Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors

Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on c...

Full description

Saved in:
Bibliographic Details
Published inRetrovirology Vol. 11; no. 1; p. 36
Main Authors Sokol, Martin, Wabl, Matthias, Ruiz, Irene Rius, Pedersen, Finn Skou
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.05.2014
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
AbstractList Doc number: 36 Abstract Background: Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. Results: We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. Conclusions: We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Background Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. Results We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. Conclusions We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology. Keywords: Gamma-retrovirus, Insertional mutagenesis, Oncogenesis, Deep sequencing, Chromatin immunoprecipication with sequencing (ChIP-seq), Retroviral integration sites, RNA sequencing (RNA-seq)
Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Background: Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. Results: We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. Conclusions: We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined.BACKGROUNDInsertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined.We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues.RESULTSWe detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues.We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.CONCLUSIONSWe expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
ArticleNumber 36
Audience Academic
Author Ruiz, Irene Rius
Pedersen, Finn Skou
Wabl, Matthias
Sokol, Martin
AuthorAffiliation 1 Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
2 Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
– name: 2 Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
Author_xml – sequence: 1
  givenname: Martin
  surname: Sokol
  fullname: Sokol, Martin
– sequence: 2
  givenname: Matthias
  surname: Wabl
  fullname: Wabl, Matthias
– sequence: 3
  givenname: Irene Rius
  surname: Ruiz
  fullname: Ruiz, Irene Rius
– sequence: 4
  givenname: Finn Skou
  surname: Pedersen
  fullname: Pedersen, Finn Skou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24886479$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URNuBNTtkiQ2btH4lsTdIVcVLqmADa8uxbwYXxx7sZKSKP49n-qCtQEJe5Nr-zlF87zlGBzFFQOglJSeUyu6U9oI1olOkobTh3RN0dHdycK8-RMelXBLCqSTyGTpkQspO9OoI_fqcthDwJvto_SZAwWnEazNNpskw57T12QTsY4E8-xRrPWcTi81-s9tjY2e_NfvSRzwt1QdwgOUHTN7gql5K46NbLDgM0TVlNmvA8zKlXJ6jp6MJBV7cfFfo2_t3X88_NhdfPnw6P7tobMvo3NhRDZ1rmSF2UMaNAyGjoMIy3jMQxDoFAzjSMcVoRx1jykpuuAEzypbLga_Q22vfzTJM4CzE-oag65snk690Ml4_vIn-u16nrRZEyV6JavDmxiCnnwuUWU--WAjBREhL0bTlQvK-F_3_oEwJJuosVuj1I_QyLbm2eE8pJlvK2B9qbQJoH8dUf9HuTPVZpbqeEiYrdfIXqi5X52BrZkZfzx8IXt3vyV0zbpNRgfYasDmVkmHU1s_7QVdnHzQlepdAvcuY3mWsbjXvqu70ke7W-l-K3xxF3lU
CitedBy_id crossref_primary_10_1002_eji_201445218
crossref_primary_10_1186_s12977_015_0161_9
crossref_primary_10_1038_ncomms15264
crossref_primary_10_3390_v6124811
crossref_primary_10_1111_apm_12477
crossref_primary_10_1007_s40124_014_0069_1
crossref_primary_10_1128_spectrum_01478_22
crossref_primary_10_1038_s41467_021_21612_7
crossref_primary_10_1002_eji_201344322
crossref_primary_10_31857_S0320972524040051
crossref_primary_10_3390_v14020445
crossref_primary_10_1134_S0006297924040059
crossref_primary_10_1099_jgv_0_000271
crossref_primary_10_1128_JVI_01127_16
crossref_primary_10_7554_eLife_36245
crossref_primary_10_1186_s12977_023_00622_x
crossref_primary_10_1186_s13062_015_0097_y
Cites_doi 10.1182/blood-2007-01-068478
10.1111/j.1365-2141.2008.07453.x
10.4048/jbc.2007.10.3.180
10.1371/journal.pone.0055721
10.1056/NEJMoa012616
10.1016/0092-8674(84)90309-X
10.1172/JCI35798
10.1126/science.1164266
10.1101/gr.092833.109
10.1073/pnas.82.2.459
10.1038/sj.onc.1209043
10.1101/gr.078519.108
10.1016/j.gene.2009.04.003
10.1038/nm.2088
10.1146/annurev.genom.7.080505.115623
10.1371/journal.pone.0027770
10.1186/1752-0509-4-163
10.1038/nature11279
10.1038/nprot.2009.64
10.1093/nar/gkh013
10.1093/bioinformatics/btp120
10.1093/bioinformatics/btq033
10.1371/journal.pone.0024247
10.1093/hmg/ddg180
10.1093/nar/gks1182
10.1186/gb-2013-14-10-r117
10.1016/j.meegid.2012.05.001
10.1093/nar/23.9.1644
10.1182/blood-2010-05-283523
10.1038/onc.2011.99
10.1128/jvi.69.1.446-455.1995
10.1038/nature07943
10.1086/341527
10.1186/1742-4690-4-5
10.1038/nbt.1526
10.1128/JVI.01077-12
10.1038/ng.368
10.1101/gad.13.19.2465
10.1073/pnas.1016071107
10.1089/hgtb.2011.219
10.1023/A:1012265703669
10.1016/j.cell.2012.04.041
10.1038/nm1393
10.1016/j.ymeth.2010.04.004
10.1038/ki.2010.176
10.1128/JVI.02088-09
10.1371/journal.pcbi.1001008
10.1016/0042-6822(84)90146-6
10.1016/j.leukres.2013.04.012
10.1016/j.coi.2012.08.006
10.1089/hum.2012.203
10.1126/science.1083413
10.1002/(SICI)1098-2264(199703)18:3<200::AID-GCC6>3.0.CO;2-5
10.1038/bjc.2013.233
10.1128/jvi.60.2.683-692.1986
10.1016/j.mehy.2007.03.029
10.1038/nature11243
10.1016/S0140-6736(04)17590-9
10.1093/nar/gkt1399
10.1006/geno.1999.5952
10.1016/j.cell.2011.01.024
10.1172/JCI62189
10.1038/292167a0
10.3390/v3050429
10.1182/blood-2012-02-409839
10.1371/journal.pgen.1000491
10.1093/bioinformatics/btp324
10.1016/j.celrep.2013.09.040
10.1371/journal.pone.0073974
10.1128/JVI.00427-09
10.1038/ng950
10.1073/pnas.1307157110
10.1002/emmm.201000108
10.1093/hmg/ddp409
10.1186/gb-2013-14-9-r106
10.1128/JVI.00252-11
10.2174/1566523211313030006
10.1101/gr.229202. Article published online before March 2002
10.1038/nprot.2012.016
10.1073/pnas.1004139107
10.1126/science.288.5466.669
10.1128/mBio.00134-11
10.1101/gr.149674.112
10.1126/science.1088547
10.1242/dev.01613
10.3892/ijmm.2013.1314
10.1093/nar/gkr719
10.1006/geno.2001.6558
10.1016/j.tig.2011.04.002
10.7178/ig.1.1.7
10.1128/JVI.00635-11
10.1186/1742-4690-5-4
10.1128/JVI.73.9.7599-7606.1999
10.1097/NEN.0b013e31826bf704
10.1038/nrg2957
10.1128/JVI.00011-14
10.1101/gr.112763.110
10.1073/pnas.0609030103
ContentType Journal Article
Copyright COPYRIGHT 2014 BioMed Central Ltd.
2014 Sokol et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 Sokol et al.; licensee BioMed Central Ltd. 2014 Sokol et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Sokol et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 Sokol et al.; licensee BioMed Central Ltd. 2014 Sokol et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1742-4690-11-36
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE


AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-4690
EndPage 36
ExternalDocumentID PMC4098794
3346358731
A539671028
24886479
10_1186_1742_4690_11_36
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI041570
GroupedDBID ---
0R~
123
29P
2WC
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7U9
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c521t-cf9b6d52a0cb9adfb00f414c2372e40cd9ebed06292161d229c83a3aeaf8538b3
IEDL.DBID M48
ISSN 1742-4690
IngestDate Thu Aug 21 14:05:01 EDT 2025
Fri Jul 11 05:32:08 EDT 2025
Thu Jul 10 23:35:55 EDT 2025
Fri Jul 25 06:56:13 EDT 2025
Tue Jun 17 21:28:25 EDT 2025
Tue Jun 10 20:11:11 EDT 2025
Mon Jul 21 05:20:09 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 03:39:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-cf9b6d52a0cb9adfb00f414c2372e40cd9ebed06292161d229c83a3aeaf8538b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.proquest.com/docview/1539285122?pq-origsite=%requestingapplication%
PMID 24886479
PQID 1539285122
PQPubID 54665
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4098794
proquest_miscellaneous_1534837747
proquest_miscellaneous_1532942400
proquest_journals_1539285122
gale_infotracmisc_A539671028
gale_infotracacademiconefile_A539671028
pubmed_primary_24886479
crossref_citationtrail_10_1186_1742_4690_11_36
crossref_primary_10_1186_1742_4690_11_36
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-19
PublicationDateYYYYMMDD 2014-05-19
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Retrovirology
PublicationTitleAlternate Retrovirology
PublicationYear 2014
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References HT Cuypers (3890_CR70) 1984; 37
RS Devon (3890_CR38) 1995; 23
C Trapnell (3890_CR47) 2012; 7
Y Yang (3890_CR83) 1999; 62
MJ Zeitz (3890_CR91) 2013; 8
EF Hays (3890_CR1) 1984; 138
MH Rasmussen (3890_CR54) 2010; 84
UP Dave (3890_CR71) 2009; 5
AG Robertson (3890_CR65) 2008; 18
HB Gaspar (3890_CR10) 2004; 364
GC Hon (3890_CR63) 2009; 18
Y Shen (3890_CR25) 2012; 488
LA Lettice (3890_CR33) 2003; 12
A Sanyal (3890_CR57) 2012; 489
LH Evans (3890_CR69) 1985; 82
S Ingvarsson (3890_CR85) 2005; 2
D Li (3890_CR62) 2001; 74
SJ Howe (3890_CR13) 2008; 118
X Wu (3890_CR17) 2003; 300
AM Lum (3890_CR50) 2007; 4
W Wei (3890_CR59) 2011; 27
J Zhang (3890_CR35) 2012; 86
H Dong (3890_CR58) 2010; 4
M Bulger (3890_CR64) 1999; 13
T Sagai (3890_CR34) 2005; 132
CL Wang (3890_CR49) 2006; 103
H Mikkers (3890_CR36) 2002; 32
A Nowrouzi (3890_CR4) 2011; 3
VW Keng (3890_CR66) 2009; 27
S Hacein-Bey-Abina (3890_CR72) 2003; 302
FS Pedersen (3890_CR2) 1981; 292
S Hacein-Bey-Abina (3890_CR11) 2002; 346
AR Quinlan (3890_CR53) 2010; 26
BV North (3890_CR101) 2002; 71
LG Schuettpelz (3890_CR78) 2012; 120
C Flotho (3890_CR77) 2007; 110
R Gabriel (3890_CR6) 2012; 24
ST Chang (3890_CR46) 2011; 2
A Gonzalez-Perez (3890_CR90) 2013; 14
W Pi (3890_CR98) 2010; 107
J Qu (3890_CR86) 2013; 31
NC Schopman (3890_CR42) 2012; 40
S Knight (3890_CR3) 2013; 13
D Cesana (3890_CR44) 2012; 122
MG Ott (3890_CR15) 2006; 12
A Ciuffi (3890_CR40) 2011; 53
M Cavazzana-Calvo (3890_CR12) 2000; 288
MR Stratton (3890_CR75) 2009; 458
KS Park (3890_CR79) 2007; 10
WJ Kent (3890_CR99) 2002; 12
S Stein (3890_CR14) 2010; 16
G Lefebvre (3890_CR43) 2011; 85
I Kholodnyuk (3890_CR84) 1997; 18
MJ Martiney (3890_CR67) 1999; 73
R Kikuchi (3890_CR55) 2010; 78
K Karrman (3890_CR61) 2009; 144
A Sharma (3890_CR29) 2013; 110
A Cavazza (3890_CR5) 2013; 24
SW Cheetham (3890_CR94) 2013; 108
H Mikkers (3890_CR9) 2003; 88
CG Mullighan (3890_CR74) 2008; 322
L Hong (3890_CR88) 2007; 69
L Biasco (3890_CR20) 2011; 3
MJ Dabrowska (3890_CR52) 2013; 37
L Taher (3890_CR31) 2013; 14
MJ Koudijs (3890_CR45) 2011; 21
B Zhang (3890_CR27) 2013; 23
U Abel (3890_CR73) 2011; 6
E Perez-Magan (3890_CR82) 2012; 71
GA Maston (3890_CR32) 2006; 7
AG Uren (3890_CR8) 2005; 24
S Kalyana-Sundaram (3890_CR93) 2012; 149
A Arens (3890_CR41) 2012; 23
GJ Faulkner (3890_CR97) 2009; 41
M Bulger (3890_CR96) 2011; 144
SS De Ravin (3890_CR24) 2014; 88
A Torkamani (3890_CR76) 2009; 19
MC Lafave (3890_CR22) 2014; 42
D Karolchik (3890_CR89) 2011; Chapter 18
MJ Dabrowska (3890_CR7) 2009; 83
C Cattoglio (3890_CR18) 2010; 116
C-T Ong (3890_CR95) 2011; 12
D Ustek (3890_CR39) 2012; 12
S Vijaya (3890_CR16) 1986; 60
PA Masso-Welch (3890_CR81) 2001; 68
S Messina (3890_CR87) 2011; 30
J De Rijck (3890_CR30) 2013; 5
SL Roth (3890_CR19) 2011; 85
AS Orekhova (3890_CR92) 2013; 78
GB Beck-Engeser (3890_CR48) 2008; 5
K Akagi (3890_CR51) 2004; 32
Y Tian (3890_CR28) 2011; 6
AG Uren (3890_CR37) 2009; 4
B Eun (3890_CR56) 2013; 41
H Li (3890_CR100) 2009; 25
FA Santoni (3890_CR23) 2010; 6
C Trapnell (3890_CR102) 2009; 25
A Moiani (3890_CR21) 2013; 8
S Ramalingam (3890_CR80) 2012; 1
MP Creyghton (3890_CR26) 2010; 107
AA Nielsen (3890_CR60) 2009; 442
HL Morrison (3890_CR68) 1995; 69
References_xml – volume: 110
  start-page: 1271
  issue: 4
  year: 2007
  ident: 3890_CR77
  publication-title: Blood
  doi: 10.1182/blood-2007-01-068478
– volume: 144
  start-page: 546
  issue: 4
  year: 2009
  ident: 3890_CR61
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2008.07453.x
– volume: 10
  start-page: 180
  issue: 3
  year: 2007
  ident: 3890_CR79
  publication-title: J Breast Cancer
  doi: 10.4048/jbc.2007.10.3.180
– volume: 8
  start-page: e55721
  issue: 1
  year: 2013
  ident: 3890_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055721
– volume: 346
  start-page: 1185
  issue: 16
  year: 2002
  ident: 3890_CR11
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa012616
– volume: 37
  start-page: 141
  issue: 1
  year: 1984
  ident: 3890_CR70
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90309-X
– volume: 118
  start-page: 3143
  issue: 9
  year: 2008
  ident: 3890_CR13
  publication-title: J Clin Invest
  doi: 10.1172/JCI35798
– volume: 322
  start-page: 1377
  issue: 5906
  year: 2008
  ident: 3890_CR74
  publication-title: Science
  doi: 10.1126/science.1164266
– volume: 19
  start-page: 1570
  issue: 9
  year: 2009
  ident: 3890_CR76
  publication-title: Genome Res
  doi: 10.1101/gr.092833.109
– volume: 82
  start-page: 459
  issue: 2
  year: 1985
  ident: 3890_CR69
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.82.2.459
– volume: 24
  start-page: 7656
  issue: 52
  year: 2005
  ident: 3890_CR8
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209043
– volume: 18
  start-page: 1906
  issue: 12
  year: 2008
  ident: 3890_CR65
  publication-title: Genome Res
  doi: 10.1101/gr.078519.108
– volume: 442
  start-page: 55
  issue: 1–2
  year: 2009
  ident: 3890_CR60
  publication-title: Gene
  doi: 10.1016/j.gene.2009.04.003
– volume: 16
  start-page: 198
  issue: 2
  year: 2010
  ident: 3890_CR14
  publication-title: Nature medicine
  doi: 10.1038/nm.2088
– volume: 7
  start-page: 29
  year: 2006
  ident: 3890_CR32
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.7.080505.115623
– volume: 2
  start-page: 247
  issue: 4
  year: 2005
  ident: 3890_CR85
  publication-title: Cancer Genomics Proteomi
– volume: 6
  start-page: e27770
  issue: 11
  year: 2011
  ident: 3890_CR28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027770
– volume: 4
  start-page: 163
  year: 2010
  ident: 3890_CR58
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-163
– volume: 489
  start-page: 109
  issue: 7414
  year: 2012
  ident: 3890_CR57
  publication-title: Nature
  doi: 10.1038/nature11279
– volume: 4
  start-page: 789
  issue: 5
  year: 2009
  ident: 3890_CR37
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.64
– volume: 32
  start-page: D523
  issue: Database issue
  year: 2004
  ident: 3890_CR51
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh013
– volume: 25
  start-page: 1105
  issue: 9
  year: 2009
  ident: 3890_CR102
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 26
  start-page: 841
  issue: 6
  year: 2010
  ident: 3890_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 6
  start-page: e24247
  issue: 10
  year: 2011
  ident: 3890_CR73
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024247
– volume: 88
  start-page: 53
  year: 2003
  ident: 3890_CR9
  publication-title: Adv Cancer Res
– volume: 12
  start-page: 1725
  issue: 14
  year: 2003
  ident: 3890_CR33
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg180
– volume: 41
  start-page: 817
  issue: 2
  year: 2013
  ident: 3890_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1182
– volume: 14
  start-page: R117
  issue: 10
  year: 2013
  ident: 3890_CR31
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-10-r117
– volume: 12
  start-page: 1349
  issue: 7
  year: 2012
  ident: 3890_CR39
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2012.05.001
– volume: 23
  start-page: 1644
  issue: 9
  year: 1995
  ident: 3890_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/23.9.1644
– volume: 116
  start-page: 5507
  issue: 25
  year: 2010
  ident: 3890_CR18
  publication-title: Blood
  doi: 10.1182/blood-2010-05-283523
– volume: 30
  start-page: 3813
  issue: 35
  year: 2011
  ident: 3890_CR87
  publication-title: Oncogene
  doi: 10.1038/onc.2011.99
– volume: 69
  start-page: 446
  issue: 1
  year: 1995
  ident: 3890_CR68
  publication-title: J Virol
  doi: 10.1128/jvi.69.1.446-455.1995
– volume: 458
  start-page: 719
  issue: 7239
  year: 2009
  ident: 3890_CR75
  publication-title: Nature
  doi: 10.1038/nature07943
– volume: 71
  start-page: 439
  issue: 2
  year: 2002
  ident: 3890_CR101
  publication-title: Am J Hum Genet
  doi: 10.1086/341527
– volume: 4
  start-page: 5
  year: 2007
  ident: 3890_CR50
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-4-5
– volume: 27
  start-page: 264
  issue: 3
  year: 2009
  ident: 3890_CR66
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1526
– volume: 86
  start-page: 10524
  issue: 19
  year: 2012
  ident: 3890_CR35
  publication-title: J Virol
  doi: 10.1128/JVI.01077-12
– volume: 41
  start-page: 563
  issue: 5
  year: 2009
  ident: 3890_CR97
  publication-title: Nature genetics
  doi: 10.1038/ng.368
– volume: 13
  start-page: 2465
  issue: 19
  year: 1999
  ident: 3890_CR64
  publication-title: Genes Dev
  doi: 10.1101/gad.13.19.2465
– volume: 107
  start-page: 21931
  issue: 50
  year: 2010
  ident: 3890_CR26
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1016071107
– volume: 23
  start-page: 111
  issue: 2
  year: 2012
  ident: 3890_CR41
  publication-title: Human Gene Therapy Methods
  doi: 10.1089/hgtb.2011.219
– volume: 68
  start-page: 211
  issue: 3
  year: 2001
  ident: 3890_CR81
  publication-title: Breast Cancer Res Treat
  doi: 10.1023/A:1012265703669
– volume: 149
  start-page: 1622
  issue: 7
  year: 2012
  ident: 3890_CR93
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.041
– volume: 12
  start-page: 401
  issue: 4
  year: 2006
  ident: 3890_CR15
  publication-title: Nature medicine
  doi: 10.1038/nm1393
– volume: 53
  start-page: 39
  issue: 1
  year: 2011
  ident: 3890_CR40
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.04.004
– volume: 78
  start-page: 569
  issue: 6
  year: 2010
  ident: 3890_CR55
  publication-title: Kidney Int
  doi: 10.1038/ki.2010.176
– volume: 84
  start-page: 3780
  issue: 8
  year: 2010
  ident: 3890_CR54
  publication-title: J Virol
  doi: 10.1128/JVI.02088-09
– volume: 6
  start-page: e1001008
  issue: 11
  year: 2010
  ident: 3890_CR23
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001008
– volume: 138
  start-page: 49
  issue: 1
  year: 1984
  ident: 3890_CR1
  publication-title: Virology
  doi: 10.1016/0042-6822(84)90146-6
– volume: 78
  start-page: 335
  issue: 4
  year: 2013
  ident: 3890_CR92
  publication-title: Biochemistry
– volume: 37
  start-page: 1383
  issue: 10
  year: 2013
  ident: 3890_CR52
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2013.04.012
– volume: 24
  start-page: 592
  issue: 5
  year: 2012
  ident: 3890_CR6
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2012.08.006
– volume: 24
  start-page: 119
  issue: 2
  year: 2013
  ident: 3890_CR5
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2012.203
– volume: 300
  start-page: 1749
  issue: 5626
  year: 2003
  ident: 3890_CR17
  publication-title: Science
  doi: 10.1126/science.1083413
– volume: 18
  start-page: 200
  issue: 3
  year: 1997
  ident: 3890_CR84
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/(SICI)1098-2264(199703)18:3<200::AID-GCC6>3.0.CO;2-5
– volume: 108
  start-page: 2419
  issue: 12
  year: 2013
  ident: 3890_CR94
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.233
– volume: 60
  start-page: 683
  issue: 2
  year: 1986
  ident: 3890_CR16
  publication-title: J Virol
  doi: 10.1128/jvi.60.2.683-692.1986
– volume: 69
  start-page: 1379
  issue: 6
  year: 2007
  ident: 3890_CR88
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2007.03.029
– volume: 488
  start-page: 116
  issue: 7409
  year: 2012
  ident: 3890_CR25
  publication-title: Nature
  doi: 10.1038/nature11243
– volume: 364
  start-page: 2181
  issue: 9452
  year: 2004
  ident: 3890_CR10
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17590-9
– volume: 42
  start-page: 4257
  issue: 7
  year: 2014
  ident: 3890_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1399
– volume: 62
  start-page: 147
  issue: 2
  year: 1999
  ident: 3890_CR83
  publication-title: Genomics
  doi: 10.1006/geno.1999.5952
– volume: 144
  start-page: 327
  issue: 3
  year: 2011
  ident: 3890_CR96
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.024
– volume: 122
  start-page: 1667
  issue: 5
  year: 2012
  ident: 3890_CR44
  publication-title: J Clin Invest
  doi: 10.1172/JCI62189
– volume: 292
  start-page: 167
  issue: 5819
  year: 1981
  ident: 3890_CR2
  publication-title: Nature
  doi: 10.1038/292167a0
– volume: 3
  start-page: 429
  issue: 5
  year: 2011
  ident: 3890_CR4
  publication-title: Viruses
  doi: 10.3390/v3050429
– volume: 120
  start-page: 2981
  issue: 15
  year: 2012
  ident: 3890_CR78
  publication-title: Blood
  doi: 10.1182/blood-2012-02-409839
– volume: 5
  start-page: e1000491
  issue: 5
  year: 2009
  ident: 3890_CR71
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000491
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: 3890_CR100
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 5
  start-page: 886
  issue: 4
  year: 2013
  ident: 3890_CR30
  publication-title: Cell reports
  doi: 10.1016/j.celrep.2013.09.040
– volume: 8
  start-page: e73974
  issue: 9
  year: 2013
  ident: 3890_CR91
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073974
– volume: 83
  start-page: 8051
  issue: 16
  year: 2009
  ident: 3890_CR7
  publication-title: J Virol
  doi: 10.1128/JVI.00427-09
– volume: 32
  start-page: 153
  issue: 1
  year: 2002
  ident: 3890_CR36
  publication-title: Nat Genet
  doi: 10.1038/ng950
– volume: 110
  start-page: 12036
  issue: 29
  year: 2013
  ident: 3890_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1307157110
– volume: 3
  start-page: 89
  issue: 2
  year: 2011
  ident: 3890_CR20
  publication-title: EMBO Mol Med
  doi: 10.1002/emmm.201000108
– volume: 18
  start-page: R195
  issue: R2
  year: 2009
  ident: 3890_CR63
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp409
– volume: 14
  start-page: r106
  issue: 9
  year: 2013
  ident: 3890_CR90
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-9-r106
– volume: 85
  start-page: 6205
  issue: 13
  year: 2011
  ident: 3890_CR43
  publication-title: J Virol
  doi: 10.1128/JVI.00252-11
– volume: 13
  start-page: 211
  issue: 3
  year: 2013
  ident: 3890_CR3
  publication-title: Curr Gene Ther
  doi: 10.2174/1566523211313030006
– volume: Chapter 18
  start-page: Unit18 16
  year: 2011
  ident: 3890_CR89
  publication-title: Curr Protoc Hum Genet
– volume: 12
  start-page: 656
  issue: 4
  year: 2002
  ident: 3890_CR99
  publication-title: Genome Res
  doi: 10.1101/gr.229202. Article published online before March 2002
– volume: 7
  start-page: 562
  issue: 3
  year: 2012
  ident: 3890_CR47
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 107
  start-page: 12992
  issue: 29
  year: 2010
  ident: 3890_CR98
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1004139107
– volume: 288
  start-page: 669
  issue: 5466
  year: 2000
  ident: 3890_CR12
  publication-title: Science
  doi: 10.1126/science.288.5466.669
– volume: 2
  start-page: e00134
  year: 2011
  ident: 3890_CR46
  publication-title: mBio
  doi: 10.1128/mBio.00134-11
– volume: 23
  start-page: 917
  issue: 6
  year: 2013
  ident: 3890_CR27
  publication-title: Genome Res
  doi: 10.1101/gr.149674.112
– volume: 302
  start-page: 415
  issue: 5644
  year: 2003
  ident: 3890_CR72
  publication-title: Science
  doi: 10.1126/science.1088547
– volume: 132
  start-page: 797
  issue: 4
  year: 2005
  ident: 3890_CR34
  publication-title: Development
  doi: 10.1242/dev.01613
– volume: 31
  start-page: 1139
  issue: 5
  year: 2013
  ident: 3890_CR86
  publication-title: Int J Mol Cell Med
  doi: 10.3892/ijmm.2013.1314
– volume: 40
  start-page: 414
  issue: 1
  year: 2012
  ident: 3890_CR42
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr719
– volume: 74
  start-page: 396
  issue: 3
  year: 2001
  ident: 3890_CR62
  publication-title: Genomics
  doi: 10.1006/geno.2001.6558
– volume: 27
  start-page: 267
  issue: 7
  year: 2011
  ident: 3890_CR59
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2011.04.002
– volume: 1
  start-page: 27
  issue: 1
  year: 2012
  ident: 3890_CR80
  publication-title: Immunogastroenterology
  doi: 10.7178/ig.1.1.7
– volume: 85
  start-page: 7393
  issue: 14
  year: 2011
  ident: 3890_CR19
  publication-title: J Virol
  doi: 10.1128/JVI.00635-11
– volume: 5
  start-page: 4
  year: 2008
  ident: 3890_CR48
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-5-4
– volume: 73
  start-page: 7599
  issue: 9
  year: 1999
  ident: 3890_CR67
  publication-title: J Virol
  doi: 10.1128/JVI.73.9.7599-7606.1999
– volume: 71
  start-page: 882
  issue: 10
  year: 2012
  ident: 3890_CR82
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e31826bf704
– volume: 12
  start-page: 283
  issue: 4
  year: 2011
  ident: 3890_CR95
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2957
– volume: 88
  start-page: 4504
  issue: 8
  year: 2014
  ident: 3890_CR24
  publication-title: J Virol
  doi: 10.1128/JVI.00011-14
– volume: 21
  start-page: 2181
  issue: 12
  year: 2011
  ident: 3890_CR45
  publication-title: Genome Res
  doi: 10.1101/gr.112763.110
– volume: 103
  start-page: 18680
  issue: 49
  year: 2006
  ident: 3890_CR49
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0609030103
SSID ssj0031808
Score 2.1753628
Snippet Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of...
Background Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse...
Doc number: 36 Abstract Background: Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for...
Background: Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 36
SubjectTerms Animals
Cancer
Chromatin
Cloning
Complications and side effects
Deoxyribonucleic acid
DNA
Epigenesis, Genetic
Epigenetic inheritance
Gene expression
Genetic aspects
Genetic Therapy - methods
Genetic transcription
Genetic Vectors - genetics
Genomes
Leukemia Virus, Murine - genetics
Mice
Mouse leukemia complex
Mutagenesis
Mutagenesis, Insertional - genetics
Neoplasms - genetics
Physiological aspects
Principles
Promoter Regions, Genetic
Proviruses - genetics
Retroviridae - genetics
RNA sequencing
Studies
T-Lymphocytes - metabolism
Transcription Initiation Site
Transcriptional Activation - genetics
Tumorigenesis
Tumors
Virus Integration - genetics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na51AEF_alEIvod81TcsWCu1lG1036-6phNIQesipgXeTdXdNH33q61MDIf98ZnS1sdCcRHZW1Pn6zTjOEPJRi6TMlBYss8AGIXjClJEps4UrXJYaAQestjiXZxfix-p4FRJubSirnGziYKhdYzFHfgSaqTnAA86_bv8wnBqFX1fDCI2H5BG2LsOSrmw1B1wgrrEK7XwSJY8AfHOG4eDQuk8uPNG_9viOQ1oWS97xPqdPyX6AjfRk5PMz8sDXz8njcZDk9Qtyc95c-Q3dTpnzljYlvTRVZdjOd5g1gGvSdY2f3ofcH-3QR00Wg-LfDWNuFohohRl4Tze-_-2rtaGwu28ZBO8gBo762jGAlJeedn3V7NqX5OL0-89vZyyMVWAWpxcwW-pCumNuYlto40pQvFIkwvI0417E1mlgrIsl1xzgoONcW5Wa1HhTgm9XRfqK7NVN7d8Q6lRaQghklUFcBnSlsPCiAEIkplBxFpEv0yvObeg5jqMvNvkQeyiZI09y5Amc5qmMyOd5w3Zst_F_0k_IsxwVEa5pTfifAO4MW1rlJyAwcsBPETlcUIIC2eXyxPU8KHCb_xW3iHyYl3EnFqXVvukHGq4FFuHeS4M9-yFoi8jrUZDmB-NgPKXIdESyhYjNBNj6e7lSr38NLcAhKldgSQ_uv_W35AngO4HFDok-JHvdrvfvAEN1xftBUW4BseMeVA
  priority: 102
  providerName: ProQuest
Title Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors
URI https://www.ncbi.nlm.nih.gov/pubmed/24886479
https://www.proquest.com/docview/1539285122
https://www.proquest.com/docview/1532942400
https://www.proquest.com/docview/1534837747
https://pubmed.ncbi.nlm.nih.gov/PMC4098794
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_eHYIv4rfVc4kg6EvObZptkweRVe44FlxEXdi3kibp3eK2PXe74uE_70z64VXOeyolk9BmZjK_mU5nCHmlRJgnUgmWGGCDEDxkUscRM5nNbBJpARfMtpjHpwsxW06Wf9sBtRu4vda1w35Si8366NePy_eg8O-8wsv4LYBqztDN8yX54j1yAGYpQS39JPpPCiC7vj1dT9zW-blmgYGJ-vegvmKphlmUV8zSyT1yt8WTdNoIwH1yy5UPyO2mw-TlQ_J7Xv10a3rRhdS3tMrpmS4KzTauxnACrElXJX6T90FBWqPx6o4Sir89NEFbIKIFhuYdXbvdd1esNIXZuy0Drx7kw1JXWgZY88zReldUm-0jsjg5_vbxlLX9FpjBtgbM5CqL7YTrscmUtjloZC5CYXiUcCfGxirguB3HXHHAiZZzZWSkI-10DkZfZtFjsl9WpXtKqJVRDr6RkRoBG9DlwsBGAbYIdSbHSUCOui1OTVuMHHtirFPvlMg4RZ6kyBO4TaM4IG_6CRdNHY7_k75GnqUoM7Cm0e2PBvBkWOsqnU4iFXtgFZDDASVolhkOd1xPO8FMwUIoDjCV84C87IdxJmarla7aeRquBGbn3kiDxfzBmwvIk0aQ-hfjcKrGIlEBSQYi1hNgTfDhSLk697XBwV2XcMQ-u_nNnpM7APwEZkGE6pDs15udewHgqs5GZC9ZJiNyMJ3Ovs7g-uF4_vnLyIcqRl6h_gAjfydF
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2QnBBvAkUMBIILqGJ4yb2AaECrba0rBBqpd5Sx3bKit1k2c2CKv6Jb2Qmj6VBoreeoshjK_a8J-MZgOdKhHkilfATg2gQgoe-1HHkm8xmNom0wAdlW4zi4ZH4eLx1vAa_u7swlFbZycRaUNvSUIx8EzlTcTQPOH87--5T1yj6u9q10GjIYt-d_USXbfFm7wPi9wXnuzuH74d-21XAN1S83ze5ymK7xXVgMqVtjnSXi1AYHiXcicBYhfuyQcwVR2vIcq6MjHSknc5RtckswnWvwLqI0JUZwPq7ndHnL53sRwYJZFtAKJTxJpr73CcHtC4WGPd0378a4JwK7KdnntN3uzfhRmuosu2Gsm7Bmituw9WmdeXZHfg1Kn-4CZt1sfoFK3N2qqdT7c9dRXEKXJONC_rZX0cbWUVasZNRjO5TNNFgBGJTivk7NnHLb2461gxnLxf-uLBIeJa5wvpoxJ46Vi2n5XxxF44u5cjvwaAoC_cAmJVRjk6XkZosQYTLhcGDQqMl1JkMEg9ed0ecmrbKOTXbmKS1tyPjlHCSEk7wNY1iD16tJsyaAh__B31JOEuJ9XFNo9sbDPhlVEQr3UYSjWuLzYONHiSyrOkPd1hPW5GxSP8SuAfPVsM0k9LgClcuaxiuBKX9XghDXQLQTfTgfkNIq41xFNexSJQHSY_EVgBUbLw_Uoy_1kXHRaAkyu6HF3_6U7g2PPx0kB7sjfYfwXW0LgWlWoRqAwbVfOkeowVXZU9atmFwctmc-gfb_V2l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+principles+of+gamma-retroviral+insertional+transcription+activation+in+murine+leukemia+virus-induced+end-stage+tumors&rft.jtitle=Retrovirology&rft.au=Sokol%2C+Martin&rft.au=Wabl%2C+Matthias&rft.au=Ruiz%2C+Irene+Rius&rft.au=Pedersen%2C+Finn+Skou&rft.date=2014-05-19&rft.pub=BioMed+Central+Ltd&rft.issn=1742-4690&rft.eissn=1742-4690&rft.volume=11&rft_id=info:doi/10.1186%2F1742-4690-11-36&rft.externalDocID=A539671028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon