Quercetin alleviates acute kidney injury by inhibiting ferroptosis
A proposed model illustrating the therapeutic effect of QCT on AKI. QCT inhibits the expression of ATF3. While ATF3 blocks the system Xc-, and then suppresses GPX4, inducing ferroptosis. In another side, ferroptotic cells secrete chemokines like CCL2, CCL7, induce the recruitment of macrophages, and...
Saved in:
Published in | Journal of advanced research Vol. 28; pp. 231 - 243 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A proposed model illustrating the therapeutic effect of QCT on AKI. QCT inhibits the expression of ATF3. While ATF3 blocks the system Xc-, and then suppresses GPX4, inducing ferroptosis. In another side, ferroptotic cells secrete chemokines like CCL2, CCL7, induce the recruitment of macrophages, and then cause the inflammation in AKI. In summary, QCT ameliorates AKI through the inhibition on ferroptosis and the following inflammation.
[Display omitted]
•Quercetin (QCT) inhibits ferroptosis but not apoptosis, necrosis or autophagy of renal proximal tubular epithelial cells, and ameliorates AKI induced by ischemia–reperfusion (I/R) or folic acid (FA).•Activation transcription factor 3 (ATF3) plays an important role in cell ferroptosis, while QCT significantly inhibits the expression of ATF3 and further blocks the downstream signaling pathway of ferroptosis.•Ferroptotic cells induce the recruitment and chemotaxis of macrophages through CCL2, triggering inflammation and enhancing tissue injury.
Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects.
This study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis.
NRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia–reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration.
We discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI.
Collectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis. |
---|---|
AbstractList | A proposed model illustrating the therapeutic effect of QCT on AKI. QCT inhibits the expression of ATF3. While ATF3 blocks the system Xc-, and then suppresses GPX4, inducing ferroptosis. In another side, ferroptotic cells secrete chemokines like CCL2, CCL7, induce the recruitment of macrophages, and then cause the inflammation in AKI. In summary, QCT ameliorates AKI through the inhibition on ferroptosis and the following inflammation.
[Display omitted]
•Quercetin (QCT) inhibits ferroptosis but not apoptosis, necrosis or autophagy of renal proximal tubular epithelial cells, and ameliorates AKI induced by ischemia–reperfusion (I/R) or folic acid (FA).•Activation transcription factor 3 (ATF3) plays an important role in cell ferroptosis, while QCT significantly inhibits the expression of ATF3 and further blocks the downstream signaling pathway of ferroptosis.•Ferroptotic cells induce the recruitment and chemotaxis of macrophages through CCL2, triggering inflammation and enhancing tissue injury.
Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects.
This study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis.
NRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia–reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration.
We discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI.
Collectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis. Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects.INTRODUCTIONFerroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects.This study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis.OBJECTIVESThis study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis.NRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia-reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration.METHODSNRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia-reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration.We discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI.RESULTSWe discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI.Collectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis.CONCLUSIONSCollectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis. Introduction: Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects. Objectives: This study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis. Methods: NRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia–reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration. Results: We discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI. Conclusions: Collectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis. Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects. This study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis. NRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia-reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration. We discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI. Collectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis. A proposed model illustrating the therapeutic effect of QCT on AKI. QCT inhibits the expression of ATF3. While ATF3 blocks the system Xc-, and then suppresses GPX4, inducing ferroptosis. In another side, ferroptotic cells secrete chemokines like CCL2, CCL7, induce the recruitment of macrophages, and then cause the inflammation in AKI. In summary, QCT ameliorates AKI through the inhibition on ferroptosis and the following inflammation. • Quercetin (QCT) inhibits ferroptosis but not apoptosis, necrosis or autophagy of renal proximal tubular epithelial cells, and ameliorates AKI induced by ischemia–reperfusion (I/R) or folic acid (FA). • Activation transcription factor 3 (ATF3) plays an important role in cell ferroptosis, while QCT significantly inhibits the expression of ATF3 and further blocks the downstream signaling pathway of ferroptosis. • Ferroptotic cells induce the recruitment and chemotaxis of macrophages through CCL2, triggering inflammation and enhancing tissue injury. |
Author | Cao, Qiuhua Wang, Yue Yang, Hongbao Li, Xianjing Bi, Ran Quan, Fei Lin, Yanting Birnbaumer, Lutz Yue, Chongxiu Gao, Xinghua Cui, Xinmeng Yang, Yong |
Author_xml | – sequence: 1 givenname: Yue surname: Wang fullname: Wang, Yue organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 2 givenname: Fei surname: Quan fullname: Quan, Fei organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 3 givenname: Qiuhua surname: Cao fullname: Cao, Qiuhua organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 4 givenname: Yanting surname: Lin fullname: Lin, Yanting organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 5 givenname: Chongxiu surname: Yue fullname: Yue, Chongxiu organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 6 givenname: Ran surname: Bi fullname: Bi, Ran organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 7 givenname: Xinmeng surname: Cui fullname: Cui, Xinmeng organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 8 givenname: Hongbao surname: Yang fullname: Yang, Hongbao organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 9 givenname: Yong surname: Yang fullname: Yang, Yong organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 10 givenname: Lutz surname: Birnbaumer fullname: Birnbaumer, Lutz organization: Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA – sequence: 11 givenname: Xianjing surname: Li fullname: Li, Xianjing email: xjl@cpu.edu.cn organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China – sequence: 12 givenname: Xinghua surname: Gao fullname: Gao, Xinghua email: gaoxinghua@cpu.edu.cn organization: Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33364059$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNUbLv2D3ghc-nNjvmYjwRE0GK1UBBBr0M-TrYZZydrklnYf2_GrYv1orlIDsn7viec5xKdTWEChF4RXBNMurdDPagINcUU17ivMe6foQuKBV4TSpuzU83oObpKacBlMc4FIS_QOWOsa3ArLtDHbzNEA9lPlRpH2HuVIVXKzBmqn95OcKj8NMzxUOmluvfaF-2mchBj2OWQfHqJnjs1Jrh6OFfox82n79df1ndfP99ef7hbm5aSXHYihKONcU4LThzDlnYdCOswpxZ3mna0cwT3gihtiW5447gFQhrhNDaOrdDtMdcGNchd9FsVDzIoL_9chLiRKmZvRpAd1YQ2toNO0UYJLrjRpmcOK7AcmC5Z749Zu1lvwRqYclTjo9DHL5O_l5uwl33fMlrGt0JvHgJi-DVDynLrk4FxVBOEOUna9KwhLWtFkb7-t9epyV8IRUCPAhNDShHcSUKwXGDLQS6w5QJb4l4W2MXE_zMZn1X2YfmvH5-2vjtaodDae4gyGQ-TAesjmFzG6Z-y_wYjIMX6 |
CitedBy_id | crossref_primary_10_1016_j_fsi_2024_109907 crossref_primary_10_33549_physiolres_935378 crossref_primary_10_1186_s10020_023_00642_5 crossref_primary_10_1016_j_biopha_2024_116722 crossref_primary_10_1016_j_freeradbiomed_2022_07_006 crossref_primary_10_3389_fimmu_2024_1511015 crossref_primary_10_3389_fbioe_2022_883118 crossref_primary_10_2147_JIR_S493001 crossref_primary_10_1007_s12033_024_01139_0 crossref_primary_10_1111_cbdd_14520 crossref_primary_10_3390_cryst13071070 crossref_primary_10_1038_s41420_022_01127_w crossref_primary_10_31083_j_fbl2811313 crossref_primary_10_1038_s41419_022_04775_z crossref_primary_10_1016_j_jphotobiol_2024_112948 crossref_primary_10_1152_ajprenal_00275_2023 crossref_primary_10_3389_fphar_2024_1507574 crossref_primary_10_1016_j_ecoenv_2022_113881 crossref_primary_10_3389_fimmu_2022_1104462 crossref_primary_10_3390_ijms232314725 crossref_primary_10_1111_1440_1681_13673 crossref_primary_10_1016_j_jff_2024_106138 crossref_primary_10_1016_j_cbi_2023_110588 crossref_primary_10_1016_j_fbio_2024_103727 crossref_primary_10_3390_biomedicines9091283 crossref_primary_10_3390_medicina57111266 crossref_primary_10_3389_fphar_2022_992734 crossref_primary_10_1155_2022_3593294 crossref_primary_10_3389_fphar_2022_858676 crossref_primary_10_1007_s00011_023_01842_9 crossref_primary_10_3389_fcell_2022_800650 crossref_primary_10_1016_j_ejphar_2023_176264 crossref_primary_10_1002_JLB_1A0422_211R crossref_primary_10_1016_j_biopha_2024_116730 crossref_primary_10_1186_s12967_023_04793_1 crossref_primary_10_3390_ph17101384 crossref_primary_10_1016_j_neuroscience_2024_11_061 crossref_primary_10_3390_life13081730 crossref_primary_10_1089_ars_2024_0672 crossref_primary_10_3389_fphar_2022_1033874 crossref_primary_10_1097_IMNA_D_24_00051 crossref_primary_10_1007_s11010_024_05056_3 crossref_primary_10_3389_fncel_2024_1475934 crossref_primary_10_1093_biolre_ioae020 crossref_primary_10_3390_metabo12010058 crossref_primary_10_1016_j_bbrc_2023_149402 crossref_primary_10_1096_fj_202200241RR crossref_primary_10_1155_2022_7769355 crossref_primary_10_2147_DDDT_S486286 crossref_primary_10_3389_fcell_2023_1210714 crossref_primary_10_3389_fphar_2025_1568246 crossref_primary_10_3390_biomedicines12020267 crossref_primary_10_1016_j_heliyon_2024_e40549 crossref_primary_10_1007_s11684_023_0992_z crossref_primary_10_1016_j_biopha_2022_113595 crossref_primary_10_1016_j_biopha_2023_115333 crossref_primary_10_1016_j_ijbiomac_2024_137484 crossref_primary_10_1007_s00210_022_02277_5 crossref_primary_10_1016_j_bbadis_2023_166984 crossref_primary_10_1016_j_talanta_2023_124628 crossref_primary_10_1016_j_ejphar_2024_176999 crossref_primary_10_3389_fcell_2021_800833 crossref_primary_10_1016_j_bcp_2024_116440 crossref_primary_10_1016_j_sajb_2024_07_010 crossref_primary_10_1089_ars_2024_0556 crossref_primary_10_1080_08941939_2022_2142868 crossref_primary_10_3389_fphar_2021_716672 crossref_primary_10_1002_ar_25130 crossref_primary_10_1039_D4TB00837E crossref_primary_10_1080_0886022X_2023_2195012 crossref_primary_10_3389_fphar_2024_1509172 crossref_primary_10_1002_mnfr_202300343 crossref_primary_10_3390_cells11132040 crossref_primary_10_1177_10815589241288518 crossref_primary_10_1016_j_jare_2024_07_013 crossref_primary_10_3389_fcell_2022_829316 crossref_primary_10_3390_cells11223653 crossref_primary_10_1038_s41392_024_01969_z crossref_primary_10_1016_j_prp_2023_155042 crossref_primary_10_1016_j_ecoenv_2023_114903 crossref_primary_10_1007_s11255_022_03456_2 crossref_primary_10_1007_s00210_024_03677_5 crossref_primary_10_1002_ar_25123 crossref_primary_10_1038_s41392_023_01688_x crossref_primary_10_1172_jci_insight_166001 crossref_primary_10_1016_j_jare_2023_01_016 crossref_primary_10_1142_S0192415X23500465 crossref_primary_10_1016_j_heliyon_2024_e35882 crossref_primary_10_3389_fphar_2024_1389179 crossref_primary_10_3390_antiox14030265 crossref_primary_10_1016_j_phytol_2023_04_003 crossref_primary_10_3892_mmr_2023_13011 crossref_primary_10_1016_S1875_5364_23_60384_X crossref_primary_10_1038_s41401_021_00700_w crossref_primary_10_1039_D3NR05255A crossref_primary_10_1159_000538106 crossref_primary_10_1016_j_heliyon_2023_e23507 crossref_primary_10_1007_s10495_023_01928_z crossref_primary_10_3389_fphar_2021_808480 crossref_primary_10_2147_DDDT_S441350 crossref_primary_10_1002_jcp_30901 crossref_primary_10_1016_j_tox_2024_153996 crossref_primary_10_1016_j_biopha_2023_115952 crossref_primary_10_1016_j_brainresbull_2023_110778 crossref_primary_10_1016_j_cej_2024_158386 crossref_primary_10_2147_JIR_S307081 crossref_primary_10_3389_fbioe_2022_848679 crossref_primary_10_1016_j_intimp_2025_114341 crossref_primary_10_3390_ijms25137461 crossref_primary_10_3389_fimmu_2024_1435139 crossref_primary_10_1007_s10815_024_03096_8 crossref_primary_10_1186_s12964_023_01422_8 crossref_primary_10_3390_plants13223136 crossref_primary_10_1007_s00011_022_01672_1 crossref_primary_10_1016_j_intimp_2024_113409 crossref_primary_10_1111_are_15600 crossref_primary_10_26599_FSHW_2022_9250204 crossref_primary_10_1016_j_fct_2023_114184 crossref_primary_10_1016_j_biopha_2024_117186 crossref_primary_10_1016_j_phytochem_2024_114002 crossref_primary_10_1016_j_heliyon_2023_e20363 crossref_primary_10_1007_s10495_024_01953_6 crossref_primary_10_1016_j_ejphar_2022_175407 crossref_primary_10_1016_j_bbrc_2024_150683 crossref_primary_10_3390_foods10122952 crossref_primary_10_1016_j_intimp_2023_110393 crossref_primary_10_1016_j_phymed_2024_155560 crossref_primary_10_1016_j_tranon_2023_101649 crossref_primary_10_1155_2022_9957172 crossref_primary_10_1002_advs_202308910 crossref_primary_10_1007_s00204_024_03812_4 crossref_primary_10_1038_s41420_024_02113_0 crossref_primary_10_1016_j_biopha_2023_114849 crossref_primary_10_3390_biomedicines10030595 crossref_primary_10_1097_JTCCM_D_23_00005 crossref_primary_10_3389_fphar_2022_865689 crossref_primary_10_1038_s41418_024_01357_8 crossref_primary_10_1016_j_ecoenv_2022_114020 crossref_primary_10_1016_j_fitote_2023_105563 crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_3389_fphar_2022_876550 crossref_primary_10_1016_j_intimp_2023_109731 crossref_primary_10_12677_acm_2024_14123175 crossref_primary_10_1142_S0192415X24500599 crossref_primary_10_1159_000530882 crossref_primary_10_1016_j_intimp_2024_113876 crossref_primary_10_3389_fnmol_2022_1079338 crossref_primary_10_1007_s11010_024_04978_2 crossref_primary_10_1002_smo_20240026 crossref_primary_10_1016_j_phymed_2024_156095 crossref_primary_10_1021_acs_jafc_2c05595 crossref_primary_10_1002_cbdv_202101028 crossref_primary_10_1016_j_ijbiomac_2024_138526 crossref_primary_10_3389_fcell_2023_1219840 crossref_primary_10_3390_ijms25020824 crossref_primary_10_1002_mnfr_202400199 crossref_primary_10_1007_s11030_025_11137_2 crossref_primary_10_1016_j_freeradbiomed_2023_02_003 crossref_primary_10_1016_j_cbi_2023_110684 crossref_primary_10_1155_2022_9872243 crossref_primary_10_1002_jat_4509 crossref_primary_10_1016_j_intimp_2023_110850 crossref_primary_10_1007_s00011_023_01849_2 crossref_primary_10_3390_molecules27144660 crossref_primary_10_1016_j_fct_2022_113255 crossref_primary_10_2147_DMSO_S442925 crossref_primary_10_1007_s12013_024_01379_6 crossref_primary_10_1016_j_heliyon_2024_e40590 crossref_primary_10_3389_fimmu_2025_1531577 crossref_primary_10_1016_j_freeradbiomed_2022_09_001 crossref_primary_10_3390_ijms232416055 crossref_primary_10_1021_acschemneuro_2c00532 crossref_primary_10_1111_jcmm_17444 crossref_primary_10_3389_fphar_2022_968226 crossref_primary_10_1007_s00604_023_06069_3 crossref_primary_10_1007_s11010_023_04694_3 crossref_primary_10_3390_antiox11010150 crossref_primary_10_1016_j_cbi_2023_110556 crossref_primary_10_3390_ijms241914530 crossref_primary_10_31083_j_fbl2803042 crossref_primary_10_2147_IJGM_S340939 crossref_primary_10_1016_j_fct_2024_114934 crossref_primary_10_1016_j_freeradbiomed_2023_02_013 crossref_primary_10_1002_biof_1920 crossref_primary_10_3389_fphar_2023_1188086 crossref_primary_10_1016_j_jddst_2024_105485 crossref_primary_10_3389_fphar_2022_1043945 crossref_primary_10_1016_j_brainresbull_2022_08_005 crossref_primary_10_1111_iwj_14231 crossref_primary_10_1080_0886022X_2021_2003208 crossref_primary_10_1007_s11030_024_10829_5 crossref_primary_10_1093_stmcls_sxae035 crossref_primary_10_3389_fcell_2021_688605 crossref_primary_10_3390_metabo12070653 crossref_primary_10_3389_fphar_2021_685116 crossref_primary_10_1093_sexmed_qfac008 crossref_primary_10_3389_fphar_2023_1310023 crossref_primary_10_1016_j_bioadv_2023_213585 crossref_primary_10_1038_s41419_023_06144_w crossref_primary_10_1080_0886022X_2024_2327495 crossref_primary_10_1093_mtomcs_mfab025 crossref_primary_10_1016_j_burns_2024_07_002 crossref_primary_10_18632_aging_205669 crossref_primary_10_1097_CM9_0000000000003189 crossref_primary_10_3389_fimmu_2025_1510500 crossref_primary_10_1016_j_prmcm_2024_100377 crossref_primary_10_1016_S1875_5364_23_60398_X crossref_primary_10_1038_s42003_025_07547_5 crossref_primary_10_1007_s10753_024_02137_9 crossref_primary_10_1080_10715762_2024_2330413 crossref_primary_10_1177_1934578X231194837 crossref_primary_10_3389_fphar_2022_857067 crossref_primary_10_1093_toxsci_kfad071 crossref_primary_10_1016_j_jconrel_2023_12_038 crossref_primary_10_1002_advs_202207216 crossref_primary_10_3389_fimmu_2021_685523 crossref_primary_10_1007_s43032_021_00674_4 crossref_primary_10_1038_s41392_023_01606_1 crossref_primary_10_1016_j_intimp_2025_114152 crossref_primary_10_3390_molecules28020475 crossref_primary_10_3389_fphar_2022_1024292 crossref_primary_10_3390_antiox13020182 crossref_primary_10_1016_j_fct_2022_113468 crossref_primary_10_1016_j_freeradbiomed_2023_04_022 crossref_primary_10_4103_1673_5374_369118 crossref_primary_10_1016_j_fct_2022_113586 crossref_primary_10_1016_j_freeradbiomed_2021_04_023 crossref_primary_10_1111_febs_17057 crossref_primary_10_3389_fmed_2024_1456535 crossref_primary_10_1016_j_lfs_2022_121331 crossref_primary_10_1186_s13020_024_00901_5 crossref_primary_10_1038_s41538_024_00261_2 crossref_primary_10_1186_s10020_023_00729_z crossref_primary_10_3390_jcm12051787 crossref_primary_10_7717_peerj_16703 crossref_primary_10_1021_acs_jafc_3c04560 crossref_primary_10_1016_j_biopha_2021_111847 crossref_primary_10_18632_aging_205408 crossref_primary_10_1002_ctm2_1793 crossref_primary_10_3390_antiox13010044 crossref_primary_10_1016_j_phymed_2024_155631 crossref_primary_10_3389_fpubh_2022_910675 crossref_primary_10_1016_j_phymed_2024_156286 crossref_primary_10_1186_s12951_025_03210_7 crossref_primary_10_1111_odi_15050 crossref_primary_10_1186_s12951_025_03149_9 crossref_primary_10_1016_j_biopha_2022_113626 crossref_primary_10_1016_j_jare_2022_04_016 crossref_primary_10_1155_2022_9214589 crossref_primary_10_1186_s40104_024_01118_0 crossref_primary_10_31665_JFB_2022_18306 crossref_primary_10_1186_s12935_024_03559_z crossref_primary_10_1155_2022_3997190 crossref_primary_10_3389_fnagi_2023_1028178 crossref_primary_10_1186_s13062_024_00515_9 crossref_primary_10_1002_adhm_202400441 crossref_primary_10_1016_j_freeradbiomed_2023_08_020 crossref_primary_10_1038_s41419_023_05969_9 crossref_primary_10_3390_antiox11112196 crossref_primary_10_1016_j_taap_2023_116479 crossref_primary_10_3390_antiox12061173 crossref_primary_10_1093_rb_rbad025 crossref_primary_10_1016_j_heliyon_2023_e20024 crossref_primary_10_1021_acs_jafc_3c02027 crossref_primary_10_2174_1389450123666220913121422 crossref_primary_10_3389_fphys_2022_1036515 crossref_primary_10_1016_j_joim_2024_03_007 crossref_primary_10_1177_0271678X221145090 crossref_primary_10_1016_j_tem_2021_04_010 crossref_primary_10_1093_lifemeta_loac035 crossref_primary_10_1007_s12011_023_04044_w crossref_primary_10_1158_0008_5472_CAN_22_3169 crossref_primary_10_3389_fphar_2022_1043056 crossref_primary_10_1021_acsomega_4c08235 crossref_primary_10_1055_a_1999_7600 crossref_primary_10_1155_2022_8973509 crossref_primary_10_31083_FBL25586 crossref_primary_10_1007_s12274_023_5547_8 crossref_primary_10_1016_j_cellsig_2024_111256 crossref_primary_10_3389_fphar_2022_1065867 crossref_primary_10_1093_cvr_cvae270 crossref_primary_10_7717_peerj_15314 crossref_primary_10_1002_INMD_20230044 crossref_primary_10_1007_s12265_025_10590_6 crossref_primary_10_1016_j_intimp_2024_113258 crossref_primary_10_1042_CS20231184 crossref_primary_10_1016_j_phymed_2023_154887 crossref_primary_10_1016_j_ecoenv_2024_116837 crossref_primary_10_1016_j_heliyon_2023_e22017 crossref_primary_10_1016_j_cbpc_2024_109952 crossref_primary_10_3389_fphar_2023_1095366 crossref_primary_10_3390_life11111134 crossref_primary_10_1016_j_bbcan_2023_188890 crossref_primary_10_1002_ptr_8227 crossref_primary_10_3389_fmed_2023_1181286 crossref_primary_10_1155_2021_9963732 crossref_primary_10_2147_JIR_S434226 crossref_primary_10_3390_ijms241512021 crossref_primary_10_3389_fphar_2022_1043344 crossref_primary_10_1136_bmjdrc_2024_004454 crossref_primary_10_2174_1566523221666210907162005 crossref_primary_10_1007_s10495_023_01890_w crossref_primary_10_1016_j_phymed_2022_154112 crossref_primary_10_3390_cells13181559 crossref_primary_10_1002_mnfr_202300168 crossref_primary_10_1016_j_lfs_2023_122176 crossref_primary_10_3389_fcimb_2024_1433313 crossref_primary_10_1016_j_phymed_2021_153567 crossref_primary_10_1016_j_pdpdt_2023_103612 crossref_primary_10_2147_JIR_S439494 crossref_primary_10_1002_cbin_12115 crossref_primary_10_1152_ajpcell_00477_2023 crossref_primary_10_1038_s41419_024_06807_2 crossref_primary_10_1080_21655979_2021_1925003 crossref_primary_10_3390_ijms221910675 crossref_primary_10_3390_ijms25052458 crossref_primary_10_1177_09603271231167585 crossref_primary_10_1016_j_aqrep_2023_101766 crossref_primary_10_1021_acs_jafc_3c03409 crossref_primary_10_3390_antiox13030334 crossref_primary_10_3389_fphar_2023_1139137 crossref_primary_10_1530_JME_22_0086 crossref_primary_10_1016_j_heliyon_2023_e18449 crossref_primary_10_2174_1574892818666230119153247 crossref_primary_10_1016_j_jnutbio_2023_109427 crossref_primary_10_1016_j_fct_2024_114877 crossref_primary_10_1002_ame2_12194 crossref_primary_10_1186_s12906_023_04205_3 crossref_primary_10_1016_j_freeradbiomed_2024_01_002 crossref_primary_10_1016_j_jep_2024_118726 crossref_primary_10_1111_jnc_15519 crossref_primary_10_1186_s12950_021_00291_7 crossref_primary_10_2174_1389557522666220218123404 crossref_primary_10_1016_j_cej_2023_142697 crossref_primary_10_1155_2024_8851124 crossref_primary_10_1038_s41401_024_01277_w crossref_primary_10_1111_jcmm_18494 crossref_primary_10_1186_s12951_023_02034_7 crossref_primary_10_1016_j_biopha_2022_113279 crossref_primary_10_1016_j_phymed_2023_155079 crossref_primary_10_2217_rme_2021_0169 crossref_primary_10_1265_ehpm_23_00245 crossref_primary_10_1016_j_bcp_2025_116800 crossref_primary_10_3892_ijmm_2023_5319 crossref_primary_10_1016_j_stemcr_2024_04_011 crossref_primary_10_1016_j_arr_2023_102035 crossref_primary_10_1016_j_cbi_2023_110607 crossref_primary_10_1155_2022_4578381 crossref_primary_10_1007_s13258_024_01598_4 crossref_primary_10_1038_s41418_023_01138_9 crossref_primary_10_1016_j_freeradbiomed_2023_04_014 crossref_primary_10_1016_j_brainresbull_2024_111080 crossref_primary_10_1016_j_redox_2025_103557 crossref_primary_10_3389_fgene_2022_944978 crossref_primary_10_3389_fonc_2022_980620 crossref_primary_10_1016_j_phymed_2024_155700 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_3892_etm_2024_12519 crossref_primary_10_1021_acsomega_4c11437 crossref_primary_10_1007_s11010_023_04871_4 crossref_primary_10_1016_j_cbi_2023_110828 crossref_primary_10_3892_ijmm_2023_5321 crossref_primary_10_1080_07853890_2024_2411015 crossref_primary_10_3389_fncel_2023_1228968 crossref_primary_10_1016_j_freeradbiomed_2022_07_015 crossref_primary_10_1016_j_phymed_2024_155384 crossref_primary_10_1186_s12964_024_01751_2 crossref_primary_10_3389_fphar_2022_926104 crossref_primary_10_2147_JIR_S422002 crossref_primary_10_3892_mmr_2022_12772 crossref_primary_10_1186_s10020_023_00730_6 crossref_primary_10_1016_j_cellsig_2022_110564 crossref_primary_10_3389_fimmu_2023_1140791 crossref_primary_10_1002_med_21934 crossref_primary_10_1038_s41419_022_04628_9 crossref_primary_10_1177_09612033221102076 crossref_primary_10_1038_s41598_023_38852_w |
Cites_doi | 10.1023/A:1009229429250 10.1016/j.nefro.2017.04.004 10.1172/JCI37829 10.1007/s00204-016-1830-8 10.1038/onc.2017.146 10.1016/j.ejmech.2018.06.053 10.1038/s41401-019-0233-9 10.1016/j.apsb.2014.12.003 10.1007/s11095-005-4584-1 10.1152/ajprenal.00044.2017 10.1038/nature05859 10.1097/CCM.0b013e31822575fc 10.1681/ASN.2014030262 10.1016/j.actbio.2018.06.006 10.1038/sj.onc.1210861 10.18632/oncotarget.5162 10.1021/ja411006a 10.1038/nm.2557 10.1038/cdd.2015.158 10.1002/ptr.6155 10.1016/j.jep.2017.02.046 10.1016/j.cell.2013.12.010 10.1080/246-1071576021000016472 10.2174/1566523219666190925112249 10.1111/acel.12344 10.1152/ajprenal.00184.2005 10.1172/JCI39087 10.1084/jem.20111202 10.1038/nprot.2006.179 10.1038/s41586-019-1707-0 10.1038/s41591-018-0092-9 10.1371/journal.pone.0102900 10.1080/0886022X.2016.1256315 10.1002/mnfr.201500435 10.1681/ASN.2017020190 10.1073/pnas.1415518111 10.1007/s00210-014-0995-z 10.1016/j.ijcard.2014.04.160 10.1038/nchembio.2239 10.1681/ASN.2015121376 10.1681/ASN.2017050523 10.1016/j.tcb.2005.02.005 10.1038/ncb3064 10.1016/j.jhep.2007.02.008 10.1158/1535-7163.MCT-04-0337 10.1016/j.cell.2012.03.042 10.3389/fphys.2015.00247 10.1038/ncb3341 |
ContentType | Journal Article |
Copyright | 2021 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
Copyright_xml | – notice: 2021 – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2020.07.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 243 |
ExternalDocumentID | oai_doaj_org_article_62b124d6e6a24a9898cbc73f0aed8e3b PMC7753233 33364059 10_1016_j_jare_2020_07_007 S2090123220301661 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 ES101684 |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-c5199f24cffb981f30d266e9df082d06b2626f10791abd1b484f8de1149fb0cf3 |
IEDL.DBID | IXB |
ISSN | 2090-1232 |
IngestDate | Wed Aug 27 01:07:20 EDT 2025 Thu Aug 21 18:33:02 EDT 2025 Fri Jul 11 16:44:38 EDT 2025 Mon Jul 21 05:35:06 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 03:01:30 EDT 2025 Fri Feb 23 02:45:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Activation transcription factor 3 Ferroptosis Macrophages Acute kidney injury Quercetin |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-c5199f24cffb981f30d266e9df082d06b2626f10791abd1b484f8de1149fb0cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2090123220301661 |
PMID | 33364059 |
PQID | 2473415359 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_62b124d6e6a24a9898cbc73f0aed8e3b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753233 proquest_miscellaneous_2473415359 pubmed_primary_33364059 crossref_primary_10_1016_j_jare_2020_07_007 crossref_citationtrail_10_1016_j_jare_2020_07_007 elsevier_sciencedirect_doi_10_1016_j_jare_2020_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lesjak, Hoque, Balesaria, Skinner, Debnam, Srai (b0085) 2014; 9 Song, Zhu, Chen, Hou, Wen, Liu (b0140) 2018; 28 Yagoda, von Rechenberg, Zaganjor, Bauer, Yang, Fridman (b0145) 2007; 447 Zhou, Guo, Zong, Dai, Yuan, Bian (b0215) 2014; 174 Riha, Voprsalova, Pilarova, Semecky, Holeckova, Vavrova (b0200) 2014; 387 Vichai, Kirtikara (b0100) 2006; 1 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason (b0015) 2012; 149 Lien, Lyssiotis, Juvekar, Hu, Asara, Cantley (b0105) 2016; 18 Cheng, Breen (b0090) 2000; 13 Wang, Liu, Du, Yang, Lei, Guo (b0235) 2019 Skouta, Dixon, Wang, Dunn, Orman, Shimada (b0045) 2014; 136 Cui, Wu, Wang, Li, Qian, Li (b0060) 2018 Gold, Ramsey, Sartain, Selinummi, Podolsky, Rodriguez (b0210) 2012; 209 Djudjaj, Martin, Buhl, Nothofer, Leng, Piecychna (b0255) 2017; 28 Cai, Su, Qian, Guo, Tao, Cong (b0180) 2017; 206 Li, Zeng, Liu, Liang, Liu, Li (b0095) 2020 Adedoyin, Boddu, Traylor, Lever, Bolisetty, George (b0240) 2018; 314 Zhu, Tchkonia, Pirtskhalava, Gower, Ding, Giorgadze (b0070) 2015; 14 Rechner, Kuhnle, Hu, Roedig-Penman, van den Braak, Moore (b0190) 2002; 36 Yao, Nussler, Liu, Hao, Song, Schirmeier (b0170) 2007; 47 Hoetzenecker, Echtenacher, Guenova, Hoetzenecker, Woelbing, Bruck (b0230) 2011; 18 Patel, Mistry, Shinde, Syed, Singh, Shin (b0050) 2018; 155 Li, Zhou, Li, Sun, Hasimu, Liu (b0165) 2015; 5 Gomes, Porto, Santos, Campagnaro, Gava, Meyrelles (b0080) 2015; 6 Lu, Chen, Hong, Zhu, He, Yang (b0110) 2019; 40 Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold (b0115) 2019; 575 Martin-Sanchez, Poveda, Fontecha-Barriuso, Ruiz-Andres, Sanchez-Nino, Ruiz-Ortega (b0005) 2018; 38 Martin-Sanchez, Ruiz-Andres, Poveda, Carrasco, Cannata-Ortiz, Sanchez-Nino (b0040) 2017; 28 Xie, Hou, Song, Yu, Huang, Sun (b0020) 2016; 23 Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Nat Acad Sci USA 2014;111:16836–41. Wei, Yin, Wang, Dong (b0130) 2006; 290 Yin, Dewille, Hai (b0205) 2008; 27 Yang, Luo, Jiang, Wang (b0175) 2019 Kwon, Park, Lee, Chung (b0245) 2015; 6 Shimizu, Gois, Volpini, Canale, Luchi, Froeder (b0155) 2017; 39 Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingold (b0150) 2017; 13 Bottone, Moon, Kim, Alston-Mills, Ishibashi, Eling (b0220) 2005; 4 Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan (b0030) 2014; 156 Rauf, Imran, Khan, Ur-Rehman, Gilani, Mehmood (b0055) 2018 Xu, Pirtskhalava, Farr, Weigand, Palmer, Weivoda (b0075) 2018; 24 Pathak, Regmi, Nguyen, Gupta, Gautam, Yong (b0065) 2018 Perfettini, Roumier, Kroemer (b0135) 2005; 15 Wang, Peng, Wen, Rimmele, Bishop, Kellum (b0160) 2011; 39 Linkermann, Chen, Dong, Kunzendorf, Krautwald, Dong (b0010) 2014; 25 Brooks, Wei, Cho, Dong (b0120) 2009; 119 Friedmann Angeli, Schneider, Proneth, Tyurina, Tyurin, Hammond (b0025) 2014; 16 Gonzalez-Guerrero, Cannata-Ortiz, Guerri, Egido, Ortiz, Ramos (b0250) 2017; 91 Lv, Feng, Wen, Wu, Ni, Li (b0260) 2018; 29 Menke, Iwata, Rabacal, Basu, Yeung, Humphreys (b0125) 2009; 119 Chen, Yin, Zuo, Chow (b0185) 2005; 22 Rothwell, Urpi-Sarda, Boto-Ordonez, Llorach, Farran-Codina, Barupal (b0195) 2016; 60 Chen, Fan, Rauh, Buchfelder, Eyupoglu, Savaskan (b0225) 2017; 36 Martin-Sanchez (10.1016/j.jare.2020.07.007_b0040) 2017; 28 Wang (10.1016/j.jare.2020.07.007_b0160) 2011; 39 Rechner (10.1016/j.jare.2020.07.007_b0190) 2002; 36 Patel (10.1016/j.jare.2020.07.007_b0050) 2018; 155 Yin (10.1016/j.jare.2020.07.007_b0205) 2008; 27 Lu (10.1016/j.jare.2020.07.007_b0110) 2019; 40 Adedoyin (10.1016/j.jare.2020.07.007_b0240) 2018; 314 Gomes (10.1016/j.jare.2020.07.007_b0080) 2015; 6 Skouta (10.1016/j.jare.2020.07.007_b0045) 2014; 136 Yao (10.1016/j.jare.2020.07.007_b0170) 2007; 47 Lv (10.1016/j.jare.2020.07.007_b0260) 2018; 29 Gold (10.1016/j.jare.2020.07.007_b0210) 2012; 209 Yagoda (10.1016/j.jare.2020.07.007_b0145) 2007; 447 Rothwell (10.1016/j.jare.2020.07.007_b0195) 2016; 60 Gonzalez-Guerrero (10.1016/j.jare.2020.07.007_b0250) 2017; 91 Linkermann (10.1016/j.jare.2020.07.007_b0010) 2014; 25 Li (10.1016/j.jare.2020.07.007_b0095) 2020 Vichai (10.1016/j.jare.2020.07.007_b0100) 2006; 1 Cai (10.1016/j.jare.2020.07.007_b0180) 2017; 206 Chen (10.1016/j.jare.2020.07.007_b0185) 2005; 22 Doll (10.1016/j.jare.2020.07.007_b0150) 2017; 13 Cui (10.1016/j.jare.2020.07.007_b0060) 2018 Djudjaj (10.1016/j.jare.2020.07.007_b0255) 2017; 28 Li (10.1016/j.jare.2020.07.007_b0165) 2015; 5 Yang (10.1016/j.jare.2020.07.007_b0175) 2019 Lien (10.1016/j.jare.2020.07.007_b0105) 2016; 18 Song (10.1016/j.jare.2020.07.007_b0140) 2018; 28 Riha (10.1016/j.jare.2020.07.007_b0200) 2014; 387 Menke (10.1016/j.jare.2020.07.007_b0125) 2009; 119 Chen (10.1016/j.jare.2020.07.007_b0225) 2017; 36 Kwon (10.1016/j.jare.2020.07.007_b0245) 2015; 6 Zhu (10.1016/j.jare.2020.07.007_b0070) 2015; 14 Lesjak (10.1016/j.jare.2020.07.007_b0085) 2014; 9 Friedmann Angeli (10.1016/j.jare.2020.07.007_b0025) 2014; 16 Bottone (10.1016/j.jare.2020.07.007_b0220) 2005; 4 Hoetzenecker (10.1016/j.jare.2020.07.007_b0230) 2011; 18 Zhou (10.1016/j.jare.2020.07.007_b0215) 2014; 174 Yang (10.1016/j.jare.2020.07.007_b0030) 2014; 156 10.1016/j.jare.2020.07.007_b0035 Dixon (10.1016/j.jare.2020.07.007_b0015) 2012; 149 Cheng (10.1016/j.jare.2020.07.007_b0090) 2000; 13 Doll (10.1016/j.jare.2020.07.007_b0115) 2019; 575 Martin-Sanchez (10.1016/j.jare.2020.07.007_b0005) 2018; 38 Xu (10.1016/j.jare.2020.07.007_b0075) 2018; 24 Perfettini (10.1016/j.jare.2020.07.007_b0135) 2005; 15 Rauf (10.1016/j.jare.2020.07.007_b0055) 2018 Wei (10.1016/j.jare.2020.07.007_b0130) 2006; 290 Pathak (10.1016/j.jare.2020.07.007_b0065) 2018 Xie (10.1016/j.jare.2020.07.007_b0020) 2016; 23 Shimizu (10.1016/j.jare.2020.07.007_b0155) 2017; 39 Wang (10.1016/j.jare.2020.07.007_b0235) 2019 Brooks (10.1016/j.jare.2020.07.007_b0120) 2009; 119 |
References_xml | – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: b0030 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 13 start-page: 77 year: 2000 end-page: 83 ident: b0090 article-title: On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex publication-title: Biomet: Int J Role Met Ions Biol, Biochem, Med – volume: 9 year: 2014 ident: b0085 article-title: Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro publication-title: PLoS ONE – volume: 40 start-page: 1334 year: 2019 end-page: 1342 ident: b0110 article-title: Identification of PRDX6 as a regulator of ferroptosis publication-title: Acta Pharmacol Sin – volume: 209 start-page: 807 year: 2012 end-page: 817 ident: b0210 article-title: ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation publication-title: J Exp Med – volume: 119 start-page: 1275 year: 2009 end-page: 1285 ident: b0120 article-title: Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models publication-title: J Clin Investig – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: b0150 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat Chem Biol – volume: 23 start-page: 369 year: 2016 end-page: 379 ident: b0020 article-title: Ferroptosis: process and function publication-title: Cell Death Differ – volume: 575 start-page: 693 year: 2019 end-page: 698 ident: b0115 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature – volume: 18 start-page: 128 year: 2011 end-page: 134 ident: b0230 article-title: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression publication-title: Nat Med – volume: 4 start-page: 693 year: 2005 end-page: 703 ident: b0220 article-title: The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3) publication-title: Mol Cancer Ther – volume: 387 start-page: 823 year: 2014 end-page: 835 ident: b0200 article-title: Oral administration of quercetin is unable to protect against isoproterenol cardiotoxicity publication-title: Naunyn-Schmiedeberg's Arch Pharmacol – year: 2018 ident: b0065 article-title: Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes publication-title: Acta Biomater – volume: 15 start-page: 179 year: 2005 end-page: 183 ident: b0135 article-title: Mitochondrial fusion and fission in the control of apoptosis publication-title: Trends Cell Biol – volume: 60 start-page: 203 year: 2016 end-page: 211 ident: b0195 article-title: Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database publication-title: Mol Nutr Food Res – reference: Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Nat Acad Sci USA 2014;111:16836–41. – volume: 5 start-page: 47 year: 2015 end-page: 54 ident: b0165 article-title: Quercetin protects human brain microvascular endothelial cells from fibrillar beta-amyloid1-40-induced toxicity publication-title: Acta Pharm Sinica B – volume: 6 start-page: 24393 year: 2015 end-page: 24403 ident: b0245 article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death publication-title: Oncotarget – volume: 24 start-page: 1246 year: 2018 end-page: 1256 ident: b0075 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat Med – volume: 14 start-page: 644 year: 2015 end-page: 658 ident: b0070 article-title: The Achilles' heel of senescent cells: from transcriptome to senolytic drugs publication-title: Aging Cell – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: b0015 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 28 start-page: 218 year: 2017 end-page: 229 ident: b0040 article-title: Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI publication-title: J Am Soc Nephrol: JASN – volume: 39 start-page: 193 year: 2017 end-page: 202 ident: b0155 article-title: N-acetylcysteine protects against star fruit-induced acute kidney injury publication-title: Ren Fail – volume: 174 start-page: 838 year: 2014 end-page: 839 ident: b0215 article-title: ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury publication-title: Int J Cardiol – volume: 18 start-page: 572 year: 2016 end-page: 578 ident: b0105 article-title: Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer publication-title: Nat Cell Biol – start-page: 9 year: 2020 ident: b0095 article-title: Inhibitory effect and mechanism of action of quercetin and quercetin diels-alder anti-dimer on erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells publication-title: Antioxidants – volume: 28 year: 2018 ident: b0140 article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity publication-title: Current Biol: CB – volume: 314 start-page: F702 year: 2018 end-page: F714 ident: b0240 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am J Physiol Renal Physiol – year: 2018 ident: b0055 article-title: Anticancer potential of quercetin: A comprehensive review publication-title: Phytotherapy Res: PTR – year: 2019 ident: b0175 article-title: Effects of Huangkui capsule on the expression of SPARC in the kidney tissue of a rat model with diabetic nephropathy publication-title: Curr Gene Ther – volume: 36 start-page: 1229 year: 2002 end-page: 1241 ident: b0190 article-title: The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites publication-title: Free Radical Res – volume: 16 start-page: 1180 year: 2014 end-page: 1191 ident: b0025 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat Cell Biol – volume: 136 start-page: 4551 year: 2014 end-page: 4556 ident: b0045 article-title: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models publication-title: J Am Chem Soc – volume: 27 start-page: 2118 year: 2008 end-page: 2127 ident: b0205 article-title: A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development publication-title: Oncogene – volume: 22 start-page: 892 year: 2005 end-page: 901 ident: b0185 article-title: Pharmacokinetics and modeling of quercetin and metabolites publication-title: Pharm Res – volume: 206 start-page: 152 year: 2017 end-page: 159 ident: b0180 article-title: Renal protective effect and action mechanism of Huangkui capsule and its main five flavonoids publication-title: J Ethnopharmacol – year: 2019 ident: b0235 article-title: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc– publication-title: Cell Death Differ – volume: 28 start-page: 3590 year: 2017 end-page: 3604 ident: b0255 article-title: Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest publication-title: J Am Soc Nephrol: JASN – volume: 47 start-page: 253 year: 2007 end-page: 261 ident: b0170 article-title: Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways publication-title: J Hepatol – volume: 39 start-page: 2487 year: 2011 end-page: 2494 ident: b0160 article-title: N-acetylcysteine is effective for prevention but not for treatment of folic acid-induced acute kidney injury in mice publication-title: Crit Care Med – start-page: 1 year: 2018 end-page: 12 ident: b0060 article-title: Quercetin inhibits LPS-induced macrophage migration by suppressing the iNOS/FAK/paxillin pathway and modulating the cytoskeleton publication-title: Cell Adhes Migrat – volume: 1 start-page: 1112 year: 2006 end-page: 1116 ident: b0100 article-title: Sulforhodamine B colorimetric assay for cytotoxicity screening publication-title: Nat Protoc – volume: 290 start-page: F35 year: 2006 end-page: F42 ident: b0130 article-title: Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice publication-title: Am J Physiol Renal Physiol – volume: 447 start-page: 864 year: 2007 end-page: 868 ident: b0145 article-title: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels publication-title: Nature – volume: 155 start-page: 889 year: 2018 end-page: 904 ident: b0050 article-title: Therapeutic potential of quercetin as a cardiovascular agent publication-title: Eur J Med Chem – volume: 91 start-page: 1925 year: 2017 end-page: 1939 ident: b0250 article-title: TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity publication-title: Arch Toxicol – volume: 29 start-page: 919 year: 2018 end-page: 935 ident: b0260 article-title: Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation publication-title: J Am Soc Nephrol: JASN – volume: 38 start-page: 125 year: 2018 end-page: 135 ident: b0005 article-title: Targeting of regulated necrosis in kidney disease publication-title: Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia – volume: 25 start-page: 2689 year: 2014 end-page: 2701 ident: b0010 article-title: Regulated cell death in AKI publication-title: J Am Soc Nephrol: JASN – volume: 36 start-page: 5593 year: 2017 end-page: 5608 ident: b0225 article-title: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner publication-title: Oncogene – volume: 119 start-page: 2330 year: 2009 end-page: 2342 ident: b0125 article-title: CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice publication-title: J Clin Investig – volume: 6 start-page: 247 year: 2015 ident: b0080 article-title: The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice publication-title: Front Physiol – volume: 13 start-page: 77 year: 2000 ident: 10.1016/j.jare.2020.07.007_b0090 article-title: On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex publication-title: Biomet: Int J Role Met Ions Biol, Biochem, Med doi: 10.1023/A:1009229429250 – start-page: 1 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0060 article-title: Quercetin inhibits LPS-induced macrophage migration by suppressing the iNOS/FAK/paxillin pathway and modulating the cytoskeleton publication-title: Cell Adhes Migrat – volume: 38 start-page: 125 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0005 article-title: Targeting of regulated necrosis in kidney disease publication-title: Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia doi: 10.1016/j.nefro.2017.04.004 – volume: 119 start-page: 1275 year: 2009 ident: 10.1016/j.jare.2020.07.007_b0120 article-title: Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models publication-title: J Clin Investig doi: 10.1172/JCI37829 – volume: 91 start-page: 1925 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0250 article-title: TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity publication-title: Arch Toxicol doi: 10.1007/s00204-016-1830-8 – volume: 36 start-page: 5593 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0225 article-title: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner publication-title: Oncogene doi: 10.1038/onc.2017.146 – volume: 155 start-page: 889 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0050 article-title: Therapeutic potential of quercetin as a cardiovascular agent publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2018.06.053 – volume: 40 start-page: 1334 year: 2019 ident: 10.1016/j.jare.2020.07.007_b0110 article-title: Identification of PRDX6 as a regulator of ferroptosis publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-019-0233-9 – volume: 5 start-page: 47 year: 2015 ident: 10.1016/j.jare.2020.07.007_b0165 article-title: Quercetin protects human brain microvascular endothelial cells from fibrillar beta-amyloid1-40-induced toxicity publication-title: Acta Pharm Sinica B doi: 10.1016/j.apsb.2014.12.003 – volume: 22 start-page: 892 year: 2005 ident: 10.1016/j.jare.2020.07.007_b0185 article-title: Pharmacokinetics and modeling of quercetin and metabolites publication-title: Pharm Res doi: 10.1007/s11095-005-4584-1 – volume: 314 start-page: F702 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0240 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00044.2017 – volume: 447 start-page: 864 year: 2007 ident: 10.1016/j.jare.2020.07.007_b0145 article-title: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels publication-title: Nature doi: 10.1038/nature05859 – volume: 39 start-page: 2487 year: 2011 ident: 10.1016/j.jare.2020.07.007_b0160 article-title: N-acetylcysteine is effective for prevention but not for treatment of folic acid-induced acute kidney injury in mice publication-title: Crit Care Med doi: 10.1097/CCM.0b013e31822575fc – volume: 28 issue: 2388–99 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0140 article-title: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity publication-title: Current Biol: CB – volume: 25 start-page: 2689 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0010 article-title: Regulated cell death in AKI publication-title: J Am Soc Nephrol: JASN doi: 10.1681/ASN.2014030262 – year: 2019 ident: 10.1016/j.jare.2020.07.007_b0235 article-title: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc– publication-title: Cell Death Differ – year: 2018 ident: 10.1016/j.jare.2020.07.007_b0065 article-title: Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.06.006 – volume: 27 start-page: 2118 year: 2008 ident: 10.1016/j.jare.2020.07.007_b0205 article-title: A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development publication-title: Oncogene doi: 10.1038/sj.onc.1210861 – volume: 6 start-page: 24393 year: 2015 ident: 10.1016/j.jare.2020.07.007_b0245 article-title: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death publication-title: Oncotarget doi: 10.18632/oncotarget.5162 – volume: 136 start-page: 4551 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0045 article-title: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models publication-title: J Am Chem Soc doi: 10.1021/ja411006a – volume: 18 start-page: 128 year: 2011 ident: 10.1016/j.jare.2020.07.007_b0230 article-title: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression publication-title: Nat Med doi: 10.1038/nm.2557 – volume: 23 start-page: 369 year: 2016 ident: 10.1016/j.jare.2020.07.007_b0020 article-title: Ferroptosis: process and function publication-title: Cell Death Differ doi: 10.1038/cdd.2015.158 – year: 2018 ident: 10.1016/j.jare.2020.07.007_b0055 article-title: Anticancer potential of quercetin: A comprehensive review publication-title: Phytotherapy Res: PTR doi: 10.1002/ptr.6155 – start-page: 9 year: 2020 ident: 10.1016/j.jare.2020.07.007_b0095 article-title: Inhibitory effect and mechanism of action of quercetin and quercetin diels-alder anti-dimer on erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells publication-title: Antioxidants – volume: 206 start-page: 152 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0180 article-title: Renal protective effect and action mechanism of Huangkui capsule and its main five flavonoids publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2017.02.046 – volume: 156 start-page: 317 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0030 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 36 start-page: 1229 year: 2002 ident: 10.1016/j.jare.2020.07.007_b0190 article-title: The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites publication-title: Free Radical Res doi: 10.1080/246-1071576021000016472 – year: 2019 ident: 10.1016/j.jare.2020.07.007_b0175 article-title: Effects of Huangkui capsule on the expression of SPARC in the kidney tissue of a rat model with diabetic nephropathy publication-title: Curr Gene Ther doi: 10.2174/1566523219666190925112249 – volume: 14 start-page: 644 year: 2015 ident: 10.1016/j.jare.2020.07.007_b0070 article-title: The Achilles' heel of senescent cells: from transcriptome to senolytic drugs publication-title: Aging Cell doi: 10.1111/acel.12344 – volume: 290 start-page: F35 year: 2006 ident: 10.1016/j.jare.2020.07.007_b0130 article-title: Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00184.2005 – volume: 119 start-page: 2330 year: 2009 ident: 10.1016/j.jare.2020.07.007_b0125 article-title: CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice publication-title: J Clin Investig doi: 10.1172/JCI39087 – volume: 209 start-page: 807 year: 2012 ident: 10.1016/j.jare.2020.07.007_b0210 article-title: ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation publication-title: J Exp Med doi: 10.1084/jem.20111202 – volume: 1 start-page: 1112 year: 2006 ident: 10.1016/j.jare.2020.07.007_b0100 article-title: Sulforhodamine B colorimetric assay for cytotoxicity screening publication-title: Nat Protoc doi: 10.1038/nprot.2006.179 – volume: 575 start-page: 693 year: 2019 ident: 10.1016/j.jare.2020.07.007_b0115 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 24 start-page: 1246 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0075 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat Med doi: 10.1038/s41591-018-0092-9 – volume: 9 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0085 article-title: Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro publication-title: PLoS ONE doi: 10.1371/journal.pone.0102900 – volume: 39 start-page: 193 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0155 article-title: N-acetylcysteine protects against star fruit-induced acute kidney injury publication-title: Ren Fail doi: 10.1080/0886022X.2016.1256315 – volume: 60 start-page: 203 year: 2016 ident: 10.1016/j.jare.2020.07.007_b0195 article-title: Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201500435 – volume: 28 start-page: 3590 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0255 article-title: Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest publication-title: J Am Soc Nephrol: JASN doi: 10.1681/ASN.2017020190 – ident: 10.1016/j.jare.2020.07.007_b0035 doi: 10.1073/pnas.1415518111 – volume: 387 start-page: 823 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0200 article-title: Oral administration of quercetin is unable to protect against isoproterenol cardiotoxicity publication-title: Naunyn-Schmiedeberg's Arch Pharmacol doi: 10.1007/s00210-014-0995-z – volume: 174 start-page: 838 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0215 article-title: ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2014.04.160 – volume: 13 start-page: 91 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0150 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat Chem Biol doi: 10.1038/nchembio.2239 – volume: 28 start-page: 218 year: 2017 ident: 10.1016/j.jare.2020.07.007_b0040 article-title: Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI publication-title: J Am Soc Nephrol: JASN doi: 10.1681/ASN.2015121376 – volume: 29 start-page: 919 year: 2018 ident: 10.1016/j.jare.2020.07.007_b0260 article-title: Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation publication-title: J Am Soc Nephrol: JASN doi: 10.1681/ASN.2017050523 – volume: 15 start-page: 179 year: 2005 ident: 10.1016/j.jare.2020.07.007_b0135 article-title: Mitochondrial fusion and fission in the control of apoptosis publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2005.02.005 – volume: 16 start-page: 1180 year: 2014 ident: 10.1016/j.jare.2020.07.007_b0025 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat Cell Biol doi: 10.1038/ncb3064 – volume: 47 start-page: 253 year: 2007 ident: 10.1016/j.jare.2020.07.007_b0170 article-title: Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways publication-title: J Hepatol doi: 10.1016/j.jhep.2007.02.008 – volume: 4 start-page: 693 year: 2005 ident: 10.1016/j.jare.2020.07.007_b0220 article-title: The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3) publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-04-0337 – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.jare.2020.07.007_b0015 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 6 start-page: 247 year: 2015 ident: 10.1016/j.jare.2020.07.007_b0080 article-title: The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice publication-title: Front Physiol doi: 10.3389/fphys.2015.00247 – volume: 18 start-page: 572 year: 2016 ident: 10.1016/j.jare.2020.07.007_b0105 article-title: Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer publication-title: Nat Cell Biol doi: 10.1038/ncb3341 |
SSID | ssj0000388911 |
Score | 2.6424096 |
Snippet | A proposed model illustrating the therapeutic effect of QCT on AKI. QCT inhibits the expression of ATF3. While ATF3 blocks the system Xc-, and then suppresses... Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural... Introduction: Ferroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 231 |
SubjectTerms | Activation transcription factor 3 Acute kidney injury Ferroptosis Macrophages Quercetin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy_irq_xRQQPigx2J-l05-iKyyIoCC7sLaTyYDNKzzLTI_jvtyrdM8worBcvTZOkH6lUUlXky1eMvQY06lI5HAHtYa7amObQNQ1GKVBDUC7Eco77y1d9fqE-XzaXe6m-CBM20gOPgnuvBaAJCjpqJ5SjbIcefCtT5WLoogRafdHm7QVTZQ2WXWdK8l2sJPiBFNOJmRHctXAr4sgUVWHupFyye1apkPcfGKe_nc8_MZR7RunsPrs3eZP8w9iLY3Yn9ifseJqva_5mIpV--4CdftsQhGXIPafsKb8y-Zjc-c0Q-Y8c-vib536BAuZAd1cZMgGieYqr1fJ6WK7z-iG7OPv0_eP5fMqfMPeUpgCvtTFJKJ8SmK5OsgpojqMJCe1-qDQIjGYSxn-mdhBqUJ1KXYgYIZkElU_yETvql318wjiA08ppnZxOqnW6k8FEUAaLk1bezFi9lZ_1E7k45bj4abcosoUlmVuSua1oz7udsXe7Z65Hao1bW5_SsOxaEi12KUBlsZOy2H8py4w120G1k4cxeg74qnzrx19tNcDi9KM9FdfH5WZthWrRD2hkgyJ4PGrE7hellBr9YaxpD3TloA-HNX2-KhTfLUaRQsqn_6PTz9hdQUCcAjV_zo6G1Sa-QE9qgJdl0twADdYciw priority: 102 providerName: Directory of Open Access Journals |
Title | Quercetin alleviates acute kidney injury by inhibiting ferroptosis |
URI | https://dx.doi.org/10.1016/j.jare.2020.07.007 https://www.ncbi.nlm.nih.gov/pubmed/33364059 https://www.proquest.com/docview/2473415359 https://pubmed.ncbi.nlm.nih.gov/PMC7753233 https://doaj.org/article/62b124d6e6a24a9898cbc73f0aed8e3b |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K0-f2EVzooaWYtSVZto7d0BAKLZQ2sDcjWVKjbbAXr7eQf58ZWV7iFnLoxRhJtuXRSPONPfqGkHcajDrjCkZANDrlpXWprooCvBSda8OVsWEf99dv4uKSf1kX6yNyNu2FwbDKuPaPa3pYrWPJMkpzufV--YNmMgACiqheBBeI8Sps4luvDt9ZkO1EhjS82D7FC-LemTHMa6N6ZMukWeDwxKyyd-xToPGfmal_Yejf0ZR3zNP5I_Iw4srk09j1E3Jk28fkJM7cXfI-0kt_eEJW3_cYzDL4NsE8Kn88os1ENfvBJr-9ae1N4tsNiDrReHbltcfQ6MTZvu-2Q7fzu6fk8vzzz7OLNGZSSBtMWADHXEpHeeOcllXuWGbAMFtpHCAAkwlNwa9x4AnKXGmTa15xVxkLvpJ0Omsce0aO2661L0iitRJcCeGUcLxUomJGWs0lFDvBG7kg-SS_uok045jt4rqe4sk2Ncq8RpnXGf79Lhfk4-Ga7UiycW_rFQ7LoSUSZIeCrv9VRw2pBdWAXIywQlGuMElmo5uSuUxZU1mmF6SYBrWe6Rvcyt_78LeTBtQwEfHvimptt9_VlJeACApWgAiejxpx6CJjTAAyhppypiuzd5jXtP4qkH2X4E9Sxl7-Z39fkQcUo3BCnPlrcjz0e_sGYNSgT8Pnh9MwW24BDacc7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbSXkvS56cuFHlqKWduSZevYDQ2bNgmUJrA3IVlSom2xl11vof--M7a8xC3k0IsxkmXLo5HmG3v0DSHvNBh1yhSMAK90zArrYl3mOXgpOtWGKWO7fdznF3x-xb4s8sUeOR72wmBYZVj7-zW9W61DyTRIc7ryfvo9S0QHCDJE9RxdoHuABgrM33C6mO0-tCDdiejy8GKDGFuEzTN9nNdSrZEuM0s6Ek9MK3vLQHU8_iM79S8O_Tuc8pZ9OjkgDwOwjD71fT8ke7Z-RA7D1N1E7wO_9IfHZPZti9Esra8jTKTyyyPcjFS1bW30w5va_o58vQRZRxrPbrz2GBsdObteN6u22fjNE3J18vnyeB6HVApxhRkL4JgK4TJWOadFmTqaGLDMVhgHEMAkXGfg2DhwBUWqtEk1K5krjQVnSTidVI4-Jft1U9vnJNJacaY4d4o7ViheUiOsZgKKHWeVmJB0kJ-sAs84prv4KYeAsqVEmUuUuUzw93cxIR93bVY9y8adV89wWHZXIkN2V9Csr2VQEckzDdDFcMtVxhRmyax0VVCXKGtKS_WE5MOgypHCwa38nQ9_O2iAhJmIv1dUbZvtRmasAEiQ0xxE8KzXiF0XKaUcoDHUFCNdGb3DuKb2Nx3bdwEOZUbp0X_29w25P788P5NnpxdfX5AHGYbkdEHnL8l-u97aV4CpWv26mzN_AKOlHxY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+alleviates+acute+kidney+injury+by+inhibiting+ferroptosis&rft.jtitle=Journal+of+advanced+research&rft.au=Wang%2C+Yue&rft.au=Quan%2C+Fei&rft.au=Cao%2C+Qiuhua&rft.au=Lin%2C+Yanting&rft.date=2021-02-01&rft.issn=2090-1232&rft.volume=28&rft.spage=231&rft_id=info:doi/10.1016%2Fj.jare.2020.07.007&rft_id=info%3Apmid%2F33364059&rft.externalDocID=33364059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |