
crossref_primary_10_1016_j_molcel_2021_01_020
crossref_primary_10_1016_j_blre_2020_100708
crossref_primary_10_1016_j_celrep_2024_114542
crossref_primary_10_3389_fonc_2023_1210528
crossref_primary_10_1134_S1990519X19050043
crossref_primary_10_1158_2159_8290_CD_21_0901
crossref_primary_10_1016_j_pharmthera_2020_107622
crossref_primary_10_1111_ijlh_13284
crossref_primary_10_1007_s00108_022_01401_0
crossref_primary_10_1016_j_isci_2025_112069
crossref_primary_10_1038_s41375_021_01337_8
crossref_primary_10_1200_PO_24_00143
crossref_primary_10_1016_j_revmed_2019_05_005
crossref_primary_10_1182_blood_2019004292
crossref_primary_10_1038_s41416_019_0721_1
crossref_primary_10_1016_j_molmed_2024_10_005
crossref_primary_10_2174_1568009620666200424150321
crossref_primary_10_1182_bloodadvances_2023009817
crossref_primary_10_1053_j_seminoncol_2022_01_009
crossref_primary_10_1016_j_canlet_2022_215691
crossref_primary_10_1016_j_tig_2020_04_003
crossref_primary_10_1097_QAD_0000000000002894
crossref_primary_10_1146_annurev_physiol_061121_040048
crossref_primary_10_1016_j_stem_2018_10_003
crossref_primary_10_3390_cells9092068
crossref_primary_10_38025_2078_1962_2020_97_3_45_49
crossref_primary_10_1093_jrr_rrae003
crossref_primary_10_1016_j_stemcr_2020_07_008
crossref_primary_10_3390_cancers12082194
crossref_primary_10_1038_s41467_021_23330_6
crossref_primary_10_1038_s41467_022_31878_0
crossref_primary_10_1053_j_seminhematol_2020_05_003
crossref_primary_10_1097_MOH_0000000000000568
crossref_primary_10_1016_j_blre_2025_101269
crossref_primary_10_1016_j_stem_2019_03_020
crossref_primary_10_1182_blood_2021014956
crossref_primary_10_1093_infdis_jiae212
crossref_primary_10_1038_s41375_022_01520_5
crossref_primary_10_3390_cancers11030376
crossref_primary_10_3390_cancers16152634
crossref_primary_10_1038_s41576_021_00356_6
crossref_primary_10_1016_j_exphem_2024_104215
crossref_primary_10_1111_cas_15094
crossref_primary_10_1002_ana_26754
crossref_primary_10_1016_j_molmed_2022_03_002
crossref_primary_10_3324_haematol_2023_283727
crossref_primary_10_1007_s00395_022_00969_w
crossref_primary_10_1038_s41375_023_02030_8
crossref_primary_10_1016_j_hfc_2022_02_010
crossref_primary_10_1158_2643_3230_BCD_23_0144
crossref_primary_10_1111_bjh_18724
crossref_primary_10_1016_j_leukres_2024_107546
crossref_primary_10_1002_1878_0261_13222
crossref_primary_10_1007_s00774_022_01380_0
crossref_primary_10_1042_CS20200306
crossref_primary_10_1097_MOH_0000000000000675
crossref_primary_10_1016_j_tcb_2022_12_001
crossref_primary_10_1093_jnci_djad065
crossref_primary_10_3390_medicina59071209
crossref_primary_10_1016_j_exphem_2019_11_008
crossref_primary_10_1038_s41388_024_03149_3
crossref_primary_10_1001_jamacardio_2019_0302
crossref_primary_10_1182_blood_2021011314
crossref_primary_10_1016_j_beha_2021_101273
crossref_primary_10_1038_s41568_020_0260_3
crossref_primary_10_1016_j_yjmcc_2021_07_004
crossref_primary_10_3390_hemato3030038
crossref_primary_10_35509_01239015_726
crossref_primary_10_3390_genes11121528
crossref_primary_10_1016_j_ydbio_2021_02_013
crossref_primary_10_3389_fonc_2023_1303785
crossref_primary_10_1515_cclm_2023_0261
crossref_primary_10_3390_biomedicines12051054
crossref_primary_10_1152_physrev_00004_2022
crossref_primary_10_1016_j_trsl_2022_11_009
crossref_primary_10_1371_journal_pone_0217521
crossref_primary_10_1002_ame2_12076
crossref_primary_10_1111_bjh_19925
crossref_primary_10_1016_j_blre_2022_101001
crossref_primary_10_17802_2306_1278_2024_13_3_105_110
crossref_primary_10_1016_j_trsl_2022_11_004
crossref_primary_10_1093_jnci_djab231
crossref_primary_10_3389_fonc_2022_794021
crossref_primary_10_1007_s00761_022_01183_y
crossref_primary_10_1016_j_exphem_2020_09_192
crossref_primary_10_1158_1541_7786_MCR_21_1018
crossref_primary_10_1093_jnci_djab234
crossref_primary_10_1158_2643_3230_BCD_24_0103
crossref_primary_10_1016_j_beha_2019_02_006
crossref_primary_10_1038_s41420_023_01590_z
crossref_primary_10_1080_15384101_2020_1717025
crossref_primary_10_1200_PO_23_00132
crossref_primary_10_1016_j_leukres_2022_106787
crossref_primary_10_1016_j_exphem_2019_12_001
crossref_primary_10_1016_j_stem_2022_02_010
crossref_primary_10_3390_ijms23041948
crossref_primary_10_1016_j_beha_2019_02_005
crossref_primary_10_1016_j_exphem_2019_12_005
crossref_primary_10_1101_cshperspect_a034876
crossref_primary_10_1016_j_beha_2019_02_001
crossref_primary_10_3390_ijms22115421
crossref_primary_10_1016_j_jtct_2023_07_021
crossref_primary_10_1182_blood_2023020331
crossref_primary_10_1200_JCO_23_02547
crossref_primary_10_1016_j_critrevonc_2024_104589
crossref_primary_10_1097_MOH_0000000000000699
crossref_primary_10_1007_s12015_020_10065_y
crossref_primary_10_1007_s11912_023_01362_z
crossref_primary_10_1038_s41409_022_01567_z
crossref_primary_10_1093_cvr_cvab215
crossref_primary_10_3389_fgene_2021_760039
crossref_primary_10_1002_1878_0261_13433
crossref_primary_10_1016_j_jacbts_2019_08_006
crossref_primary_10_1016_j_leukres_2023_107020
Cites_doi 10.1200/JCO.2016.71.6712
10.1016/j.stem.2010.03.002
10.1056/NEJMoa1408617
10.1158/1078-0432.CCR-08-2403
10.1038/modpathol.2010.121
10.1038/nature11725
10.1016/S1470-2045(16)30626-X
10.1093/jnci/djv347
10.1007/s10555-008-9127-x
10.1038/nature13968
10.1083/jcb.201210031
10.1182/blood-2018-05-850339
10.1038/s41467-018-02858-0
10.1038/onc.2011.399
10.1038/ng.1009
10.1016/j.stem.2017.07.010
10.1056/NEJMoa1301689
10.1053/j.seminoncol.2008.04.012
10.1038/nature03546
10.1007/s11060-007-9470-8
10.1016/j.celrep.2016.09.092
10.1182/blood-2017-09-805879
10.1016/j.cell.2014.09.050
10.1200/JCO.2001.19.5.1405
10.1200/JCO.2017.77.6757
10.1038/srep00273
10.1038/ncomms12484
10.1016/j.stem.2018.01.011
10.1038/ng.2995
10.1101/gad.1771409
10.1016/S1470-2045(16)30627-1
10.1056/NEJMoa1409405
10.1016/j.ccr.2011.06.001
10.1038/bjc.2015.79
10.1073/pnas.94.12.6048
10.1182/blood-2006-03-010413
10.1186/s13045-015-0176-7
10.1038/ncomms7808
10.1126/science.1241628
10.4161/cc.25694
10.1038/nchembio.1427
10.1001/jamaoncol.2015.6053
10.1056/NEJMoa1611604
10.1038/s41586-018-0125-z
10.1038/nature13824
10.1038/nm.3733
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.stem.2018.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 713.e6
ExternalDocumentID PMC6224657
30388424
10_1016_j_stem_2018_10_004
S1934590918304855
Genre Video-Audio Media
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: F30 DK116428
– fundername: NIAID NIH HHS
  grantid: P30 AI036211
– fundername: NIDDK NIH HHS
  grantid: R01 DK092883
– fundername: NCI NIH HHS
  grantid: P30 CA125123
– fundername: Medical Research Council
  grantid: MC_PC_12009
– fundername: NCRR NIH HHS
  grantid: S10 RR024574
– fundername: NIDDK NIH HHS
  grantid: R56 DK092883
– fundername: Cancer Research UK
  grantid: 23015
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: Cancer Research UK
  grantid: C22324/A23015
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-d752fd4a20e7c8db9357ce2b9d9f3bf90d6f5f376bade939e45b6209194ea7073
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Thu Aug 21 18:22:25 EDT 2025
Mon Jul 21 11:40:31 EDT 2025
Mon Jul 21 06:08:13 EDT 2025
Tue Jul 01 01:08:30 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Feb 23 02:30:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords clonal hematopoiesis
CHIP
topoisomerase inhibitors
DNA damage response
etoposide
t-MDS
doxorubicin
PPM1D
cisplatin
t-AML
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-d752fd4a20e7c8db9357ce2b9d9f3bf90d6f5f376bade939e45b6209194ea7073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590918304855
PMID 30388424
PQID 2129540261
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224657
proquest_miscellaneous_2129540261
pubmed_primary_30388424
crossref_citationtrail_10_1016_j_stem_2018_10_004
crossref_primary_10_1016_j_stem_2018_10_004
elsevier_sciencedirect_doi_10_1016_j_stem_2018_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2018
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Dumble, Moore, Chambers, Geiger, Van Zant, Goodell, Donehower (bib15) 2007; 109
Pharoah, Song, Dicks, Intermaggio, Harrington, Baynes, Alsop, Bogdanova, Cicek, Cunningham (bib34) 2016; 108
Gillis, Ball, Zhang, Ma, Zhao, Yoder, Balasis, Mesa, Sallman, Lancet (bib19) 2017; 18
Fiscella, Zhang, Fan, Sakaguchi, Shen, Mercer, Vande Woude, O’Connor, Appella (bib16) 1997; 94
Kleiblova, Shaltiel, Benada, Ševčík, Pecháčková, Pohlreich, Voest, Dundr, Bartek, Kleibl (bib26) 2013; 201
Berger, Kroeze, Koorenhof-Scheele, de Graaf, Yoshida, Ueno, Shiraishi, Miyano, van den Berg, Schepers (bib2) 2018; 131
Lambros, Natrajan, Geyer, Lopez-Garcia, Dedes, Savage, Lacroix-Triki, Jones, Lord, Linardopoulos (bib28) 2010; 23
Wong, Miller, Jotte, Bagegni, Baty, Schmidt, Cashen, Duncavage, Helton, Fiala (bib42) 2018; 9
Challen, Sun, Jeong, Luo, Jelinek, Berg, Bock, Vasanthakumar, Gu, Xi (bib8) 2011; 44
Chen, Yi, Morita, Wang, Cong, Liu, Xiao, Rudolph, Cheng, Ju (bib10) 2015; 6
Christiansen, Andersen, Pedersen-Bjergaard (bib11) 2001; 19
Gibson, Lindsley, Tchekmedyian, Mar, Shi, Jaiswal, Bosworth, Francisco, He, Bansal (bib18) 2017; 35
Kahn, Miller, Silver, Sellar, Bhatt, Gibson, McConkey, Adams, Mar, Mertins (bib25) 2018; 132
Godley, Larson (bib21) 2008; 35
Bowman, Busque, Levine (bib4) 2018; 22
Gilmartin, Faitg, Richter, Groy, Seefeld, Darcy, Peng, Federowicz, Yang, Zhang (bib20) 2014; 10
Sun, Ramos, Chapman, Johnnidis, Le, Ho, Klein, Hofmann, Camargo (bib36) 2014; 514
Xie, Lu, Wang, McLellan, Johnson, Wendl, McMichael, Schmidt, Yellapantula, Miller (bib43) 2014; 20
Bondar, Medzhitov (bib3) 2010; 6
Dejosez, Ura, Brandt, Zwaka (bib13) 2013; 341
Gundry, Brunetti, Lin, Mayle, Kitano, Wagner, Hsu, Hoegenauer, Rooney, Goodell, Nakada (bib22) 2016; 17
Castellino, De Bortoli, Lu, Moon, Nguyen, Shepard, Rao, Donehower, Kim (bib7) 2008; 86
Zuber, Radtke, Pardee, Zhao, Rappaport, Luo, McCurrach, Yang, Dolan, Kogan (bib47) 2009; 23
Morita, Kantarjian, Wang, Yan, Bueso-Ramos, Sasaki, Issa, Wang, Jorgensen, Song (bib33) 2018; 36
Brunetti, Gundry, Kitano, Nakada, Goodell (bib5) 2018
Moran-Crusio, Reavie, Shih, Abdel-Wahab, Ndiaye-Lobry, Lobry, Figueroa, Vasanthakumar, Patel, Zhao (bib32) 2011; 20
Tan, Lambros, Rayter, Natrajan, Vatcheva, Gao, Marchiò, Geyer, Savage, Parry (bib39) 2009; 15
James, Ugo, Le Couédic, Staerk, Delhommeau, Lacout, Garçon, Raslova, Berger, Bennaceur-Griscelli (bib24) 2005; 434
Young, Challen, Birmann, Druley (bib44) 2016; 7
Jaiswal, Fontanillas, Flannick, Manning, Grauman, Mar, Lindsley, Mermel, Burtt, Chavez (bib23) 2014; 371
Ruark, Snape, Humburg, Loveday, Bajrami, Brough, Rodrigues, Renwick, Seal, Ramsay (bib35) 2013; 493
Kunimoto, Fukuchi, Sakurai, Sadahira, Ikeda, Okamoto, Nakajima (bib27) 2012; 2
Lu, Nguyen, Moon, Darlington, Sommer, Donehower (bib30) 2008; 27
Genovese, Kähler, Handsaker, Lindberg, Rose, Bakhoum, Chambert, Mick, Neale, Fromer (bib17) 2014; 371
Zhang, Chen, Wan, Yang, Wang, Feng, Yang, Jones, Wang, Zhou (bib46) 2014; 46
Chao, Lai, Liou, Chang, Wang, Pan, Teng (bib9) 2015; 8
Wong, Ramsingh, Young, Miller, Touma, Welch, Lamprecht, Shen, Hundal, Fulton (bib41) 2015; 518
Zajkowicz, Butkiewicz, Drosik, Giglok, Suwiński, Rusin (bib45) 2015; 112
Coombs, Zehir, Devlin, Kishtagari, Syed, Jonsson, Hyman, Solit, Robson, Baselga (bib12) 2017; 21
Ali, Abedini, Tsang (bib1) 2012; 31
Swisher, Harrell, Norquist, Walsh, Brady, Lee, Hershberg, Kalli, Lankes, Konnick (bib37) 2016; 2
(bib40) 2013; 368
(bib6) 2014; 159
Lindsley, Saber, Mar, Redd, Wang, Haagenson, Grauman, Hu, Spellman, Lee (bib29) 2017; 376
Takahashi, Wang, Kantarjian, Doss, Khanna, Thompson, Zhao, Patel, Neelapu, Gumbs (bib38) 2017; 18
Dudgeon, Shreeram, Tanoue, Mazur, Sayadi, Robinson, Appella, Bulavin (bib14) 2013; 12
Meisel, Hinterleitner, Pacis, Chen, Earley, Mayassi, Pierre, Ernest, Galipeau, Thuille (bib31) 2018; 557
Takahashi (10.1016/j.stem.2018.10.004_bib38) 2017; 18
Godley (10.1016/j.stem.2018.10.004_bib21) 2008; 35
Meisel (10.1016/j.stem.2018.10.004_bib31) 2018; 557
(10.1016/j.stem.2018.10.004_bib6) 2014; 159
Lambros (10.1016/j.stem.2018.10.004_bib28) 2010; 23
Kleiblova (10.1016/j.stem.2018.10.004_bib26) 2013; 201
Gundry (10.1016/j.stem.2018.10.004_bib22) 2016; 17
Bowman (10.1016/j.stem.2018.10.004_bib4) 2018; 22
Gilmartin (10.1016/j.stem.2018.10.004_bib20) 2014; 10
Challen (10.1016/j.stem.2018.10.004_bib8) 2011; 44
Dudgeon (10.1016/j.stem.2018.10.004_bib14) 2013; 12
James (10.1016/j.stem.2018.10.004_bib24) 2005; 434
Ruark (10.1016/j.stem.2018.10.004_bib35) 2013; 493
Young (10.1016/j.stem.2018.10.004_bib44) 2016; 7
Jaiswal (10.1016/j.stem.2018.10.004_bib23) 2014; 371
Pharoah (10.1016/j.stem.2018.10.004_bib34) 2016; 108
Swisher (10.1016/j.stem.2018.10.004_bib37) 2016; 2
Lindsley (10.1016/j.stem.2018.10.004_bib29) 2017; 376
Tan (10.1016/j.stem.2018.10.004_bib39) 2009; 15
Chao (10.1016/j.stem.2018.10.004_bib9) 2015; 8
Kahn (10.1016/j.stem.2018.10.004_bib25) 2018; 132
Zuber (10.1016/j.stem.2018.10.004_bib47) 2009; 23
Gibson (10.1016/j.stem.2018.10.004_bib18) 2017; 35
Xie (10.1016/j.stem.2018.10.004_bib43) 2014; 20
Berger (10.1016/j.stem.2018.10.004_bib2) 2018; 131
Bondar (10.1016/j.stem.2018.10.004_bib3) 2010; 6
Dejosez (10.1016/j.stem.2018.10.004_bib13) 2013; 341
Morita (10.1016/j.stem.2018.10.004_bib33) 2018; 36
Castellino (10.1016/j.stem.2018.10.004_bib7) 2008; 86
Coombs (10.1016/j.stem.2018.10.004_bib12) 2017; 21
Fiscella (10.1016/j.stem.2018.10.004_bib16) 1997; 94
(10.1016/j.stem.2018.10.004_bib40) 2013; 368
Moran-Crusio (10.1016/j.stem.2018.10.004_bib32) 2011; 20
Chen (10.1016/j.stem.2018.10.004_bib10) 2015; 6
Dumble (10.1016/j.stem.2018.10.004_bib15) 2007; 109
Wong (10.1016/j.stem.2018.10.004_bib42) 2018; 9
Kunimoto (10.1016/j.stem.2018.10.004_bib27) 2012; 2
Gillis (10.1016/j.stem.2018.10.004_bib19) 2017; 18
Genovese (10.1016/j.stem.2018.10.004_bib17) 2014; 371
Ali (10.1016/j.stem.2018.10.004_bib1) 2012; 31
Christiansen (10.1016/j.stem.2018.10.004_bib11) 2001; 19
Sun (10.1016/j.stem.2018.10.004_bib36) 2014; 514
Brunetti (10.1016/j.stem.2018.10.004_bib5) 2018
Zajkowicz (10.1016/j.stem.2018.10.004_bib45) 2015; 112
Lu (10.1016/j.stem.2018.10.004_bib30) 2008; 27
Wong (10.1016/j.stem.2018.10.004_bib41) 2015; 518
Zhang (10.1016/j.stem.2018.10.004_bib46) 2014; 46
30388419 - Cell Stem Cell. 2018 Nov 1;23(5):634-635. doi: 10.1016/j.stem.2018.10.003.
References_xml – volume: 22
  start-page: 157
  year: 2018
  end-page: 170
  ident: bib4
  article-title: Clonal hematopoiesis and evolution to hematopoietic malignancies
  publication-title: Cell Stem Cell
– volume: 368
  start-page: 2059
  year: 2013
  end-page: 2074
  ident: bib40
  article-title: Genomic and epigenomic landscapes of adult
  publication-title: N. Engl. J. Med.
– volume: 159
  start-page: 676
  year: 2014
  end-page: 690
  ident: bib6
  article-title: Integrated genomic characterization of papillary thyroid carcinoma
  publication-title: Cell
– volume: 17
  start-page: 1453
  year: 2016
  end-page: 1461
  ident: bib22
  article-title: Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9
  publication-title: Cell Rep.
– volume: 376
  start-page: 536
  year: 2017
  end-page: 547
  ident: bib29
  article-title: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 12484
  year: 2016
  ident: bib44
  article-title: Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
  publication-title: Nat. Commun.
– volume: 35
  start-page: 1598
  year: 2017
  end-page: 1605
  ident: bib18
  article-title: Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
  publication-title: J. Clin. Oncol.
– volume: 21
  start-page: 374
  year: 2017
  end-page: 382
  ident: bib12
  article-title: Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
  publication-title: Cell Stem Cell
– volume: 132
  start-page: 1095
  year: 2018
  end-page: 1105
  ident: bib25
  article-title: -truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells
  publication-title: Blood
– volume: 371
  start-page: 2488
  year: 2014
  end-page: 2498
  ident: bib23
  article-title: Age-related clonal hematopoiesis associated with adverse outcomes
  publication-title: N. Engl. J. Med.
– volume: 518
  start-page: 552
  year: 2015
  end-page: 555
  ident: bib41
  article-title: Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
  publication-title: Nature
– volume: 20
  start-page: 1472
  year: 2014
  end-page: 1478
  ident: bib43
  article-title: Age-related mutations associated with clonal hematopoietic expansion and malignancies
  publication-title: Nat. Med.
– volume: 2
  start-page: 273
  year: 2012
  ident: bib27
  article-title: Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells
  publication-title: Sci. Rep.
– volume: 109
  start-page: 1736
  year: 2007
  end-page: 1742
  ident: bib15
  article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging
  publication-title: Blood
– volume: 15
  start-page: 2269
  year: 2009
  end-page: 2280
  ident: bib39
  article-title: PPM1D is a potential therapeutic target in ovarian clear cell carcinomas
  publication-title: Clin. Cancer Res.
– volume: 371
  start-page: 2477
  year: 2014
  end-page: 2487
  ident: bib17
  article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 455
  year: 2018
  ident: bib42
  article-title: Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
  publication-title: Nat. Commun.
– volume: 23
  start-page: 1334
  year: 2010
  end-page: 1345
  ident: bib28
  article-title: PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study
  publication-title: Mod. Pathol.
– volume: 20
  start-page: 11
  year: 2011
  end-page: 24
  ident: bib32
  article-title: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
  publication-title: Cancer Cell
– volume: 6
  start-page: 309
  year: 2010
  end-page: 322
  ident: bib3
  article-title: p53-mediated hematopoietic stem and progenitor cell competition
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 100
  year: 2017
  end-page: 111
  ident: bib38
  article-title: Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study
  publication-title: Lancet Oncol.
– volume: 12
  start-page: 2656
  year: 2013
  end-page: 2664
  ident: bib14
  article-title: Genetic variants and mutations of PPM1D control the response to DNA damage
  publication-title: Cell Cycle
– volume: 108
  year: 2016
  ident: bib34
  article-title: PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations
  publication-title: J. Natl. Cancer Inst.
– volume: 27
  start-page: 123
  year: 2008
  end-page: 135
  ident: bib30
  article-title: The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways
  publication-title: Cancer Metastasis Rev.
– volume: 36
  start-page: 1788
  year: 2018
  end-page: 1797
  ident: bib33
  article-title: Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia
  publication-title: J. Clin. Oncol.
– volume: 6
  start-page: 6808
  year: 2015
  ident: bib10
  article-title: Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2175
  year: 2012
  end-page: 2186
  ident: bib1
  article-title: The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation
  publication-title: Oncogene
– volume: 434
  start-page: 1144
  year: 2005
  end-page: 1148
  ident: bib24
  article-title: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
  publication-title: Nature
– volume: 493
  start-page: 406
  year: 2013
  end-page: 410
  ident: bib35
  article-title: Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer
  publication-title: Nature
– year: 2018
  ident: bib5
  article-title: Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9
  publication-title: J. Vis. Exp.
– volume: 35
  start-page: 418
  year: 2008
  end-page: 429
  ident: bib21
  article-title: Therapy-related myeloid leukemia
  publication-title: Semin. Oncol.
– volume: 557
  start-page: 580
  year: 2018
  end-page: 584
  ident: bib31
  article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
  publication-title: Nature
– volume: 2
  start-page: 370
  year: 2016
  end-page: 372
  ident: bib37
  article-title: Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma
  publication-title: JAMA Oncol.
– volume: 19
  start-page: 1405
  year: 2001
  end-page: 1413
  ident: bib11
  article-title: Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis
  publication-title: J. Clin. Oncol.
– volume: 341
  start-page: 1511
  year: 2013
  end-page: 1514
  ident: bib13
  article-title: Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen
  publication-title: Science
– volume: 131
  start-page: 1846
  year: 2018
  end-page: 1857
  ident: bib2
  article-title: Early detection and evolution of preleukemic clones in therapy-related myeloid neoplasms following autologous SCT
  publication-title: Blood
– volume: 86
  start-page: 245
  year: 2008
  end-page: 256
  ident: bib7
  article-title: Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D
  publication-title: J. Neurooncol.
– volume: 8
  start-page: 82
  year: 2015
  ident: bib9
  article-title: The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo
  publication-title: J. Hematol. Oncol.
– volume: 112
  start-page: 1114
  year: 2015
  end-page: 1120
  ident: bib45
  article-title: Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients
  publication-title: Br. J. Cancer
– volume: 10
  start-page: 181
  year: 2014
  end-page: 187
  ident: bib20
  article-title: Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction
  publication-title: Nat. Chem. Biol.
– volume: 44
  start-page: 23
  year: 2011
  end-page: 31
  ident: bib8
  article-title: Dnmt3a is essential for hematopoietic stem cell differentiation
  publication-title: Nat. Genet.
– volume: 94
  start-page: 6048
  year: 1997
  end-page: 6053
  ident: bib16
  article-title: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 112
  year: 2017
  end-page: 121
  ident: bib19
  article-title: Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study
  publication-title: Lancet Oncol.
– volume: 514
  start-page: 322
  year: 2014
  end-page: 327
  ident: bib36
  article-title: Clonal dynamics of native haematopoiesis
  publication-title: Nature
– volume: 46
  start-page: 726
  year: 2014
  end-page: 730
  ident: bib46
  article-title: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas
  publication-title: Nat. Genet.
– volume: 201
  start-page: 511
  year: 2013
  end-page: 521
  ident: bib26
  article-title: Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint
  publication-title: J. Cell Biol.
– volume: 23
  start-page: 877
  year: 2009
  end-page: 889
  ident: bib47
  article-title: Mouse models of human AML accurately predict chemotherapy response
  publication-title: Genes Dev.
– volume: 35
  start-page: 1598
  year: 2017
  ident: 10.1016/j.stem.2018.10.004_bib18
  article-title: Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.71.6712
– volume: 6
  start-page: 309
  year: 2010
  ident: 10.1016/j.stem.2018.10.004_bib3
  article-title: p53-mediated hematopoietic stem and progenitor cell competition
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.03.002
– volume: 371
  start-page: 2488
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib23
  article-title: Age-related clonal hematopoiesis associated with adverse outcomes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1408617
– volume: 15
  start-page: 2269
  year: 2009
  ident: 10.1016/j.stem.2018.10.004_bib39
  article-title: PPM1D is a potential therapeutic target in ovarian clear cell carcinomas
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-2403
– volume: 23
  start-page: 1334
  year: 2010
  ident: 10.1016/j.stem.2018.10.004_bib28
  article-title: PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2010.121
– volume: 493
  start-page: 406
  year: 2013
  ident: 10.1016/j.stem.2018.10.004_bib35
  article-title: Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer
  publication-title: Nature
  doi: 10.1038/nature11725
– volume: 18
  start-page: 100
  year: 2017
  ident: 10.1016/j.stem.2018.10.004_bib38
  article-title: Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30626-X
– volume: 108
  year: 2016
  ident: 10.1016/j.stem.2018.10.004_bib34
  article-title: PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djv347
– volume: 27
  start-page: 123
  year: 2008
  ident: 10.1016/j.stem.2018.10.004_bib30
  article-title: The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-008-9127-x
– volume: 518
  start-page: 552
  year: 2015
  ident: 10.1016/j.stem.2018.10.004_bib41
  article-title: Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
  publication-title: Nature
  doi: 10.1038/nature13968
– volume: 201
  start-page: 511
  year: 2013
  ident: 10.1016/j.stem.2018.10.004_bib26
  article-title: Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201210031
– volume: 132
  start-page: 1095
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib25
  article-title: PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells
  publication-title: Blood
  doi: 10.1182/blood-2018-05-850339
– volume: 9
  start-page: 455
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib42
  article-title: Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02858-0
– volume: 31
  start-page: 2175
  year: 2012
  ident: 10.1016/j.stem.2018.10.004_bib1
  article-title: The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation
  publication-title: Oncogene
  doi: 10.1038/onc.2011.399
– volume: 44
  start-page: 23
  year: 2011
  ident: 10.1016/j.stem.2018.10.004_bib8
  article-title: Dnmt3a is essential for hematopoietic stem cell differentiation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1009
– volume: 21
  start-page: 374
  year: 2017
  ident: 10.1016/j.stem.2018.10.004_bib12
  article-title: Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.010
– volume: 368
  start-page: 2059
  year: 2013
  ident: 10.1016/j.stem.2018.10.004_bib40
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1301689
– volume: 35
  start-page: 418
  year: 2008
  ident: 10.1016/j.stem.2018.10.004_bib21
  article-title: Therapy-related myeloid leukemia
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2008.04.012
– volume: 434
  start-page: 1144
  year: 2005
  ident: 10.1016/j.stem.2018.10.004_bib24
  article-title: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
  publication-title: Nature
  doi: 10.1038/nature03546
– volume: 86
  start-page: 245
  year: 2008
  ident: 10.1016/j.stem.2018.10.004_bib7
  article-title: Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-007-9470-8
– volume: 17
  start-page: 1453
  year: 2016
  ident: 10.1016/j.stem.2018.10.004_bib22
  article-title: Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.092
– volume: 131
  start-page: 1846
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib2
  article-title: Early detection and evolution of preleukemic clones in therapy-related myeloid neoplasms following autologous SCT
  publication-title: Blood
  doi: 10.1182/blood-2017-09-805879
– volume: 159
  start-page: 676
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib6
  article-title: Integrated genomic characterization of papillary thyroid carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.050
– volume: 19
  start-page: 1405
  year: 2001
  ident: 10.1016/j.stem.2018.10.004_bib11
  article-title: Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2001.19.5.1405
– volume: 36
  start-page: 1788
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib33
  article-title: Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.77.6757
– volume: 2
  start-page: 273
  year: 2012
  ident: 10.1016/j.stem.2018.10.004_bib27
  article-title: Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep00273
– volume: 7
  start-page: 12484
  year: 2016
  ident: 10.1016/j.stem.2018.10.004_bib44
  article-title: Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12484
– volume: 22
  start-page: 157
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib4
  article-title: Clonal hematopoiesis and evolution to hematopoietic malignancies
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.01.011
– volume: 46
  start-page: 726
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib46
  article-title: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2995
– volume: 23
  start-page: 877
  year: 2009
  ident: 10.1016/j.stem.2018.10.004_bib47
  article-title: Mouse models of human AML accurately predict chemotherapy response
  publication-title: Genes Dev.
  doi: 10.1101/gad.1771409
– volume: 18
  start-page: 112
  year: 2017
  ident: 10.1016/j.stem.2018.10.004_bib19
  article-title: Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30627-1
– volume: 371
  start-page: 2477
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib17
  article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1409405
– volume: 20
  start-page: 11
  year: 2011
  ident: 10.1016/j.stem.2018.10.004_bib32
  article-title: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.06.001
– volume: 112
  start-page: 1114
  year: 2015
  ident: 10.1016/j.stem.2018.10.004_bib45
  article-title: Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2015.79
– volume: 94
  start-page: 6048
  year: 1997
  ident: 10.1016/j.stem.2018.10.004_bib16
  article-title: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.12.6048
– volume: 109
  start-page: 1736
  year: 2007
  ident: 10.1016/j.stem.2018.10.004_bib15
  article-title: The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging
  publication-title: Blood
  doi: 10.1182/blood-2006-03-010413
– volume: 8
  start-page: 82
  year: 2015
  ident: 10.1016/j.stem.2018.10.004_bib9
  article-title: The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-015-0176-7
– volume: 6
  start-page: 6808
  year: 2015
  ident: 10.1016/j.stem.2018.10.004_bib10
  article-title: Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7808
– volume: 341
  start-page: 1511
  year: 2013
  ident: 10.1016/j.stem.2018.10.004_bib13
  article-title: Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen
  publication-title: Science
  doi: 10.1126/science.1241628
– volume: 12
  start-page: 2656
  year: 2013
  ident: 10.1016/j.stem.2018.10.004_bib14
  article-title: Genetic variants and mutations of PPM1D control the response to DNA damage
  publication-title: Cell Cycle
  doi: 10.4161/cc.25694
– volume: 10
  start-page: 181
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib20
  article-title: Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1427
– issue: 134
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib5
  article-title: Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9
  publication-title: J. Vis. Exp.
– volume: 2
  start-page: 370
  year: 2016
  ident: 10.1016/j.stem.2018.10.004_bib37
  article-title: Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2015.6053
– volume: 376
  start-page: 536
  year: 2017
  ident: 10.1016/j.stem.2018.10.004_bib29
  article-title: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1611604
– volume: 557
  start-page: 580
  year: 2018
  ident: 10.1016/j.stem.2018.10.004_bib31
  article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
  publication-title: Nature
  doi: 10.1038/s41586-018-0125-z
– volume: 514
  start-page: 322
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib36
  article-title: Clonal dynamics of native haematopoiesis
  publication-title: Nature
  doi: 10.1038/nature13824
– volume: 20
  start-page: 1472
  year: 2014
  ident: 10.1016/j.stem.2018.10.004_bib43
  article-title: Age-related mutations associated with clonal hematopoietic expansion and malignancies
  publication-title: Nat. Med.
  doi: 10.1038/nm.3733
– reference: 30388419 - Cell Stem Cell. 2018 Nov 1;23(5):634-635. doi: 10.1016/j.stem.2018.10.003.
SSID ssj0057107
Score 2.6582723
Snippet Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development....
• PPM1D is mutated in ∼20% of patients with therapy-related AML or MDS • PPM1D mutations are associated with prior exposure to specific DNA-damaging agents •...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 700
SubjectTerms Aged
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Cell Proliferation - drug effects
CHIP
cisplatin
Cisplatin - chemistry
Cisplatin - pharmacology
clonal hematopoiesis
Clone Cells - drug effects
DNA damage response
doxorubicin
Doxorubicin - chemistry
Doxorubicin - pharmacology
Drug Screening Assays, Antitumor
etoposide
Female
HEK293 Cells
Hematopoiesis - drug effects
Hematopoiesis - genetics
Humans
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - metabolism
Leukemia, Myeloid, Acute - pathology
Male
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Middle Aged
Mutation
Neoplasms, Experimental - drug therapy
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
PPM1D
Protein Phosphatase 2C - genetics
Protein Phosphatase 2C - metabolism
t-AML
t-MDS
topoisomerase inhibitors
Title PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy
URI https://dx.doi.org/10.1016/j.stem.2018.10.004
https://www.ncbi.nlm.nih.gov/pubmed/30388424
https://www.proquest.com/docview/2129540261
https://pubmed.ncbi.nlm.nih.gov/PMC6224657
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iHNyL3J2nrqcSwTfpbZsmTfKo68kirCx-wL6Vpk2wh7SL24Xb__5mmnZxPc4H3_qRQJhJZn5hZn5DyJmKXMitMIGQJg_gyQVKsyyIAMmFiWFhnmFEd3KbjB_5zUzMtsior4XBtMrO9nub3lrr7suwk-ZwXpbDe4AeXGjwdwqu5EpgoXnMVVvEN7vsrbEADyp9ZJkHOLornPE5XsiVjOld6meb4cX_55z-BZ9vcyhfOaXrL2SnQ5P0wi_4K9my1TfyyfeXXO2S6XQ6ia7oZOnj7Qt69QLGjY6eEX7TMdK11vMa7srlgpYVvfP5spY2NR2tmrqp_5Q5RUqBrkxr9Z08Xv96GI2DroVCkGOngqCQgrmCZyy0MleF0bGQuWVGF9rFxumwSJxwYGRMVlgda8uFSRjIVHObSTj-e2S7qit7QKgzisWxjCPHNHcRz0ykwLXZyHDHcp0MSNTLLs07fnFsc_Gc9olkv1OUd4ryxm8g7wE5X8-Ze3aNd0eLXiXpxh5Jwfy_O--0118KhwcjIlll6-UiBb-tAbLCLXJA9r0-1-uIkSeHM5gtNzS9HoDE3Jt_qvKpJehOkKVPyMMPrvcH-YxvvuLxiGw3L0t7DNCnMSft3v4LsHYCUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviG_Kp5F4Q6GJY8fxI3RMHaxTBZvUNytObBE0JdWaSvS_565OKgpiD7xFji1Zd_bdz7q73wG8zRMfCydtJJUtI_zyUa55ESWI5OLM8rgsKKI7O8umF-LzQi4OYDLUwlBaZW_7g03fWut-ZNxLc7ys6_E3hB5CavR3OT7JcylvwE1EA4pu58ni42COJbpQFULLIqLpfeVMSPIismTK78rfb1O8xL-809_o888kyt-80vE9uNvDSfYh7Pg-HLjmAdwKDSY3D2E-n8-SIzZbh4D7ih1doXVjk0vC32xKfK3tssXHcr1idcO-hoRZx7qWTTZd27U_65IRp0Bfp7V5BBfHn84n06jvoRCV1KogqpTkvhIFj50q88rqVKrScasr7VPrdVxlXnq0MraonE61E9JmHIWqhSsU3v_HcNi0jXsKzNucp6lKE8-18IkobJKjb3OJFZ6XOhtBMsjOlD3BOPW5uDRDJtkPQ_I2JG8aQ3mP4N1uzTLQa1w7Ww4qMXuHxKD9v3bdm0F_Bm8PhUSKxrXrlUHHrRGz4jNyBE-CPnf7SIkoR3BcrfY0vZtAzNz7f5r6-5ahOyOaPqme_ed-X8Pt6fns1JyenH15DnfoTyh_fAGH3dXavUQc1NlX23P-C69EBXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPM1D+Mutations+Drive+Clonal+Hematopoiesis+in+Response+to+Cytotoxic+Chemotherapy&rft.jtitle=Cell+stem+cell&rft.au=Hsu%2C+Joanne+I.&rft.au=Dayaram%2C+Tajhal&rft.au=Tovy%2C+Ayala&rft.au=De+Braekeleer%2C+Etienne&rft.date=2018-11-01&rft.pub=Cell+Press&rft.issn=1934-5909&rft.eissn=1875-9777&rft.volume=23&rft.issue=5&rft.spage=700&rft.epage=713.e6&rft_id=info:doi/10.1016%2Fj.stem.2018.10.004&rft_id=info%3Apmid%2F30388424&rft.externalDocID=PMC6224657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon