Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe

Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10 −1 and 10 −2 /s. Strain localizations and local temperature increases were simultaneously record...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 49; no. 10; pp. 3847 - 3859
Main Authors Chan, T., Zhou, Y., Brooks, I., Palumbo, G., Erb, U.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.05.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-2461
1573-4803
DOI10.1007/s10853-014-8099-1

Cover

Abstract Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10 −1 and 10 −2 /s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples.
AbstractList Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 µm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16 nm) electrodeposits at two strain rates of [10.sup.-1] and [10.sup.-2]/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 µm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni-Fe samples, suggesting that both dislocationmediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni-Fe samples.
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10−1 and 10−2/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples.
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10 −1 and 10 −2 /s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples.
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 mu m), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16 nm) electrodeposits at two strain rates of 10-1 and 10-2/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 degree C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 mu m, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni-Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni-Fe samples.
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10⁻¹and 10⁻²/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples.
Audience Academic
Author Zhou, Y.
Palumbo, G.
Erb, U.
Chan, T.
Brooks, I.
Author_xml – sequence: 1
  givenname: T.
  surname: Chan
  fullname: Chan, T.
  organization: Department of Materials Science and Engineering, University of Toronto
– sequence: 2
  givenname: Y.
  surname: Zhou
  fullname: Zhou, Y.
  email: yijian.zhou@utoronto.ca
  organization: Department of Materials Science and Engineering, University of Toronto
– sequence: 3
  givenname: I.
  surname: Brooks
  fullname: Brooks, I.
  organization: Integran Technologies Inc
– sequence: 4
  givenname: G.
  surname: Palumbo
  fullname: Palumbo, G.
  organization: Integran Technologies Inc
– sequence: 5
  givenname: U.
  surname: Erb
  fullname: Erb, U.
  organization: Department of Materials Science and Engineering, University of Toronto
BookMark eNqFks1qFTEUx4NU8PbqA7gbcKOLqeckma9lKVYLlwp-rENu5sw1ZW5yTTLQuvIdfEOfpJlOQVpQTxaB5P87nI__MTty3hFjLxFOEKB5GxHaSpSAsmyh60p8wlZYNaKULYgjtgLgvOSyxmfsOMYrAKgajiumN97o0f6gvogpaOsK7friG-lU7MhR0Ml6V_RTsG5XHEYdkzVFT4MP--UrE047b8JNTHocraPi0t4lubS_f_46p-fs6aDHSC_u7zX7ev7uy9mHcvPx_cXZ6aY0FcdU9rIDXrey7khvEajqQUoDGreyFdoAilpCs20Ihh4ESkQy1da0gwHZc2nEmr1e8h6C_z5RTGpvo6Fx1I78FBU2CHkAvMb_SyuBgI3IsWavHkmv_BRcbkRxXnWNlFJAVp0sqp0eSVk3-DxLk09Pe2vypgab309FLiFHJzPw5gGQNYmu005PMaqLz58eaptFa4KPMdCgjE13w58XNioENVtALRZQ2QJqtoCa-8RH5CHYvQ43_2T4wsTDvHMKfxr-O3QLjKPDcQ
CitedBy_id crossref_primary_10_1007_s10853_019_03835_8
crossref_primary_10_1007_s10853_016_9942_3
crossref_primary_10_1007_s10853_016_9890_y
crossref_primary_10_2320_matertrans_MBW201707
crossref_primary_10_1007_s10853_016_0437_z
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_068
crossref_primary_10_7121_msi_eureka_20_11110_1_9
crossref_primary_10_1016_j_msea_2015_06_049
crossref_primary_10_1007_s10853_015_9011_3
Cites_doi 10.1016/0965-9773(95)00125-5
10.1016/0036-9748(89)90342-6
10.1016/S1359-6454(99)00109-3
10.1016/j.msea.2009.06.031
10.1016/B978-081551534-0.50014-2
10.1016/j.msea.2006.12.093
10.1016/j.msea.2009.10.065
10.1016/j.actamat.2005.01.041
10.1016/j.msea.2007.10.002
10.1533/9780857091123.1.118
10.1098/rspa.1934.0004
10.1016/0001-6160(86)90236-1
10.1007/s10853-008-2975-5
10.1063/1.1501158
10.4028/www.scientific.net/MSF.386-388.387
10.1016/j.msea.2008.02.015
10.1016/S0921-5093(02)00238-1
10.1016/j.scriptamat.2006.02.041
10.1016/j.actamat.2006.01.023
10.1016/j.actamat.2006.08.004
10.1016/j.actamat.2011.07.019
10.1007/BF02325092
10.1063/1.1799238
10.1016/j.actamat.2003.08.032
10.1016/S1359-6462(98)00164-X
10.1016/j.scriptamat.2007.08.042
10.1016/S1359-6454(03)00011-9
10.1063/1.2828699
10.1016/j.actamat.2004.07.044
10.1016/j.msea.2008.04.054
10.1016/j.msea.2003.10.175
10.1016/S1359-6462(03)00396-8
10.1016/j.actamat.2005.03.047
10.1016/0965-9773(95)00044-5
10.1016/j.msea.2012.08.045
10.1007/s10853-006-0609-3
10.1016/B978-081551534-0.50008-7
10.1016/j.actamat.2006.06.016
10.1016/j.msec.2006.07.019
10.1063/1.2008377
10.1016/j.msea.2007.06.095
10.1088/0022-3727/40/23/027
10.1007/s12034-010-0086-9
10.1007/BF02658391
10.1016/0921-5093(95)09933-6
10.1016/j.actamat.2007.01.038
10.1016/j.pmatsci.2005.08.003
10.1016/S0965-9773(99)00050-1
10.1016/j.actamat.2004.05.036
10.1126/science.1098741
10.1016/0079-6425(73)90001-7
10.1126/science.1178226
10.1016/j.msea.2007.06.094
10.1016/S1359-6454(02)00198-2
10.1016/j.actamat.2004.12.005
10.1016/j.msea.2004.03.064
10.1007/s10853-011-5751-x
10.1126/science.266.5184.353
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
COPYRIGHT 2014 Springer
Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: COPYRIGHT 2014 Springer
– notice: Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1007/s10853-014-8099-1
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Materials Science Collection

Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 3859
ExternalDocumentID A371000094
10_1007_s10853_014_8099_1
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c521t-d490268469eab10e5d044c0a1b483ac0136407b7e0fd031411ec5bc8fc04d24c3
IEDL.DBID 8FG
ISSN 0022-2461
IngestDate Fri Sep 05 03:19:19 EDT 2025
Fri Sep 05 14:01:12 EDT 2025
Sat Aug 23 14:12:46 EDT 2025
Tue Jun 10 20:52:47 EDT 2025
Fri Jun 27 03:41:42 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 01:25:34 EDT 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Digital Image Correlation
Strain Rate Sensitivity
Grain Boundary
Ultimate Tensile Strength
Global Strain
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-d490268469eab10e5d044c0a1b483ac0136407b7e0fd031411ec5bc8fc04d24c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2259744430
PQPubID 2043599
PageCount 13
ParticipantIDs proquest_miscellaneous_1710246261
proquest_miscellaneous_1531017333
proquest_journals_2259744430
gale_infotracacademiconefile_A371000094
gale_incontextgauss_ISR_A371000094
crossref_citationtrail_10_1007_s10853_014_8099_1
crossref_primary_10_1007_s10853_014_8099_1
springer_journals_10_1007_s10853_014_8099_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle Full Set - Includes `Journal of Materials Science Letters
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Bever, Holt, Titchener (CR44) 1973; 17
Wei, Jia, Ramesh (CR14) 2002; 81
Sansoz, Dupont (CR16) 2007; 5–8
Klement, Erb, Aust (CR24) 1995; 6
Senkov, Myshlyaev (CR53) 1986; 34
Siegel, Fougere (CR5) 1995; 6
Fu, Benson, Meyers (CR15) 2004; 52
Fan, Fu, Choo, Liaw, Browning (CR18) 2006; 54
Fan, Fu, Qiao, Choo, Liaw, Browning (CR19) 2006; 54
Ghosh, Hamilton (CR52) 1979; 10A
Kumar, Van Swygenhoven, Suresh (CR7) 2003; 51
Dieter (CR39) 1988
Koch (CR2) 2007; 42
Haslam, Moldovan, Yamakov, Wolf, Phillpot, Gleiter (CR55) 2003; 51
Schiøtz (CR56) 2004; 375–377
Cahn, Mishin, Suzuki (CR60) 2006; 54
Turi, Erb (CR46) 1995; A203
Wei, Cheng, Ramesh, Ma (CR32) 2004; 381
Taylor, Quinney (CR43) 1934; 143
CR47
Erb (CR48) 2012; 706–709
Callister (CR49) 2001
Jin, Minor, Stach, Morris (CR57) 2004; 52
CR45
Chokshi, Rosen, Karch, Gleiter (CR4) 1989; 23
Conrad (CR38) 2003; A341
Wang, Li, Sui, Mao (CR63) 2008; 92
Joshi, Ramesh (CR17) 2008; 493
Farkas, Mohanty, Monk (CR62) 2008; A493
Chu, Ranson, Sutton, Peters (CR40) 1985; 25
Ebrahimi, Zhai, Kong (CR8) 1998; 39
Meyers, Mishra, Benson (CR28) 2006; 51
Gu, Lian, Jiang, Zheng (CR29) 2007; 40
Dao, Lu, Asaro, De Hosson, Ma (CR36) 2007; 55
Rupert, Gianola, Gan, Hemker (CR64) 2009; 18
Dalla Torre, Spatig, Schaublin, Victoria (CR31) 2005; 53
Hibbard, Radmilovic, Aust, Erb (CR50) 2008; A494
Shan, Stach, Wiezorek, Knapp, Follstaedt, Mao (CR54) 2004; 305
Zhang, Weertman, Eastman (CR58) 2005; 87
Erb, Palumbo, McCrea, Whang (CR22) 2011
Cullity (CR27) 1978
Gu, Lian, Jiang, Jiang (CR34) 2007; A459
Brandstetter, Zhang, Escuadro, Weertman, Van Swygenhoven (CR61) 2008; 58
Gu, Dao, Asaro, Suresh (CR35) 2011; 59
Brooks, Palumbo, Hibbard, Wang, Erb (CR26) 2011; 46
Asaro, Suresh (CR33) 2005; 53
Hibbard, Aust, Erb (CR51) 2008; A43
Dalla Torre, Van Swygenhoven, Victoria (CR10) 2002; 50
Weertman, Koch (CR1) 2007
Zhu, Zhou, Jiang, Lui, Ling (CR41) 2010; 527
Hibbard, Erb, Aust, Klement, Palumbo (CR23) 2002; 386–388
Gianola, Van Petegem, Legros, Brandstetter, Van Swygenhoven, Hemker (CR59) 2006; 54
Whang (CR3) 2011
Van Swygenhoven, Spaczer, Caro (CR37) 1999; 47
Erb, Aust, Palumbo, Koch (CR6) 2007
Wang, Ma (CR30) 2004; 85
Cheng, Ma, Wang, Kecskes, Youssef, Koch, Trociewitz, Han (CR13) 2005; 53
CR21
CR20
Brooks, Lin, Palumbo, Hibbard, Erb (CR25) 2008; 491
Panin, Panina, Ivanov (CR12) 2008; 486
Tucker, Foiles (CR66) 2013; A571
Ebrahimi, Bourne, Kelly, Matthews (CR9) 1999; 11
Xu, Dai, Wu (CR65) 2010; 33
Ma (CR11) 2003; 49
Zhao, Guo, Wei, Topping, Dangelewicz, Zhu, Langdon, Lavernia (CR42) 2009; 525
U Erb (8099_CR22) 2011
F Sansoz (8099_CR16) 2007; 5–8
MB Bever (8099_CR44) 1973; 17
G Hibbard (8099_CR23) 2002; 386–388
I Brooks (8099_CR26) 2011; 46
BD Cullity (8099_CR27) 1978
AJ Haslam (8099_CR55) 2003; 51
S Brandstetter (8099_CR61) 2008; 58
(8099_CR3) 2011
JR Weertman (8099_CR1) 2007
Q Wei (8099_CR14) 2002; 81
CD Gu (8099_CR34) 2007; A459
GD Hibbard (8099_CR50) 2008; A494
GJ Fan (8099_CR18) 2006; 54
GE Dieter (8099_CR39) 1988
ON Senkov (8099_CR53) 1986; 34
GI Taylor (8099_CR43) 1934; 143
TJ Rupert (8099_CR64) 2009; 18
CC Koch (8099_CR2) 2007; 42
U Erb (8099_CR48) 2012; 706–709
JW Cahn (8099_CR60) 2006; 54
F Ebrahimi (8099_CR8) 1998; 39
GD Hibbard (8099_CR51) 2008; A43
8099_CR20
D Farkas (8099_CR62) 2008; A493
8099_CR21
RJ Asaro (8099_CR33) 2005; 53
WD Callister (8099_CR49) 2001
F Ebrahimi (8099_CR9) 1999; 11
YM Wang (8099_CR30) 2004; 85
SP Joshi (8099_CR17) 2008; 493
W Xu (8099_CR65) 2010; 33
GJ Fan (8099_CR19) 2006; 54
MA Meyers (8099_CR28) 2006; 51
Q Wei (8099_CR32) 2004; 381
S Cheng (8099_CR13) 2005; 53
Jakob Schiøtz (8099_CR56) 2004; 375–377
M Jin (8099_CR57) 2004; 52
AH Chokshi (8099_CR4) 1989; 23
E Ma (8099_CR11) 2003; 49
H Fu (8099_CR15) 2004; 52
K Zhang (8099_CR58) 2005; 87
F Dalla Torre (8099_CR10) 2002; 50
GJ Tucker (8099_CR66) 2013; A571
KS Kumar (8099_CR7) 2003; 51
M Dao (8099_CR36) 2007; 55
YH Zhao (8099_CR42) 2009; 525
AV Panin (8099_CR12) 2008; 486
F Dalla Torre (8099_CR31) 2005; 53
T Turi (8099_CR46) 1995; A203
DS Gianola (8099_CR59) 2006; 54
P Gu (8099_CR35) 2011; 59
Z Shan (8099_CR54) 2004; 305
TC Chu (8099_CR40) 1985; 25
U Erb (8099_CR6) 2007
8099_CR45
U Klement (8099_CR24) 1995; 6
8099_CR47
AK Ghosh (8099_CR52) 1979; 10A
CD Gu (8099_CR29) 2007; 40
H Swygenhoven Van (8099_CR37) 1999; 47
I Brooks (8099_CR25) 2008; 491
YB Wang (8099_CR63) 2008; 92
H Conrad (8099_CR38) 2003; A341
RW Siegel (8099_CR5) 1995; 6
R Zhu (8099_CR41) 2010; 527
References_xml – ident: CR45
– volume: 6
  start-page: 581
  year: 1995
  end-page: 584
  ident: CR24
  article-title: Investigations of the grain growth behavior of nanocrystalline nickel
  publication-title: Nanostruct Mater
  doi: 10.1016/0965-9773(95)00125-5
– volume: 23
  start-page: 1679
  year: 1989
  end-page: 1684
  ident: CR4
  article-title: On the validity of the Hall-Petch relationship in nanocrystalline materials
  publication-title: Scripta Metall Mater
  doi: 10.1016/0036-9748(89)90342-6
– volume: 47
  start-page: 3117
  year: 1999
  end-page: 3126
  ident: CR37
  article-title: Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00109-3
– volume: 525
  start-page: 68
  year: 2009
  end-page: 77
  ident: CR42
  article-title: Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.06.031
– start-page: 537
  year: 2007
  end-page: 564
  ident: CR1
  article-title: Mechanical behavior of nanocrystalline metals
  publication-title: Nanostructured materials
  doi: 10.1016/B978-081551534-0.50014-2
– volume: A459
  start-page: 75
  year: 2007
  end-page: 81
  ident: CR34
  article-title: Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6wt.%Co alloy
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2006.12.093
– volume: 527
  start-page: 1751
  year: 2010
  end-page: 1760
  ident: CR41
  article-title: Multi-scale modeling of shear banding in fully dense nanocrystalline Ni sheet
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.10.065
– start-page: 102
  year: 1978
  ident: CR27
  publication-title: Elements of X-ray diffraction
– volume: 53
  start-page: 2337
  year: 2005
  end-page: 2349
  ident: CR31
  article-title: Deformation behaviour and microstructure of nanocrystalline electrodeposited… pressure torsioned nickel
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.01.041
– volume: 486
  start-page: 267
  year: 2008
  end-page: 272
  ident: CR12
  article-title: Deformation macrolocalisation and fracture in ultrafine-grained armco iron
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.10.002
– start-page: 118
  year: 2011
  end-page: 151
  ident: CR22
  article-title: The processing of bulk nanocrystalline metals and alloys by electrodeposition
  publication-title: Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications
  doi: 10.1533/9780857091123.1.118
– volume: 143
  start-page: 307
  year: 1934
  end-page: 326
  ident: CR43
  article-title: The latent energy remaining in metal after cold working
  publication-title: Proc R Soc Lond Ser A
  doi: 10.1098/rspa.1934.0004
– volume: 34
  start-page: 97
  year: 1986
  end-page: 106
  ident: CR53
  article-title: Grain growth in a superplastic Zn-22 % Al alloy
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(86)90236-1
– volume: A43
  start-page: 6441
  year: 2008
  end-page: 6452
  ident: CR51
  article-title: On interfacial velocities during abnormal grain growth at ultra-high driving forces
  publication-title: J Mater Sci
  doi: 10.1007/s10853-008-2975-5
– volume: 81
  start-page: 1240
  year: 2002
  end-page: 1242
  ident: CR14
  article-title: Evolution and microstructure of shear bands in nanostructured Fe
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1501158
– volume: 386–388
  start-page: 387
  year: 2002
  end-page: 396
  ident: CR23
  article-title: Thermal stability of nanostructured electrodeposits
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.386-388.387
– ident: CR21
– volume: 491
  start-page: 412
  year: 2008
  ident: CR25
  article-title: Hardness-tensile strength relationships for nanocrystalline materials
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.02.015
– volume: A341
  start-page: 216
  year: 2003
  end-page: 228
  ident: CR38
  article-title: Grain size dependence of the plastic deformation kinetics in Cu
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(02)00238-1
– volume: 54
  start-page: 2137
  year: 2006
  end-page: 2141
  ident: CR19
  article-title: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2006.02.041
– volume: 54
  start-page: 2253
  year: 2006
  end-page: 2263
  ident: CR59
  article-title: Stress assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.01.023
– volume: 54
  start-page: 4953
  year: 2006
  end-page: 4975
  ident: CR60
  article-title: Coupling grain boundary motion to shear deformation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.08.004
– volume: 59
  start-page: 6861
  year: 2011
  end-page: 6868
  ident: CR35
  article-title: A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.07.019
– year: 2011
  ident: CR3
  publication-title: Nanostructured metals and alloys
– volume: 25
  start-page: 232
  year: 1985
  end-page: 244
  ident: CR40
  article-title: Application of digital-image-correlation techniques to experimental mechanics
  publication-title: Exp Mech
  doi: 10.1007/BF02325092
– year: 1988
  ident: CR39
  publication-title: Mechanical metallurgy, SI Metric
– volume: 85
  start-page: 2750
  year: 2004
  end-page: 2752
  ident: CR30
  article-title: On the origin of ultrahigh cryogenic strength of nanocrystalline metals
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1799238
– volume: 51
  start-page: 5743
  year: 2003
  end-page: 5774
  ident: CR7
  article-title: Mechanical behavior of nanocrystalline metals and alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2003.08.032
– volume: 39
  start-page: 315
  year: 1998
  end-page: 321
  ident: CR8
  article-title: Deformation and fracture of electrodeposited copper
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(98)00164-X
– start-page: S-251
  year: 2001
  ident: CR49
  publication-title: Fundamentals of materials science and engineering
– volume: 58
  start-page: 61
  year: 2008
  end-page: 64
  ident: CR61
  article-title: Grain coarsening during compression of bulk nanocrystalline nickel and copper
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2007.08.042
– volume: 51
  start-page: 2097
  year: 2003
  end-page: 2112
  ident: CR55
  article-title: Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(03)00011-9
– volume: 92
  start-page: 011903
  year: 2008
  ident: CR63
  article-title: Deformation-induced grain rotation and growth in nanocrystalline Ni
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2828699
– ident: CR47
– volume: 52
  start-page: 5381
  year: 2004
  end-page: 5387
  ident: CR57
  article-title: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafinegrained Al at room temperature
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.07.044
– volume: A494
  start-page: 232
  year: 2008
  end-page: 238
  ident: CR50
  article-title: Grain boundary migration during abnormal grain growth in nanocrystalline Ni
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2008.04.054
– volume: 375–377
  start-page: 975
  year: 2004
  end-page: 979
  ident: CR56
  article-title: Strain-induced coarsening in nanocrystalline metals under cyclic deformation
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2003.10.175
– volume: 49
  start-page: 663
  year: 2003
  end-page: 668
  ident: CR11
  article-title: Instabilities and ductility of nanocrystalline and ultrafine-grained metals
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(03)00396-8
– volume: 53
  start-page: 3369
  year: 2005
  end-page: 3392
  ident: CR33
  article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.03.047
– volume: 6
  start-page: 205
  year: 1995
  end-page: 216
  ident: CR5
  article-title: Mechanical properties of nanophase metals
  publication-title: Nanostr Mater
  doi: 10.1016/0965-9773(95)00044-5
– volume: A571
  start-page: 207
  year: 2013
  end-page: 214
  ident: CR66
  article-title: Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2012.08.045
– volume: 42
  start-page: 1403
  year: 2007
  end-page: 1414
  ident: CR2
  article-title: Structural nanocrystalline materials: an overview
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0609-3
– start-page: 235
  year: 2007
  end-page: 292
  ident: CR6
  article-title: Electrodeposited nanocrystalline metals, alloys, and composites
  publication-title: Nanostructured materials
  doi: 10.1016/B978-081551534-0.50008-7
– volume: 54
  start-page: 4781
  year: 2006
  end-page: 4792
  ident: CR18
  article-title: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.06.016
– volume: 5–8
  start-page: 1509
  year: 2007
  end-page: 1513
  ident: CR16
  article-title: Atomic mechanism of shear localization during indentation of a nanostructured metal
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2006.07.019
– volume: 87
  start-page: 061921
  year: 2005
  ident: CR58
  article-title: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2008377
– volume: A493
  start-page: 33
  year: 2008
  end-page: 40
  ident: CR62
  article-title: Strain-driven grain boundary motion in nanocrystalline materials
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2007.06.095
– volume: 40
  start-page: 7440
  year: 2007
  end-page: 7446
  ident: CR29
  article-title: Experimental and modeling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/40/23/027
– volume: 33
  start-page: 561
  year: 2010
  end-page: 568
  ident: CR65
  article-title: Effect of stress-induced grain growth during room temperature tensile deformation on ductility in nanocrystalline metals
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-010-0086-9
– volume: 10A
  start-page: 699
  year: 1979
  end-page: 706
  ident: CR52
  article-title: Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4 V alloy
  publication-title: Metall Trans
  doi: 10.1007/BF02658391
– volume: A203
  start-page: 34
  year: 1995
  end-page: 38
  ident: CR46
  article-title: Thermal expansion and heat capacity of porosity-free nanocrystalline materials
  publication-title: Mater Sci Eng
  doi: 10.1016/0921-5093(95)09933-6
– volume: 55
  start-page: 4041
  year: 2007
  end-page: 4065
  ident: CR36
  article-title: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.01.038
– volume: 51
  start-page: 427
  year: 2006
  end-page: 556
  ident: CR28
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2005.08.003
– volume: 11
  start-page: 343
  year: 1999
  end-page: 350
  ident: CR9
  article-title: Mechanical properties of nanocrystalline nickel produced by electrodeposition
  publication-title: Nanostruct Mater
  doi: 10.1016/S0965-9773(99)00050-1
– volume: 52
  start-page: 4413
  year: 2004
  end-page: 4425
  ident: CR15
  article-title: Computational description of nanocrystalline deformation based on crystal plasticity
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.05.036
– volume: 305
  start-page: 654
  year: 2004
  end-page: 657
  ident: CR54
  article-title: Grain boundary-mediated plasticity in nanocrystalline nickel
  publication-title: Science
  doi: 10.1126/science.1098741
– volume: 17
  start-page: 5
  year: 1973
  end-page: 177
  ident: CR44
  article-title: The stored energy of cold work
  publication-title: Prog Mater Sci
  doi: 10.1016/0079-6425(73)90001-7
– volume: 18
  start-page: 1686
  year: 2009
  end-page: 1690
  ident: CR64
  article-title: Experimental observations of stress-driven grain boundary migration
  publication-title: Science
  doi: 10.1126/science.1178226
– volume: 493
  start-page: 65
  year: 2008
  end-page: 70
  ident: CR17
  article-title: Grain size dependent shear instabilities in body-centered and face-centered cubic materials
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.06.094
– volume: 706–709
  start-page: 1601
  year: 2012
  end-page: 1606
  ident: CR48
  article-title: Size effects and structure-sensitivity of properties in electrodeposited nanomaterials
  publication-title: Mater Sci For
– volume: 50
  start-page: 3957
  year: 2002
  end-page: 3970
  ident: CR10
  article-title: Nanocrystalline electrodeposited Ni: microstructure and tensile properties
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00198-2
– volume: 53
  start-page: 1521
  year: 2005
  end-page: 1533
  ident: CR13
  article-title: Tensile properties of in situ consolidated nanocrystalline Cu
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.12.005
– volume: 381
  start-page: 71
  year: 2004
  end-page: 79
  ident: CR32
  article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.03.064
– volume: 46
  start-page: 7713
  year: 2011
  ident: CR26
  article-title: On the intrinsic ductility of electrodeposited nanocrystalline metals
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5751-x
– ident: CR20
– volume: 34
  start-page: 97
  year: 1986
  ident: 8099_CR53
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(86)90236-1
– volume: 23
  start-page: 1679
  year: 1989
  ident: 8099_CR4
  publication-title: Scripta Metall Mater
  doi: 10.1016/0036-9748(89)90342-6
– volume: A494
  start-page: 232
  year: 2008
  ident: 8099_CR50
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2008.04.054
– volume: A203
  start-page: 34
  year: 1995
  ident: 8099_CR46
  publication-title: Mater Sci Eng
  doi: 10.1016/0921-5093(95)09933-6
– volume: 11
  start-page: 343
  year: 1999
  ident: 8099_CR9
  publication-title: Nanostruct Mater
  doi: 10.1016/S0965-9773(99)00050-1
– volume: 40
  start-page: 7440
  year: 2007
  ident: 8099_CR29
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/40/23/027
– volume: A571
  start-page: 207
  year: 2013
  ident: 8099_CR66
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2012.08.045
– volume: 54
  start-page: 4781
  year: 2006
  ident: 8099_CR18
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.06.016
– ident: 8099_CR45
– volume: 386–388
  start-page: 387
  year: 2002
  ident: 8099_CR23
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.386-388.387
– volume: 55
  start-page: 4041
  year: 2007
  ident: 8099_CR36
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.01.038
– ident: 8099_CR20
  doi: 10.1126/science.266.5184.353
– volume: 491
  start-page: 412
  year: 2008
  ident: 8099_CR25
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.02.015
– volume: 527
  start-page: 1751
  year: 2010
  ident: 8099_CR41
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.10.065
– volume: 52
  start-page: 5381
  year: 2004
  ident: 8099_CR57
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.07.044
– volume: 54
  start-page: 2253
  year: 2006
  ident: 8099_CR59
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.01.023
– volume: 493
  start-page: 65
  year: 2008
  ident: 8099_CR17
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.06.094
– volume: 50
  start-page: 3957
  year: 2002
  ident: 8099_CR10
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00198-2
– start-page: 235
  volume-title: Nanostructured materials
  year: 2007
  ident: 8099_CR6
  doi: 10.1016/B978-081551534-0.50008-7
– volume: 52
  start-page: 4413
  year: 2004
  ident: 8099_CR15
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.05.036
– start-page: 118
  volume-title: Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications
  year: 2011
  ident: 8099_CR22
  doi: 10.1533/9780857091123.1.118
– volume: 53
  start-page: 3369
  year: 2005
  ident: 8099_CR33
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.03.047
– volume: A43
  start-page: 6441
  year: 2008
  ident: 8099_CR51
  publication-title: J Mater Sci
  doi: 10.1007/s10853-008-2975-5
– volume: 58
  start-page: 61
  year: 2008
  ident: 8099_CR61
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2007.08.042
– volume: 305
  start-page: 654
  year: 2004
  ident: 8099_CR54
  publication-title: Science
  doi: 10.1126/science.1098741
– volume: 6
  start-page: 205
  year: 1995
  ident: 8099_CR5
  publication-title: Nanostr Mater
  doi: 10.1016/0965-9773(95)00044-5
– start-page: 537
  volume-title: Nanostructured materials
  year: 2007
  ident: 8099_CR1
  doi: 10.1016/B978-081551534-0.50014-2
– volume: 39
  start-page: 315
  year: 1998
  ident: 8099_CR8
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(98)00164-X
– volume: 375–377
  start-page: 975
  year: 2004
  ident: 8099_CR56
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2003.10.175
– start-page: S-251
  volume-title: Fundamentals of materials science and engineering
  year: 2001
  ident: 8099_CR49
– volume: 17
  start-page: 5
  year: 1973
  ident: 8099_CR44
  publication-title: Prog Mater Sci
  doi: 10.1016/0079-6425(73)90001-7
– volume: 46
  start-page: 7713
  year: 2011
  ident: 8099_CR26
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5751-x
– volume: A459
  start-page: 75
  year: 2007
  ident: 8099_CR34
  publication-title: Mater Sci Eng
– volume: 33
  start-page: 561
  year: 2010
  ident: 8099_CR65
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-010-0086-9
– volume: 85
  start-page: 2750
  year: 2004
  ident: 8099_CR30
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1799238
– volume: 10A
  start-page: 699
  year: 1979
  ident: 8099_CR52
  publication-title: Metall Trans
  doi: 10.1007/BF02658391
– volume: 87
  start-page: 061921
  year: 2005
  ident: 8099_CR58
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2008377
– volume: 54
  start-page: 4953
  year: 2006
  ident: 8099_CR60
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.08.004
– volume: 47
  start-page: 3117
  year: 1999
  ident: 8099_CR37
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00109-3
– volume: 5–8
  start-page: 1509
  year: 2007
  ident: 8099_CR16
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2006.07.019
– volume: 54
  start-page: 2137
  year: 2006
  ident: 8099_CR19
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2006.02.041
– volume: A341
  start-page: 216
  year: 2003
  ident: 8099_CR38
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(02)00238-1
– ident: 8099_CR21
– start-page: 102
  volume-title: Elements of X-ray diffraction
  year: 1978
  ident: 8099_CR27
– volume: 51
  start-page: 2097
  year: 2003
  ident: 8099_CR55
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(03)00011-9
– volume: 92
  start-page: 011903
  year: 2008
  ident: 8099_CR63
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2828699
– ident: 8099_CR47
– volume: A493
  start-page: 33
  year: 2008
  ident: 8099_CR62
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2007.06.095
– volume: 59
  start-page: 6861
  year: 2011
  ident: 8099_CR35
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.07.019
– volume: 381
  start-page: 71
  year: 2004
  ident: 8099_CR32
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.03.064
– volume: 143
  start-page: 307
  year: 1934
  ident: 8099_CR43
  publication-title: Proc R Soc Lond Ser A
  doi: 10.1098/rspa.1934.0004
– volume-title: Nanostructured metals and alloys
  year: 2011
  ident: 8099_CR3
– volume: 42
  start-page: 1403
  year: 2007
  ident: 8099_CR2
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0609-3
– volume: 51
  start-page: 5743
  year: 2003
  ident: 8099_CR7
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2003.08.032
– volume: 53
  start-page: 1521
  year: 2005
  ident: 8099_CR13
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2004.12.005
– volume: 706–709
  start-page: 1601
  year: 2012
  ident: 8099_CR48
  publication-title: Mater Sci For
– volume: 53
  start-page: 2337
  year: 2005
  ident: 8099_CR31
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.01.041
– volume-title: Mechanical metallurgy, SI Metric
  year: 1988
  ident: 8099_CR39
– volume: 51
  start-page: 427
  year: 2006
  ident: 8099_CR28
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2005.08.003
– volume: 81
  start-page: 1240
  year: 2002
  ident: 8099_CR14
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1501158
– volume: 18
  start-page: 1686
  year: 2009
  ident: 8099_CR64
  publication-title: Science
  doi: 10.1126/science.1178226
– volume: 49
  start-page: 663
  year: 2003
  ident: 8099_CR11
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(03)00396-8
– volume: 525
  start-page: 68
  year: 2009
  ident: 8099_CR42
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.06.031
– volume: 6
  start-page: 581
  year: 1995
  ident: 8099_CR24
  publication-title: Nanostruct Mater
  doi: 10.1016/0965-9773(95)00125-5
– volume: 25
  start-page: 232
  year: 1985
  ident: 8099_CR40
  publication-title: Exp Mech
  doi: 10.1007/BF02325092
– volume: 486
  start-page: 267
  year: 2008
  ident: 8099_CR12
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.10.002
SSID ssj0005721
Score 2.1468856
Snippet Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe...
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 µm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16...
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16...
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 mu m), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3847
SubjectTerms Activated
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Deformation mechanisms
Dislocations
Fracture mechanics
Grain growth
heat
Heat generation
Iron
Localization
Materials Science
Nanocrystals
Necking
Nickel
Plastic deformation
Polycrystals
Polymer Sciences
Solid Mechanics
Strain
Strain localization
Strain rate
Strain rate sensitivity
Temperature
Tensile deformation
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QUOvBELBRmEhARKFceOkxxXqEt57QFaqZwsx55UK1C2anYP9MR_4B_yS5jJY7ctUKnnjB9jj-cRz3wGeKECYm5SGeVGZ5F2xkfs1Ue50iZNQoKZ4_8dn2Zm70C_P0wP-zruZsh2H64kW019ptiNTAuFvpq0alFEFPJspTIv8hFsTd5-_bC7yezIEjmAhDNc2nCZ-a9Ozpmji0r5r9vR1uhMb8H-MN0u1-TbzmpZ7vjTC0iOV-TnNtzsnVAx6aTmDlzD-i7cOANNeA_cRzZy81MMommfkRCuDoI1tzhqkap5Q0VX5CiOyQWnrkTAdS2koBa1qxf-5Af5nwz8jWI2bzuZzX___DXF-3Aw3d1_sxf1zzFEnl89iIIuYsaGMQW6UsaYhlhrHztZ6lw5z-BvFB2WGcZVYFB8KdGnpc8rH-uQaK8ewKhe1PgQBEXkzhvqJJNOm0o6VFlVhMoX3pCDhmOIh12xvscqZ16_2w3KMq-epdWzvHpWjuHVuslxB9RxGfFz3mrLABg1Z9gcuVXT2HdfPtuJymSXcDmGlz1RtaDBvesLFogFxsw6R7k9iIztVUBjSVFSrKa1isfwbP2ZDi_fyLgaF6vGkrlhlaiUuoSGfUBNcSfN-vUgSZth_svjoytRP4brCYtim8q5DaPlyQqfkLu1LJ_2x-sPGeYexA
  priority: 102
  providerName: Springer Nature
Title Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe
URI https://link.springer.com/article/10.1007/s10853-014-8099-1
https://www.proquest.com/docview/2259744430
https://www.proquest.com/docview/1531017333
https://www.proquest.com/docview/1710246261
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABlZdYaCuDkJBAFnHsOMkJ7VablleECiuVk-XYTrVSlSxN91BO_Af-YX8JM3nstiD25IPf9nge9vgbQl4K532iIs4SJWMmjbIMtXqWCKmi0IU-Nnjf8TlXRzP54SQ66S_cmt6tcuCJLaN2tcU78rdAd6D6SimCd4sfDKNG4etqH0LjNtnmIGmQzpPscO3iEYd8QAtH3LThVbP7OgeCCgxpCTw6TRm_IZf-5s7_PJO20ifbIfd6tZGOu32-T2756gG5ew1M8CExn1AszX96R5s28AM1laPIa-lpiy2NW0C7b4l0AUozNEWdX_1epFCjMlVtzy9BY0Sobk_zedtIPr_69Tvzj8gsm347OGJ9AAVmMU4BczINEM1Fpd4UPPCRC6S0geGFTISxCNcG9lwR-6B0CGPPubdRYZPSBtKF0orHZKuqK_-EULChjVXQSMyNVCU3XsRl6kqbWgUqlR-RYFg-bXt0cZzrmV7jIuOKa1hxjSuu-Yi8XlVZdNAamwq_wD3RCFlRoU_MqVk2jX7_9ViPRcw7F8kRedUXKmvo3Jr-iwFMAVGubpTcHfZW94e20WsSG5Hnq2w4bviGYipfLxsNAgKZmBBiQxnU2iRYijDqNwPdrLv57xyfbh7UM3InRHptvS13ydbF-dLvgUZ0Uey3ZL9PtsfZZJJjevj94xTSyTT_cgy5s3D8B53zCuY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IH7FlgIGgZBAEXHsJJsDQgW62qXbCJVW6s11bKdaCSXbpitUTrwD78FD8STM5GeXgthbz3HG9ng8P_bMZ4Bnwjo3iELuDSIZe1JHxiOv3hsIGYWBDVys6bxjN41GB_LjYXi4Bj-7WhhKq-x0Yq2obWnojPw1yh26vlIK_-3sxKNXo-h2tXtCoxGLHXf-FUO26s34A67v8yAYbu-_H3ntqwKeIfB-z8rEJ4iTKHE6474LrS-l8TXP5EBoQxhmGORksfNzS9junDsTZmaQG1_aQBqBdK_AuqSK1h6sv9tOP-0tk0rigHf45ITU1t2jNsV6aBoxdJdoFZLE4xcs4d_24J-L2dreDW_CjdZRZVuNZN2CNVfchut_wBfeAT0hQzj95iyr6qcmmC4sI-3Ojms0a1p01hRCshm66UiKWbeol2T4R6GL0pyeo49K4OCOpdOaSDr99f3H0N2Fg0th7j3oFWXh7gPDqF2bCInEXMso59qJOE9sbhIToRPn-uB37FOmxTOnuX5RSyRm4rhCjiviuOJ9eLn4ZdaAeaxq_JTWRBFIRkFZOMd6XlVq_HlPbYmYN0mZfXjRNspL7NzotqgBp0C4WhdabnZrq1o1UamlUPfhyeIzbnC6tdGFK-eVQpNEalMIsaIN-YkSY1Mc9atObpbd_HeOG6sH9RiujvZ3J2oyTncewLWAZLfO9dyE3tnp3D1Ef-wse9RuAgZHl73vfgM05EKq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIlVwQNCCWChgEBISKGocO05yXAGrFtoVAlbqzXLsSbUS8q6a3QOc-A_8w_6SzuSx29KHxDmTcTy25xHPfMPYG-kBcp2KKNcqi5TVLiKvPsql0mniE8gs_e84Guv9ifp8nB53fU7rPtu9v5JsaxoIpSks9ua-2rtQ-IZmBsNghRq2KCIMf-6gNha00SfJcJ3jkSWihwsn4LT-WvM6FpcM07_q-co9aWN-Rg_Y_c5v5MN2oR-yDQjb7N4FNMEdZg_JLk1_g-d10_mB2-A5KVt-0oBL0xrwti6Rz9FrRlbcw6p8keMbwYaZO_2FLiNhdQMfTxsm4-nZn78jeMQmo08_PuxHXQeFyFGjgsirIiY4F12ALUUMqY-VcrEVpcqldYTXhgFdmUFcecKxFwJcWrq8crHyiXLyMdsMswBPGMcg2jqNTDJhla6EBZlVha9c4TT6VDBgcS8-4zp4cZrrT7MGRiaJG5S4IYkbMWDvVq_MW2yN24hf05oYwqwIlBRzYpd1bQ6-fzNDmYk2R3LA3nZE1QwHd7arMcApEMzVJcrdfm1Nd2prg7oNwyulZDxgr1aP8bzRJYoNMFvWBi0EaTEp5S005LYpDBXxq9_3-2Y9zI1zfPpf1C_Z1tePI3N4MP7yjN1NaCc3iZi7bHNxuoTn6CwtyhfNgTgH98MJFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+strain+and+heat+generation+during+plastic+deformation+in+nanocrystalline+Ni+and+Ni-fe&rft.jtitle=Journal+of+materials+science&rft.au=Chan%2C+T&rft.au=Zhou%2C+Y&rft.au=Brooks%2C+I&rft.au=Palumbo%2C+G&rft.date=2014-05-01&rft.pub=Springer&rft.issn=0022-2461&rft.volume=49&rft.issue=10&rft.spage=3847&rft_id=info:doi/10.1007%2Fs10853-014-8099-1&rft.externalDocID=A371000094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon