Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10 −1 and 10 −2 /s. Strain localizations and local temperature increases were simultaneously record...
Saved in:
Published in | Journal of materials science Vol. 49; no. 10; pp. 3847 - 3859 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.05.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2461 1573-4803 |
DOI | 10.1007/s10853-014-8099-1 |
Cover
Abstract | Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10
−1
and 10
−2
/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples. |
---|---|
AbstractList | Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 µm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16 nm) electrodeposits at two strain rates of [10.sup.-1] and [10.sup.-2]/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 µm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni-Fe samples, suggesting that both dislocationmediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni-Fe samples. Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10−1 and 10−2/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples. Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10 −1 and 10 −2 /s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples. Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 mu m), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16 nm) electrodeposits at two strain rates of 10-1 and 10-2/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 degree C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 mu m, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni-Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni-Fe samples. Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10⁻¹and 10⁻²/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples. |
Audience | Academic |
Author | Zhou, Y. Palumbo, G. Erb, U. Chan, T. Brooks, I. |
Author_xml | – sequence: 1 givenname: T. surname: Chan fullname: Chan, T. organization: Department of Materials Science and Engineering, University of Toronto – sequence: 2 givenname: Y. surname: Zhou fullname: Zhou, Y. email: yijian.zhou@utoronto.ca organization: Department of Materials Science and Engineering, University of Toronto – sequence: 3 givenname: I. surname: Brooks fullname: Brooks, I. organization: Integran Technologies Inc – sequence: 4 givenname: G. surname: Palumbo fullname: Palumbo, G. organization: Integran Technologies Inc – sequence: 5 givenname: U. surname: Erb fullname: Erb, U. organization: Department of Materials Science and Engineering, University of Toronto |
BookMark | eNqFks1qFTEUx4NU8PbqA7gbcKOLqeckma9lKVYLlwp-rENu5sw1ZW5yTTLQuvIdfEOfpJlOQVpQTxaB5P87nI__MTty3hFjLxFOEKB5GxHaSpSAsmyh60p8wlZYNaKULYgjtgLgvOSyxmfsOMYrAKgajiumN97o0f6gvogpaOsK7friG-lU7MhR0Ml6V_RTsG5XHEYdkzVFT4MP--UrE047b8JNTHocraPi0t4lubS_f_46p-fs6aDHSC_u7zX7ev7uy9mHcvPx_cXZ6aY0FcdU9rIDXrey7khvEajqQUoDGreyFdoAilpCs20Ihh4ESkQy1da0gwHZc2nEmr1e8h6C_z5RTGpvo6Fx1I78FBU2CHkAvMb_SyuBgI3IsWavHkmv_BRcbkRxXnWNlFJAVp0sqp0eSVk3-DxLk09Pe2vypgab309FLiFHJzPw5gGQNYmu005PMaqLz58eaptFa4KPMdCgjE13w58XNioENVtALRZQ2QJqtoCa-8RH5CHYvQ43_2T4wsTDvHMKfxr-O3QLjKPDcQ |
CitedBy_id | crossref_primary_10_1007_s10853_019_03835_8 crossref_primary_10_1007_s10853_016_9942_3 crossref_primary_10_1007_s10853_016_9890_y crossref_primary_10_2320_matertrans_MBW201707 crossref_primary_10_1007_s10853_016_0437_z crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_068 crossref_primary_10_7121_msi_eureka_20_11110_1_9 crossref_primary_10_1016_j_msea_2015_06_049 crossref_primary_10_1007_s10853_015_9011_3 |
Cites_doi | 10.1016/0965-9773(95)00125-5 10.1016/0036-9748(89)90342-6 10.1016/S1359-6454(99)00109-3 10.1016/j.msea.2009.06.031 10.1016/B978-081551534-0.50014-2 10.1016/j.msea.2006.12.093 10.1016/j.msea.2009.10.065 10.1016/j.actamat.2005.01.041 10.1016/j.msea.2007.10.002 10.1533/9780857091123.1.118 10.1098/rspa.1934.0004 10.1016/0001-6160(86)90236-1 10.1007/s10853-008-2975-5 10.1063/1.1501158 10.4028/www.scientific.net/MSF.386-388.387 10.1016/j.msea.2008.02.015 10.1016/S0921-5093(02)00238-1 10.1016/j.scriptamat.2006.02.041 10.1016/j.actamat.2006.01.023 10.1016/j.actamat.2006.08.004 10.1016/j.actamat.2011.07.019 10.1007/BF02325092 10.1063/1.1799238 10.1016/j.actamat.2003.08.032 10.1016/S1359-6462(98)00164-X 10.1016/j.scriptamat.2007.08.042 10.1016/S1359-6454(03)00011-9 10.1063/1.2828699 10.1016/j.actamat.2004.07.044 10.1016/j.msea.2008.04.054 10.1016/j.msea.2003.10.175 10.1016/S1359-6462(03)00396-8 10.1016/j.actamat.2005.03.047 10.1016/0965-9773(95)00044-5 10.1016/j.msea.2012.08.045 10.1007/s10853-006-0609-3 10.1016/B978-081551534-0.50008-7 10.1016/j.actamat.2006.06.016 10.1016/j.msec.2006.07.019 10.1063/1.2008377 10.1016/j.msea.2007.06.095 10.1088/0022-3727/40/23/027 10.1007/s12034-010-0086-9 10.1007/BF02658391 10.1016/0921-5093(95)09933-6 10.1016/j.actamat.2007.01.038 10.1016/j.pmatsci.2005.08.003 10.1016/S0965-9773(99)00050-1 10.1016/j.actamat.2004.05.036 10.1126/science.1098741 10.1016/0079-6425(73)90001-7 10.1126/science.1178226 10.1016/j.msea.2007.06.094 10.1016/S1359-6454(02)00198-2 10.1016/j.actamat.2004.12.005 10.1016/j.msea.2004.03.064 10.1007/s10853-011-5751-x 10.1126/science.266.5184.353 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 COPYRIGHT 2014 Springer Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: COPYRIGHT 2014 Springer – notice: Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1007/s10853-014-8099-1 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 3859 |
ExternalDocumentID | A371000094 10_1007_s10853_014_8099_1 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c521t-d490268469eab10e5d044c0a1b483ac0136407b7e0fd031411ec5bc8fc04d24c3 |
IEDL.DBID | 8FG |
ISSN | 0022-2461 |
IngestDate | Fri Sep 05 03:19:19 EDT 2025 Fri Sep 05 14:01:12 EDT 2025 Sat Aug 23 14:12:46 EDT 2025 Tue Jun 10 20:52:47 EDT 2025 Fri Jun 27 03:41:42 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 01:25:34 EDT 2025 Fri Feb 21 02:45:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Digital Image Correlation Strain Rate Sensitivity Grain Boundary Ultimate Tensile Strength Global Strain |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-d490268469eab10e5d044c0a1b483ac0136407b7e0fd031411ec5bc8fc04d24c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 2259744430 |
PQPubID | 2043599 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1710246261 proquest_miscellaneous_1531017333 proquest_journals_2259744430 gale_infotracacademiconefile_A371000094 gale_incontextgauss_ISR_A371000094 crossref_citationtrail_10_1007_s10853_014_8099_1 crossref_primary_10_1007_s10853_014_8099_1 springer_journals_10_1007_s10853_014_8099_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationSubtitle | Full Set - Includes `Journal of Materials Science Letters |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2014 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Bever, Holt, Titchener (CR44) 1973; 17 Wei, Jia, Ramesh (CR14) 2002; 81 Sansoz, Dupont (CR16) 2007; 5–8 Klement, Erb, Aust (CR24) 1995; 6 Senkov, Myshlyaev (CR53) 1986; 34 Siegel, Fougere (CR5) 1995; 6 Fu, Benson, Meyers (CR15) 2004; 52 Fan, Fu, Choo, Liaw, Browning (CR18) 2006; 54 Fan, Fu, Qiao, Choo, Liaw, Browning (CR19) 2006; 54 Ghosh, Hamilton (CR52) 1979; 10A Kumar, Van Swygenhoven, Suresh (CR7) 2003; 51 Dieter (CR39) 1988 Koch (CR2) 2007; 42 Haslam, Moldovan, Yamakov, Wolf, Phillpot, Gleiter (CR55) 2003; 51 Schiøtz (CR56) 2004; 375–377 Cahn, Mishin, Suzuki (CR60) 2006; 54 Turi, Erb (CR46) 1995; A203 Wei, Cheng, Ramesh, Ma (CR32) 2004; 381 Taylor, Quinney (CR43) 1934; 143 CR47 Erb (CR48) 2012; 706–709 Callister (CR49) 2001 Jin, Minor, Stach, Morris (CR57) 2004; 52 CR45 Chokshi, Rosen, Karch, Gleiter (CR4) 1989; 23 Conrad (CR38) 2003; A341 Wang, Li, Sui, Mao (CR63) 2008; 92 Joshi, Ramesh (CR17) 2008; 493 Farkas, Mohanty, Monk (CR62) 2008; A493 Chu, Ranson, Sutton, Peters (CR40) 1985; 25 Ebrahimi, Zhai, Kong (CR8) 1998; 39 Meyers, Mishra, Benson (CR28) 2006; 51 Gu, Lian, Jiang, Zheng (CR29) 2007; 40 Dao, Lu, Asaro, De Hosson, Ma (CR36) 2007; 55 Rupert, Gianola, Gan, Hemker (CR64) 2009; 18 Dalla Torre, Spatig, Schaublin, Victoria (CR31) 2005; 53 Hibbard, Radmilovic, Aust, Erb (CR50) 2008; A494 Shan, Stach, Wiezorek, Knapp, Follstaedt, Mao (CR54) 2004; 305 Zhang, Weertman, Eastman (CR58) 2005; 87 Erb, Palumbo, McCrea, Whang (CR22) 2011 Cullity (CR27) 1978 Gu, Lian, Jiang, Jiang (CR34) 2007; A459 Brandstetter, Zhang, Escuadro, Weertman, Van Swygenhoven (CR61) 2008; 58 Gu, Dao, Asaro, Suresh (CR35) 2011; 59 Brooks, Palumbo, Hibbard, Wang, Erb (CR26) 2011; 46 Asaro, Suresh (CR33) 2005; 53 Hibbard, Aust, Erb (CR51) 2008; A43 Dalla Torre, Van Swygenhoven, Victoria (CR10) 2002; 50 Weertman, Koch (CR1) 2007 Zhu, Zhou, Jiang, Lui, Ling (CR41) 2010; 527 Hibbard, Erb, Aust, Klement, Palumbo (CR23) 2002; 386–388 Gianola, Van Petegem, Legros, Brandstetter, Van Swygenhoven, Hemker (CR59) 2006; 54 Whang (CR3) 2011 Van Swygenhoven, Spaczer, Caro (CR37) 1999; 47 Erb, Aust, Palumbo, Koch (CR6) 2007 Wang, Ma (CR30) 2004; 85 Cheng, Ma, Wang, Kecskes, Youssef, Koch, Trociewitz, Han (CR13) 2005; 53 CR21 CR20 Brooks, Lin, Palumbo, Hibbard, Erb (CR25) 2008; 491 Panin, Panina, Ivanov (CR12) 2008; 486 Tucker, Foiles (CR66) 2013; A571 Ebrahimi, Bourne, Kelly, Matthews (CR9) 1999; 11 Xu, Dai, Wu (CR65) 2010; 33 Ma (CR11) 2003; 49 Zhao, Guo, Wei, Topping, Dangelewicz, Zhu, Langdon, Lavernia (CR42) 2009; 525 U Erb (8099_CR22) 2011 F Sansoz (8099_CR16) 2007; 5–8 MB Bever (8099_CR44) 1973; 17 G Hibbard (8099_CR23) 2002; 386–388 I Brooks (8099_CR26) 2011; 46 BD Cullity (8099_CR27) 1978 AJ Haslam (8099_CR55) 2003; 51 S Brandstetter (8099_CR61) 2008; 58 (8099_CR3) 2011 JR Weertman (8099_CR1) 2007 Q Wei (8099_CR14) 2002; 81 CD Gu (8099_CR34) 2007; A459 GD Hibbard (8099_CR50) 2008; A494 GJ Fan (8099_CR18) 2006; 54 GE Dieter (8099_CR39) 1988 ON Senkov (8099_CR53) 1986; 34 GI Taylor (8099_CR43) 1934; 143 TJ Rupert (8099_CR64) 2009; 18 CC Koch (8099_CR2) 2007; 42 U Erb (8099_CR48) 2012; 706–709 JW Cahn (8099_CR60) 2006; 54 F Ebrahimi (8099_CR8) 1998; 39 GD Hibbard (8099_CR51) 2008; A43 8099_CR20 D Farkas (8099_CR62) 2008; A493 8099_CR21 RJ Asaro (8099_CR33) 2005; 53 WD Callister (8099_CR49) 2001 F Ebrahimi (8099_CR9) 1999; 11 YM Wang (8099_CR30) 2004; 85 SP Joshi (8099_CR17) 2008; 493 W Xu (8099_CR65) 2010; 33 GJ Fan (8099_CR19) 2006; 54 MA Meyers (8099_CR28) 2006; 51 Q Wei (8099_CR32) 2004; 381 S Cheng (8099_CR13) 2005; 53 Jakob Schiøtz (8099_CR56) 2004; 375–377 M Jin (8099_CR57) 2004; 52 AH Chokshi (8099_CR4) 1989; 23 E Ma (8099_CR11) 2003; 49 H Fu (8099_CR15) 2004; 52 K Zhang (8099_CR58) 2005; 87 F Dalla Torre (8099_CR10) 2002; 50 GJ Tucker (8099_CR66) 2013; A571 KS Kumar (8099_CR7) 2003; 51 M Dao (8099_CR36) 2007; 55 YH Zhao (8099_CR42) 2009; 525 AV Panin (8099_CR12) 2008; 486 F Dalla Torre (8099_CR31) 2005; 53 T Turi (8099_CR46) 1995; A203 DS Gianola (8099_CR59) 2006; 54 P Gu (8099_CR35) 2011; 59 Z Shan (8099_CR54) 2004; 305 TC Chu (8099_CR40) 1985; 25 U Erb (8099_CR6) 2007 8099_CR45 U Klement (8099_CR24) 1995; 6 8099_CR47 AK Ghosh (8099_CR52) 1979; 10A CD Gu (8099_CR29) 2007; 40 H Swygenhoven Van (8099_CR37) 1999; 47 I Brooks (8099_CR25) 2008; 491 YB Wang (8099_CR63) 2008; 92 H Conrad (8099_CR38) 2003; A341 RW Siegel (8099_CR5) 1995; 6 R Zhu (8099_CR41) 2010; 527 |
References_xml | – ident: CR45 – volume: 6 start-page: 581 year: 1995 end-page: 584 ident: CR24 article-title: Investigations of the grain growth behavior of nanocrystalline nickel publication-title: Nanostruct Mater doi: 10.1016/0965-9773(95)00125-5 – volume: 23 start-page: 1679 year: 1989 end-page: 1684 ident: CR4 article-title: On the validity of the Hall-Petch relationship in nanocrystalline materials publication-title: Scripta Metall Mater doi: 10.1016/0036-9748(89)90342-6 – volume: 47 start-page: 3117 year: 1999 end-page: 3126 ident: CR37 article-title: Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00109-3 – volume: 525 start-page: 68 year: 2009 end-page: 77 ident: CR42 article-title: Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.06.031 – start-page: 537 year: 2007 end-page: 564 ident: CR1 article-title: Mechanical behavior of nanocrystalline metals publication-title: Nanostructured materials doi: 10.1016/B978-081551534-0.50014-2 – volume: A459 start-page: 75 year: 2007 end-page: 81 ident: CR34 article-title: Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6wt.%Co alloy publication-title: Mater Sci Eng doi: 10.1016/j.msea.2006.12.093 – volume: 527 start-page: 1751 year: 2010 end-page: 1760 ident: CR41 article-title: Multi-scale modeling of shear banding in fully dense nanocrystalline Ni sheet publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.10.065 – start-page: 102 year: 1978 ident: CR27 publication-title: Elements of X-ray diffraction – volume: 53 start-page: 2337 year: 2005 end-page: 2349 ident: CR31 article-title: Deformation behaviour and microstructure of nanocrystalline electrodeposited… pressure torsioned nickel publication-title: Acta Mater doi: 10.1016/j.actamat.2005.01.041 – volume: 486 start-page: 267 year: 2008 end-page: 272 ident: CR12 article-title: Deformation macrolocalisation and fracture in ultrafine-grained armco iron publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.10.002 – start-page: 118 year: 2011 end-page: 151 ident: CR22 article-title: The processing of bulk nanocrystalline metals and alloys by electrodeposition publication-title: Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications doi: 10.1533/9780857091123.1.118 – volume: 143 start-page: 307 year: 1934 end-page: 326 ident: CR43 article-title: The latent energy remaining in metal after cold working publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1934.0004 – volume: 34 start-page: 97 year: 1986 end-page: 106 ident: CR53 article-title: Grain growth in a superplastic Zn-22 % Al alloy publication-title: Acta Metall doi: 10.1016/0001-6160(86)90236-1 – volume: A43 start-page: 6441 year: 2008 end-page: 6452 ident: CR51 article-title: On interfacial velocities during abnormal grain growth at ultra-high driving forces publication-title: J Mater Sci doi: 10.1007/s10853-008-2975-5 – volume: 81 start-page: 1240 year: 2002 end-page: 1242 ident: CR14 article-title: Evolution and microstructure of shear bands in nanostructured Fe publication-title: Appl Phys Lett doi: 10.1063/1.1501158 – volume: 386–388 start-page: 387 year: 2002 end-page: 396 ident: CR23 article-title: Thermal stability of nanostructured electrodeposits publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.386-388.387 – ident: CR21 – volume: 491 start-page: 412 year: 2008 ident: CR25 article-title: Hardness-tensile strength relationships for nanocrystalline materials publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.02.015 – volume: A341 start-page: 216 year: 2003 end-page: 228 ident: CR38 article-title: Grain size dependence of the plastic deformation kinetics in Cu publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(02)00238-1 – volume: 54 start-page: 2137 year: 2006 end-page: 2141 ident: CR19 article-title: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2006.02.041 – volume: 54 start-page: 2253 year: 2006 end-page: 2263 ident: CR59 article-title: Stress assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films publication-title: Acta Mater doi: 10.1016/j.actamat.2006.01.023 – volume: 54 start-page: 4953 year: 2006 end-page: 4975 ident: CR60 article-title: Coupling grain boundary motion to shear deformation publication-title: Acta Mater doi: 10.1016/j.actamat.2006.08.004 – volume: 59 start-page: 6861 year: 2011 end-page: 6868 ident: CR35 article-title: A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.019 – year: 2011 ident: CR3 publication-title: Nanostructured metals and alloys – volume: 25 start-page: 232 year: 1985 end-page: 244 ident: CR40 article-title: Application of digital-image-correlation techniques to experimental mechanics publication-title: Exp Mech doi: 10.1007/BF02325092 – year: 1988 ident: CR39 publication-title: Mechanical metallurgy, SI Metric – volume: 85 start-page: 2750 year: 2004 end-page: 2752 ident: CR30 article-title: On the origin of ultrahigh cryogenic strength of nanocrystalline metals publication-title: Appl Phys Lett doi: 10.1063/1.1799238 – volume: 51 start-page: 5743 year: 2003 end-page: 5774 ident: CR7 article-title: Mechanical behavior of nanocrystalline metals and alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2003.08.032 – volume: 39 start-page: 315 year: 1998 end-page: 321 ident: CR8 article-title: Deformation and fracture of electrodeposited copper publication-title: Scripta Mater doi: 10.1016/S1359-6462(98)00164-X – start-page: S-251 year: 2001 ident: CR49 publication-title: Fundamentals of materials science and engineering – volume: 58 start-page: 61 year: 2008 end-page: 64 ident: CR61 article-title: Grain coarsening during compression of bulk nanocrystalline nickel and copper publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2007.08.042 – volume: 51 start-page: 2097 year: 2003 end-page: 2112 ident: CR55 article-title: Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00011-9 – volume: 92 start-page: 011903 year: 2008 ident: CR63 article-title: Deformation-induced grain rotation and growth in nanocrystalline Ni publication-title: Appl Phys Lett doi: 10.1063/1.2828699 – ident: CR47 – volume: 52 start-page: 5381 year: 2004 end-page: 5387 ident: CR57 article-title: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafinegrained Al at room temperature publication-title: Acta Mater doi: 10.1016/j.actamat.2004.07.044 – volume: A494 start-page: 232 year: 2008 end-page: 238 ident: CR50 article-title: Grain boundary migration during abnormal grain growth in nanocrystalline Ni publication-title: Mater Sci Eng doi: 10.1016/j.msea.2008.04.054 – volume: 375–377 start-page: 975 year: 2004 end-page: 979 ident: CR56 article-title: Strain-induced coarsening in nanocrystalline metals under cyclic deformation publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.175 – volume: 49 start-page: 663 year: 2003 end-page: 668 ident: CR11 article-title: Instabilities and ductility of nanocrystalline and ultrafine-grained metals publication-title: Scripta Mater doi: 10.1016/S1359-6462(03)00396-8 – volume: 53 start-page: 3369 year: 2005 end-page: 3392 ident: CR33 article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins publication-title: Acta Mater doi: 10.1016/j.actamat.2005.03.047 – volume: 6 start-page: 205 year: 1995 end-page: 216 ident: CR5 article-title: Mechanical properties of nanophase metals publication-title: Nanostr Mater doi: 10.1016/0965-9773(95)00044-5 – volume: A571 start-page: 207 year: 2013 end-page: 214 ident: CR66 article-title: Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel publication-title: Mater Sci Eng doi: 10.1016/j.msea.2012.08.045 – volume: 42 start-page: 1403 year: 2007 end-page: 1414 ident: CR2 article-title: Structural nanocrystalline materials: an overview publication-title: J Mater Sci doi: 10.1007/s10853-006-0609-3 – start-page: 235 year: 2007 end-page: 292 ident: CR6 article-title: Electrodeposited nanocrystalline metals, alloys, and composites publication-title: Nanostructured materials doi: 10.1016/B978-081551534-0.50008-7 – volume: 54 start-page: 4781 year: 2006 end-page: 4792 ident: CR18 article-title: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2006.06.016 – volume: 5–8 start-page: 1509 year: 2007 end-page: 1513 ident: CR16 article-title: Atomic mechanism of shear localization during indentation of a nanostructured metal publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2006.07.019 – volume: 87 start-page: 061921 year: 2005 ident: CR58 article-title: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures publication-title: Appl Phys Lett doi: 10.1063/1.2008377 – volume: A493 start-page: 33 year: 2008 end-page: 40 ident: CR62 article-title: Strain-driven grain boundary motion in nanocrystalline materials publication-title: Mater Sci Eng doi: 10.1016/j.msea.2007.06.095 – volume: 40 start-page: 7440 year: 2007 end-page: 7446 ident: CR29 article-title: Experimental and modeling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/40/23/027 – volume: 33 start-page: 561 year: 2010 end-page: 568 ident: CR65 article-title: Effect of stress-induced grain growth during room temperature tensile deformation on ductility in nanocrystalline metals publication-title: Bull Mater Sci doi: 10.1007/s12034-010-0086-9 – volume: 10A start-page: 699 year: 1979 end-page: 706 ident: CR52 article-title: Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4 V alloy publication-title: Metall Trans doi: 10.1007/BF02658391 – volume: A203 start-page: 34 year: 1995 end-page: 38 ident: CR46 article-title: Thermal expansion and heat capacity of porosity-free nanocrystalline materials publication-title: Mater Sci Eng doi: 10.1016/0921-5093(95)09933-6 – volume: 55 start-page: 4041 year: 2007 end-page: 4065 ident: CR36 article-title: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals publication-title: Acta Mater doi: 10.1016/j.actamat.2007.01.038 – volume: 51 start-page: 427 year: 2006 end-page: 556 ident: CR28 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2005.08.003 – volume: 11 start-page: 343 year: 1999 end-page: 350 ident: CR9 article-title: Mechanical properties of nanocrystalline nickel produced by electrodeposition publication-title: Nanostruct Mater doi: 10.1016/S0965-9773(99)00050-1 – volume: 52 start-page: 4413 year: 2004 end-page: 4425 ident: CR15 article-title: Computational description of nanocrystalline deformation based on crystal plasticity publication-title: Acta Mater doi: 10.1016/j.actamat.2004.05.036 – volume: 305 start-page: 654 year: 2004 end-page: 657 ident: CR54 article-title: Grain boundary-mediated plasticity in nanocrystalline nickel publication-title: Science doi: 10.1126/science.1098741 – volume: 17 start-page: 5 year: 1973 end-page: 177 ident: CR44 article-title: The stored energy of cold work publication-title: Prog Mater Sci doi: 10.1016/0079-6425(73)90001-7 – volume: 18 start-page: 1686 year: 2009 end-page: 1690 ident: CR64 article-title: Experimental observations of stress-driven grain boundary migration publication-title: Science doi: 10.1126/science.1178226 – volume: 493 start-page: 65 year: 2008 end-page: 70 ident: CR17 article-title: Grain size dependent shear instabilities in body-centered and face-centered cubic materials publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.06.094 – volume: 706–709 start-page: 1601 year: 2012 end-page: 1606 ident: CR48 article-title: Size effects and structure-sensitivity of properties in electrodeposited nanomaterials publication-title: Mater Sci For – volume: 50 start-page: 3957 year: 2002 end-page: 3970 ident: CR10 article-title: Nanocrystalline electrodeposited Ni: microstructure and tensile properties publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00198-2 – volume: 53 start-page: 1521 year: 2005 end-page: 1533 ident: CR13 article-title: Tensile properties of in situ consolidated nanocrystalline Cu publication-title: Acta Mater doi: 10.1016/j.actamat.2004.12.005 – volume: 381 start-page: 71 year: 2004 end-page: 79 ident: CR32 article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.03.064 – volume: 46 start-page: 7713 year: 2011 ident: CR26 article-title: On the intrinsic ductility of electrodeposited nanocrystalline metals publication-title: J Mater Sci doi: 10.1007/s10853-011-5751-x – ident: CR20 – volume: 34 start-page: 97 year: 1986 ident: 8099_CR53 publication-title: Acta Metall doi: 10.1016/0001-6160(86)90236-1 – volume: 23 start-page: 1679 year: 1989 ident: 8099_CR4 publication-title: Scripta Metall Mater doi: 10.1016/0036-9748(89)90342-6 – volume: A494 start-page: 232 year: 2008 ident: 8099_CR50 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2008.04.054 – volume: A203 start-page: 34 year: 1995 ident: 8099_CR46 publication-title: Mater Sci Eng doi: 10.1016/0921-5093(95)09933-6 – volume: 11 start-page: 343 year: 1999 ident: 8099_CR9 publication-title: Nanostruct Mater doi: 10.1016/S0965-9773(99)00050-1 – volume: 40 start-page: 7440 year: 2007 ident: 8099_CR29 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/40/23/027 – volume: A571 start-page: 207 year: 2013 ident: 8099_CR66 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2012.08.045 – volume: 54 start-page: 4781 year: 2006 ident: 8099_CR18 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.06.016 – ident: 8099_CR45 – volume: 386–388 start-page: 387 year: 2002 ident: 8099_CR23 publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.386-388.387 – volume: 55 start-page: 4041 year: 2007 ident: 8099_CR36 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.01.038 – ident: 8099_CR20 doi: 10.1126/science.266.5184.353 – volume: 491 start-page: 412 year: 2008 ident: 8099_CR25 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.02.015 – volume: 527 start-page: 1751 year: 2010 ident: 8099_CR41 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.10.065 – volume: 52 start-page: 5381 year: 2004 ident: 8099_CR57 publication-title: Acta Mater doi: 10.1016/j.actamat.2004.07.044 – volume: 54 start-page: 2253 year: 2006 ident: 8099_CR59 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.01.023 – volume: 493 start-page: 65 year: 2008 ident: 8099_CR17 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.06.094 – volume: 50 start-page: 3957 year: 2002 ident: 8099_CR10 publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00198-2 – start-page: 235 volume-title: Nanostructured materials year: 2007 ident: 8099_CR6 doi: 10.1016/B978-081551534-0.50008-7 – volume: 52 start-page: 4413 year: 2004 ident: 8099_CR15 publication-title: Acta Mater doi: 10.1016/j.actamat.2004.05.036 – start-page: 118 volume-title: Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications year: 2011 ident: 8099_CR22 doi: 10.1533/9780857091123.1.118 – volume: 53 start-page: 3369 year: 2005 ident: 8099_CR33 publication-title: Acta Mater doi: 10.1016/j.actamat.2005.03.047 – volume: A43 start-page: 6441 year: 2008 ident: 8099_CR51 publication-title: J Mater Sci doi: 10.1007/s10853-008-2975-5 – volume: 58 start-page: 61 year: 2008 ident: 8099_CR61 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2007.08.042 – volume: 305 start-page: 654 year: 2004 ident: 8099_CR54 publication-title: Science doi: 10.1126/science.1098741 – volume: 6 start-page: 205 year: 1995 ident: 8099_CR5 publication-title: Nanostr Mater doi: 10.1016/0965-9773(95)00044-5 – start-page: 537 volume-title: Nanostructured materials year: 2007 ident: 8099_CR1 doi: 10.1016/B978-081551534-0.50014-2 – volume: 39 start-page: 315 year: 1998 ident: 8099_CR8 publication-title: Scripta Mater doi: 10.1016/S1359-6462(98)00164-X – volume: 375–377 start-page: 975 year: 2004 ident: 8099_CR56 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.175 – start-page: S-251 volume-title: Fundamentals of materials science and engineering year: 2001 ident: 8099_CR49 – volume: 17 start-page: 5 year: 1973 ident: 8099_CR44 publication-title: Prog Mater Sci doi: 10.1016/0079-6425(73)90001-7 – volume: 46 start-page: 7713 year: 2011 ident: 8099_CR26 publication-title: J Mater Sci doi: 10.1007/s10853-011-5751-x – volume: A459 start-page: 75 year: 2007 ident: 8099_CR34 publication-title: Mater Sci Eng – volume: 33 start-page: 561 year: 2010 ident: 8099_CR65 publication-title: Bull Mater Sci doi: 10.1007/s12034-010-0086-9 – volume: 85 start-page: 2750 year: 2004 ident: 8099_CR30 publication-title: Appl Phys Lett doi: 10.1063/1.1799238 – volume: 10A start-page: 699 year: 1979 ident: 8099_CR52 publication-title: Metall Trans doi: 10.1007/BF02658391 – volume: 87 start-page: 061921 year: 2005 ident: 8099_CR58 publication-title: Appl Phys Lett doi: 10.1063/1.2008377 – volume: 54 start-page: 4953 year: 2006 ident: 8099_CR60 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.08.004 – volume: 47 start-page: 3117 year: 1999 ident: 8099_CR37 publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00109-3 – volume: 5–8 start-page: 1509 year: 2007 ident: 8099_CR16 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2006.07.019 – volume: 54 start-page: 2137 year: 2006 ident: 8099_CR19 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2006.02.041 – volume: A341 start-page: 216 year: 2003 ident: 8099_CR38 publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(02)00238-1 – ident: 8099_CR21 – start-page: 102 volume-title: Elements of X-ray diffraction year: 1978 ident: 8099_CR27 – volume: 51 start-page: 2097 year: 2003 ident: 8099_CR55 publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00011-9 – volume: 92 start-page: 011903 year: 2008 ident: 8099_CR63 publication-title: Appl Phys Lett doi: 10.1063/1.2828699 – ident: 8099_CR47 – volume: A493 start-page: 33 year: 2008 ident: 8099_CR62 publication-title: Mater Sci Eng doi: 10.1016/j.msea.2007.06.095 – volume: 59 start-page: 6861 year: 2011 ident: 8099_CR35 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.019 – volume: 381 start-page: 71 year: 2004 ident: 8099_CR32 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.03.064 – volume: 143 start-page: 307 year: 1934 ident: 8099_CR43 publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1934.0004 – volume-title: Nanostructured metals and alloys year: 2011 ident: 8099_CR3 – volume: 42 start-page: 1403 year: 2007 ident: 8099_CR2 publication-title: J Mater Sci doi: 10.1007/s10853-006-0609-3 – volume: 51 start-page: 5743 year: 2003 ident: 8099_CR7 publication-title: Acta Mater doi: 10.1016/j.actamat.2003.08.032 – volume: 53 start-page: 1521 year: 2005 ident: 8099_CR13 publication-title: Acta Mater doi: 10.1016/j.actamat.2004.12.005 – volume: 706–709 start-page: 1601 year: 2012 ident: 8099_CR48 publication-title: Mater Sci For – volume: 53 start-page: 2337 year: 2005 ident: 8099_CR31 publication-title: Acta Mater doi: 10.1016/j.actamat.2005.01.041 – volume-title: Mechanical metallurgy, SI Metric year: 1988 ident: 8099_CR39 – volume: 51 start-page: 427 year: 2006 ident: 8099_CR28 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2005.08.003 – volume: 81 start-page: 1240 year: 2002 ident: 8099_CR14 publication-title: Appl Phys Lett doi: 10.1063/1.1501158 – volume: 18 start-page: 1686 year: 2009 ident: 8099_CR64 publication-title: Science doi: 10.1126/science.1178226 – volume: 49 start-page: 663 year: 2003 ident: 8099_CR11 publication-title: Scripta Mater doi: 10.1016/S1359-6462(03)00396-8 – volume: 525 start-page: 68 year: 2009 ident: 8099_CR42 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.06.031 – volume: 6 start-page: 581 year: 1995 ident: 8099_CR24 publication-title: Nanostruct Mater doi: 10.1016/0965-9773(95)00125-5 – volume: 25 start-page: 232 year: 1985 ident: 8099_CR40 publication-title: Exp Mech doi: 10.1007/BF02325092 – volume: 486 start-page: 267 year: 2008 ident: 8099_CR12 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.10.002 |
SSID | ssj0005721 |
Score | 2.1468856 |
Snippet | Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe... Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 µm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16... Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16... Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 mu m), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni-Fe (16... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3847 |
SubjectTerms | Activated Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Deformation mechanisms Dislocations Fracture mechanics Grain growth heat Heat generation Iron Localization Materials Science Nanocrystals Necking Nickel Plastic deformation Polycrystals Polymer Sciences Solid Mechanics Strain Strain localization Strain rate Strain rate sensitivity Temperature Tensile deformation |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QUOvBELBRmEhARKFceOkxxXqEt57QFaqZwsx55UK1C2anYP9MR_4B_yS5jJY7ctUKnnjB9jj-cRz3wGeKECYm5SGeVGZ5F2xkfs1Ue50iZNQoKZ4_8dn2Zm70C_P0wP-zruZsh2H64kW019ptiNTAuFvpq0alFEFPJspTIv8hFsTd5-_bC7yezIEjmAhDNc2nCZ-a9Ozpmji0r5r9vR1uhMb8H-MN0u1-TbzmpZ7vjTC0iOV-TnNtzsnVAx6aTmDlzD-i7cOANNeA_cRzZy81MMommfkRCuDoI1tzhqkap5Q0VX5CiOyQWnrkTAdS2koBa1qxf-5Af5nwz8jWI2bzuZzX___DXF-3Aw3d1_sxf1zzFEnl89iIIuYsaGMQW6UsaYhlhrHztZ6lw5z-BvFB2WGcZVYFB8KdGnpc8rH-uQaK8ewKhe1PgQBEXkzhvqJJNOm0o6VFlVhMoX3pCDhmOIh12xvscqZ16_2w3KMq-epdWzvHpWjuHVuslxB9RxGfFz3mrLABg1Z9gcuVXT2HdfPtuJymSXcDmGlz1RtaDBvesLFogFxsw6R7k9iIztVUBjSVFSrKa1isfwbP2ZDi_fyLgaF6vGkrlhlaiUuoSGfUBNcSfN-vUgSZth_svjoytRP4brCYtim8q5DaPlyQqfkLu1LJ_2x-sPGeYexA priority: 102 providerName: Springer Nature |
Title | Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe |
URI | https://link.springer.com/article/10.1007/s10853-014-8099-1 https://www.proquest.com/docview/2259744430 https://www.proquest.com/docview/1531017333 https://www.proquest.com/docview/1710246261 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABlZdYaCuDkJBAFnHsOMkJ7VablleECiuVk-XYTrVSlSxN91BO_Af-YX8JM3nstiD25IPf9nge9vgbQl4K532iIs4SJWMmjbIMtXqWCKmi0IU-Nnjf8TlXRzP54SQ66S_cmt6tcuCJLaN2tcU78rdAd6D6SimCd4sfDKNG4etqH0LjNtnmIGmQzpPscO3iEYd8QAtH3LThVbP7OgeCCgxpCTw6TRm_IZf-5s7_PJO20ifbIfd6tZGOu32-T2756gG5ew1M8CExn1AszX96R5s28AM1laPIa-lpiy2NW0C7b4l0AUozNEWdX_1epFCjMlVtzy9BY0Sobk_zedtIPr_69Tvzj8gsm347OGJ9AAVmMU4BczINEM1Fpd4UPPCRC6S0geGFTISxCNcG9lwR-6B0CGPPubdRYZPSBtKF0orHZKuqK_-EULChjVXQSMyNVCU3XsRl6kqbWgUqlR-RYFg-bXt0cZzrmV7jIuOKa1hxjSuu-Yi8XlVZdNAamwq_wD3RCFlRoU_MqVk2jX7_9ViPRcw7F8kRedUXKmvo3Jr-iwFMAVGubpTcHfZW94e20WsSG5Hnq2w4bviGYipfLxsNAgKZmBBiQxnU2iRYijDqNwPdrLv57xyfbh7UM3InRHptvS13ydbF-dLvgUZ0Uey3ZL9PtsfZZJJjevj94xTSyTT_cgy5s3D8B53zCuY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IH7FlgIGgZBAEXHsJJsDQgW62qXbCJVW6s11bKdaCSXbpitUTrwD78FD8STM5GeXgthbz3HG9ng8P_bMZ4Bnwjo3iELuDSIZe1JHxiOv3hsIGYWBDVys6bxjN41GB_LjYXi4Bj-7WhhKq-x0Yq2obWnojPw1yh26vlIK_-3sxKNXo-h2tXtCoxGLHXf-FUO26s34A67v8yAYbu-_H3ntqwKeIfB-z8rEJ4iTKHE6474LrS-l8TXP5EBoQxhmGORksfNzS9junDsTZmaQG1_aQBqBdK_AuqSK1h6sv9tOP-0tk0rigHf45ITU1t2jNsV6aBoxdJdoFZLE4xcs4d_24J-L2dreDW_CjdZRZVuNZN2CNVfchut_wBfeAT0hQzj95iyr6qcmmC4sI-3Ojms0a1p01hRCshm66UiKWbeol2T4R6GL0pyeo49K4OCOpdOaSDr99f3H0N2Fg0th7j3oFWXh7gPDqF2bCInEXMso59qJOE9sbhIToRPn-uB37FOmxTOnuX5RSyRm4rhCjiviuOJ9eLn4ZdaAeaxq_JTWRBFIRkFZOMd6XlVq_HlPbYmYN0mZfXjRNspL7NzotqgBp0C4WhdabnZrq1o1UamlUPfhyeIzbnC6tdGFK-eVQpNEalMIsaIN-YkSY1Mc9atObpbd_HeOG6sH9RiujvZ3J2oyTncewLWAZLfO9dyE3tnp3D1Ef-wse9RuAgZHl73vfgM05EKq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIlVwQNCCWChgEBISKGocO05yXAGrFtoVAlbqzXLsSbUS8q6a3QOc-A_8w_6SzuSx29KHxDmTcTy25xHPfMPYG-kBcp2KKNcqi5TVLiKvPsql0mniE8gs_e84Guv9ifp8nB53fU7rPtu9v5JsaxoIpSks9ua-2rtQ-IZmBsNghRq2KCIMf-6gNha00SfJcJ3jkSWihwsn4LT-WvM6FpcM07_q-co9aWN-Rg_Y_c5v5MN2oR-yDQjb7N4FNMEdZg_JLk1_g-d10_mB2-A5KVt-0oBL0xrwti6Rz9FrRlbcw6p8keMbwYaZO_2FLiNhdQMfTxsm4-nZn78jeMQmo08_PuxHXQeFyFGjgsirIiY4F12ALUUMqY-VcrEVpcqldYTXhgFdmUFcecKxFwJcWrq8crHyiXLyMdsMswBPGMcg2jqNTDJhla6EBZlVha9c4TT6VDBgcS8-4zp4cZrrT7MGRiaJG5S4IYkbMWDvVq_MW2yN24hf05oYwqwIlBRzYpd1bQ6-fzNDmYk2R3LA3nZE1QwHd7arMcApEMzVJcrdfm1Nd2prg7oNwyulZDxgr1aP8bzRJYoNMFvWBi0EaTEp5S005LYpDBXxq9_3-2Y9zI1zfPpf1C_Z1tePI3N4MP7yjN1NaCc3iZi7bHNxuoTn6CwtyhfNgTgH98MJFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+strain+and+heat+generation+during+plastic+deformation+in+nanocrystalline+Ni+and+Ni-fe&rft.jtitle=Journal+of+materials+science&rft.au=Chan%2C+T&rft.au=Zhou%2C+Y&rft.au=Brooks%2C+I&rft.au=Palumbo%2C+G&rft.date=2014-05-01&rft.pub=Springer&rft.issn=0022-2461&rft.volume=49&rft.issue=10&rft.spage=3847&rft_id=info:doi/10.1007%2Fs10853-014-8099-1&rft.externalDocID=A371000094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |