Condensation of water vapor from humid air inside vertical channels formed by flat plates
Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas...
Saved in:
Published in | iScience Vol. 25; no. 1; p. 103565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2021.103565 |
Cover
Abstract | Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.
[Display omitted]
•Experimental and theoretical study of humid air condensation on vertical plates•Unique condenser geometry was proposed, allowing re-use of condensation latent heat•A new correlation for humid air condensation on a series of plates was proposed•Potential application of correlation for fresh water generation was demonstrated
Physics; Interdisciplinary physics; Applied sciences; |
---|---|
AbstractList | Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. [Display omitted] •Experimental and theoretical study of humid air condensation on vertical plates•Unique condenser geometry was proposed, allowing re-use of condensation latent heat•A new correlation for humid air condensation on a series of plates was proposed•Potential application of correlation for fresh water generation was demonstrated Physics; Interdisciplinary physics; Applied sciences; Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. • Experimental and theoretical study of humid air condensation on vertical plates • Unique condenser geometry was proposed, allowing re-use of condensation latent heat • A new correlation for humid air condensation on a series of plates was proposed • Potential application of correlation for fresh water generation was demonstrated Physics; Interdisciplinary physics; Applied sciences; |
ArticleNumber | 103565 |
Author | Poredoš, Primož Vidrih, Boris Žel, Tilen Ma, Qiuming Petelin, Nada Wang, Ruzhu Kitanovski, Andrej |
Author_xml | – sequence: 1 givenname: Primož surname: Poredoš fullname: Poredoš, Primož organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China – sequence: 2 givenname: Nada surname: Petelin fullname: Petelin, Nada organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia – sequence: 3 givenname: Boris surname: Vidrih fullname: Vidrih, Boris organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia – sequence: 4 givenname: Tilen surname: Žel fullname: Žel, Tilen organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia – sequence: 5 givenname: Qiuming surname: Ma fullname: Ma, Qiuming organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China – sequence: 6 givenname: Ruzhu surname: Wang fullname: Wang, Ruzhu email: rzwang@sjtu.edu.cn organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China – sequence: 7 givenname: Andrej surname: Kitanovski fullname: Kitanovski, Andrej email: andrej.kitanovski@fs.uni-lj.si organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35024576$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSdP8gR6Kjr3sVpIt2YZSKEs_AoFeculJzErjrBZb2kreDfn3nY3TkPQQNEiD9N6b0cy8ZScxRWTsvRRLKaT5tF2G4sJSCSXpotJGv2JnSrfdQohanTzxT9lFKVshhCKrO_OGnVaaPN2YM_Z7laLHWGAKKfLU81uYMPMD7FLmfU4j3-zH4DmEzEMswSM_YJ6Cg4G7DcSIQ-F9yiN6vr7j_QAT39GG5R173cNQ8OLhPGfX379dr34urn79uFx9vVo4reS08HXT1qIRsjHeg1TK-WZNyxlVmQpc41FDLQBb3VPWXeOFM36tUCEIh9U5u5xlfYKt3eUwQr6zCYK9v0j5xsIx3wGtrvqarK1kgzVAA1o61UpHhekrBZK0vsxau_2aPuQwThmGZ6LPX2LY2Jt0sG1DhdUdCXx8EMjpzx7LZEfqEg4DREz7YpWRna4r3RqCfnga6zHIv9YQQM0Al1MpGftHiBT2OAJ2a48jYI8jYOcRIFL7H8mF6b63lG8YXqZ-nqnUUTwEzJYQGB36kNFNVM7wEv0v2ljMhg |
CitedBy_id | crossref_primary_10_1007_s00231_023_03361_z crossref_primary_10_22531_muglajsci_1249821 crossref_primary_10_1002_smll_202309397 crossref_primary_10_3390_w15173023 crossref_primary_10_1002_advs_202204724 crossref_primary_10_1016_j_applthermaleng_2024_122979 crossref_primary_10_1016_j_xcrp_2024_102115 crossref_primary_10_1038_s41467_024_51880_y crossref_primary_10_1016_j_joule_2022_06_020 crossref_primary_10_1021_acsmaterialsau_2c00052 crossref_primary_10_1038_s41467_022_33062_w crossref_primary_10_1063_5_0164055 crossref_primary_10_1016_j_applthermaleng_2023_122121 crossref_primary_10_1039_D2EE01234K crossref_primary_10_1016_j_energy_2022_125958 |
Cites_doi | 10.1016/j.rser.2021.110802 10.1016/j.cej.2021.128725 10.1039/C9EE04122B 10.1080/08916152.2014.926432 10.1016/j.cej.2019.122364 10.1016/j.apenergy.2020.114923 10.1155/2021/5547172 10.1016/j.rser.2021.110910 10.1016/j.cej.2017.08.047 10.1007/s00231-003-0425-0 10.1016/j.cej.2020.126348 10.1016/j.joule.2021.04.005 10.1016/j.cej.2020.128296 10.1016/j.ijheatmasstransfer.2021.121160 10.1007/BF00997641 10.1021/ie4033999 10.1016/0017-9310(69)90158-6 10.1126/sciadv.abf3978 10.1016/j.nucengdes.2008.02.016 10.1016/S1004-9541(11)60076-1 10.1016/j.ijthermalsci.2006.07.001 10.1252/jcej.12.196 10.1016/S0017-9310(02)00094-7 10.1016/j.watres.2021.117154 10.3390/en14082291 10.1016/j.ijrefrig.2018.05.041 10.1016/0029-5493(95)01125-0 10.1016/j.icheatmasstransfer.2004.08.004 10.13182/NT84-A33341 10.1021/ie50234a018 10.1115/1.2728907 10.1016/j.cis.2020.102339 10.1155/2019/7941363 10.1016/j.applthermaleng.2018.04.020 10.18280/ijht.330104 10.1016/j.joule.2020.09.008 10.1016/0017-9310(61)90030-8 10.1016/0029-5493(90)90057-5 10.1016/j.expthermflusci.2016.02.008 10.2514/1.43136 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2021.103565 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_53f43f48317e4aa7a51c281c020f32a1 PMC8724959 35024576 10_1016_j_isci_2021_103565 S2589004221015352 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-d4784070176dda122cd7b7b7c62363ac7de5a40ae85f50297d0c6db2e2ea0ce3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 17:21:18 EDT 2025 Fri Jul 11 05:09:17 EDT 2025 Mon Jul 21 06:06:06 EDT 2025 Tue Jul 01 05:00:45 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Sat Jun 07 17:00:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interdisciplinary physics Applied sciences Physics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-d4784070176dda122cd7b7b7c62363ac7de5a40ae85f50297d0c6db2e2ea0ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://doaj.org/article/53f43f48317e4aa7a51c281c020f32a1 |
PMID | 35024576 |
PQID | 2619543586 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53f43f48317e4aa7a51c281c020f32a1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724959 proquest_miscellaneous_2619543586 pubmed_primary_35024576 crossref_primary_10_1016_j_isci_2021_103565 crossref_citationtrail_10_1016_j_isci_2021_103565 elsevier_sciencedirect_doi_10_1016_j_isci_2021_103565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-21 |
PublicationDateYYYYMMDD | 2022-01-21 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cengel, Ghajar (bib9) 2015 EN ISO 5801:2017 - Fans - Performance testing using standardized airways (ISO 5801:2017). Fujii (bib19) 1991 SIST EN ISO 5167-2:2004 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full - Part 2: Orifice Plates (ISO 5167-2:2003). Chougule, Sahu (bib12) 2016; 29 Li, Li (bib30) 2011; 19 Liao, Vierow (bib31) 2006; 129 Karkoszka (bib26) 2007 Katopodes (bib27) 2018 Uchida, Oyama, Togo (bib52) 1965 Stephan, Laesecke (bib49) 1980; 13 Bum-Jin, Sin, Min Chan, Ahmadinejad (bib7) 2004; 31 Denny, Mills (bib14) 1969; 12 Martinez-Urrutia, Fernandez de Arroiabe, Ramirez, Martinez-Agirre, Mounir Bou-Ali (bib33) 2018; 95 Naylor, Friedman (bib34) 2010; 24 Chen, Liu, Ma, Wang, Bai, Pan (bib11) 2020; 379 Ma, Xu, Wang (bib32) 2021 Poredoš, Petelin, Vidrih, Žel, Ma, Wang, Kitanovski (bib39) 2021; V1 Saraireh, Li, Thorpe (bib42) 2010 Wang, Yu, Liang, Zhang (bib53) 2018; 137 Asano (bib3) 2006 Ganguli, Patel, Maheshwari, Pandit (bib21) 2008; 238 Ait Hssain, Armou, Zine-Dine, Mir, El Hammami (bib1) 2021; 2021 Ejeian, Wang (bib15) 2021 Fuller, Schettler, Giddings (bib20) 1966; 58 LaPotin, Zhong, Zhang, Zhao, Leroy, Kim, Rao, Wang (bib29) 2021; 5 Trosseille, Mongruel, Royon, Beysens (bib51) 2021; 172 Asano, Nakano, Inaba (bib4) 1979; 12 Cao, Ruan, Tan, Bai, Du, Liu (bib8) 2021; 410 Kakac, Shah, Aung (bib25) 1987 Wang, Xie, Pan, Dai, Wang, Ge (bib54) 2021; 141 Farooq, Zhang, Gao, Gulfam (bib18) 2021 Song, Fan (bib48) 2021 Xu, Ren, Song, Liu, Liu, Sun, Ling (bib57) 2021; 403 2018. Schlichting, Gersten (bib43) 2016 Wu, Yang, Lu, Zhao, Chen, Qian (bib55) 2021; 412 Corradini (bib13) 1984; 64 Gross, Hartnett, Masson, Gazley (bib23) 1961; 3 Kim, Corradini (bib28) 1990; 118 Xu, Yu, Yin, Zhang, Zhong (bib56) 2017; 330 Yi, Tian, Fang (bib59) 2015; 33 Roetzel, Luo, Chen (bib41) 2019 Bergman, Incropera, DeWitt, Lavine (bib6) 2011 Xu, Zhang, Zhao, Li, Bhatia, Wang, Wilke, Song, Labban, Lienhard (bib58) 2020; 13 Ait Hssain, El Hammami, Mir, Armou, Zine-Dine (bib2) 2019; 2019 Faghri, Zhang (bib17) 2020 2003. Poredoš, Petelin, Žel, Vidrih, Gatarić, Kitanovski (bib40) 2021; 14 Haechler, Park, Schnoering, Gulich, Rohner, Tripathy, Milionis, Schutzius, Poulikakos (bib24) 2021; 7 Tagami (bib50) 1965 Ge, Wang, Zhao, Zhao, Liu (bib22) 2016; 75 Zanganeh, Goharrizi, Ayatollahi, Feilizadeh, Dashti (bib60) 2020; 268 Peterson, Schrock, Kageyama (bib38) 1992 Bell, Wronski, Quoilin, Lemort (bib5) 2014; 53 Othmer (bib36) 1929; 21 Siow, Ormiston, Soliman (bib44) 2007; 46 Siow, Ormiston, Soliman (bib45) 2004; 40 Zhang, Xu, Zhao, Bhatia, Zhong, Gong, Wang (bib61) 2021 Peterson (bib37) 1996; 162 Nusselt (bib35) 1916; 60 Siow, Ormiston, Soliman (bib46) 2002; 45 Charef, Feddaoui, Alla, Najim (bib10) 2017 Othmer (10.1016/j.isci.2021.103565_bib36) 1929; 21 Ejeian (10.1016/j.isci.2021.103565_bib15) 2021 Farooq (10.1016/j.isci.2021.103565_bib18) 2021 Haechler (10.1016/j.isci.2021.103565_bib24) 2021; 7 Ait Hssain (10.1016/j.isci.2021.103565_bib2) 2019; 2019 Schlichting (10.1016/j.isci.2021.103565_bib43) 2016 Wang (10.1016/j.isci.2021.103565_bib53) 2018; 137 Zanganeh (10.1016/j.isci.2021.103565_bib60) 2020; 268 Cao (10.1016/j.isci.2021.103565_bib8) 2021; 410 Li (10.1016/j.isci.2021.103565_bib30) 2011; 19 Liao (10.1016/j.isci.2021.103565_bib31) 2006; 129 Zhang (10.1016/j.isci.2021.103565_bib61) 2021 Poredoš (10.1016/j.isci.2021.103565_bib39) 2021; V1 Chen (10.1016/j.isci.2021.103565_bib11) 2020; 379 Denny (10.1016/j.isci.2021.103565_bib14) 1969; 12 Martinez-Urrutia (10.1016/j.isci.2021.103565_bib33) 2018; 95 Asano (10.1016/j.isci.2021.103565_bib3) 2006 Gross (10.1016/j.isci.2021.103565_bib23) 1961; 3 Wu (10.1016/j.isci.2021.103565_bib55) 2021; 412 Ganguli (10.1016/j.isci.2021.103565_bib21) 2008; 238 Xu (10.1016/j.isci.2021.103565_bib56) 2017; 330 Saraireh (10.1016/j.isci.2021.103565_bib42) 2010 Roetzel (10.1016/j.isci.2021.103565_bib41) 2019 Faghri (10.1016/j.isci.2021.103565_bib17) 2020 Bergman (10.1016/j.isci.2021.103565_bib6) 2011 LaPotin (10.1016/j.isci.2021.103565_bib29) 2021; 5 Bum-Jin (10.1016/j.isci.2021.103565_bib7) 2004; 31 Bell (10.1016/j.isci.2021.103565_bib5) 2014; 53 Tagami (10.1016/j.isci.2021.103565_bib50) 1965 Fuller (10.1016/j.isci.2021.103565_bib20) 1966; 58 Song (10.1016/j.isci.2021.103565_bib48) 2021 10.1016/j.isci.2021.103565_bib47 Nusselt (10.1016/j.isci.2021.103565_bib35) 1916; 60 Asano (10.1016/j.isci.2021.103565_bib4) 1979; 12 Ait Hssain (10.1016/j.isci.2021.103565_bib1) 2021; 2021 Wang (10.1016/j.isci.2021.103565_bib54) 2021; 141 Chougule (10.1016/j.isci.2021.103565_bib12) 2016; 29 Stephan (10.1016/j.isci.2021.103565_bib49) 1980; 13 Corradini (10.1016/j.isci.2021.103565_bib13) 1984; 64 Ge (10.1016/j.isci.2021.103565_bib22) 2016; 75 Trosseille (10.1016/j.isci.2021.103565_bib51) 2021; 172 Siow (10.1016/j.isci.2021.103565_bib44) 2007; 46 10.1016/j.isci.2021.103565_bib16 Siow (10.1016/j.isci.2021.103565_bib45) 2004; 40 Cengel (10.1016/j.isci.2021.103565_bib9) 2015 Kakac (10.1016/j.isci.2021.103565_bib25) 1987 Poredoš (10.1016/j.isci.2021.103565_bib40) 2021; 14 Katopodes (10.1016/j.isci.2021.103565_bib27) 2018 Yi (10.1016/j.isci.2021.103565_bib59) 2015; 33 Siow (10.1016/j.isci.2021.103565_bib46) 2002; 45 Xu (10.1016/j.isci.2021.103565_bib58) 2020; 13 Peterson (10.1016/j.isci.2021.103565_bib37) 1996; 162 Fujii (10.1016/j.isci.2021.103565_bib19) 1991 Xu (10.1016/j.isci.2021.103565_bib57) 2021; 403 Charef (10.1016/j.isci.2021.103565_bib10) 2017 Peterson (10.1016/j.isci.2021.103565_bib38) 1992 Karkoszka (10.1016/j.isci.2021.103565_bib26) 2007 Naylor (10.1016/j.isci.2021.103565_bib34) 2010; 24 Ma (10.1016/j.isci.2021.103565_bib32) 2021 Kim (10.1016/j.isci.2021.103565_bib28) 1990; 118 Uchida (10.1016/j.isci.2021.103565_bib52) 1965 |
References_xml | – volume: 330 year: 2017 ident: bib56 article-title: Heterogeneous condensation coupled with partial gas circulation for fine particles abatement publication-title: Chem. Eng. J. – volume: 238 year: 2008 ident: bib21 article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium publication-title: Nucl. Eng. Des. – reference: . 2003. – volume: 12 start-page: 196 year: 1979 end-page: 202 ident: bib4 article-title: Forced convection film condensation of vapors in the presence of noncondensable gas on a small vertical flat plate publication-title: J. Chem. Eng. Jpn. – volume: 64 start-page: 186 year: 1984 end-page: 195 ident: bib13 article-title: Turbulent condensation on a cold wall in the presence of a noncondensable gas publication-title: Nucl. Technol. – volume: 13 year: 1980 ident: bib49 article-title: The influence of suction on heat and mass transfer in condensation of mixed vapors publication-title: Wärme Stoffübertragung – start-page: 128 year: 2017 end-page: 133 ident: bib10 article-title: Numerical study of humid air condensation in presence of non-condensable gas along an inclined channel publication-title: Energy Procedia – year: 2021 ident: bib48 article-title: Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer publication-title: Adv. Colloid Interf. Sci. – volume: 3 year: 1961 ident: bib23 article-title: A review of binary laminar boundary layer characteristics publication-title: Int. J. Heat Mass Transf. – volume: 95 year: 2018 ident: bib33 article-title: Contact angle measurement for LiBr aqueous solutions on different surface materials used in absorption systems publication-title: Int. J. Refrig. – volume: 141 year: 2021 ident: bib54 article-title: Air-cooled adsorption-based device for harvesting water from island air publication-title: Renew. Sustain. Energy Rev. – volume: 33 start-page: 25 year: 2015 end-page: 32 ident: bib59 article-title: CFD simulation of air-steam condensation on an isothermal vertical plate publication-title: Int. J. Heat Technol. – volume: 58 year: 1966 ident: bib20 article-title: A new method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. – volume: 12 year: 1969 ident: bib14 article-title: Nonsimilar solutions for laminar film condensation on a vertical surface publication-title: Int. J. Heat Mass Transf. – volume: 2019 year: 2019 ident: bib2 article-title: Numerical analysis of laminar convective condensation with the presence of noncondensable gas flowing downward in a vertical channel publication-title: Math. Probl. Eng. – volume: 129 start-page: 988 year: 2006 end-page: 994 ident: bib31 article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases publication-title: J. Heat Transfer – year: 1987 ident: bib25 article-title: Handbook of Single-Phase Convective Heat Transfer – volume: 5 year: 2021 ident: bib29 article-title: Dual-stage atmospheric water harvesting device for scalable solar-driven water production publication-title: Joule – reference: . 2018. – volume: 19 start-page: 944 year: 2011 end-page: 954 ident: bib30 article-title: Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation publication-title: Chin. J. Chem. Eng. – year: 1991 ident: bib19 article-title: Theory of Laminar Film Condensation – volume: 13 year: 2020 ident: bib58 article-title: Ultrahigh-efficiency desalination: via a thermally-localized multistage solar still publication-title: Energy Environ. Sci. – volume: 162 year: 1996 ident: bib37 article-title: Theoretical basis for the Uchida correlation for condensation in reactor containments publication-title: Nucl. Eng. Des. – start-page: 93 year: 1965 end-page: 102 ident: bib52 article-title: Evaluation of post-incident cooling systems of light water power reactors publication-title: Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy – volume: 379 year: 2020 ident: bib11 article-title: Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance publication-title: Chem. Eng. J. – year: 1965 ident: bib50 article-title: Interim Report on Safety Assessments and Facilities Establishment Project in Japan for Period Ending June 1965 (No. 1) – start-page: 96 year: 2010 end-page: 100 ident: bib42 article-title: Modelling of heat and mass transfer involving vapour condensation in the presence of non-condensable gases publication-title: 17th Australasian Fluid Mechanics Conference 2010 – volume: 53 year: 2014 ident: bib5 article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: eabf3978 year: 2021 ident: bib24 article-title: Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere publication-title: Sci. Adv. – year: 2007 ident: bib26 article-title: Mechanistic Modelling of Water Vapour Condensation in Presence of Noncondensable Gases – year: 2021 ident: bib15 article-title: Adsorption-based atmospheric water harvesting publication-title: Joule – volume: 31 start-page: 1067 year: 2004 end-page: 1074 ident: bib7 article-title: Experimental comparison of film-wise and drop-wise condensations of steam on vertical flat plates with the presence of air publication-title: Int. Commun. Heat Mass Transf. – volume: 403 year: 2021 ident: bib57 article-title: Colorful superhydrophobic concrete coating publication-title: Chem. Eng. J. – volume: 2021 year: 2021 ident: bib1 article-title: Numerical investigation of influence of nanoparticles presence on water vapor condensation process inside a vertical channel publication-title: J. Nanomater. – volume: 172 year: 2021 ident: bib51 article-title: Radiative cooling for dew condensation publication-title: Int. J. Heat Mass Transf. – year: 2021 ident: bib61 article-title: Passive, high-efficiency thermally-localized solar desalination publication-title: Energy Environ. Sci. – reference: EN ISO 5801:2017 - Fans - Performance testing using standardized airways (ISO 5801:2017). – volume: 137 year: 2018 ident: bib53 article-title: Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils publication-title: Appl. Therm. Eng. – volume: 45 year: 2002 ident: bib46 article-title: Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels publication-title: Int. J. Heat Mass Transf. – volume: 21 year: 1929 ident: bib36 article-title: The condensation of steam publication-title: Ind. Eng. Chem. – year: 2021 ident: bib32 article-title: Distributed solar desalination by membrane distillation: current status and future perspectives publication-title: Water Res. – year: 2011 ident: bib6 article-title: Fundamentals of Heat and Mass Transfer – volume: 60 start-page: 541 year: 1916 end-page: 546 ident: bib35 article-title: Die Oberflächenkondensation des Wasserdampfes publication-title: Z. Vereins Deutsch. Ing. – volume: 268 year: 2020 ident: bib60 article-title: Efficiency improvement of solar stills through wettability alteration of the condensation surface: an experimental study publication-title: Appl. Energy – volume: 410 year: 2021 ident: bib8 article-title: Condensational growth activated by cooling method for multi-objective treatment of desulfurized flue gas: a full-scale study publication-title: Chem. Eng. J. – year: 2006 ident: bib3 article-title: Mass Transfer: From Fundamentals to Modern Industrial Applications – year: 2020 ident: bib17 article-title: Fundamentals of Multiphase Heat Transfer and Flow – volume: 412 year: 2021 ident: bib55 article-title: A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications publication-title: Chem. Eng. J. – year: 1992 ident: bib38 article-title: Diffusion Layer Theory for Turbulent Vapor Condensation with Noncondensable Gases – volume: V1 year: 2021 ident: bib39 article-title: Experimental condensate mass flux values during the condensation of water vapor from humid air inside vertical channels formed by flat plates publication-title: Mendeley Data – year: 2018 ident: bib27 article-title: Free-Surface Flow: Computational Methods – volume: 75 year: 2016 ident: bib22 article-title: Condensation of steam with high CO2 concentration on a vertical plate publication-title: Exp. Therm. Fluid Sci. – reference: SIST EN ISO 5167-2:2004 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full - Part 2: Orifice Plates (ISO 5167-2:2003). – year: 2015 ident: bib9 article-title: Heat and Mass Transfer: Fundamentals and Applications – volume: 40 start-page: 365 year: 2004 end-page: 375 ident: bib45 article-title: A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels publication-title: Heat Mass Transf. – year: 2021 ident: bib18 article-title: Emerging radiative materials and prospective applications of radiative sky cooling - a review publication-title: Renew. Sustain. Energy Rev. – volume: 14 year: 2021 ident: bib40 article-title: Performance of the condensation process for water vapour in the presence of a non-condensable gas on vertical plates and horizontal tubes publication-title: Energies – volume: 118 start-page: 193 year: 1990 end-page: 212 ident: bib28 article-title: Modeling of condensation heat transfer in a reactor containment publication-title: Nucl. Eng. Des. – volume: 29 year: 2016 ident: bib12 article-title: Comparative study on heat transfer enhancement of low volume concentration of Al2o3-water and carbon nano-tube-water nano-fluids in transition regime using helical screw tape inserts publication-title: Exp. Heat Transf. – volume: 24 year: 2010 ident: bib34 article-title: Model of film condensation on a vertical plate with noncondensing gas publication-title: J. Thermophys. Heat Transf. – year: 2019 ident: bib41 article-title: Design and Operation of Heat Exchangers and their Networks – volume: 46 year: 2007 ident: bib44 article-title: Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels publication-title: Int. J. Therm. Sci. – year: 2016 ident: bib43 article-title: Boundary-layer theory – year: 1992 ident: 10.1016/j.isci.2021.103565_bib38 – volume: 141 year: 2021 ident: 10.1016/j.isci.2021.103565_bib54 article-title: Air-cooled adsorption-based device for harvesting water from island air publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110802 – volume: 412 year: 2021 ident: 10.1016/j.isci.2021.103565_bib55 article-title: A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128725 – volume: 13 year: 2020 ident: 10.1016/j.isci.2021.103565_bib58 article-title: Ultrahigh-efficiency desalination: via a thermally-localized multistage solar still publication-title: Energy Environ. Sci. doi: 10.1039/C9EE04122B – volume: 29 year: 2016 ident: 10.1016/j.isci.2021.103565_bib12 article-title: Comparative study on heat transfer enhancement of low volume concentration of Al2o3-water and carbon nano-tube-water nano-fluids in transition regime using helical screw tape inserts publication-title: Exp. Heat Transf. doi: 10.1080/08916152.2014.926432 – volume: 379 year: 2020 ident: 10.1016/j.isci.2021.103565_bib11 article-title: Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122364 – volume: 268 year: 2020 ident: 10.1016/j.isci.2021.103565_bib60 article-title: Efficiency improvement of solar stills through wettability alteration of the condensation surface: an experimental study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114923 – start-page: 96 year: 2010 ident: 10.1016/j.isci.2021.103565_bib42 article-title: Modelling of heat and mass transfer involving vapour condensation in the presence of non-condensable gases – volume: 2021 year: 2021 ident: 10.1016/j.isci.2021.103565_bib1 article-title: Numerical investigation of influence of nanoparticles presence on water vapor condensation process inside a vertical channel publication-title: J. Nanomater. doi: 10.1155/2021/5547172 – year: 2018 ident: 10.1016/j.isci.2021.103565_bib27 – year: 2021 ident: 10.1016/j.isci.2021.103565_bib18 article-title: Emerging radiative materials and prospective applications of radiative sky cooling - a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110910 – volume: 330 year: 2017 ident: 10.1016/j.isci.2021.103565_bib56 article-title: Heterogeneous condensation coupled with partial gas circulation for fine particles abatement publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.047 – volume: 40 start-page: 365 year: 2004 ident: 10.1016/j.isci.2021.103565_bib45 article-title: A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels publication-title: Heat Mass Transf. doi: 10.1007/s00231-003-0425-0 – volume: 403 year: 2021 ident: 10.1016/j.isci.2021.103565_bib57 article-title: Colorful superhydrophobic concrete coating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126348 – year: 2021 ident: 10.1016/j.isci.2021.103565_bib15 article-title: Adsorption-based atmospheric water harvesting publication-title: Joule doi: 10.1016/j.joule.2021.04.005 – volume: 60 start-page: 541 year: 1916 ident: 10.1016/j.isci.2021.103565_bib35 article-title: Die Oberflächenkondensation des Wasserdampfes publication-title: Z. Vereins Deutsch. Ing. – volume: 410 year: 2021 ident: 10.1016/j.isci.2021.103565_bib8 article-title: Condensational growth activated by cooling method for multi-objective treatment of desulfurized flue gas: a full-scale study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128296 – ident: 10.1016/j.isci.2021.103565_bib47 – year: 2007 ident: 10.1016/j.isci.2021.103565_bib26 – volume: 172 year: 2021 ident: 10.1016/j.isci.2021.103565_bib51 article-title: Radiative cooling for dew condensation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121160 – year: 2015 ident: 10.1016/j.isci.2021.103565_bib9 – ident: 10.1016/j.isci.2021.103565_bib16 – volume: 13 year: 1980 ident: 10.1016/j.isci.2021.103565_bib49 article-title: The influence of suction on heat and mass transfer in condensation of mixed vapors publication-title: Wärme Stoffübertragung doi: 10.1007/BF00997641 – volume: 53 year: 2014 ident: 10.1016/j.isci.2021.103565_bib5 article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4033999 – start-page: 128 year: 2017 ident: 10.1016/j.isci.2021.103565_bib10 article-title: Numerical study of humid air condensation in presence of non-condensable gas along an inclined channel – volume: 12 year: 1969 ident: 10.1016/j.isci.2021.103565_bib14 article-title: Nonsimilar solutions for laminar film condensation on a vertical surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(69)90158-6 – volume: 7 start-page: eabf3978 year: 2021 ident: 10.1016/j.isci.2021.103565_bib24 article-title: Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere publication-title: Sci. Adv. doi: 10.1126/sciadv.abf3978 – year: 2021 ident: 10.1016/j.isci.2021.103565_bib61 article-title: Passive, high-efficiency thermally-localized solar desalination publication-title: Energy Environ. Sci. – year: 1991 ident: 10.1016/j.isci.2021.103565_bib19 – volume: 238 year: 2008 ident: 10.1016/j.isci.2021.103565_bib21 article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2008.02.016 – volume: 19 start-page: 944 year: 2011 ident: 10.1016/j.isci.2021.103565_bib30 article-title: Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(11)60076-1 – volume: 46 year: 2007 ident: 10.1016/j.isci.2021.103565_bib44 article-title: Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.07.001 – volume: 12 start-page: 196 year: 1979 ident: 10.1016/j.isci.2021.103565_bib4 article-title: Forced convection film condensation of vapors in the presence of noncondensable gas on a small vertical flat plate publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.12.196 – year: 2019 ident: 10.1016/j.isci.2021.103565_bib41 – volume: 45 year: 2002 ident: 10.1016/j.isci.2021.103565_bib46 article-title: Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00094-7 – year: 2021 ident: 10.1016/j.isci.2021.103565_bib32 article-title: Distributed solar desalination by membrane distillation: current status and future perspectives publication-title: Water Res. doi: 10.1016/j.watres.2021.117154 – volume: 14 year: 2021 ident: 10.1016/j.isci.2021.103565_bib40 article-title: Performance of the condensation process for water vapour in the presence of a non-condensable gas on vertical plates and horizontal tubes publication-title: Energies doi: 10.3390/en14082291 – year: 2016 ident: 10.1016/j.isci.2021.103565_bib43 – year: 2020 ident: 10.1016/j.isci.2021.103565_bib17 – volume: 95 year: 2018 ident: 10.1016/j.isci.2021.103565_bib33 article-title: Contact angle measurement for LiBr aqueous solutions on different surface materials used in absorption systems publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.05.041 – volume: 162 year: 1996 ident: 10.1016/j.isci.2021.103565_bib37 article-title: Theoretical basis for the Uchida correlation for condensation in reactor containments publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(95)01125-0 – volume: 31 start-page: 1067 year: 2004 ident: 10.1016/j.isci.2021.103565_bib7 article-title: Experimental comparison of film-wise and drop-wise condensations of steam on vertical flat plates with the presence of air publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2004.08.004 – volume: 64 start-page: 186 year: 1984 ident: 10.1016/j.isci.2021.103565_bib13 article-title: Turbulent condensation on a cold wall in the presence of a noncondensable gas publication-title: Nucl. Technol. doi: 10.13182/NT84-A33341 – volume: 21 year: 1929 ident: 10.1016/j.isci.2021.103565_bib36 article-title: The condensation of steam publication-title: Ind. Eng. Chem. doi: 10.1021/ie50234a018 – volume: 129 start-page: 988 year: 2006 ident: 10.1016/j.isci.2021.103565_bib31 article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases publication-title: J. Heat Transfer doi: 10.1115/1.2728907 – year: 2011 ident: 10.1016/j.isci.2021.103565_bib6 – start-page: 93 year: 1965 ident: 10.1016/j.isci.2021.103565_bib52 article-title: Evaluation of post-incident cooling systems of light water power reactors – year: 2021 ident: 10.1016/j.isci.2021.103565_bib48 article-title: Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2020.102339 – volume: 58 year: 1966 ident: 10.1016/j.isci.2021.103565_bib20 article-title: A new method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. – volume: 2019 year: 2019 ident: 10.1016/j.isci.2021.103565_bib2 article-title: Numerical analysis of laminar convective condensation with the presence of noncondensable gas flowing downward in a vertical channel publication-title: Math. Probl. Eng. doi: 10.1155/2019/7941363 – year: 1987 ident: 10.1016/j.isci.2021.103565_bib25 – volume: 137 year: 2018 ident: 10.1016/j.isci.2021.103565_bib53 article-title: Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.020 – volume: 33 start-page: 25 year: 2015 ident: 10.1016/j.isci.2021.103565_bib59 article-title: CFD simulation of air-steam condensation on an isothermal vertical plate publication-title: Int. J. Heat Technol. doi: 10.18280/ijht.330104 – year: 2006 ident: 10.1016/j.isci.2021.103565_bib3 – volume: 5 year: 2021 ident: 10.1016/j.isci.2021.103565_bib29 article-title: Dual-stage atmospheric water harvesting device for scalable solar-driven water production publication-title: Joule doi: 10.1016/j.joule.2020.09.008 – volume: V1 year: 2021 ident: 10.1016/j.isci.2021.103565_bib39 article-title: Experimental condensate mass flux values during the condensation of water vapor from humid air inside vertical channels formed by flat plates publication-title: Mendeley Data – volume: 3 year: 1961 ident: 10.1016/j.isci.2021.103565_bib23 article-title: A review of binary laminar boundary layer characteristics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(61)90030-8 – volume: 118 start-page: 193 year: 1990 ident: 10.1016/j.isci.2021.103565_bib28 article-title: Modeling of condensation heat transfer in a reactor containment publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(90)90057-5 – volume: 75 year: 2016 ident: 10.1016/j.isci.2021.103565_bib22 article-title: Condensation of steam with high CO2 concentration on a vertical plate publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2016.02.008 – volume: 24 year: 2010 ident: 10.1016/j.isci.2021.103565_bib34 article-title: Model of film condensation on a vertical plate with noncondensing gas publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.43136 – year: 1965 ident: 10.1016/j.isci.2021.103565_bib50 |
SSID | ssj0002002496 |
Score | 2.277105 |
Snippet | Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103565 |
SubjectTerms | Applied sciences Interdisciplinary physics Physics |
Title | Condensation of water vapor from humid air inside vertical channels formed by flat plates |
URI | https://dx.doi.org/10.1016/j.isci.2021.103565 https://www.ncbi.nlm.nih.gov/pubmed/35024576 https://www.proquest.com/docview/2619543586 https://pubmed.ncbi.nlm.nih.gov/PMC8724959 https://doaj.org/article/53f43f48317e4aa7a51c281c020f32a1 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEMglzbPdPIoKuRUT2XrZxyQkhEB6SiE5CVmSicPWu-yjJf8-M5J32W0hvRT7ZMm2pBkx36CZ-Qg5c555lweVlYrxTNROZXXFQ4ZZnZxzaZnEROH77-r2h7h7lI8rVF8YE5bKA6eFO5e8EXCXYOeCsFZbmbuizB3AnIYXNjo-rGIrztRLPF7DUniRWU5iTBCoZp8xk4K7MOMVnMMix6RziZZlxSrF4v1rxulv8PlnDOWKUbrZIds9mqQXaRa75EPo9sjHHlnSft9O98hmDPR0033ydDVCztsUw0NHDf0NYHNCf1nA4RRzTejz_GfrqW0ntI1cnjQyNoMoKSYJdzBcikAXvl-_0mZoZ3Q8RMB6QB5urh-ubrOeXiFzyGKQeaHBu9OwJZX3Ni8K53UNlwNEpLh12gdpBbOhlI1EjivPHLJPhSJY5gI_JBvdqAufCRWCcW2tDwAHBPiQVelVIyV3QqtK6HpA8sXqGteXHkcGjKFZxJi9GJSIQYmYJJEB-bZ8Z5wKb7zb-xKFtuyJRbPjA1Al06uS-ZcqDYhciNz0-CPhCvhU--7Pvy70w8DmxBMX24XRfGrQPZUASEs1IJ-SviyHyCWeemto0WuatDaH9ZaufY4FwEuNjOHV0f-Y9DHZKjCjg-VZkZ-QjdlkHk4BZ83qL3FLvQF_CSI- |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condensation+of+water+vapor+from+humid+air+inside+vertical+channels+formed+by+flat+plates&rft.jtitle=iScience&rft.au=Poredo%C5%A1%2C+Primo%C5%BE&rft.au=Petelin%2C+Nada&rft.au=Vidrih%2C+Boris&rft.au=%C5%BDel%2C+Tilen&rft.date=2022-01-21&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1016%2Fj.isci.2021.103565&rft_id=info%3Apmid%2F35024576&rft.externalDocID=PMC8724959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |