Unbiased diffeomorphic atlas construction for computational anatomy
Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, a...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 23; pp. S151 - S160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
2004
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting.
A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations. |
---|---|
AbstractList | Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting. A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations.Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting. A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations. Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting. A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations. Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting. A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations. |
Author | Gerig, Guido Davis, Brad Joshi, S. Jomier, Matthieu |
Author_xml | – sequence: 1 givenname: S. surname: Joshi fullname: Joshi, S. email: joshi@cs.unc.edu organization: Department of Radiation Oncology, University of North Carolina, United States – sequence: 2 givenname: Brad surname: Davis fullname: Davis, Brad organization: Department of Radiation Oncology, University of North Carolina, United States – sequence: 3 givenname: Matthieu surname: Jomier fullname: Jomier, Matthieu organization: Department of Psychiatry, University of North Carolina, United States – sequence: 4 givenname: Guido surname: Gerig fullname: Gerig, Guido organization: Department of Computer Science, University of North Carolina, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15501084$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAQhkVJaD7av1AMgd7sjryyJV9C2qUfgUAuzVnI8qjRxpY2klzYf1-ZTRrYS3LSSLzzjOZ9z8iR8w4JKShUFGj7ZVM5nIO3k_qDVQ3AKuAVtOIdOaXQNWXX8PpoqZtVKSjtTshZjBsA6CgT78kJbRqgINgpWd-53qqIQzFYY9BPPmzvrS5UGlUstHcxhVkn611hfMgP03ZOarmrsVBOJT_tPpBjo8aIH5_Oc3L34_vv9a_y5vbn9frrTambmqZSD3l4z5RQMLQC-9ZQFMZogbTnTIi6Q64HI0wvOoU1A8YU511Tg6AMVnR1Tj7vudvgH2eMSU42ahxH5dDPUbYcoKasy8KLA-HGzyH_OEraAK8ZX_EF9-lJNfcTDnIbsp9hJ5_NyYLLvUAHH2NAI7Xd756CsqOkIJc05Ea-pCGXNCRwmdPIAHEA-D_j9dZv-1bMhv61GGTUFp3GwQbUSQ7evgVydQDRo3VWq_EBd29D_AMeRsEp |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2009_08_026 crossref_primary_10_1016_j_ejro_2023_100491 crossref_primary_10_1111_j_1467_9868_2007_00574_x crossref_primary_10_1137_080738337 crossref_primary_10_1016_j_neuroimage_2009_09_069 crossref_primary_10_1016_j_neuroimage_2009_09_062 crossref_primary_10_1118_1_2940188 crossref_primary_10_1371_journal_pone_0166112 crossref_primary_10_1111_desc_12015 crossref_primary_10_1007_s11263_010_0358_2 crossref_primary_10_1016_j_neuroimage_2018_04_020 crossref_primary_10_1016_j_neuroimage_2013_09_011 crossref_primary_10_1016_j_neuroimage_2021_118716 crossref_primary_10_1371_journal_pone_0153040 crossref_primary_10_1142_S2339547814500010 crossref_primary_10_1016_j_media_2017_09_004 crossref_primary_10_1109_TMI_2010_2076299 crossref_primary_10_1007_s11042_020_09203_y crossref_primary_10_1371_journal_pone_0146870 crossref_primary_10_1016_j_neuroimage_2016_09_070 crossref_primary_10_1097_PRS_0000000000010526 crossref_primary_10_1111_2041_210X_13689 crossref_primary_10_1007_s13139_013_0241_5 crossref_primary_10_1176_appi_ajp_2011_11091447 crossref_primary_10_1109_TMI_2007_907286 crossref_primary_10_1016_j_dcn_2015_08_008 crossref_primary_10_1007_s11263_015_0841_x crossref_primary_10_1093_cercor_bhr372 crossref_primary_10_1176_appi_ajp_2014_14030313 crossref_primary_10_3390_e19060288 crossref_primary_10_1016_j_neuroimage_2013_09_020 crossref_primary_10_1016_j_neuroimage_2013_09_023 crossref_primary_10_1016_j_patcog_2016_09_019 crossref_primary_10_1080_10255842_2012_670855 crossref_primary_10_1002_jbmr_3159 crossref_primary_10_1016_j_neuroimage_2011_07_095 crossref_primary_10_1016_j_neuroimage_2023_120129 crossref_primary_10_1002_hbm_25327 crossref_primary_10_1587_transinf_E93_D_2291 crossref_primary_10_1016_j_cmpb_2010_11_001 crossref_primary_10_1118_1_3284530 crossref_primary_10_1146_annurev_bioeng_071910_124649 crossref_primary_10_1016_j_media_2019_101564 crossref_primary_10_1088_0031_9155_58_15_5269 crossref_primary_10_1016_j_neuroimage_2007_04_024 crossref_primary_10_1109_TMI_2011_2138152 crossref_primary_10_1016_j_media_2014_03_001 crossref_primary_10_1016_j_neuroimage_2023_120387 crossref_primary_10_3389_fnins_2019_00333 crossref_primary_10_1016_j_cag_2015_08_008 crossref_primary_10_1002_dev_20579 crossref_primary_10_1111_adb_12746 crossref_primary_10_1109_TMI_2013_2239654 crossref_primary_10_1016_j_compmedimag_2018_05_002 crossref_primary_10_1038_srep34461 crossref_primary_10_1016_j_bpsc_2019_05_006 crossref_primary_10_1007_s10851_012_0391_6 crossref_primary_10_1016_j_neuroimage_2009_10_065 crossref_primary_10_54294_jagm64 crossref_primary_10_1016_j_media_2011_05_005 crossref_primary_10_1016_j_neuro_2016_11_007 crossref_primary_10_1016_j_neuroimage_2012_02_084 crossref_primary_10_1117_1_JMI_2_4_041003 crossref_primary_10_1016_j_media_2016_08_012 crossref_primary_10_1109_TMI_2014_2313812 crossref_primary_10_1371_journal_pone_0018746 crossref_primary_10_1137_140982039 crossref_primary_10_1016_j_neuroimage_2017_02_055 crossref_primary_10_1016_j_compmedimag_2016_03_005 crossref_primary_10_1016_j_neuroimage_2020_117301 crossref_primary_10_1109_JBHI_2018_2844361 crossref_primary_10_1109_TMI_2011_2169077 crossref_primary_10_1155_2014_182909 crossref_primary_10_1002_nbm_981 crossref_primary_10_1109_TMI_2010_2089693 crossref_primary_10_1016_j_cmpb_2020_105799 crossref_primary_10_1002_hbm_21023 crossref_primary_10_1007_s12021_012_9156_z crossref_primary_10_1016_j_neurobiolaging_2014_01_144 crossref_primary_10_1016_j_neuroimage_2010_03_010 crossref_primary_10_1016_j_neuro_2022_10_012 crossref_primary_10_1016_j_neucom_2012_08_012 crossref_primary_10_1007_s11263_010_0367_1 crossref_primary_10_1117_1_JMI_2_1_014005 crossref_primary_10_1016_j_neuroimage_2020_117657 crossref_primary_10_1016_j_neuroimage_2004_07_021 crossref_primary_10_1002_hbm_23435 crossref_primary_10_1007_s00247_020_04875_y crossref_primary_10_1007_s00138_009_0198_7 crossref_primary_10_1088_0031_9155_59_20_6085 crossref_primary_10_1109_TMI_2005_853923 crossref_primary_10_1088_0031_9155_53_21_017 crossref_primary_10_3389_fneur_2014_00240 crossref_primary_10_1093_toxsci_kfr033 crossref_primary_10_1016_j_neuroimage_2011_01_078 crossref_primary_10_1016_j_neuroimage_2013_05_093 crossref_primary_10_1109_TPAMI_2017_2700276 crossref_primary_10_1007_s11548_014_1068_y crossref_primary_10_1111_j_1528_1167_2009_02413_x crossref_primary_10_1007_s11263_008_0141_9 crossref_primary_10_1109_JBHI_2022_3156009 crossref_primary_10_1109_TMI_2007_892508 crossref_primary_10_1176_appi_ajp_2012_12091150 crossref_primary_10_1016_j_neuroimage_2009_01_004 crossref_primary_10_1007_s10208_018_9394_z crossref_primary_10_1016_j_earlhumdev_2012_02_003 crossref_primary_10_1002_hbm_23583 crossref_primary_10_1109_TMI_2007_892510 crossref_primary_10_1371_journal_pone_0155764 crossref_primary_10_1109_TMI_2011_2171497 crossref_primary_10_1137_24M1644730 crossref_primary_10_1016_j_media_2018_02_003 crossref_primary_10_1016_j_neuroimage_2019_04_013 crossref_primary_10_1109_TBME_2012_2214774 crossref_primary_10_1111_j_1552_6569_2012_00713_x crossref_primary_10_1109_TIP_2018_2855978 crossref_primary_10_1016_j_acra_2021_03_010 crossref_primary_10_1371_journal_pone_0047816 crossref_primary_10_3390_brainsci12091129 crossref_primary_10_1016_j_neuroimage_2017_07_008 crossref_primary_10_1016_j_neuroimage_2010_10_019 crossref_primary_10_1002_jmri_23790 crossref_primary_10_1214_11_EJS633 crossref_primary_10_1109_TMI_2008_2010434 crossref_primary_10_1089_brain_2016_0481 crossref_primary_10_3390_app11041892 crossref_primary_10_1016_j_neuroimage_2010_06_040 crossref_primary_10_1007_s10851_022_01137_4 crossref_primary_10_1186_s13014_024_02452_3 crossref_primary_10_1016_j_bandc_2011_09_006 crossref_primary_10_1109_TMI_2013_2270114 crossref_primary_10_1109_TMI_2011_2108665 crossref_primary_10_1016_j_neuroimage_2021_118206 crossref_primary_10_1093_brain_awaa447 crossref_primary_10_1016_j_patrec_2011_11_005 crossref_primary_10_1007_s11263_009_0219_z crossref_primary_10_1016_j_pediatrneurol_2007_06_012 crossref_primary_10_1016_j_neuroimage_2011_09_062 crossref_primary_10_1016_j_neuroimage_2012_09_021 crossref_primary_10_1016_j_neuroimage_2010_07_052 crossref_primary_10_1016_j_neuroimage_2008_01_013 crossref_primary_10_1016_j_neuroimage_2008_10_060 crossref_primary_10_1371_journal_pone_0067334 crossref_primary_10_1016_j_radonc_2008_01_018 crossref_primary_10_1016_j_neuroimage_2008_10_052 crossref_primary_10_1111_adb_12232 crossref_primary_10_1109_TPAMI_2013_141 crossref_primary_10_1016_j_compmedimag_2011_09_001 crossref_primary_10_1109_TMI_2009_2017942 crossref_primary_10_4137_CMC_S15710 crossref_primary_10_1089_fpsam_2024_0046 crossref_primary_10_1016_j_media_2014_06_010 crossref_primary_10_1137_16M1076733 crossref_primary_10_3389_fninf_2019_00034 crossref_primary_10_1080_21681163_2016_1169220 crossref_primary_10_1109_TMI_2013_2293478 crossref_primary_10_2196_34854 crossref_primary_10_1007_s10851_024_01211_z crossref_primary_10_1016_j_neuroimage_2008_10_048 crossref_primary_10_1002_hbm_22444 crossref_primary_10_1007_s10208_015_9288_2 crossref_primary_10_1016_j_neuroimage_2015_04_055 crossref_primary_10_1002_hbm_23536 crossref_primary_10_1016_j_neuroimage_2012_01_095 crossref_primary_10_1093_cercor_bhz271 crossref_primary_10_1016_j_neuroimage_2011_07_036 crossref_primary_10_1016_j_nicl_2014_02_002 crossref_primary_10_1118_1_4966702 crossref_primary_10_1007_s10278_012_9497_z crossref_primary_10_1007_s40846_018_0390_1 crossref_primary_10_1016_j_neuroimage_2014_10_059 crossref_primary_10_1016_j_media_2025_103540 crossref_primary_10_1016_j_ymeth_2015_01_005 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_3389_fnins_2016_00617 crossref_primary_10_1093_biostatistics_kxad026 crossref_primary_10_1016_j_neuroimage_2011_07_029 crossref_primary_10_1016_j_neuroimage_2008_01_003 crossref_primary_10_1016_j_neuroimage_2006_08_053 crossref_primary_10_1111_jon_12002 crossref_primary_10_1002_cne_23678 crossref_primary_10_1016_j_neuroimage_2011_07_026 crossref_primary_10_1016_j_media_2015_08_009 crossref_primary_10_1162_netn_a_00355 crossref_primary_10_1002_hbm_22627 crossref_primary_10_1016_j_media_2012_10_002 crossref_primary_10_1016_j_media_2023_103035 crossref_primary_10_1109_TMI_2007_907326 crossref_primary_10_1002_hbm_22502 crossref_primary_10_1007_s11263_012_0598_4 crossref_primary_10_1109_TMI_2015_2416271 crossref_primary_10_1016_j_media_2023_103034 crossref_primary_10_1002_jmri_24224 crossref_primary_10_1016_j_media_2011_02_008 crossref_primary_10_3389_fninf_2018_00013 crossref_primary_10_1016_j_media_2008_06_005 crossref_primary_10_1038_s41597_022_01476_2 crossref_primary_10_1088_1361_6560_aa7c41 crossref_primary_10_1016_j_ntt_2014_11_007 crossref_primary_10_1002_hbm_21209 crossref_primary_10_1038_s41598_017_00525_w crossref_primary_10_1016_j_nic_2020_06_002 crossref_primary_10_1109_TIP_2016_2537215 crossref_primary_10_1118_1_3301594 crossref_primary_10_1016_j_mri_2012_06_035 crossref_primary_10_3389_fmed_2022_797586 crossref_primary_10_1109_TPAMI_2012_143 crossref_primary_10_1016_j_neuroimage_2009_04_024 crossref_primary_10_1016_j_media_2020_101698 crossref_primary_10_1016_j_neuro_2016_06_016 crossref_primary_10_1016_j_media_2017_03_008 crossref_primary_10_1016_j_neuroimage_2018_01_046 crossref_primary_10_3389_fninf_2017_00016 crossref_primary_10_1007_s12021_015_9285_2 crossref_primary_10_1016_j_neuroimage_2021_118869 crossref_primary_10_1016_j_neuroscience_2010_12_060 crossref_primary_10_1016_j_pscychresns_2016_05_004 crossref_primary_10_1109_TIP_2010_2042099 crossref_primary_10_1016_j_neuroimage_2009_12_007 crossref_primary_10_1007_s10916_010_9509_9 crossref_primary_10_3174_ajnr_A2578 crossref_primary_10_1007_s11517_020_02226_5 crossref_primary_10_1093_toxsci_kfz011 crossref_primary_10_5402_2012_705853 crossref_primary_10_1007_s11263_018_1099_x crossref_primary_10_1016_j_csda_2015_04_011 crossref_primary_10_1016_j_media_2010_07_002 crossref_primary_10_1212_WNL_0000000000209604 crossref_primary_10_1007_s11682_020_00392_6 crossref_primary_10_1093_brain_awab262 crossref_primary_10_1109_MCG_2015_70 crossref_primary_10_1016_j_compmedimag_2008_12_002 crossref_primary_10_1016_j_neuroimage_2014_07_001 crossref_primary_10_3390_rs13071294 crossref_primary_10_1111_j_1469_7580_2007_00751_x crossref_primary_10_1002_mrm_27402 crossref_primary_10_1016_j_media_2015_09_001 crossref_primary_10_1137_18M1207818 crossref_primary_10_3389_fendo_2021_782194 crossref_primary_10_1002_cyto_a_20506 crossref_primary_10_1016_j_jocs_2018_11_011 crossref_primary_10_1109_TPAMI_2022_3225418 crossref_primary_10_1016_j_neuroimage_2019_116018 crossref_primary_10_1186_1532_429X_15_80 crossref_primary_10_54294_gmbmol crossref_primary_10_1137_17M1129222 crossref_primary_10_3934_mbe_2023204 crossref_primary_10_1109_TMI_2010_2049497 crossref_primary_10_1109_JBHI_2018_2815346 crossref_primary_10_1371_journal_pone_0115229 crossref_primary_10_1093_brain_awr027 crossref_primary_10_1371_journal_pone_0187874 crossref_primary_10_1002_cne_24946 crossref_primary_10_1016_j_neuroimage_2022_119417 crossref_primary_10_1016_j_mri_2019_05_034 crossref_primary_10_1016_j_ajp_2018_05_014 crossref_primary_10_3389_fnhum_2019_00434 crossref_primary_10_1016_j_neuroimage_2015_10_042 crossref_primary_10_1155_2010_974957 crossref_primary_10_3389_fnana_2018_00108 crossref_primary_10_1109_ACCESS_2019_2901580 crossref_primary_10_1137_19M1271907 crossref_primary_10_1016_j_media_2010_06_001 crossref_primary_10_1016_j_compbiomed_2015_10_007 crossref_primary_10_1016_j_neuroimage_2010_07_033 crossref_primary_10_1016_j_media_2005_03_005 crossref_primary_10_1109_TMI_2010_2050897 crossref_primary_10_1016_j_neuroscience_2009_12_036 crossref_primary_10_1118_1_4868455 crossref_primary_10_1093_toxsci_kfv088 crossref_primary_10_1016_j_neurobiolaging_2022_12_016 crossref_primary_10_1016_j_media_2017_12_008 crossref_primary_10_1111_ics_12593 crossref_primary_10_1109_TPAMI_2009_199 crossref_primary_10_1126_sciadv_add3607 crossref_primary_10_1016_j_media_2017_06_013 crossref_primary_10_1109_TPAMI_2009_193 crossref_primary_10_1016_j_media_2015_02_003 crossref_primary_10_1016_j_neuroimage_2007_10_043 crossref_primary_10_1088_1361_6560_abf010 crossref_primary_10_1016_j_neuroimage_2015_03_039 crossref_primary_10_1109_TMI_2014_2305751 crossref_primary_10_1002_wsbm_1425 crossref_primary_10_1016_j_neuro_2016_08_012 crossref_primary_10_1016_j_media_2011_10_005 crossref_primary_10_1016_j_jns_2008_12_035 crossref_primary_10_1111_srt_13324 crossref_primary_10_1371_journal_pone_0020241 crossref_primary_10_1111_srt_12240 crossref_primary_10_1002_jbmr_3872 crossref_primary_10_1007_s10851_010_0194_6 crossref_primary_10_1016_j_neuroimage_2007_02_018 crossref_primary_10_1038_s41597_022_01560_7 crossref_primary_10_3390_jimaging8090251 crossref_primary_10_1016_j_acra_2008_07_008 crossref_primary_10_1118_1_4881515 crossref_primary_10_1002_hipo_20619 crossref_primary_10_1109_TMI_2007_906784 crossref_primary_10_1371_journal_pone_0222700 crossref_primary_10_1016_j_media_2005_03_002 crossref_primary_10_1016_j_neurobiolaging_2016_09_015 crossref_primary_10_1088_1361_6560_aa925a crossref_primary_10_1016_j_neuroimage_2022_119616 crossref_primary_10_1109_TMI_2010_2040625 crossref_primary_10_3390_bs12050128 crossref_primary_10_3390_jcm8091287 crossref_primary_10_1093_cercor_bhn112 crossref_primary_10_1016_j_drugalcdep_2010_04_012 crossref_primary_10_1038_s43588_024_00732_2 crossref_primary_10_1523_JNEUROSCI_3479_08_2008 crossref_primary_10_1371_journal_pone_0035397 crossref_primary_10_1016_j_neuroimage_2020_117195 crossref_primary_10_1016_j_neuroimage_2008_12_008 crossref_primary_10_1002_hbm_26126 crossref_primary_10_1137_16M1070980 crossref_primary_10_1109_TMI_2012_2202913 crossref_primary_10_1137_16M1083931 crossref_primary_10_1109_TMI_2011_2135375 crossref_primary_10_1016_j_neuroimage_2011_05_066 crossref_primary_10_1007_s12021_021_09521_y crossref_primary_10_1523_JNEUROSCI_1392_11_2011 crossref_primary_10_1002_hbm_20814 crossref_primary_10_1109_TMI_2015_2476817 crossref_primary_10_1038_s41598_019_48491_9 crossref_primary_10_1016_j_media_2020_101711 crossref_primary_10_1016_j_neuroimage_2010_02_025 crossref_primary_10_1016_j_cmpb_2011_07_015 crossref_primary_10_1016_j_neuroimage_2013_05_065 crossref_primary_10_1002_hbm_20923 crossref_primary_10_1091_mbc_E15_06_0370 crossref_primary_10_1016_j_media_2010_05_002 crossref_primary_10_1038_s41597_022_01415_1 crossref_primary_10_1016_j_neuroimage_2010_03_059 crossref_primary_10_1016_j_media_2010_05_008 crossref_primary_10_1016_j_neuroimage_2012_11_040 crossref_primary_10_1016_j_jcp_2023_112463 crossref_primary_10_1016_j_neuroimage_2005_02_018 crossref_primary_10_1038_s41598_021_85518_6 crossref_primary_10_1007_s10548_014_0400_8 crossref_primary_10_1016_j_bspc_2017_03_003 crossref_primary_10_1016_j_neuroimage_2011_01_038 crossref_primary_10_1109_TMI_2013_2274051 crossref_primary_10_1016_j_neuroimage_2011_02_076 crossref_primary_10_1016_j_jneuroim_2020_577367 crossref_primary_10_1371_journal_pone_0071027 crossref_primary_10_1162_imag_a_00100 crossref_primary_10_1093_brain_awac298 crossref_primary_10_1159_000536159 crossref_primary_10_1093_toxsci_kfw116 crossref_primary_10_1080_87565641_2012_688900 crossref_primary_10_1016_j_neuroimage_2008_07_006 crossref_primary_10_1016_j_msard_2015_01_004 crossref_primary_10_1002_jmri_25065 crossref_primary_10_1016_j_jbiomech_2014_09_031 crossref_primary_10_1212_WNL_0000000000008679 crossref_primary_10_1016_j_media_2014_01_001 crossref_primary_10_1016_j_media_2022_102383 crossref_primary_10_1016_j_neuroimage_2017_10_060 crossref_primary_10_1155_2014_792194 crossref_primary_10_1146_annurev_bioeng_071114_040601 crossref_primary_10_1016_j_media_2021_102178 crossref_primary_10_1038_s41467_024_47883_4 crossref_primary_10_1137_130933423 crossref_primary_10_3390_brainsci10020115 crossref_primary_10_54294_eoxxuh crossref_primary_10_1109_TPAMI_2013_74 crossref_primary_10_1016_j_neuroimage_2013_04_114 crossref_primary_10_1007_s11682_008_9057_9 crossref_primary_10_1137_120864556 crossref_primary_10_1109_TMI_2022_3166593 crossref_primary_10_1016_j_nicl_2016_09_008 crossref_primary_10_1016_j_neuroimage_2016_02_066 crossref_primary_10_1109_TBME_2012_2230262 crossref_primary_10_1109_TMI_2015_2448556 crossref_primary_10_1093_toxsci_kfae117 crossref_primary_10_1111_acer_12125 crossref_primary_10_1109_TVCG_2012_32 crossref_primary_10_1007_s12021_020_09482_8 crossref_primary_10_1093_brain_awr044 crossref_primary_10_1016_j_neuroimage_2010_02_061 crossref_primary_10_1007_s11548_018_1858_8 crossref_primary_10_1016_j_compbiomed_2024_108761 crossref_primary_10_2310_7290_2009_00004 crossref_primary_10_1016_j_media_2016_06_026 crossref_primary_10_1049_iet_ipr_2016_0988 crossref_primary_10_1007_s10851_008_0129_7 crossref_primary_10_1016_j_neuroimage_2010_09_025 crossref_primary_10_1002_mrm_26787 crossref_primary_10_1080_21681163_2014_933679 crossref_primary_10_1016_j_neuroimage_2017_03_009 crossref_primary_10_1007_s11042_015_2727_x crossref_primary_10_1016_j_media_2021_102157 crossref_primary_10_1371_journal_pone_0133352 crossref_primary_10_1007_s11263_013_0681_5 crossref_primary_10_1016_j_neuroimage_2010_09_019 crossref_primary_10_1016_j_media_2015_04_007 crossref_primary_10_1016_j_neuroimage_2011_03_050 crossref_primary_10_1016_j_media_2015_04_009 crossref_primary_10_1016_j_neuroimage_2010_01_040 crossref_primary_10_1093_cercor_bhw331 crossref_primary_10_1109_TMI_2012_2230015 crossref_primary_10_1016_j_media_2015_04_005 crossref_primary_10_1111_cgf_13799 crossref_primary_10_1038_s41598_017_18199_9 crossref_primary_10_1002_hbm_20906 |
Cites_doi | 10.1109/38.144829 10.1007/s00791-002-0084-6 10.1090/qam/1668732 10.1006/cviu.1999.0815 10.1007/978-3-540-45087-0_37 10.1146/annurev.bioeng.4.092101.125733 10.1016/S1076-6332(03)00538-5 10.1007/978-3-540-39701-4_25 10.1073/pnas.95.19.11406 10.1112/blms/16.2.81 10.1016/S1361-8415(97)85002-5 10.1142/S0218001497000615 10.1016/j.neuroimage.2004.07.010 10.1016/S1053-8119(03)00100-9 10.1097/00004728-199303000-00011 10.1016/S1361-8415(03)00002-1 10.1109/TMI.2002.803111 10.1023/A:1011161132514 10.1097/00004728-199801000-00028 |
ContentType | Journal Article |
Copyright | 2004 Elsevier Inc. Copyright Elsevier Limited Jan 1, 2004 |
Copyright_xml | – notice: 2004 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 1, 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2004.07.068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | S160 |
ExternalDocumentID | 3246194991 15501084 10_1016_j_neuroimage_2004_07_068 S1053811904003842 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH064065 – fundername: NIMH NIH HHS grantid: R01 MH61696 – fundername: NIMH NIH HHS grantid: MH 64580 – fundername: NIBIB NIH HHS grantid: P01 EB002779 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c521t-cd148b4a8a0d68eb6f1e8ffc8e1b748829e7cdf8fb89ae24044a7795208140313 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 |
IngestDate | Fri Jul 11 02:11:58 EDT 2025 Wed Aug 13 10:00:44 EDT 2025 Wed Feb 19 01:48:45 EST 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 00:49:26 EDT 2025 Fri Feb 23 02:29:07 EST 2024 Tue Aug 26 18:14:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image segmentation Brain atlases Computational anatomy Registration |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-cd148b4a8a0d68eb6f1e8ffc8e1b748829e7cdf8fb89ae24044a7795208140313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 15501084 |
PQID | 1507247371 |
PQPubID | 2031077 |
ParticipantIDs | proquest_miscellaneous_67002149 proquest_journals_1507247371 pubmed_primary_15501084 crossref_citationtrail_10_1016_j_neuroimage_2004_07_068 crossref_primary_10_1016_j_neuroimage_2004_07_068 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_07_068 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_07_068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004 2004-1-00 2004-00-00 20040101 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 2004 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Guimond, Meunier, Thirion (bib14) 2000; 77 Zou, Warfield, Fielding, Tempany, Wells, Kaus, Jolesh, Kikinis (bib36) 2003; 10 Toga (bib33) 1999 Kendall (bib21) 1984; 16 Miller, Joshi, Christensen (bib25) 1999 Thompson, Toga (bib31) 2002; 5 Warfield, Zou, Wells (bib34) 2002 Gee, Reivich, Bajcsy (bib10) 1993; 17 Miller, Trouve, Younes (bib26) 2002; 4 Talairach, Tournoux (bib29) 1988 Lorenzen, Joshi (bib22) 2003 Miller, Younes (bib24) 2001; 41 Rohlfing, Russakoff, Maurer (bib5) 2003 Magnotta, Bockholt, Johnson, Christensen, Andreasen (bib23) 2003; 19 Fletcher, Joshi, Lu, Pizer (bib8) 2003; vol. 2732 Ho, Bullitt, Gerig (bib16) 2002 Frechet (bib9) 1948; 10 Rohlfing, Russakoff, Maurer (bib27) 2003 Hohne, Bomans, Riemer, Tiede, Shubert, Lierse (bib17) 1992 Bookstein (bib3) 1991 Grenander (bib12) 1994 Csernansky, Joshi, Wang, Gado, Philip, Grenander, Miller (bib4) 1998; 95 Thompson, Toga (bib30) 1997; 1 Woods, Grafton, Watson, Sicotte, Toga, Mazziotta (bib35) 1998; 22 Joshi, Grenander, Miller (bib19) 1997; 11 Avants, Gee (bib1) 2004; 23 Gerig, Jomier, Chakos (bib11) 2001; vol. 2208 Shen, Davatzikos (bib28) 2002; 21 Joshi, Lorenzen, Gerig, Bullitt (bib20) 2003; 7 Dupuis, Grenander, Miller (bib6) 1997 Fletcher, Lu, Joshi (bib7) 2003 Bhatia, Hajnal, Puri, Edwards, Rueckert (bib2) 2004 He, Jianchun, Christensen, Gary E., 2003. Large deformation inverse consistent elastic image registration. In: Taylor, C.J., Noble, J.A. (Eds.). IPMI3003, LNCS, vol. 2732, IPMI, Springer-Verlag, pp. 438–449. Grenander, Miller (bib13) 1998; 56 Bhatia (10.1016/j.neuroimage.2004.07.068_bib2) 2004 Rohlfing (10.1016/j.neuroimage.2004.07.068_bib27) 2003 Talairach (10.1016/j.neuroimage.2004.07.068_bib29) 1988 Gerig (10.1016/j.neuroimage.2004.07.068_bib11) 2001; vol. 2208 Ho (10.1016/j.neuroimage.2004.07.068_bib16) 2002 Grenander (10.1016/j.neuroimage.2004.07.068_bib13) 1998; 56 Rohlfing (10.1016/j.neuroimage.2004.07.068_bib5) 2003 Fletcher (10.1016/j.neuroimage.2004.07.068_bib7) 2003 Thompson (10.1016/j.neuroimage.2004.07.068_bib30) 1997; 1 Miller (10.1016/j.neuroimage.2004.07.068_bib24) 2001; 41 Dupuis (10.1016/j.neuroimage.2004.07.068_bib6) 1997 Joshi (10.1016/j.neuroimage.2004.07.068_bib19) 1997; 11 Joshi (10.1016/j.neuroimage.2004.07.068_bib20) 2003; 7 Lorenzen (10.1016/j.neuroimage.2004.07.068_bib22) 2003 Bookstein (10.1016/j.neuroimage.2004.07.068_bib3) 1991 Woods (10.1016/j.neuroimage.2004.07.068_bib35) 1998; 22 Thompson (10.1016/j.neuroimage.2004.07.068_bib31) 2002; 5 Fletcher (10.1016/j.neuroimage.2004.07.068_bib8) 2003; vol. 2732 Miller (10.1016/j.neuroimage.2004.07.068_bib26) 2002; 4 Frechet (10.1016/j.neuroimage.2004.07.068_bib9) 1948; 10 Grenander (10.1016/j.neuroimage.2004.07.068_bib12) 1994 Kendall (10.1016/j.neuroimage.2004.07.068_bib21) 1984; 16 Avants (10.1016/j.neuroimage.2004.07.068_bib1) 2004; 23 Hohne (10.1016/j.neuroimage.2004.07.068_bib17) 1992 Csernansky (10.1016/j.neuroimage.2004.07.068_bib4) 1998; 95 10.1016/j.neuroimage.2004.07.068_bib15 Magnotta (10.1016/j.neuroimage.2004.07.068_bib23) 2003; 19 Gee (10.1016/j.neuroimage.2004.07.068_bib10) 1993; 17 Miller (10.1016/j.neuroimage.2004.07.068_bib25) 1999 Shen (10.1016/j.neuroimage.2004.07.068_bib28) 2002; 21 Toga (10.1016/j.neuroimage.2004.07.068_bib33) 1999 Zou (10.1016/j.neuroimage.2004.07.068_bib36) 2003; 10 Guimond (10.1016/j.neuroimage.2004.07.068_bib14) 2000; 77 Warfield (10.1016/j.neuroimage.2004.07.068_bib34) 2002 |
References_xml | – start-page: 210 year: 2003 end-page: 221 ident: bib27 article-title: Expectation maximization strategies for multi-atlas multi-label segmentation publication-title: Proceedings of Information Processing in Medical Imaging IPMI, volume 2732 of Lecture Notes in Computer Science LNCS – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bib28 article-title: Hammer: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging – year: 1988 ident: bib29 article-title: Co-Planar Stereotaxis Atlas of the Human Brain – start-page: 234 year: 2003 end-page: 243 ident: bib22 article-title: High-dimensional multi-modal image registration publication-title: Workshop on Biomedical Image Registration (WBIR), LNCS-2717 – volume: 77 start-page: 192 year: 2000 end-page: 210 ident: bib14 article-title: Average brain models: a convergence study publication-title: Comput. Vis. Image Underst. – start-page: 532 year: 2002 end-page: 535 ident: bib16 article-title: Level set evolution with region competition: automatic 3-D segmentation of brain tumors publication-title: Proc. 16th International Conference on Pattern Recognition – volume: 7 start-page: 155 year: 2003 end-page: 170 ident: bib20 article-title: Structural and radiometric asymmetry in brain images publication-title: Med. Image Anal. – year: 2004 ident: bib2 article-title: Consistent groupwise non-rigid registration for atlas construction publication-title: IEEE International Symposium on Biomedical Imaging – volume: 10 start-page: 215 year: 1948 end-page: 310 ident: bib9 article-title: Les elements aleatoires de nature quelconque dans un espace distancie publication-title: Ann. Inst. Henri Poincare – reference: He, Jianchun, Christensen, Gary E., 2003. Large deformation inverse consistent elastic image registration. In: Taylor, C.J., Noble, J.A. (Eds.). IPMI3003, LNCS, vol. 2732, IPMI, Springer-Verlag, pp. 438–449. – volume: 11 start-page: 1317 year: 1997 end-page: 1343 ident: bib19 article-title: On the geometry and shape of brain sub-manifolds publication-title: International Journal of Pattern Recognition and Artificial Intelligence: Special Issue on Processing of MR Images of the Human – volume: 95 start-page: 11406 year: 1998 end-page: 11411 ident: bib4 article-title: Hippocampal morphometry in schizophrenia by high dimensional brain mapping publication-title: Proc. Natl. Acad. Sci. – volume: 56 start-page: 617 year: 1998 end-page: 694 ident: bib13 article-title: Computational anatomy: an emerging discipline publication-title: Q. Appl. Math. – volume: 41 start-page: 61 year: 2001 end-page: 84 ident: bib24 article-title: Group actions, homeomorphisms, and matching: a general framework publication-title: Int. J. Comput. Vis. – year: 1999 ident: bib33 article-title: Brain Warping – start-page: 578 year: 2003 end-page: 585 ident: bib5 article-title: Extraction and application of expert priors to combine multiple segmentations of human brain tissue publication-title: Proceedings Medical Image Computing and Computer Assisted Intervention MICCAI, volume 2879 of Lecture Notes in Computer Science LNCS – volume: vol. 2208 start-page: 516 year: 2001 end-page: 523 ident: bib11 article-title: VALMET: a new validation tool for assessing and improving 3D object segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention MICCAI – volume: vol. 2732 start-page: 450 year: 2003 end-page: 462 ident: bib8 article-title: Gaussian distributions on lie groups and their application to statistical shape analysis publication-title: Information Processing in Medical Imaging (IPMI) – year: 1994 ident: bib12 article-title: General Pattern Theory – year: 1997 ident: bib6 article-title: Variational problems on flows of diffeomorphisms for image matching publication-title: Q. Appl. Math. – volume: 10 start-page: 1359 year: 2003 end-page: 1368 ident: bib36 article-title: Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data publication-title: Acad. Radiol. – volume: 17 start-page: 225 year: 1993 end-page: 236 ident: bib10 article-title: Elastically deforming an atlas to match anatomical brain images publication-title: J. Comput. Assist. Tomogr. – volume: 16 start-page: 81 year: 1984 end-page: 121 ident: bib21 article-title: Shape manifolds, procrustean metrics and complex projective spaces publication-title: Bull. London Math. Soc. – year: 1999 ident: bib25 article-title: Large deformation fluid diffeomorphisms for landmark and image matching publication-title: Brain Warping, chapter 7 – volume: 5 start-page: 13 year: 2002 end-page: 34 ident: bib31 article-title: A framework for computational anatomy publication-title: Comput. Vis. Sci. – volume: 1 start-page: 271 year: 1997 end-page: 294 ident: bib30 article-title: Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations publication-title: Med. Image Anal. – start-page: 72 year: 1992 end-page: 78 ident: bib17 article-title: A 3d anatomical atlas based on a volume model publication-title: IEEE Comput. Graph. Appl. – start-page: 298 year: 2002 end-page: 306 ident: bib34 article-title: Validation of image segmentation and expert quality with an expectation-maximization algorithm publication-title: Medical Image Computing and Computer Assisted Interventions, number 2488 in Lecture Notes in Computer Science LNCS – volume: 23 start-page: S139 year: 2004 end-page: S150 ident: bib1 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage – volume: 19 start-page: 233 year: 2003 end-page: 245 ident: bib23 article-title: Subcortical, cerebellar, and magnetic resonance based consistent brain image registration publication-title: NeuroImage – year: 1991 ident: bib3 article-title: Morphometric Tools for Landmark Data – year: 2003 ident: bib7 article-title: Statistics of shape via principal geodesic analysis on lie groups publication-title: CVPR2003 – volume: 4 start-page: 375 year: 2002 end-page: 405 ident: bib26 article-title: On the metrics and eulerlagrange equations of computational anatomy publication-title: Annu. Rev. Biomed. Eng. – volume: 22 start-page: 155 year: 1998 end-page: 165 ident: bib35 article-title: Automated image registration: ii. Intersubject validation of linear and nonlinear models publication-title: J. Comput. Assist. Tomogr. – year: 1994 ident: 10.1016/j.neuroimage.2004.07.068_bib12 – start-page: 210 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib27 article-title: Expectation maximization strategies for multi-atlas multi-label segmentation – start-page: 72 year: 1992 ident: 10.1016/j.neuroimage.2004.07.068_bib17 article-title: A 3d anatomical atlas based on a volume model publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.144829 – volume: 5 start-page: 13 year: 2002 ident: 10.1016/j.neuroimage.2004.07.068_bib31 article-title: A framework for computational anatomy publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-002-0084-6 – year: 1991 ident: 10.1016/j.neuroimage.2004.07.068_bib3 – start-page: 578 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib5 article-title: Extraction and application of expert priors to combine multiple segmentations of human brain tissue – volume: vol. 2732 start-page: 450 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib8 article-title: Gaussian distributions on lie groups and their application to statistical shape analysis – volume: 56 start-page: 617 year: 1998 ident: 10.1016/j.neuroimage.2004.07.068_bib13 article-title: Computational anatomy: an emerging discipline publication-title: Q. Appl. Math. doi: 10.1090/qam/1668732 – year: 1999 ident: 10.1016/j.neuroimage.2004.07.068_bib25 article-title: Large deformation fluid diffeomorphisms for landmark and image matching – start-page: 298 year: 2002 ident: 10.1016/j.neuroimage.2004.07.068_bib34 article-title: Validation of image segmentation and expert quality with an expectation-maximization algorithm – start-page: 532 year: 2002 ident: 10.1016/j.neuroimage.2004.07.068_bib16 article-title: Level set evolution with region competition: automatic 3-D segmentation of brain tumors – year: 1988 ident: 10.1016/j.neuroimage.2004.07.068_bib29 – volume: 77 start-page: 192 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2004.07.068_bib14 article-title: Average brain models: a convergence study publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1999.0815 – ident: 10.1016/j.neuroimage.2004.07.068_bib15 doi: 10.1007/978-3-540-45087-0_37 – volume: 4 start-page: 375 year: 2002 ident: 10.1016/j.neuroimage.2004.07.068_bib26 article-title: On the metrics and eulerlagrange equations of computational anatomy publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.4.092101.125733 – year: 2004 ident: 10.1016/j.neuroimage.2004.07.068_bib2 article-title: Consistent groupwise non-rigid registration for atlas construction – volume: 10 start-page: 1359 issue: 12 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib36 article-title: Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)00538-5 – start-page: 234 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib22 article-title: High-dimensional multi-modal image registration publication-title: Workshop on Biomedical Image Registration (WBIR), LNCS-2717 doi: 10.1007/978-3-540-39701-4_25 – year: 1999 ident: 10.1016/j.neuroimage.2004.07.068_bib33 – year: 1997 ident: 10.1016/j.neuroimage.2004.07.068_bib6 article-title: Variational problems on flows of diffeomorphisms for image matching publication-title: Q. Appl. Math. – volume: 95 start-page: 11406 year: 1998 ident: 10.1016/j.neuroimage.2004.07.068_bib4 article-title: Hippocampal morphometry in schizophrenia by high dimensional brain mapping publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.19.11406 – volume: 16 start-page: 81 year: 1984 ident: 10.1016/j.neuroimage.2004.07.068_bib21 article-title: Shape manifolds, procrustean metrics and complex projective spaces publication-title: Bull. London Math. Soc. doi: 10.1112/blms/16.2.81 – volume: 1 start-page: 271 year: 1997 ident: 10.1016/j.neuroimage.2004.07.068_bib30 article-title: Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(97)85002-5 – volume: 11 start-page: 1317 issue: 8 year: 1997 ident: 10.1016/j.neuroimage.2004.07.068_bib19 article-title: On the geometry and shape of brain sub-manifolds publication-title: International Journal of Pattern Recognition and Artificial Intelligence: Special Issue on Processing of MR Images of the Human doi: 10.1142/S0218001497000615 – year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib7 article-title: Statistics of shape via principal geodesic analysis on lie groups – volume: 23 start-page: S139 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2004.07.068_bib1 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.010 – volume: 19 start-page: 233 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib23 article-title: Subcortical, cerebellar, and magnetic resonance based consistent brain image registration publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00100-9 – volume: 10 start-page: 215 year: 1948 ident: 10.1016/j.neuroimage.2004.07.068_bib9 article-title: Les elements aleatoires de nature quelconque dans un espace distancie publication-title: Ann. Inst. Henri Poincare – volume: 17 start-page: 225 year: 1993 ident: 10.1016/j.neuroimage.2004.07.068_bib10 article-title: Elastically deforming an atlas to match anatomical brain images publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199303000-00011 – volume: 7 start-page: 155 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2004.07.068_bib20 article-title: Structural and radiometric asymmetry in brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(03)00002-1 – volume: 21 start-page: 1421 issue: 11 year: 2002 ident: 10.1016/j.neuroimage.2004.07.068_bib28 article-title: Hammer: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 41 start-page: 61 year: 2001 ident: 10.1016/j.neuroimage.2004.07.068_bib24 article-title: Group actions, homeomorphisms, and matching: a general framework publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011161132514 – volume: vol. 2208 start-page: 516 year: 2001 ident: 10.1016/j.neuroimage.2004.07.068_bib11 article-title: VALMET: a new validation tool for assessing and improving 3D object segmentation – volume: 22 start-page: 155 year: 1998 ident: 10.1016/j.neuroimage.2004.07.068_bib35 article-title: Automated image registration: ii. Intersubject validation of linear and nonlinear models publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199801000-00028 |
SSID | ssj0009148 |
Score | 2.3805962 |
Snippet | Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | S151 |
SubjectTerms | Algorithms Atlases as Topic Autistic Disorder - pathology Bias Brain - anatomy & histology Brain - pathology Brain atlases Brain Mapping - methods Brain research Caudate Nucleus - anatomy & histology Caudate Nucleus - physiology Child Computational anatomy Construction Databases, Factual Deformation Geometry Hilbert space Humans Image Processing, Computer-Assisted Image segmentation Magnetic Resonance Imaging - statistics & numerical data Mathematical functions Medical research Models, Statistical Population Registration Reproducibility of Results Statistical methods |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QbyIv61O7cFrMG3TJsWDyHAMYZ4c7BbSNIGJazc2D_73vqTpelHZubyUvPeS973k5XsI3XPCZJazBKuCGEwVpDs8NgoTUwJagBgUuWr38Vs2mtDXaTr1B24rX1bZ7oluoy5rZc_IHyxwiSlLWPS0WGLbNcrervoWGrtoz1KX2ZIuNmUd6W5Em6dwaYLhr7mv5Gnquxxf5GwOq9ZliY7C0xKu_h6e_oKfLgwNj9Chx4_hc2PwY7SjqxO0P_Y35KdoMKmKGUSmMnStT-p5DYqcqVCuASaHqu4IY0OAq6FyTR38gWAoK0jB599naDJ8eR-MsG-UgJXtR4BVCRMtqOSSlBnXRWYizY1RXEcFgxUa55qp0nBT8FxqiOGUSsby1NqCWvLGc9Sr6kpfgn5SxWGMMqc0oRIMJjVJmEo1USQxGQsQa_UjlGcRt80sPkVbLvYhOs3aJpdUECZAswGKNpKLhkljC5m8NYFoX4rC3iZgu99C9nEj69FEgxK2lO63Fhd-Va9E54MButt8hvVoL1lkpeuvlbDPnmJIOwN00fhJN1lIBiPC6dX_Q1-jg6Y6yB7z9FEPvELfAPBZF7fOu38AWW4Chg priority: 102 providerName: ProQuest |
Title | Unbiased diffeomorphic atlas construction for computational anatomy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904003842 https://dx.doi.org/10.1016/j.neuroimage.2004.07.068 https://www.ncbi.nlm.nih.gov/pubmed/15501084 https://www.proquest.com/docview/1507247371 https://www.proquest.com/docview/67002149 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8MwNEwH4kX8dn724LUubdMmxZOOyVQ2RB3sFtI0gYprB5sHL_52X9p0RVAYeGmh5ZXmfb_kfSB0yTAVUUwDVyZYu0RCuMN8LV2sU_AWwAZ5Zbb7cBQNxuRhEk5aqFfXwpi0Sqv7K51eamv7pGux2Z1lWfcFPAMwN2DQiDneIqCH234QR8Da7Zv7x8Go6b3rkaoiLgxcA2ATeqo0r7JtZDYF4S2DxbKTp-m7-ruV-ssLLa3R3Tbasm6kc1P96Q5qqXwXbQztQfke6o3zJAMDlTrlBJRiWgA-M-mIBXjLjiyavrEOeK2OLGc72H1BR-QQiU8_99H4rv_aG7h2XoIrzVgCV6aw0IQIJnAaMZVE2lNMa8mUl1AQVD9WVKaa6YTFQoEpJ0RQGoeGJMT0cDxA63mRqyPATygZfCONCQmIALoJhQMqQ4UlDnREO4jW-OHSNhM3My3eeZ019sYbzJpZl4RjygGzHeQtIWdVQ40VYOKaBLwuGAUVx0HrrwB7vYT9wVgrQp_WFOdWuOfc-NA-oQH1Ouhi-RrE0py1iFwVH3Nuqp98iD476LDik2axEBN6mJHjf_3YCdqscojMZtApWgemUWfgHi2Sc7R29eXBlU7ouRUFuN_2R0_P30UCEsg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED5BkYAXNBiwQgd5YI8RTuLEjqYJbQxUfrSaJirxZhzHlorWBFQQ6j-1v3HnxGleGOoLz9FZyfly95199x3AESdMJimLfJUR41OF6Q4PjfKJyREtYAwKqmr3wTDpj-jlbXy7BH-bXhhbVtn4xMpR56WyZ-THFriElEUsOHl49O3UKHu72ozQqM3iSs9eMGWbfrv4ifv7JQzPz25O-76bKuArS97vqxwzgIxKLkmecJ0lJtDcGMV1kDE05zDVTOWGm4ynUmPAo1Qylsb2xallOsR1l2GFRpjKdGDlx9nw1--W5jegdfNdHPn4namrHaoryiqGyvEE_USVl1akoZbi9fWA-D_AWwW-8w-w4RCr9702sU1Y0sUWrA7cnfxHOB0V2RhjYe5Vw1bKSYlbN1aefEJg7qmypaj1ECB7qhoj4Y4gPVlg0j-ZbcPoXZS4A52iLPQn1E-sOK6Rp5RGVKKJSE0ipmJNFIlMwrrAGv0I5XjL7fiMP6IpULsXrWbtWE0qCBOo2S4Ec8mHmrtjAZm02QLR9KaiNxUYYBaQ_TqXdfilxiULSveaHRfOj0xFa_VdOJw_Rg9gr3VkocvnqbCNViEmul3Yre2k_VhMPwPC6d7bSx_CWv9mcC2uL4ZX-7Be1ybZQ6YedNBC9GeEXU_ZgbN1D-7e-_f6B0CYQK0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xIKG9IGBf5ZnD7jHCSZzYEUIIFSre2sNW6s3rOLbUFU1ABSH-Gr-OseM0Fxb10rM1ljwez3xjj78B-MkJk1nOklAVxIRUYbrDY6NCYkpECxiDIlftfnObnQ_p5SgdLcFr-xfGllW2PtE56rJW9o78wAKXmLKERQfGl0X8Ph0c3z-EtoOUfWlt22k0JnKlX54xfZseXZziXv-K48HZn_556DsMhMoS-YeqxGygoJJLUmZcF5mJNDdGcR0VDE07zjVTpeGm4LnUGPwolYzlqV0EtayHOO8nWGFJGtkzxkasI_yNaPMNL01CXHHuq4ia2jLHVTmeoMdwGaqjD7Vkr--Hxv9BXxcCB-uw5rFrcNIY2wYs6WoTVm_86_wX6A-rYoxRsQxc25V6UuMmjlUgHxGiB6ruyGoDhMqBcg0l_GVkICtM_ycvX2G4EBV-g-WqrvQP1E-qOM5R5pQmVKKxSE0SplJNFElMxnrAWv0I5RnMbSONO9GWqv0TnWZtg00qCBOo2R5EM8n7hsVjDpm83QLR_lJFvyow1MwheziT9UimQShzSu-0Oy68R5mKzv57sD8bRl9gH3hkpeunqbBfrmJMeXvwvbGTbrGYiEaE062Pp96HVTxU4vri9mobPjdFSva2aQeW0UD0LuKvx2LPGXoAfxd9st4AlFZDfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unbiased+diffeomorphic+atlas+construction+for+computational+anatomy&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Joshi%2C+S&rft.au=Davis%2C+Brad&rft.au=Jomier%2C+Matthieu&rft.au=Gerig%2C+Guido&rft.date=2004&rft.issn=1053-8119&rft.volume=23+Suppl+1&rft.spage=S151&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.07.068&rft_id=info%3Apmid%2F15501084&rft.externalDocID=15501084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |