Condensation of water vapor from humid air inside vertical channels formed by flat plates

Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 25; no. 1; p. 103565
Main Authors Poredoš, Primož, Petelin, Nada, Vidrih, Boris, Žel, Tilen, Ma, Qiuming, Wang, Ruzhu, Kitanovski, Andrej
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.01.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2021.103565

Cover

Abstract Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. [Display omitted] •Experimental and theoretical study of humid air condensation on vertical plates•Unique condenser geometry was proposed, allowing re-use of condensation latent heat•A new correlation for humid air condensation on a series of plates was proposed•Potential application of correlation for fresh water generation was demonstrated Physics; Interdisciplinary physics; Applied sciences;
AbstractList Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.
Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.
Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. [Display omitted] •Experimental and theoretical study of humid air condensation on vertical plates•Unique condenser geometry was proposed, allowing re-use of condensation latent heat•A new correlation for humid air condensation on a series of plates was proposed•Potential application of correlation for fresh water generation was demonstrated Physics; Interdisciplinary physics; Applied sciences;
Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data. • Experimental and theoretical study of humid air condensation on vertical plates • Unique condenser geometry was proposed, allowing re-use of condensation latent heat • A new correlation for humid air condensation on a series of plates was proposed • Potential application of correlation for fresh water generation was demonstrated Physics; Interdisciplinary physics; Applied sciences;
ArticleNumber 103565
Author Poredoš, Primož
Vidrih, Boris
Žel, Tilen
Ma, Qiuming
Petelin, Nada
Wang, Ruzhu
Kitanovski, Andrej
Author_xml – sequence: 1
  givenname: Primož
  surname: Poredoš
  fullname: Poredoš, Primož
  organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
– sequence: 2
  givenname: Nada
  surname: Petelin
  fullname: Petelin, Nada
  organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
– sequence: 3
  givenname: Boris
  surname: Vidrih
  fullname: Vidrih, Boris
  organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
– sequence: 4
  givenname: Tilen
  surname: Žel
  fullname: Žel, Tilen
  organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
– sequence: 5
  givenname: Qiuming
  surname: Ma
  fullname: Ma, Qiuming
  organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
– sequence: 6
  givenname: Ruzhu
  surname: Wang
  fullname: Wang, Ruzhu
  email: rzwang@sjtu.edu.cn
  organization: Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Power and Refrigeration (MOE China), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
– sequence: 7
  givenname: Andrej
  surname: Kitanovski
  fullname: Kitanovski, Andrej
  email: andrej.kitanovski@fs.uni-lj.si
  organization: Laboratory for Refrigeration and District Energy, University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35024576$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWlSdP8gR6Kjr3sVpIt2YZSKEs_AoFeculJzErjrBZb2kreDfn3nY3TkPQQNEiD9N6b0cy8ZScxRWTsvRRLKaT5tF2G4sJSCSXpotJGv2JnSrfdQohanTzxT9lFKVshhCKrO_OGnVaaPN2YM_Z7laLHWGAKKfLU81uYMPMD7FLmfU4j3-zH4DmEzEMswSM_YJ6Cg4G7DcSIQ-F9yiN6vr7j_QAT39GG5R173cNQ8OLhPGfX379dr34urn79uFx9vVo4reS08HXT1qIRsjHeg1TK-WZNyxlVmQpc41FDLQBb3VPWXeOFM36tUCEIh9U5u5xlfYKt3eUwQr6zCYK9v0j5xsIx3wGtrvqarK1kgzVAA1o61UpHhekrBZK0vsxau_2aPuQwThmGZ6LPX2LY2Jt0sG1DhdUdCXx8EMjpzx7LZEfqEg4DREz7YpWRna4r3RqCfnga6zHIv9YQQM0Al1MpGftHiBT2OAJ2a48jYI8jYOcRIFL7H8mF6b63lG8YXqZ-nqnUUTwEzJYQGB36kNFNVM7wEv0v2ljMhg
CitedBy_id crossref_primary_10_1007_s00231_023_03361_z
crossref_primary_10_22531_muglajsci_1249821
crossref_primary_10_1002_smll_202309397
crossref_primary_10_3390_w15173023
crossref_primary_10_1002_advs_202204724
crossref_primary_10_1016_j_applthermaleng_2024_122979
crossref_primary_10_1016_j_xcrp_2024_102115
crossref_primary_10_1038_s41467_024_51880_y
crossref_primary_10_1016_j_joule_2022_06_020
crossref_primary_10_1021_acsmaterialsau_2c00052
crossref_primary_10_1038_s41467_022_33062_w
crossref_primary_10_1063_5_0164055
crossref_primary_10_1016_j_applthermaleng_2023_122121
crossref_primary_10_1039_D2EE01234K
crossref_primary_10_1016_j_energy_2022_125958
Cites_doi 10.1016/j.rser.2021.110802
10.1016/j.cej.2021.128725
10.1039/C9EE04122B
10.1080/08916152.2014.926432
10.1016/j.cej.2019.122364
10.1016/j.apenergy.2020.114923
10.1155/2021/5547172
10.1016/j.rser.2021.110910
10.1016/j.cej.2017.08.047
10.1007/s00231-003-0425-0
10.1016/j.cej.2020.126348
10.1016/j.joule.2021.04.005
10.1016/j.cej.2020.128296
10.1016/j.ijheatmasstransfer.2021.121160
10.1007/BF00997641
10.1021/ie4033999
10.1016/0017-9310(69)90158-6
10.1126/sciadv.abf3978
10.1016/j.nucengdes.2008.02.016
10.1016/S1004-9541(11)60076-1
10.1016/j.ijthermalsci.2006.07.001
10.1252/jcej.12.196
10.1016/S0017-9310(02)00094-7
10.1016/j.watres.2021.117154
10.3390/en14082291
10.1016/j.ijrefrig.2018.05.041
10.1016/0029-5493(95)01125-0
10.1016/j.icheatmasstransfer.2004.08.004
10.13182/NT84-A33341
10.1021/ie50234a018
10.1115/1.2728907
10.1016/j.cis.2020.102339
10.1155/2019/7941363
10.1016/j.applthermaleng.2018.04.020
10.18280/ijht.330104
10.1016/j.joule.2020.09.008
10.1016/0017-9310(61)90030-8
10.1016/0029-5493(90)90057-5
10.1016/j.expthermflusci.2016.02.008
10.2514/1.43136
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.103565
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_53f43f48317e4aa7a51c281c020f32a1
PMC8724959
35024576
10_1016_j_isci_2021_103565
S2589004221015352
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-d4784070176dda122cd7b7b7c62363ac7de5a40ae85f50297d0c6db2e2ea0ce3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 17:21:18 EDT 2025
Fri Jul 11 05:09:17 EDT 2025
Mon Jul 21 06:06:06 EDT 2025
Tue Jul 01 05:00:45 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Sat Jun 07 17:00:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interdisciplinary physics
Applied sciences
Physics
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-d4784070176dda122cd7b7b7c62363ac7de5a40ae85f50297d0c6db2e2ea0ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://doaj.org/article/53f43f48317e4aa7a51c281c020f32a1
PMID 35024576
PQID 2619543586
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_53f43f48317e4aa7a51c281c020f32a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724959
proquest_miscellaneous_2619543586
pubmed_primary_35024576
crossref_primary_10_1016_j_isci_2021_103565
crossref_citationtrail_10_1016_j_isci_2021_103565
elsevier_sciencedirect_doi_10_1016_j_isci_2021_103565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-21
PublicationDateYYYYMMDD 2022-01-21
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cengel, Ghajar (bib9) 2015
EN ISO 5801:2017 - Fans - Performance testing using standardized airways (ISO 5801:2017).
Fujii (bib19) 1991
SIST EN ISO 5167-2:2004 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full - Part 2: Orifice Plates (ISO 5167-2:2003).
Chougule, Sahu (bib12) 2016; 29
Li, Li (bib30) 2011; 19
Liao, Vierow (bib31) 2006; 129
Karkoszka (bib26) 2007
Katopodes (bib27) 2018
Uchida, Oyama, Togo (bib52) 1965
Stephan, Laesecke (bib49) 1980; 13
Bum-Jin, Sin, Min Chan, Ahmadinejad (bib7) 2004; 31
Denny, Mills (bib14) 1969; 12
Martinez-Urrutia, Fernandez de Arroiabe, Ramirez, Martinez-Agirre, Mounir Bou-Ali (bib33) 2018; 95
Naylor, Friedman (bib34) 2010; 24
Chen, Liu, Ma, Wang, Bai, Pan (bib11) 2020; 379
Ma, Xu, Wang (bib32) 2021
Poredoš, Petelin, Vidrih, Žel, Ma, Wang, Kitanovski (bib39) 2021; V1
Saraireh, Li, Thorpe (bib42) 2010
Wang, Yu, Liang, Zhang (bib53) 2018; 137
Asano (bib3) 2006
Ganguli, Patel, Maheshwari, Pandit (bib21) 2008; 238
Ait Hssain, Armou, Zine-Dine, Mir, El Hammami (bib1) 2021; 2021
Ejeian, Wang (bib15) 2021
Fuller, Schettler, Giddings (bib20) 1966; 58
LaPotin, Zhong, Zhang, Zhao, Leroy, Kim, Rao, Wang (bib29) 2021; 5
Trosseille, Mongruel, Royon, Beysens (bib51) 2021; 172
Asano, Nakano, Inaba (bib4) 1979; 12
Cao, Ruan, Tan, Bai, Du, Liu (bib8) 2021; 410
Kakac, Shah, Aung (bib25) 1987
Wang, Xie, Pan, Dai, Wang, Ge (bib54) 2021; 141
Farooq, Zhang, Gao, Gulfam (bib18) 2021
Song, Fan (bib48) 2021
Xu, Ren, Song, Liu, Liu, Sun, Ling (bib57) 2021; 403
2018.
Schlichting, Gersten (bib43) 2016
Wu, Yang, Lu, Zhao, Chen, Qian (bib55) 2021; 412
Corradini (bib13) 1984; 64
Gross, Hartnett, Masson, Gazley (bib23) 1961; 3
Kim, Corradini (bib28) 1990; 118
Xu, Yu, Yin, Zhang, Zhong (bib56) 2017; 330
Yi, Tian, Fang (bib59) 2015; 33
Roetzel, Luo, Chen (bib41) 2019
Bergman, Incropera, DeWitt, Lavine (bib6) 2011
Xu, Zhang, Zhao, Li, Bhatia, Wang, Wilke, Song, Labban, Lienhard (bib58) 2020; 13
Ait Hssain, El Hammami, Mir, Armou, Zine-Dine (bib2) 2019; 2019
Faghri, Zhang (bib17) 2020
2003.
Poredoš, Petelin, Žel, Vidrih, Gatarić, Kitanovski (bib40) 2021; 14
Haechler, Park, Schnoering, Gulich, Rohner, Tripathy, Milionis, Schutzius, Poulikakos (bib24) 2021; 7
Tagami (bib50) 1965
Ge, Wang, Zhao, Zhao, Liu (bib22) 2016; 75
Zanganeh, Goharrizi, Ayatollahi, Feilizadeh, Dashti (bib60) 2020; 268
Peterson, Schrock, Kageyama (bib38) 1992
Bell, Wronski, Quoilin, Lemort (bib5) 2014; 53
Othmer (bib36) 1929; 21
Siow, Ormiston, Soliman (bib44) 2007; 46
Siow, Ormiston, Soliman (bib45) 2004; 40
Zhang, Xu, Zhao, Bhatia, Zhong, Gong, Wang (bib61) 2021
Peterson (bib37) 1996; 162
Nusselt (bib35) 1916; 60
Siow, Ormiston, Soliman (bib46) 2002; 45
Charef, Feddaoui, Alla, Najim (bib10) 2017
Othmer (10.1016/j.isci.2021.103565_bib36) 1929; 21
Ejeian (10.1016/j.isci.2021.103565_bib15) 2021
Farooq (10.1016/j.isci.2021.103565_bib18) 2021
Haechler (10.1016/j.isci.2021.103565_bib24) 2021; 7
Ait Hssain (10.1016/j.isci.2021.103565_bib2) 2019; 2019
Schlichting (10.1016/j.isci.2021.103565_bib43) 2016
Wang (10.1016/j.isci.2021.103565_bib53) 2018; 137
Zanganeh (10.1016/j.isci.2021.103565_bib60) 2020; 268
Cao (10.1016/j.isci.2021.103565_bib8) 2021; 410
Li (10.1016/j.isci.2021.103565_bib30) 2011; 19
Liao (10.1016/j.isci.2021.103565_bib31) 2006; 129
Zhang (10.1016/j.isci.2021.103565_bib61) 2021
Poredoš (10.1016/j.isci.2021.103565_bib39) 2021; V1
Chen (10.1016/j.isci.2021.103565_bib11) 2020; 379
Denny (10.1016/j.isci.2021.103565_bib14) 1969; 12
Martinez-Urrutia (10.1016/j.isci.2021.103565_bib33) 2018; 95
Asano (10.1016/j.isci.2021.103565_bib3) 2006
Gross (10.1016/j.isci.2021.103565_bib23) 1961; 3
Wu (10.1016/j.isci.2021.103565_bib55) 2021; 412
Ganguli (10.1016/j.isci.2021.103565_bib21) 2008; 238
Xu (10.1016/j.isci.2021.103565_bib56) 2017; 330
Saraireh (10.1016/j.isci.2021.103565_bib42) 2010
Roetzel (10.1016/j.isci.2021.103565_bib41) 2019
Faghri (10.1016/j.isci.2021.103565_bib17) 2020
Bergman (10.1016/j.isci.2021.103565_bib6) 2011
LaPotin (10.1016/j.isci.2021.103565_bib29) 2021; 5
Bum-Jin (10.1016/j.isci.2021.103565_bib7) 2004; 31
Bell (10.1016/j.isci.2021.103565_bib5) 2014; 53
Tagami (10.1016/j.isci.2021.103565_bib50) 1965
Fuller (10.1016/j.isci.2021.103565_bib20) 1966; 58
Song (10.1016/j.isci.2021.103565_bib48) 2021
10.1016/j.isci.2021.103565_bib47
Nusselt (10.1016/j.isci.2021.103565_bib35) 1916; 60
Asano (10.1016/j.isci.2021.103565_bib4) 1979; 12
Ait Hssain (10.1016/j.isci.2021.103565_bib1) 2021; 2021
Wang (10.1016/j.isci.2021.103565_bib54) 2021; 141
Chougule (10.1016/j.isci.2021.103565_bib12) 2016; 29
Stephan (10.1016/j.isci.2021.103565_bib49) 1980; 13
Corradini (10.1016/j.isci.2021.103565_bib13) 1984; 64
Ge (10.1016/j.isci.2021.103565_bib22) 2016; 75
Trosseille (10.1016/j.isci.2021.103565_bib51) 2021; 172
Siow (10.1016/j.isci.2021.103565_bib44) 2007; 46
10.1016/j.isci.2021.103565_bib16
Siow (10.1016/j.isci.2021.103565_bib45) 2004; 40
Cengel (10.1016/j.isci.2021.103565_bib9) 2015
Kakac (10.1016/j.isci.2021.103565_bib25) 1987
Poredoš (10.1016/j.isci.2021.103565_bib40) 2021; 14
Katopodes (10.1016/j.isci.2021.103565_bib27) 2018
Yi (10.1016/j.isci.2021.103565_bib59) 2015; 33
Siow (10.1016/j.isci.2021.103565_bib46) 2002; 45
Xu (10.1016/j.isci.2021.103565_bib58) 2020; 13
Peterson (10.1016/j.isci.2021.103565_bib37) 1996; 162
Fujii (10.1016/j.isci.2021.103565_bib19) 1991
Xu (10.1016/j.isci.2021.103565_bib57) 2021; 403
Charef (10.1016/j.isci.2021.103565_bib10) 2017
Peterson (10.1016/j.isci.2021.103565_bib38) 1992
Karkoszka (10.1016/j.isci.2021.103565_bib26) 2007
Naylor (10.1016/j.isci.2021.103565_bib34) 2010; 24
Ma (10.1016/j.isci.2021.103565_bib32) 2021
Kim (10.1016/j.isci.2021.103565_bib28) 1990; 118
Uchida (10.1016/j.isci.2021.103565_bib52) 1965
References_xml – volume: 330
  year: 2017
  ident: bib56
  article-title: Heterogeneous condensation coupled with partial gas circulation for fine particles abatement
  publication-title: Chem. Eng. J.
– volume: 238
  year: 2008
  ident: bib21
  article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium
  publication-title: Nucl. Eng. Des.
– reference: . 2003.
– volume: 12
  start-page: 196
  year: 1979
  end-page: 202
  ident: bib4
  article-title: Forced convection film condensation of vapors in the presence of noncondensable gas on a small vertical flat plate
  publication-title: J. Chem. Eng. Jpn.
– volume: 64
  start-page: 186
  year: 1984
  end-page: 195
  ident: bib13
  article-title: Turbulent condensation on a cold wall in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
– volume: 13
  year: 1980
  ident: bib49
  article-title: The influence of suction on heat and mass transfer in condensation of mixed vapors
  publication-title: Wärme Stoffübertragung
– start-page: 128
  year: 2017
  end-page: 133
  ident: bib10
  article-title: Numerical study of humid air condensation in presence of non-condensable gas along an inclined channel
  publication-title: Energy Procedia
– year: 2021
  ident: bib48
  article-title: Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer
  publication-title: Adv. Colloid Interf. Sci.
– volume: 3
  year: 1961
  ident: bib23
  article-title: A review of binary laminar boundary layer characteristics
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  year: 2018
  ident: bib33
  article-title: Contact angle measurement for LiBr aqueous solutions on different surface materials used in absorption systems
  publication-title: Int. J. Refrig.
– volume: 141
  year: 2021
  ident: bib54
  article-title: Air-cooled adsorption-based device for harvesting water from island air
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  start-page: 25
  year: 2015
  end-page: 32
  ident: bib59
  article-title: CFD simulation of air-steam condensation on an isothermal vertical plate
  publication-title: Int. J. Heat Technol.
– volume: 58
  year: 1966
  ident: bib20
  article-title: A new method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
– volume: 12
  year: 1969
  ident: bib14
  article-title: Nonsimilar solutions for laminar film condensation on a vertical surface
  publication-title: Int. J. Heat Mass Transf.
– volume: 2019
  year: 2019
  ident: bib2
  article-title: Numerical analysis of laminar convective condensation with the presence of noncondensable gas flowing downward in a vertical channel
  publication-title: Math. Probl. Eng.
– volume: 129
  start-page: 988
  year: 2006
  end-page: 994
  ident: bib31
  article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases
  publication-title: J. Heat Transfer
– year: 1987
  ident: bib25
  article-title: Handbook of Single-Phase Convective Heat Transfer
– volume: 5
  year: 2021
  ident: bib29
  article-title: Dual-stage atmospheric water harvesting device for scalable solar-driven water production
  publication-title: Joule
– reference: . 2018.
– volume: 19
  start-page: 944
  year: 2011
  end-page: 954
  ident: bib30
  article-title: Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation
  publication-title: Chin. J. Chem. Eng.
– year: 1991
  ident: bib19
  article-title: Theory of Laminar Film Condensation
– volume: 13
  year: 2020
  ident: bib58
  article-title: Ultrahigh-efficiency desalination: via a thermally-localized multistage solar still
  publication-title: Energy Environ. Sci.
– volume: 162
  year: 1996
  ident: bib37
  article-title: Theoretical basis for the Uchida correlation for condensation in reactor containments
  publication-title: Nucl. Eng. Des.
– start-page: 93
  year: 1965
  end-page: 102
  ident: bib52
  article-title: Evaluation of post-incident cooling systems of light water power reactors
  publication-title: Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy
– volume: 379
  year: 2020
  ident: bib11
  article-title: Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance
  publication-title: Chem. Eng. J.
– year: 1965
  ident: bib50
  article-title: Interim Report on Safety Assessments and Facilities Establishment Project in Japan for Period Ending June 1965 (No. 1)
– start-page: 96
  year: 2010
  end-page: 100
  ident: bib42
  article-title: Modelling of heat and mass transfer involving vapour condensation in the presence of non-condensable gases
  publication-title: 17th Australasian Fluid Mechanics Conference 2010
– volume: 53
  year: 2014
  ident: bib5
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: eabf3978
  year: 2021
  ident: bib24
  article-title: Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere
  publication-title: Sci. Adv.
– year: 2007
  ident: bib26
  article-title: Mechanistic Modelling of Water Vapour Condensation in Presence of Noncondensable Gases
– year: 2021
  ident: bib15
  article-title: Adsorption-based atmospheric water harvesting
  publication-title: Joule
– volume: 31
  start-page: 1067
  year: 2004
  end-page: 1074
  ident: bib7
  article-title: Experimental comparison of film-wise and drop-wise condensations of steam on vertical flat plates with the presence of air
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 403
  year: 2021
  ident: bib57
  article-title: Colorful superhydrophobic concrete coating
  publication-title: Chem. Eng. J.
– volume: 2021
  year: 2021
  ident: bib1
  article-title: Numerical investigation of influence of nanoparticles presence on water vapor condensation process inside a vertical channel
  publication-title: J. Nanomater.
– volume: 172
  year: 2021
  ident: bib51
  article-title: Radiative cooling for dew condensation
  publication-title: Int. J. Heat Mass Transf.
– year: 2021
  ident: bib61
  article-title: Passive, high-efficiency thermally-localized solar desalination
  publication-title: Energy Environ. Sci.
– reference: EN ISO 5801:2017 - Fans - Performance testing using standardized airways (ISO 5801:2017).
– volume: 137
  year: 2018
  ident: bib53
  article-title: Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils
  publication-title: Appl. Therm. Eng.
– volume: 45
  year: 2002
  ident: bib46
  article-title: Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels
  publication-title: Int. J. Heat Mass Transf.
– volume: 21
  year: 1929
  ident: bib36
  article-title: The condensation of steam
  publication-title: Ind. Eng. Chem.
– year: 2021
  ident: bib32
  article-title: Distributed solar desalination by membrane distillation: current status and future perspectives
  publication-title: Water Res.
– year: 2011
  ident: bib6
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 60
  start-page: 541
  year: 1916
  end-page: 546
  ident: bib35
  article-title: Die Oberflächenkondensation des Wasserdampfes
  publication-title: Z. Vereins Deutsch. Ing.
– volume: 268
  year: 2020
  ident: bib60
  article-title: Efficiency improvement of solar stills through wettability alteration of the condensation surface: an experimental study
  publication-title: Appl. Energy
– volume: 410
  year: 2021
  ident: bib8
  article-title: Condensational growth activated by cooling method for multi-objective treatment of desulfurized flue gas: a full-scale study
  publication-title: Chem. Eng. J.
– year: 2006
  ident: bib3
  article-title: Mass Transfer: From Fundamentals to Modern Industrial Applications
– year: 2020
  ident: bib17
  article-title: Fundamentals of Multiphase Heat Transfer and Flow
– volume: 412
  year: 2021
  ident: bib55
  article-title: A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications
  publication-title: Chem. Eng. J.
– year: 1992
  ident: bib38
  article-title: Diffusion Layer Theory for Turbulent Vapor Condensation with Noncondensable Gases
– volume: V1
  year: 2021
  ident: bib39
  article-title: Experimental condensate mass flux values during the condensation of water vapor from humid air inside vertical channels formed by flat plates
  publication-title: Mendeley Data
– year: 2018
  ident: bib27
  article-title: Free-Surface Flow: Computational Methods
– volume: 75
  year: 2016
  ident: bib22
  article-title: Condensation of steam with high CO2 concentration on a vertical plate
  publication-title: Exp. Therm. Fluid Sci.
– reference: SIST EN ISO 5167-2:2004 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full - Part 2: Orifice Plates (ISO 5167-2:2003).
– year: 2015
  ident: bib9
  article-title: Heat and Mass Transfer: Fundamentals and Applications
– volume: 40
  start-page: 365
  year: 2004
  end-page: 375
  ident: bib45
  article-title: A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels
  publication-title: Heat Mass Transf.
– year: 2021
  ident: bib18
  article-title: Emerging radiative materials and prospective applications of radiative sky cooling - a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 14
  year: 2021
  ident: bib40
  article-title: Performance of the condensation process for water vapour in the presence of a non-condensable gas on vertical plates and horizontal tubes
  publication-title: Energies
– volume: 118
  start-page: 193
  year: 1990
  end-page: 212
  ident: bib28
  article-title: Modeling of condensation heat transfer in a reactor containment
  publication-title: Nucl. Eng. Des.
– volume: 29
  year: 2016
  ident: bib12
  article-title: Comparative study on heat transfer enhancement of low volume concentration of Al2o3-water and carbon nano-tube-water nano-fluids in transition regime using helical screw tape inserts
  publication-title: Exp. Heat Transf.
– volume: 24
  year: 2010
  ident: bib34
  article-title: Model of film condensation on a vertical plate with noncondensing gas
  publication-title: J. Thermophys. Heat Transf.
– year: 2019
  ident: bib41
  article-title: Design and Operation of Heat Exchangers and their Networks
– volume: 46
  year: 2007
  ident: bib44
  article-title: Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels
  publication-title: Int. J. Therm. Sci.
– year: 2016
  ident: bib43
  article-title: Boundary-layer theory
– year: 1992
  ident: 10.1016/j.isci.2021.103565_bib38
– volume: 141
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib54
  article-title: Air-cooled adsorption-based device for harvesting water from island air
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110802
– volume: 412
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib55
  article-title: A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128725
– volume: 13
  year: 2020
  ident: 10.1016/j.isci.2021.103565_bib58
  article-title: Ultrahigh-efficiency desalination: via a thermally-localized multistage solar still
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE04122B
– volume: 29
  year: 2016
  ident: 10.1016/j.isci.2021.103565_bib12
  article-title: Comparative study on heat transfer enhancement of low volume concentration of Al2o3-water and carbon nano-tube-water nano-fluids in transition regime using helical screw tape inserts
  publication-title: Exp. Heat Transf.
  doi: 10.1080/08916152.2014.926432
– volume: 379
  year: 2020
  ident: 10.1016/j.isci.2021.103565_bib11
  article-title: Large-scale and low-cost fabrication of two functional silica sorbents by vapor condensation induced nanoemulsions and their excellent uptake performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122364
– volume: 268
  year: 2020
  ident: 10.1016/j.isci.2021.103565_bib60
  article-title: Efficiency improvement of solar stills through wettability alteration of the condensation surface: an experimental study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114923
– start-page: 96
  year: 2010
  ident: 10.1016/j.isci.2021.103565_bib42
  article-title: Modelling of heat and mass transfer involving vapour condensation in the presence of non-condensable gases
– volume: 2021
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib1
  article-title: Numerical investigation of influence of nanoparticles presence on water vapor condensation process inside a vertical channel
  publication-title: J. Nanomater.
  doi: 10.1155/2021/5547172
– year: 2018
  ident: 10.1016/j.isci.2021.103565_bib27
– year: 2021
  ident: 10.1016/j.isci.2021.103565_bib18
  article-title: Emerging radiative materials and prospective applications of radiative sky cooling - a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110910
– volume: 330
  year: 2017
  ident: 10.1016/j.isci.2021.103565_bib56
  article-title: Heterogeneous condensation coupled with partial gas circulation for fine particles abatement
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.047
– volume: 40
  start-page: 365
  year: 2004
  ident: 10.1016/j.isci.2021.103565_bib45
  article-title: A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-003-0425-0
– volume: 403
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib57
  article-title: Colorful superhydrophobic concrete coating
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126348
– year: 2021
  ident: 10.1016/j.isci.2021.103565_bib15
  article-title: Adsorption-based atmospheric water harvesting
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.005
– volume: 60
  start-page: 541
  year: 1916
  ident: 10.1016/j.isci.2021.103565_bib35
  article-title: Die Oberflächenkondensation des Wasserdampfes
  publication-title: Z. Vereins Deutsch. Ing.
– volume: 410
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib8
  article-title: Condensational growth activated by cooling method for multi-objective treatment of desulfurized flue gas: a full-scale study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128296
– ident: 10.1016/j.isci.2021.103565_bib47
– year: 2007
  ident: 10.1016/j.isci.2021.103565_bib26
– volume: 172
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib51
  article-title: Radiative cooling for dew condensation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121160
– year: 2015
  ident: 10.1016/j.isci.2021.103565_bib9
– ident: 10.1016/j.isci.2021.103565_bib16
– volume: 13
  year: 1980
  ident: 10.1016/j.isci.2021.103565_bib49
  article-title: The influence of suction on heat and mass transfer in condensation of mixed vapors
  publication-title: Wärme Stoffübertragung
  doi: 10.1007/BF00997641
– volume: 53
  year: 2014
  ident: 10.1016/j.isci.2021.103565_bib5
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4033999
– start-page: 128
  year: 2017
  ident: 10.1016/j.isci.2021.103565_bib10
  article-title: Numerical study of humid air condensation in presence of non-condensable gas along an inclined channel
– volume: 12
  year: 1969
  ident: 10.1016/j.isci.2021.103565_bib14
  article-title: Nonsimilar solutions for laminar film condensation on a vertical surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(69)90158-6
– volume: 7
  start-page: eabf3978
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib24
  article-title: Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf3978
– year: 2021
  ident: 10.1016/j.isci.2021.103565_bib61
  article-title: Passive, high-efficiency thermally-localized solar desalination
  publication-title: Energy Environ. Sci.
– year: 1991
  ident: 10.1016/j.isci.2021.103565_bib19
– volume: 238
  year: 2008
  ident: 10.1016/j.isci.2021.103565_bib21
  article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2008.02.016
– volume: 19
  start-page: 944
  year: 2011
  ident: 10.1016/j.isci.2021.103565_bib30
  article-title: Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(11)60076-1
– volume: 46
  year: 2007
  ident: 10.1016/j.isci.2021.103565_bib44
  article-title: Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.07.001
– volume: 12
  start-page: 196
  year: 1979
  ident: 10.1016/j.isci.2021.103565_bib4
  article-title: Forced convection film condensation of vapors in the presence of noncondensable gas on a small vertical flat plate
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.12.196
– year: 2019
  ident: 10.1016/j.isci.2021.103565_bib41
– volume: 45
  year: 2002
  ident: 10.1016/j.isci.2021.103565_bib46
  article-title: Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00094-7
– year: 2021
  ident: 10.1016/j.isci.2021.103565_bib32
  article-title: Distributed solar desalination by membrane distillation: current status and future perspectives
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117154
– volume: 14
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib40
  article-title: Performance of the condensation process for water vapour in the presence of a non-condensable gas on vertical plates and horizontal tubes
  publication-title: Energies
  doi: 10.3390/en14082291
– year: 2016
  ident: 10.1016/j.isci.2021.103565_bib43
– year: 2020
  ident: 10.1016/j.isci.2021.103565_bib17
– volume: 95
  year: 2018
  ident: 10.1016/j.isci.2021.103565_bib33
  article-title: Contact angle measurement for LiBr aqueous solutions on different surface materials used in absorption systems
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.05.041
– volume: 162
  year: 1996
  ident: 10.1016/j.isci.2021.103565_bib37
  article-title: Theoretical basis for the Uchida correlation for condensation in reactor containments
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(95)01125-0
– volume: 31
  start-page: 1067
  year: 2004
  ident: 10.1016/j.isci.2021.103565_bib7
  article-title: Experimental comparison of film-wise and drop-wise condensations of steam on vertical flat plates with the presence of air
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2004.08.004
– volume: 64
  start-page: 186
  year: 1984
  ident: 10.1016/j.isci.2021.103565_bib13
  article-title: Turbulent condensation on a cold wall in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
  doi: 10.13182/NT84-A33341
– volume: 21
  year: 1929
  ident: 10.1016/j.isci.2021.103565_bib36
  article-title: The condensation of steam
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50234a018
– volume: 129
  start-page: 988
  year: 2006
  ident: 10.1016/j.isci.2021.103565_bib31
  article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2728907
– year: 2011
  ident: 10.1016/j.isci.2021.103565_bib6
– start-page: 93
  year: 1965
  ident: 10.1016/j.isci.2021.103565_bib52
  article-title: Evaluation of post-incident cooling systems of light water power reactors
– year: 2021
  ident: 10.1016/j.isci.2021.103565_bib48
  article-title: Temperature dependence of the contact angle of water: a review of research progress, theoretical understanding, and implications for boiling heat transfer
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2020.102339
– volume: 58
  year: 1966
  ident: 10.1016/j.isci.2021.103565_bib20
  article-title: A new method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
– volume: 2019
  year: 2019
  ident: 10.1016/j.isci.2021.103565_bib2
  article-title: Numerical analysis of laminar convective condensation with the presence of noncondensable gas flowing downward in a vertical channel
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/7941363
– year: 1987
  ident: 10.1016/j.isci.2021.103565_bib25
– volume: 137
  year: 2018
  ident: 10.1016/j.isci.2021.103565_bib53
  article-title: Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.020
– volume: 33
  start-page: 25
  year: 2015
  ident: 10.1016/j.isci.2021.103565_bib59
  article-title: CFD simulation of air-steam condensation on an isothermal vertical plate
  publication-title: Int. J. Heat Technol.
  doi: 10.18280/ijht.330104
– year: 2006
  ident: 10.1016/j.isci.2021.103565_bib3
– volume: 5
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib29
  article-title: Dual-stage atmospheric water harvesting device for scalable solar-driven water production
  publication-title: Joule
  doi: 10.1016/j.joule.2020.09.008
– volume: V1
  year: 2021
  ident: 10.1016/j.isci.2021.103565_bib39
  article-title: Experimental condensate mass flux values during the condensation of water vapor from humid air inside vertical channels formed by flat plates
  publication-title: Mendeley Data
– volume: 3
  year: 1961
  ident: 10.1016/j.isci.2021.103565_bib23
  article-title: A review of binary laminar boundary layer characteristics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(61)90030-8
– volume: 118
  start-page: 193
  year: 1990
  ident: 10.1016/j.isci.2021.103565_bib28
  article-title: Modeling of condensation heat transfer in a reactor containment
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(90)90057-5
– volume: 75
  year: 2016
  ident: 10.1016/j.isci.2021.103565_bib22
  article-title: Condensation of steam with high CO2 concentration on a vertical plate
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.02.008
– volume: 24
  year: 2010
  ident: 10.1016/j.isci.2021.103565_bib34
  article-title: Model of film condensation on a vertical plate with noncondensing gas
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.43136
– year: 1965
  ident: 10.1016/j.isci.2021.103565_bib50
SSID ssj0002002496
Score 2.277105
Snippet Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103565
SubjectTerms Applied sciences
Interdisciplinary physics
Physics
Title Condensation of water vapor from humid air inside vertical channels formed by flat plates
URI https://dx.doi.org/10.1016/j.isci.2021.103565
https://www.ncbi.nlm.nih.gov/pubmed/35024576
https://www.proquest.com/docview/2619543586
https://pubmed.ncbi.nlm.nih.gov/PMC8724959
https://doaj.org/article/53f43f48317e4aa7a51c281c020f32a1
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEMglzbPdPIoKuRUT2XrZxyQkhEB6SiE5CVmSicPWu-yjJf8-M5J32W0hvRT7ZMm2pBkx36CZ-Qg5c555lweVlYrxTNROZXXFQ4ZZnZxzaZnEROH77-r2h7h7lI8rVF8YE5bKA6eFO5e8EXCXYOeCsFZbmbuizB3AnIYXNjo-rGIrztRLPF7DUniRWU5iTBCoZp8xk4K7MOMVnMMix6RziZZlxSrF4v1rxulv8PlnDOWKUbrZIds9mqQXaRa75EPo9sjHHlnSft9O98hmDPR0033ydDVCztsUw0NHDf0NYHNCf1nA4RRzTejz_GfrqW0ntI1cnjQyNoMoKSYJdzBcikAXvl-_0mZoZ3Q8RMB6QB5urh-ubrOeXiFzyGKQeaHBu9OwJZX3Ni8K53UNlwNEpLh12gdpBbOhlI1EjivPHLJPhSJY5gI_JBvdqAufCRWCcW2tDwAHBPiQVelVIyV3QqtK6HpA8sXqGteXHkcGjKFZxJi9GJSIQYmYJJEB-bZ8Z5wKb7zb-xKFtuyJRbPjA1Al06uS-ZcqDYhciNz0-CPhCvhU--7Pvy70w8DmxBMX24XRfGrQPZUASEs1IJ-SviyHyCWeemto0WuatDaH9ZaufY4FwEuNjOHV0f-Y9DHZKjCjg-VZkZ-QjdlkHk4BZ83qL3FLvQF_CSI-
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condensation+of+water+vapor+from+humid+air+inside+vertical+channels+formed+by+flat+plates&rft.jtitle=iScience&rft.au=Poredo%C5%A1%2C+Primo%C5%BE&rft.au=Petelin%2C+Nada&rft.au=Vidrih%2C+Boris&rft.au=%C5%BDel%2C+Tilen&rft.date=2022-01-21&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1016%2Fj.isci.2021.103565&rft_id=info%3Apmid%2F35024576&rft.externalDocID=PMC8724959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon