Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets

Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with m...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 106; no. 5; pp. 679 - 693
Main Authors Yang, Sheng, Zhou, Xiang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.05.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%–101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%–522.74% accuracy gain. In these real data applications, DBSLMM is 1.03–28.11 times faster and uses only 7.4%–24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.
AbstractList Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.
Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.
Author Zhou, Xiang
Yang, Sheng
Author_xml – sequence: 1
  givenname: Sheng
  surname: Yang
  fullname: Yang, Sheng
  organization: Department of Biostatistics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
– sequence: 2
  givenname: Xiang
  surname: Zhou
  fullname: Zhou, Xiang
  email: xzhousph@umich.edu
  organization: Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32330416$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvFDEQhC0URDaBP8AB-chlBr_mJSGksDyllQAFzlZPT8_Gy6wdbE-k_HtmtSECDjn1ob-qblWdsRMfPDH2XIpSClm_2pWwu9qWSihRCl0KqR-xlax0U9S1qE7YSgihik51zSk7S2knhJSt0E_YqVZaCyPrFft2gThHyMTBD_wSYYJ-Ir4OPuU4Y3bB8zDyr2G63ZJ3uCAhUuLO8w3ELfG3LvTgf_J3kIFfUk5P2eMRpkTP7uY5-_Hh_ff1p2Lz5ePn9cWmwErJXKDBptKDRJJmQNk2ujUVGtBdP7Z93TVELSAO7agNKNI9EFamVh30rYJG6nP25uh7Pfd7GpB8jjDZ6-j2EG9tAGf_3Xh3ZbfhxjZKKlXXi8HLO4MYfs2Ust27hDRN4CnMySrdmbbTRpoFffH3rfsjf3JcAHUEMIaUIo33iBT2UJbd2UNZ9lCWFdouZS2i9j8RugyHyJd_3fSw9PVRSkvCN46iTejIIw0uEmY7BPeQ_DcTM7BC
CitedBy_id crossref_primary_10_1007_s00439_024_02717_7
crossref_primary_10_1093_bib_bbad470
crossref_primary_10_1111_jcpp_13611
crossref_primary_10_1186_s12916_022_02583_y
crossref_primary_10_1093_bioinformatics_btae551
crossref_primary_10_3389_fgene_2022_1017380
crossref_primary_10_1038_s41568_023_00599_x
crossref_primary_10_1371_journal_pgen_1009021
crossref_primary_10_1016_j_ajhg_2023_03_009
crossref_primary_10_1186_s12920_023_01598_5
crossref_primary_10_1371_journal_pgen_1009697
crossref_primary_10_1016_j_ajhg_2022_11_007
crossref_primary_10_1016_j_ajhg_2021_03_002
crossref_primary_10_1186_s13059_024_03400_w
crossref_primary_10_1016_j_ajhg_2022_05_013
crossref_primary_10_1016_j_ajhg_2023_08_016
crossref_primary_10_3389_fpubh_2022_905178
crossref_primary_10_1016_j_ajhg_2023_05_010
crossref_primary_10_1186_s13059_021_02479_9
crossref_primary_10_1007_s13668_022_00430_3
crossref_primary_10_1016_j_tig_2021_06_004
crossref_primary_10_1093_g3journal_jkae288
crossref_primary_10_1371_journal_pone_0260569
crossref_primary_10_7555_JBR_37_20230319
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1016_j_ajhg_2021_04_014
crossref_primary_10_12688_wellcomeopenres_21375_1
crossref_primary_10_1097_CM9_0000000000002716
crossref_primary_10_1093_bioinformatics_btac024
crossref_primary_10_1186_s13073_024_01291_x
crossref_primary_10_1186_s13059_021_02404_0
crossref_primary_10_1186_s12879_024_09189_0
crossref_primary_10_1186_s12967_024_05152_4
crossref_primary_10_3389_fgene_2025_1507395
crossref_primary_10_1016_j_psyneuen_2022_105875
crossref_primary_10_3389_fgene_2021_637322
crossref_primary_10_1016_j_ajhg_2022_09_001
crossref_primary_10_3389_fgene_2021_612045
crossref_primary_10_1371_journal_pcbi_1010328
crossref_primary_10_1093_nar_gkad1029
crossref_primary_10_7554_eLife_90636
crossref_primary_10_1007_s00439_024_02716_8
crossref_primary_10_1038_s41588_022_01036_9
crossref_primary_10_3389_fgene_2022_801397
crossref_primary_10_7554_eLife_90636_3
crossref_primary_10_1038_s41581_024_00886_2
crossref_primary_10_2139_ssrn_3927054
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_1214_24_AOS2378
crossref_primary_10_1038_s41431_024_01762_0
crossref_primary_10_1093_bib_bbac039
crossref_primary_10_1016_j_xgen_2024_100539
crossref_primary_10_1093_nar_gkae873
crossref_primary_10_12688_f1000research_76218_2
crossref_primary_10_12688_f1000research_76218_1
crossref_primary_10_1093_gpbjnl_qzae077
crossref_primary_10_1007_s11121_025_01781_3
crossref_primary_10_1016_j_envint_2023_108202
crossref_primary_10_1016_j_xhgg_2025_100422
crossref_primary_10_3389_fgene_2023_1164274
crossref_primary_10_1016_j_ajhg_2024_06_003
crossref_primary_10_1093_bib_bbac552
crossref_primary_10_1111_cts_13893
crossref_primary_10_1371_journal_pgen_1009670
crossref_primary_10_1016_j_ajhg_2020_08_025
crossref_primary_10_1002_pmic_202300359
crossref_primary_10_1016_j_ebiom_2024_105530
crossref_primary_10_2139_ssrn_3808292
crossref_primary_10_1186_s40249_023_01056_5
crossref_primary_10_3389_fonc_2024_1305684
crossref_primary_10_1038_s41431_021_01028_z
Cites_doi 10.1214/17-AOAS1052
10.1093/bioinformatics/btv546
10.1093/ije/dyr120
10.1016/j.ajhg.2011.11.029
10.1371/journal.pgen.1008222
10.1016/j.cell.2017.05.038
10.1038/srep41262
10.1371/journal.pgen.1003348
10.1016/j.ajhg.2019.11.001
10.7554/eLife.43657
10.1038/ng.3390
10.1038/s41467-019-12653-0
10.1016/j.ajhg.2011.04.001
10.1534/genetics.117.300271
10.1038/ejhg.2011.39
10.1038/ng.608
10.1214/11-AOAS455
10.1016/j.je.2016.12.005
10.1016/0377-0427(88)90358-5
10.1371/journal.pmed.1001779
10.1038/ng.3097
10.1371/journal.pgen.1008060
10.1093/emph/eoy036
10.1038/s41588-018-0183-z
10.1186/1471-2105-12-186
10.1016/j.ajhg.2019.06.006
10.1056/NEJMsr1809937
10.1038/ng.3211
10.1038/ng.3506
10.1101/gr.169375.113
10.1016/j.ajhg.2017.06.005
10.1038/s41467-017-00470-2
10.1093/genetics/157.4.1819
10.1038/s41467-019-09718-5
10.1186/s13742-015-0047-8
10.1038/s41588-019-0481-0
10.1038/s41467-019-12276-5
10.1371/journal.pgen.1006836
10.1038/s41586-019-1457-z
10.1016/j.ajhg.2018.04.001
10.1093/bioinformatics/btu848
10.1038/s41588-018-0047-6
10.1093/brain/awy279
10.3168/jds.2007-0980
10.1371/journal.pone.0003395
10.1016/j.cell.2019.03.051
10.1038/nature11632
10.1001/jama.2019.10987
10.1038/nrg2898
10.1371/journal.pgen.1003264
10.1038/ng.3951
10.1198/016214501753382273
10.1111/j.1467-9868.2005.00503.x
10.1016/j.ajhg.2009.10.005
10.1016/j.ajhg.2019.05.018
10.1016/j.cell.2019.03.028
10.1371/journal.pgen.1002051
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pgen.1008202
10.1038/s41588-019-0379-x
10.1093/gigascience/giz082
10.1016/j.ajhg.2018.11.002
10.1038/nature14177
10.1038/s41576-018-0018-x
10.1038/ng.3367
10.1016/j.ajhg.2010.11.011
10.1214/10-AOS798
10.1016/j.ajhg.2018.11.008
10.1016/j.tig.2018.07.004
10.1038/nmeth.2848
10.1002/gepi.22050
10.1534/genetics.119.301859
10.1038/nature08185
10.1371/journal.pcbi.1005589
10.1016/j.ajhg.2015.09.001
ContentType Journal Article
Copyright 2020 American Society of Human Genetics
Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
2020 American Society of Human Genetics. 2020 American Society of Human Genetics
Copyright_xml – notice: 2020 American Society of Human Genetics
– notice: Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
– notice: 2020 American Society of Human Genetics. 2020 American Society of Human Genetics
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ajhg.2020.03.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
EndPage 693
ExternalDocumentID PMC7212266
32330416
10_1016_j_ajhg_2020_03_013
S0002929720301099
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG009124
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAWTL
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
E3Z
EBS
ECV
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
O-L
O9-
OK1
P2P
PQQKQ
RCE
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
VQA
WH7
WQ6
ZA5
ZCA
.55
.GJ
34R
3O-
41~
AAFWJ
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCDD
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
C1A
CITATION
EJD
FA8
FGOYB
HZ~
MVM
NEJ
OHT
OZT
R2-
RIG
VH1
WOQ
X7M
XOL
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-c4c753d1ce14dc1873845c4a39bf8b697ee8accd8f34a2e3baec54629ab82a713
IEDL.DBID IXB
ISSN 0002-9297
1537-6605
IngestDate Thu Aug 21 14:06:25 EDT 2025
Mon Jul 21 10:38:15 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Jul 01 03:39:19 EDT 2025
Fri Feb 23 02:43:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords complex traits
deterministic Bayesian sparse linear mixed model
polygenic risk score
UK Biobank
polygenic score
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-c4c753d1ce14dc1873845c4a39bf8b697ee8accd8f34a2e3baec54629ab82a713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0002929720301099
PMID 32330416
PQID 2394893414
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7212266
proquest_miscellaneous_2394893414
pubmed_primary_32330416
crossref_primary_10_1016_j_ajhg_2020_03_013
crossref_citationtrail_10_1016_j_ajhg_2020_03_013
elsevier_sciencedirect_doi_10_1016_j_ajhg_2020_03_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-07
PublicationDateYYYYMMDD 2020-05-07
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Khera, Chaffin, Wade, Zahid, Brancale, Xia, Distefano, Senol-Cosar, Haas, Bick (bib7) 2019; 177
Tibshirani (bib79) 1996; 58
Young (bib40) 2019; 15
Cheng, Yang, Shi, Yang, Peng, Liu (bib48) 2019
Ge, Chen, Ni, Feng, Smoller (bib17) 2019; 10
Wang, Guo, Ni, Yang, Visscher, Yengo (bib78) 2020
Vilhjálmsson, Yang, Finucane, Gusev, Lindström, Ripke, Genovese, Loh, Bhatia, Do (bib13) 2015; 97
Fritsche, Gruber, Wu, Schmidt, Zawistowski, Moser, Blanc, Brummett, Kheterpal, Abecasis, Mukherjee (bib36) 2018; 102
Kaasschieter (bib61) 1988; 24
Akiyama, Ishigaki, Sakaue, Momozawa, Horikoshi, Hirata, Matsuda, Ikegawa, Takahashi, Kanai (bib74) 2019; 10
Visscher, Wray, Zhang, Sklar, McCarthy, Brown, Yang (bib3) 2017; 101
Zeng, Zhou (bib28) 2017; 8
Yang, Bakshi, Zhu, Hemani, Vinkhuyzen, Lee, Robinson, Perry, Nolte, van Vliet-Ostaptchouk (bib38) 2015; 47
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray (bib51) 2015; 12
Choi, Heng Mak, O’Reilly (bib50) 2018
Zhao, Yi, Wu, Zhong, Lin, Hohman, Fletcher, Lu (bib19) 2019
Rosenberg, Edge, Pritchard, Feldman (bib41) 2018; 2019
Yuan, Zhu, Zeng, Yang, Sun, Yang, Liu, Zhou (bib47) 2019
Fan, Song (bib82) 2010; 38
Márquez-Luna, Gazal, Loh, Furlotte, Auton, Price (bib14) 2018
Hu, Lu, Powles, Yao, Yang, Fang, Xu, Zhao (bib20) 2017; 13
Habier, Fernando, Kizilkaya, Garrick (bib42) 2011; 12
Nagai, Hirata, Kamatani, Muto, Matsuda, Kiyohara, Ninomiya, Tamakoshi, Yamagata, Mushiroda (bib52) 2017; 27
Wray, Kemper, Hayes, Goddard, Visscher (bib12) 2019; 211
Locke, Kahali, Berndt, Justice, Pers, Day, Powell, Vedantam, Buchkovich, Yang (bib72) 2015; 518
Choi, O’Reilly (bib23) 2019; 8
Zhou, Carbonetto, Stephens (bib15) 2013; 9
Martin, Kanai, Kamatani, Okada, Neale, Daly (bib77) 2019; 51
de los Campos, Gianola, Allison (bib8) 2010; 11
Fritsche, Beesley, VandeHaar, Peng, Salvatore, Zawistowski, Gagliano Taliun, Das, LeFaive, Kaleba (bib11) 2019; 15
Purcell, Wray, Stone, Visscher, O’Donovan, Sullivan, Sklar (bib18) 2009; 460
Euesden, Lewis, O’Reilly (bib22) 2015; 31
Khera, Chaffin, Aragam, Haas, Roselli, Choi, Natarajan, Lander, Lubitz, Ellinor, Kathiresan (bib34) 2018; 50
Selzam, Ritchie, Pingault, Reynolds, O’Reilly, Plomin (bib10) 2019; 105
Privé, Vilhjálmsson, Aschard, Blum (bib25) 2019; 105
Boyle, Li, Pritchard (bib58) 2017; 169
Zou, Hastie (bib81) 2005; 67
Nagpal, Meng, Epstein, Tsoi, Patrick, Gibson, De Jager, Bennett, Wingo, Wingo, Yang (bib46) 2019; 105
Dudbridge (bib9) 2013; 9
Gusev, Ko, Shi, Bhatia, Chung, Penninx, Jansen, de Geus, Boomsma, Wright (bib44) 2016; 48
Abecasis, Auton, Brooks, DePristo, Durbin, Handsaker, Kang, Marth, McVean (bib76) 2012; 491
Yang, Weedon, Purcell, Lettre, Estrada, Willer, Smith, Ingelsson, O’Connell, Mangino (bib68) 2011; 19
Akiyama, Okada, Kanai, Takahashi, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda (bib75) 2017; 49
Berisa, Pickrell (bib62) 2016; 32
Kim, Grueneberg, Vazquez, Hsu, de Los Campos (bib56) 2017; 207
Chen, Chen, Collins, Guo, Peto, Wu, Li (bib53) 2011; 40
Torkamani, Wineinger, Topol (bib32) 2018; 19
Speed, Balding (bib24) 2014; 24
Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bib39) 2010; 42
Gibson (bib31) 2019; 15
Zhou, Stephens (bib65) 2014; 11
Zhou (bib60) 2017; 11
Ferreira, Hottenga, Warrington, Medland, Willemsen, Lawrence, Gordon, de Geus, Henders, Smit (bib71) 2009; 85
Denny, Rutter, Goldstein, Philippakis, Smoller, Jenkins, Dishman (bib55) 2019; 381
Meuwissen, Hayes, Goddard (bib43) 2001; 157
Toulopoulou, Zhang, Cherny, Dickinson, Berman, Straub, Sham, Weinberger (bib5) 2019; 142
Yang, Lee, Goddard, Visscher (bib64) 2011; 88
Lloyd-Jones, Zeng, Sidorenko, Yengo, Moser, Kemper, Wang, Zheng, Magi, Esko (bib29) 2019; 10
So, Sham (bib30) 2017; 7
Watanabe, Stringer, Frei, Umićević Mirkov, de Leeuw, Polderman, van der Sluis, Andreassen, Neale, Posthuma (bib69) 2019; 51
Bulik-Sullivan, Loh, Finucane, Ripke, Yang, Patterson, Daly, Price, Neale (bib63) 2015; 47
Chang, Chow, Tellier, Vattikuti, Purcell, Lee (bib57) 2015; 4
Kanai, Akiyama, Takahashi, Matoba, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda (bib73) 2018; 50
de Los Campos, Vazquez, Hsu, Lello (bib6) 2018; 34
Robinson, Kleinman, Graff, Vinkhuyzen, Couper, Miller, Peyrot, Abdellaoui, Zietsch, Nolte (bib27) 2017
Mak, Porsch, Choi, Zhou, Sham (bib16) 2017; 41
Kichaev, Bhatia, Loh, Gazal, Burch, Freund, Schoech, Pasaniuc, Price (bib66) 2019; 104
Wood, Esko, Yang, Vedantam, Pers, Gustafsson, Chu, Estrada, Luan, Kutalik (bib70) 2014; 46
VanRaden (bib26) 2008; 91
Hu, Lu, Liu, Zhang, Li, Zhao (bib21) 2017; 13
Makowsky, Pajewski, Klimentidis, Vazquez, Duarte, Allison, de los Campos (bib37) 2011; 7
Fan, Li (bib80) 2001; 96
So, Kwan, Cherny, Sham (bib4) 2011; 88
Guan, Stephens (bib59) 2011; 5
Owens, Davidson, Krist, Barry, Cabana, Caughey, Doubeni, Epling, Kubik, Landefeld (bib2) 2019; 322
Mavaddat, Michailidou, Dennis, Lush, Fachal, Lee, Tyrer, Chen, Wang, Bolla (bib35) 2019; 104
Daetwyler, Villanueva, Woolliams (bib67) 2008; 3
Gamazon, Wheeler, Shah, Mozaffari, Aquino-Michaels, Carroll, Eyler, Denny, Nicolae, Cox, Im (bib45) 2015; 47
Locke, Steinberg, Chiang, Service, Havulinna, Stell, Pirinen, Abel, Chiang, Fulton (bib54) 2019; 572
Richardson, Harrison, Hemani, Davey Smith (bib49) 2019; 8
Visscher, Brown, McCarthy, Yang (bib1) 2012; 90
Torkamani, Topol (bib33) 2019; 177
Choi (10.1016/j.ajhg.2020.03.013_bib50) 2018
Chang (10.1016/j.ajhg.2020.03.013_bib57) 2015; 4
Zhou (10.1016/j.ajhg.2020.03.013_bib65) 2014; 11
Locke (10.1016/j.ajhg.2020.03.013_bib72) 2015; 518
Akiyama (10.1016/j.ajhg.2020.03.013_bib74) 2019; 10
So (10.1016/j.ajhg.2020.03.013_bib4) 2011; 88
Ferreira (10.1016/j.ajhg.2020.03.013_bib71) 2009; 85
Young (10.1016/j.ajhg.2020.03.013_bib40) 2019; 15
Lloyd-Jones (10.1016/j.ajhg.2020.03.013_bib29) 2019; 10
Fritsche (10.1016/j.ajhg.2020.03.013_bib11) 2019; 15
Márquez-Luna (10.1016/j.ajhg.2020.03.013_bib14) 2018
Yang (10.1016/j.ajhg.2020.03.013_bib39) 2010; 42
Zou (10.1016/j.ajhg.2020.03.013_bib81) 2005; 67
Wood (10.1016/j.ajhg.2020.03.013_bib70) 2014; 46
Torkamani (10.1016/j.ajhg.2020.03.013_bib33) 2019; 177
Wray (10.1016/j.ajhg.2020.03.013_bib12) 2019; 211
Hu (10.1016/j.ajhg.2020.03.013_bib20) 2017; 13
VanRaden (10.1016/j.ajhg.2020.03.013_bib26) 2008; 91
Selzam (10.1016/j.ajhg.2020.03.013_bib10) 2019; 105
Richardson (10.1016/j.ajhg.2020.03.013_bib49) 2019; 8
Kaasschieter (10.1016/j.ajhg.2020.03.013_bib61) 1988; 24
Fan (10.1016/j.ajhg.2020.03.013_bib82) 2010; 38
Fritsche (10.1016/j.ajhg.2020.03.013_bib36) 2018; 102
Rosenberg (10.1016/j.ajhg.2020.03.013_bib41) 2018; 2019
Cheng (10.1016/j.ajhg.2020.03.013_bib48) 2019
Sudlow (10.1016/j.ajhg.2020.03.013_bib51) 2015; 12
Chen (10.1016/j.ajhg.2020.03.013_bib53) 2011; 40
Wang (10.1016/j.ajhg.2020.03.013_bib78) 2020
Mavaddat (10.1016/j.ajhg.2020.03.013_bib35) 2019; 104
Tibshirani (10.1016/j.ajhg.2020.03.013_bib79) 1996; 58
Martin (10.1016/j.ajhg.2020.03.013_bib77) 2019; 51
Kim (10.1016/j.ajhg.2020.03.013_bib56) 2017; 207
Yuan (10.1016/j.ajhg.2020.03.013_bib47) 2019
Boyle (10.1016/j.ajhg.2020.03.013_bib58) 2017; 169
Fan (10.1016/j.ajhg.2020.03.013_bib80) 2001; 96
Nagpal (10.1016/j.ajhg.2020.03.013_bib46) 2019; 105
Zeng (10.1016/j.ajhg.2020.03.013_bib28) 2017; 8
Khera (10.1016/j.ajhg.2020.03.013_bib34) 2018; 50
Berisa (10.1016/j.ajhg.2020.03.013_bib62) 2016; 32
Owens (10.1016/j.ajhg.2020.03.013_bib2) 2019; 322
So (10.1016/j.ajhg.2020.03.013_bib30) 2017; 7
Guan (10.1016/j.ajhg.2020.03.013_bib59) 2011; 5
Locke (10.1016/j.ajhg.2020.03.013_bib54) 2019; 572
Yang (10.1016/j.ajhg.2020.03.013_bib64) 2011; 88
Torkamani (10.1016/j.ajhg.2020.03.013_bib32) 2018; 19
Makowsky (10.1016/j.ajhg.2020.03.013_bib37) 2011; 7
Kanai (10.1016/j.ajhg.2020.03.013_bib73) 2018; 50
Speed (10.1016/j.ajhg.2020.03.013_bib24) 2014; 24
Gusev (10.1016/j.ajhg.2020.03.013_bib44) 2016; 48
Hu (10.1016/j.ajhg.2020.03.013_bib21) 2017; 13
Kichaev (10.1016/j.ajhg.2020.03.013_bib66) 2019; 104
Nagai (10.1016/j.ajhg.2020.03.013_bib52) 2017; 27
Bulik-Sullivan (10.1016/j.ajhg.2020.03.013_bib63) 2015; 47
Khera (10.1016/j.ajhg.2020.03.013_bib7) 2019; 177
Visscher (10.1016/j.ajhg.2020.03.013_bib3) 2017; 101
Privé (10.1016/j.ajhg.2020.03.013_bib25) 2019; 105
Akiyama (10.1016/j.ajhg.2020.03.013_bib75) 2017; 49
de Los Campos (10.1016/j.ajhg.2020.03.013_bib6) 2018; 34
Choi (10.1016/j.ajhg.2020.03.013_bib23) 2019; 8
Yang (10.1016/j.ajhg.2020.03.013_bib68) 2011; 19
Gamazon (10.1016/j.ajhg.2020.03.013_bib45) 2015; 47
Vilhjálmsson (10.1016/j.ajhg.2020.03.013_bib13) 2015; 97
Euesden (10.1016/j.ajhg.2020.03.013_bib22) 2015; 31
Abecasis (10.1016/j.ajhg.2020.03.013_bib76) 2012; 491
Zhou (10.1016/j.ajhg.2020.03.013_bib15) 2013; 9
Zhao (10.1016/j.ajhg.2020.03.013_bib19) 2019
de los Campos (10.1016/j.ajhg.2020.03.013_bib8) 2010; 11
Dudbridge (10.1016/j.ajhg.2020.03.013_bib9) 2013; 9
Robinson (10.1016/j.ajhg.2020.03.013_bib27) 2017
Zhou (10.1016/j.ajhg.2020.03.013_bib60) 2017; 11
Purcell (10.1016/j.ajhg.2020.03.013_bib18) 2009; 460
Yang (10.1016/j.ajhg.2020.03.013_bib38) 2015; 47
Toulopoulou (10.1016/j.ajhg.2020.03.013_bib5) 2019; 142
Watanabe (10.1016/j.ajhg.2020.03.013_bib69) 2019; 51
Ge (10.1016/j.ajhg.2020.03.013_bib17) 2019; 10
Habier (10.1016/j.ajhg.2020.03.013_bib42) 2011; 12
Visscher (10.1016/j.ajhg.2020.03.013_bib1) 2012; 90
Daetwyler (10.1016/j.ajhg.2020.03.013_bib67) 2008; 3
Mak (10.1016/j.ajhg.2020.03.013_bib16) 2017; 41
Denny (10.1016/j.ajhg.2020.03.013_bib55) 2019; 381
Gibson (10.1016/j.ajhg.2020.03.013_bib31) 2019; 15
Meuwissen (10.1016/j.ajhg.2020.03.013_bib43) 2001; 157
References_xml – volume: 13
  start-page: e1006836
  year: 2017
  ident: bib21
  article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction
  publication-title: PLoS Genet.
– volume: 51
  start-page: 584
  year: 2019
  end-page: 591
  ident: bib77
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat. Genet.
– volume: 11
  start-page: 2027
  year: 2017
  end-page: 2051
  ident: bib60
  article-title: A unified framework for variance component estimation with summary statistics in genome-wide association studies
  publication-title: Ann. Appl. Stat.
– year: 2020
  ident: bib78
  article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
  publication-title: bioRxiv
– volume: 9
  start-page: e1003264
  year: 2013
  ident: bib15
  article-title: Polygenic modeling with bayesian sparse linear mixed models
  publication-title: PLoS Genet.
– volume: 91
  start-page: 4414
  year: 2008
  end-page: 4423
  ident: bib26
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
– volume: 19
  start-page: 807
  year: 2011
  end-page: 812
  ident: bib68
  article-title: Genomic inflation factors under polygenic inheritance
  publication-title: Eur. J. Hum. Genet.
– volume: 24
  start-page: 1550
  year: 2014
  end-page: 1557
  ident: bib24
  article-title: MultiBLUP: improved SNP-based prediction for complex traits
  publication-title: Genome Res.
– volume: 11
  start-page: 407
  year: 2014
  end-page: 409
  ident: bib65
  article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies
  publication-title: Nat. Methods
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib79
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. B
– volume: 572
  start-page: 323
  year: 2019
  end-page: 328
  ident: bib54
  article-title: Exome sequencing of Finnish isolates enhances rare-variant association power
  publication-title: Nature
– volume: 10
  start-page: 5086
  year: 2019
  ident: bib29
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
– volume: 50
  start-page: 390
  year: 2018
  end-page: 400
  ident: bib73
  article-title: Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases
  publication-title: Nat. Genet.
– volume: 34
  start-page: 746
  year: 2018
  end-page: 754
  ident: bib6
  article-title: Complex-trait prediction in the era of big data
  publication-title: Trends Genet.
– volume: 11
  start-page: 880
  year: 2010
  end-page: 886
  ident: bib8
  article-title: Predicting genetic predisposition in humans: the promise of whole-genome markers
  publication-title: Nat. Rev. Genet.
– year: 2019
  ident: bib19
  article-title: Fine-tuning Polygenic Risk Scores with GWAS Summary Statistics
  publication-title: bioRxiv
– volume: 12
  start-page: e1001779
  year: 2015
  ident: bib51
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
– volume: 104
  start-page: 21
  year: 2019
  end-page: 34
  ident: bib35
  article-title: Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
  publication-title: Am. J. Hum. Genet.
– volume: 177
  start-page: 587
  year: 2019
  end-page: 596.e9
  ident: bib7
  article-title: Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood
  publication-title: Cell
– volume: 4
  start-page: 7
  year: 2015
  ident: bib57
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: Gigascience
– volume: 460
  start-page: 748
  year: 2009
  end-page: 752
  ident: bib18
  article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  publication-title: Nature
– volume: 8
  start-page: 456
  year: 2017
  ident: bib28
  article-title: Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models
  publication-title: Nat. Commun.
– start-page: 1
  year: 2017
  ident: bib27
  article-title: Genetic evidence of assortative mating in humans
  publication-title: Nat. Hum. Behav.
– volume: 7
  start-page: e1002051
  year: 2011
  ident: bib37
  article-title: Beyond missing heritability: prediction of complex traits
  publication-title: PLoS Genet.
– volume: 24
  start-page: 265
  year: 1988
  end-page: 275
  ident: bib61
  article-title: Preconditioned conjugate gradients for solving singular systems
  publication-title: J. Comput. Appl. Math.
– volume: 8
  start-page: e43657
  year: 2019
  ident: bib49
  article-title: An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome
  publication-title: eLife
– volume: 42
  start-page: 565
  year: 2010
  end-page: 569
  ident: bib39
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
– volume: 38
  start-page: 3567
  year: 2010
  end-page: 3604
  ident: bib82
  article-title: Sure independence screening in generalized linear models with NP-dimensionality
  publication-title: Ann. Stat.
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib80
  article-title: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
  publication-title: J. Am. Stat. Assoc.
– volume: 169
  start-page: 1177
  year: 2017
  end-page: 1186
  ident: bib58
  article-title: An expanded view of complex traits: from polygenic to omnigenic
  publication-title: Cell
– volume: 105
  start-page: 1213
  year: 2019
  end-page: 1221
  ident: bib25
  article-title: Making the Most of Clumping and Thresholding for Polygenic Scores
  publication-title: Am. J. Hum. Genet.
– volume: 46
  start-page: 1173
  year: 2014
  end-page: 1186
  ident: bib70
  article-title: Defining the role of common variation in the genomic and biological architecture of adult human height
  publication-title: Nat. Genet.
– volume: 49
  start-page: 1458
  year: 2017
  end-page: 1467
  ident: bib75
  article-title: Genome-wide association study identifies 112 new loci for body mass index in the Japanese population
  publication-title: Nat. Genet.
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: bib34
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat. Genet.
– volume: 27
  start-page: S2
  year: 2017
  end-page: S8
  ident: bib52
  article-title: Overview of the BioBank Japan Project: Study design and profile
  publication-title: J. Epidemiol.
– volume: 15
  start-page: e1008202
  year: 2019
  ident: bib11
  article-title: Exploring various polygenic risk scores for skin cancer in the phenomes of the Michigan genomics initiative and the UK Biobank with a visual catalog: PRSWeb
  publication-title: PLoS Genet.
– volume: 211
  start-page: 1131
  year: 2019
  end-page: 1141
  ident: bib12
  article-title: Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction
  publication-title: Genetics
– volume: 207
  start-page: 1135
  year: 2017
  end-page: 1145
  ident: bib56
  article-title: Will Big Data Close the Missing Heritability Gap?
  publication-title: Genetics
– volume: 3
  start-page: e3395
  year: 2008
  ident: bib67
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PLoS ONE
– volume: 10
  start-page: 1776
  year: 2019
  ident: bib17
  article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors
  publication-title: Nat. Commun.
– volume: 104
  start-page: 65
  year: 2019
  end-page: 75
  ident: bib66
  article-title: Leveraging polygenic functional enrichment to improve GWAS power
  publication-title: Am. J. Hum. Genet.
– volume: 31
  start-page: 1466
  year: 2015
  end-page: 1468
  ident: bib22
  article-title: PRSice: Polygenic Risk Score software
  publication-title: Bioinformatics
– volume: 19
  start-page: 581
  year: 2018
  end-page: 590
  ident: bib32
  article-title: The personal and clinical utility of polygenic risk scores
  publication-title: Nat. Rev. Genet.
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: bib64
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
– volume: 142
  start-page: 471
  year: 2019
  end-page: 485
  ident: bib5
  article-title: Polygenic risk score increases schizophrenia liability through cognition-relevant pathways
  publication-title: Brain
– volume: 15
  start-page: e1008222
  year: 2019
  ident: bib40
  article-title: Solving the missing heritability problem
  publication-title: PLoS Genet.
– volume: 51
  start-page: 1339
  year: 2019
  end-page: 1348
  ident: bib69
  article-title: A global overview of pleiotropy and genetic architecture in complex traits
  publication-title: Nat. Genet.
– volume: 90
  start-page: 7
  year: 2012
  end-page: 24
  ident: bib1
  article-title: Five years of GWAS discovery
  publication-title: Am. J. Hum. Genet.
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: bib43
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
– volume: 48
  start-page: 245
  year: 2016
  end-page: 252
  ident: bib44
  article-title: Integrative approaches for large-scale transcriptome-wide association studies
  publication-title: Nat. Genet.
– volume: 381
  start-page: 668
  year: 2019
  end-page: 676
  ident: bib55
  article-title: The “All of Us” Research Program
  publication-title: N. Engl. J. Med.
– volume: 85
  start-page: 745
  year: 2009
  end-page: 749
  ident: bib71
  article-title: Sequence variants in three loci influence monocyte counts and erythrocyte volume
  publication-title: Am. J. Hum. Genet.
– volume: 177
  start-page: 518
  year: 2019
  end-page: 520
  ident: bib33
  article-title: Polygenic Risk Scores Expand to Obesity
  publication-title: Cell
– volume: 2019
  start-page: 26
  year: 2018
  end-page: 34
  ident: bib41
  article-title: Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences
  publication-title: Evol. Med. Public Health
– volume: 12
  start-page: 186
  year: 2011
  ident: bib42
  article-title: Extension of the bayesian alphabet for genomic selection
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 4393
  year: 2019
  ident: bib74
  article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population
  publication-title: Nat. Commun.
– volume: 105
  start-page: 351
  year: 2019
  end-page: 363
  ident: bib10
  article-title: Comparing Within- and Between-Family Polygenic Score Prediction
  publication-title: Am. J. Hum. Genet.
– volume: 40
  start-page: 1652
  year: 2011
  end-page: 1666
  ident: bib53
  article-title: China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up
  publication-title: Int. J. Epidemiol.
– volume: 105
  start-page: 258
  year: 2019
  end-page: 266
  ident: bib46
  article-title: TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits
  publication-title: Am. J. Hum. Genet.
– volume: 88
  start-page: 548
  year: 2011
  end-page: 565
  ident: bib4
  article-title: Risk prediction of complex diseases from family history and known susceptibility loci, with applications for cancer screening
  publication-title: Am. J. Hum. Genet.
– volume: 8
  start-page: 8
  year: 2019
  ident: bib23
  article-title: PRSice-2: Polygenic Risk Score software for biobank-scale data
  publication-title: Gigascience
– year: 2018
  ident: bib50
  article-title: A guide to performing Polygenic Risk Score analyses
  publication-title: bioRxiv
– volume: 101
  start-page: 5
  year: 2017
  end-page: 22
  ident: bib3
  article-title: 10 years of GWAS discovery: biology, function, and translation
  publication-title: Am. J. Hum. Genet.
– volume: 97
  start-page: 576
  year: 2015
  end-page: 592
  ident: bib13
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
– volume: 41
  start-page: 469
  year: 2017
  end-page: 480
  ident: bib16
  article-title: Polygenic scores via penalized regression on summary statistics
  publication-title: Genet. Epidemiol.
– volume: 15
  start-page: e1008060
  year: 2019
  ident: bib31
  article-title: On the utilization of polygenic risk scores for therapeutic targeting
  publication-title: PLoS Genet.
– volume: 7
  start-page: 41262
  year: 2017
  ident: bib30
  article-title: Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
  publication-title: Sci. Rep.
– year: 2019
  ident: bib47
  article-title: Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies
  publication-title: bioRxiv
– volume: 518
  start-page: 197
  year: 2015
  end-page: 206
  ident: bib72
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
– volume: 32
  start-page: 283
  year: 2016
  end-page: 285
  ident: bib62
  article-title: Approximately independent linkage disequilibrium blocks in human populations
  publication-title: Bioinformatics
– year: 2019
  ident: bib48
  article-title: MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting linkage disequilibrium and horizontal pleiotropy
  publication-title: bioRxiv
– volume: 102
  start-page: 1048
  year: 2018
  end-page: 1061
  ident: bib36
  article-title: Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative
  publication-title: Am. J. Hum. Genet.
– volume: 47
  start-page: 1114
  year: 2015
  end-page: 1120
  ident: bib38
  article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
  publication-title: Nat. Genet.
– volume: 322
  start-page: 652
  year: 2019
  end-page: 665
  ident: bib2
  article-title: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement
  publication-title: JAMA
– volume: 13
  start-page: e1005589
  year: 2017
  ident: bib20
  article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases
  publication-title: PLoS Comput. Biol.
– volume: 47
  start-page: 1091
  year: 2015
  end-page: 1098
  ident: bib45
  article-title: A gene-based association method for mapping traits using reference transcriptome data
  publication-title: Nat. Genet.
– volume: 5
  start-page: 1780
  year: 2011
  end-page: 1815
  ident: bib59
  article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems
  publication-title: Ann. Appl. Stat.
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: bib63
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
– volume: 9
  start-page: e1003348
  year: 2013
  ident: bib9
  article-title: Power and predictive accuracy of polygenic risk scores
  publication-title: PLoS Genet.
– year: 2018
  ident: bib14
  article-title: Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets
  publication-title: bioRxiv
– volume: 491
  start-page: 56
  year: 2012
  end-page: 65
  ident: bib76
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib81
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 11
  start-page: 2027
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib60
  article-title: A unified framework for variance component estimation with summary statistics in genome-wide association studies
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/17-AOAS1052
– volume: 32
  start-page: 283
  year: 2016
  ident: 10.1016/j.ajhg.2020.03.013_bib62
  article-title: Approximately independent linkage disequilibrium blocks in human populations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv546
– year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib14
  article-title: Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets
  publication-title: bioRxiv
– volume: 40
  start-page: 1652
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib53
  article-title: China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyr120
– volume: 90
  start-page: 7
  year: 2012
  ident: 10.1016/j.ajhg.2020.03.013_bib1
  article-title: Five years of GWAS discovery
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.11.029
– volume: 15
  start-page: e1008222
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib40
  article-title: Solving the missing heritability problem
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008222
– volume: 169
  start-page: 1177
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib58
  article-title: An expanded view of complex traits: from polygenic to omnigenic
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
– volume: 7
  start-page: 41262
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib30
  article-title: Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
  publication-title: Sci. Rep.
  doi: 10.1038/srep41262
– volume: 9
  start-page: e1003348
  year: 2013
  ident: 10.1016/j.ajhg.2020.03.013_bib9
  article-title: Power and predictive accuracy of polygenic risk scores
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003348
– volume: 105
  start-page: 1213
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib25
  article-title: Making the Most of Clumping and Thresholding for Polygenic Scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.11.001
– volume: 8
  start-page: e43657
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib49
  article-title: An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome
  publication-title: eLife
  doi: 10.7554/eLife.43657
– volume: 47
  start-page: 1114
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib38
  article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3390
– volume: 10
  start-page: 5086
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib29
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 88
  start-page: 548
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib4
  article-title: Risk prediction of complex diseases from family history and known susceptibility loci, with applications for cancer screening
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.04.001
– volume: 207
  start-page: 1135
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib56
  article-title: Will Big Data Close the Missing Heritability Gap?
  publication-title: Genetics
  doi: 10.1534/genetics.117.300271
– volume: 19
  start-page: 807
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib68
  article-title: Genomic inflation factors under polygenic inheritance
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2011.39
– volume: 42
  start-page: 565
  year: 2010
  ident: 10.1016/j.ajhg.2020.03.013_bib39
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
– volume: 5
  start-page: 1780
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib59
  article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS455
– volume: 27
  start-page: S2
  issue: 3S
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib52
  article-title: Overview of the BioBank Japan Project: Study design and profile
  publication-title: J. Epidemiol.
  doi: 10.1016/j.je.2016.12.005
– volume: 24
  start-page: 265
  year: 1988
  ident: 10.1016/j.ajhg.2020.03.013_bib61
  article-title: Preconditioned conjugate gradients for solving singular systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(88)90358-5
– volume: 12
  start-page: e1001779
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib51
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– volume: 46
  start-page: 1173
  year: 2014
  ident: 10.1016/j.ajhg.2020.03.013_bib70
  article-title: Defining the role of common variation in the genomic and biological architecture of adult human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3097
– volume: 15
  start-page: e1008060
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib31
  article-title: On the utilization of polygenic risk scores for therapeutic targeting
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008060
– volume: 2019
  start-page: 26
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib41
  article-title: Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences
  publication-title: Evol. Med. Public Health
  doi: 10.1093/emph/eoy036
– volume: 50
  start-page: 1219
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib34
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0183-z
– volume: 12
  start-page: 186
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib42
  article-title: Extension of the bayesian alphabet for genomic selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-186
– volume: 105
  start-page: 351
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib10
  article-title: Comparing Within- and Between-Family Polygenic Score Prediction
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.06.006
– volume: 381
  start-page: 668
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib55
  article-title: The “All of Us” Research Program
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsr1809937
– volume: 47
  start-page: 291
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib63
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 48
  start-page: 245
  year: 2016
  ident: 10.1016/j.ajhg.2020.03.013_bib44
  article-title: Integrative approaches for large-scale transcriptome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3506
– year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib47
  article-title: Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies
  publication-title: bioRxiv
– volume: 24
  start-page: 1550
  year: 2014
  ident: 10.1016/j.ajhg.2020.03.013_bib24
  article-title: MultiBLUP: improved SNP-based prediction for complex traits
  publication-title: Genome Res.
  doi: 10.1101/gr.169375.113
– volume: 101
  start-page: 5
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib3
  article-title: 10 years of GWAS discovery: biology, function, and translation
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.06.005
– volume: 8
  start-page: 456
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib28
  article-title: Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00470-2
– volume: 157
  start-page: 1819
  year: 2001
  ident: 10.1016/j.ajhg.2020.03.013_bib43
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 10
  start-page: 1776
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib17
  article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 4
  start-page: 7
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib57
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0047-8
– volume: 51
  start-page: 1339
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib69
  article-title: A global overview of pleiotropy and genetic architecture in complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0481-0
– volume: 10
  start-page: 4393
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib74
  article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12276-5
– volume: 13
  start-page: e1006836
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib21
  article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006836
– volume: 572
  start-page: 323
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib54
  article-title: Exome sequencing of Finnish isolates enhances rare-variant association power
  publication-title: Nature
  doi: 10.1038/s41586-019-1457-z
– volume: 102
  start-page: 1048
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib36
  article-title: Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.04.001
– volume: 31
  start-page: 1466
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib22
  article-title: PRSice: Polygenic Risk Score software
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu848
– volume: 50
  start-page: 390
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib73
  article-title: Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0047-6
– volume: 142
  start-page: 471
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib5
  article-title: Polygenic risk score increases schizophrenia liability through cognition-relevant pathways
  publication-title: Brain
  doi: 10.1093/brain/awy279
– volume: 91
  start-page: 4414
  year: 2008
  ident: 10.1016/j.ajhg.2020.03.013_bib26
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0980
– volume: 3
  start-page: e3395
  year: 2008
  ident: 10.1016/j.ajhg.2020.03.013_bib67
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003395
– volume: 177
  start-page: 518
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib33
  article-title: Polygenic Risk Scores Expand to Obesity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.051
– volume: 491
  start-page: 56
  year: 2012
  ident: 10.1016/j.ajhg.2020.03.013_bib76
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 322
  start-page: 652
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib2
  article-title: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement
  publication-title: JAMA
  doi: 10.1001/jama.2019.10987
– volume: 11
  start-page: 880
  year: 2010
  ident: 10.1016/j.ajhg.2020.03.013_bib8
  article-title: Predicting genetic predisposition in humans: the promise of whole-genome markers
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2898
– volume: 9
  start-page: e1003264
  year: 2013
  ident: 10.1016/j.ajhg.2020.03.013_bib15
  article-title: Polygenic modeling with bayesian sparse linear mixed models
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003264
– volume: 49
  start-page: 1458
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib75
  article-title: Genome-wide association study identifies 112 new loci for body mass index in the Japanese population
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3951
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10.1016/j.ajhg.2020.03.013_bib80
  article-title: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.ajhg.2020.03.013_bib81
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 85
  start-page: 745
  year: 2009
  ident: 10.1016/j.ajhg.2020.03.013_bib71
  article-title: Sequence variants in three loci influence monocyte counts and erythrocyte volume
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.10.005
– start-page: 1
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib27
  article-title: Genetic evidence of assortative mating in humans
  publication-title: Nat. Hum. Behav.
– volume: 105
  start-page: 258
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib46
  article-title: TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.05.018
– year: 2020
  ident: 10.1016/j.ajhg.2020.03.013_bib78
  article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
  publication-title: bioRxiv
– year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib19
  article-title: Fine-tuning Polygenic Risk Scores with GWAS Summary Statistics
  publication-title: bioRxiv
– volume: 177
  start-page: 587
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib7
  article-title: Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.028
– volume: 7
  start-page: e1002051
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib37
  article-title: Beyond missing heritability: prediction of complex traits
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002051
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.ajhg.2020.03.013_bib79
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 15
  start-page: e1008202
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib11
  article-title: Exploring various polygenic risk scores for skin cancer in the phenomes of the Michigan genomics initiative and the UK Biobank with a visual catalog: PRSWeb
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008202
– volume: 51
  start-page: 584
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib77
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– volume: 8
  start-page: 8
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib23
  article-title: PRSice-2: Polygenic Risk Score software for biobank-scale data
  publication-title: Gigascience
  doi: 10.1093/gigascience/giz082
– volume: 104
  start-page: 21
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib35
  article-title: Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.11.002
– volume: 518
  start-page: 197
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib72
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
  doi: 10.1038/nature14177
– volume: 19
  start-page: 581
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib32
  article-title: The personal and clinical utility of polygenic risk scores
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0018-x
– volume: 47
  start-page: 1091
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib45
  article-title: A gene-based association method for mapping traits using reference transcriptome data
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3367
– volume: 88
  start-page: 76
  year: 2011
  ident: 10.1016/j.ajhg.2020.03.013_bib64
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 38
  start-page: 3567
  year: 2010
  ident: 10.1016/j.ajhg.2020.03.013_bib82
  article-title: Sure independence screening in generalized linear models with NP-dimensionality
  publication-title: Ann. Stat.
  doi: 10.1214/10-AOS798
– volume: 104
  start-page: 65
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib66
  article-title: Leveraging polygenic functional enrichment to improve GWAS power
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.11.008
– volume: 34
  start-page: 746
  year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib6
  article-title: Complex-trait prediction in the era of big data
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.07.004
– volume: 11
  start-page: 407
  year: 2014
  ident: 10.1016/j.ajhg.2020.03.013_bib65
  article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2848
– volume: 41
  start-page: 469
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib16
  article-title: Polygenic scores via penalized regression on summary statistics
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22050
– volume: 211
  start-page: 1131
  year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib12
  article-title: Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction
  publication-title: Genetics
  doi: 10.1534/genetics.119.301859
– volume: 460
  start-page: 748
  year: 2009
  ident: 10.1016/j.ajhg.2020.03.013_bib18
  article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  publication-title: Nature
  doi: 10.1038/nature08185
– volume: 13
  start-page: e1005589
  year: 2017
  ident: 10.1016/j.ajhg.2020.03.013_bib20
  article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005589
– year: 2018
  ident: 10.1016/j.ajhg.2020.03.013_bib50
  article-title: A guide to performing Polygenic Risk Score analyses
  publication-title: bioRxiv
– volume: 97
  start-page: 576
  year: 2015
  ident: 10.1016/j.ajhg.2020.03.013_bib13
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– year: 2019
  ident: 10.1016/j.ajhg.2020.03.013_bib48
  article-title: MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting linkage disequilibrium and horizontal pleiotropy
  publication-title: bioRxiv
SSID ssj0011803
Score 2.5738168
Snippet Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 679
SubjectTerms Bayes Theorem
complex traits
Databases, Factual - standards
Datasets as Topic - standards
deterministic Bayesian sparse linear mixed model
Female
Humans
Linear Models
Male
Multifactorial Inheritance
polygenic risk score
polygenic score
Polymorphism, Single Nucleotide
Reproducibility of Results
Sample Size
UK Biobank
United Kingdom
White People - genetics
Title Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets
URI https://dx.doi.org/10.1016/j.ajhg.2020.03.013
https://www.ncbi.nlm.nih.gov/pubmed/32330416
https://www.proquest.com/docview/2394893414
https://pubmed.ncbi.nlm.nih.gov/PMC7212266
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKJSQuqJTXUqgGiRuKmnkkmRzbQqkQIFCptLfRjGeWplRJpW4P_fe181ixVPTAMYknGtmOx47tzwDvGCYr6RKzWhuTmarKs1AFm5noZQxB5r6HFPr6rTw-NZ_nxXwDDqdeGC6rHG3_YNN7az3e2Ru5uXfZNNzjmys63DmP2Od3yA5rY_smvvnBKpMgba4nF5ipx8aZocbLn5_9ohhR5T3QqdT_OpzuOp9_11D-cSgdbcHj0ZsU-8OGn8BGarfh4TBf8uYp_NhHvGYsCOHbKE5IHNwoJXhI5wQbK7qF-N5d3JAeNUgkHYXfomnFF64QF_Sm4Nvf4oNfenGSllfP4PTo48_D42ycoZAhjyrI0CAFJFFikiaitJW2pkDjdR0WNpR1lZL1iNEutPEq6eATFqZUtQ9WeYpgn8Nm27XpJQhUdSmDUaGwFb2g8EYmVHGhIqKJOc5ATsxzOAKM85yLCzdVkp07ZrhjhrtcO2L4DN6v1lwO8Br3UheTTNyakjiy__euezsJ0NHXwykR36bu-srxYHjy2Iw0M3gxCHS1D634X48sZ1CtiXpFwMjc60_a5qxH6Kawmtza8tV_7ncHHvFVX1dZvYZNUon0hnyfZdiFB5_mcrdX8VsIlgLY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI5KEYIL4s1SHkHihkadPGaSObaFagvbCtRW2luUOFk6pZqp1O2h_x57HisWRA9cZ5wosj2xPbY_M_aBYLKSKiGrlNaZNibPggk209GLGILIfQcpdHhUTk_1l3kx32B7Yy8MlVUOd39_p3e39fBke-Dm9mVdU49vLtG4Ux6xy-_cYXfRGzA0v-FgvrtKJQibq9EHJvKhc6Yv8vLnZz8wSJR5h3Qq1L-s09_e559FlL9Zpf1H7OHgTvKd_sSP2UZqnrB7_YDJm6fs-w7ANYFBcN9EfozyoE4pTlM6R9xY3i74t_biBhWpBiRpMf7mdcNnVCLOcafgm5_8k196fpyWV8_Y6f7nk71pNgxRyIBmFWSgASOSKCAJHUFYo6wuQHtVhYUNZWVSsh4g2oXSXiYVfIJCl7LywUqPIexzttm0TXrJOMiqFEHLUFiDGxReiwQyLmQE0DGHCRMj8xwMCOM06OLCjaVk544Y7ojhLlcOGT5hH1drLnt8jVupi1Embk1LHBqAW9e9HwXo8POhnIhvUnt95WgyPLpsWugJe9ELdHUOJelnjygnzKyJekVA0Nzrb5r6rIPoxrga_dry1X-e9x27Pz05nLnZwdHXLfaA3nRFluY120T1SG_QEVqGt52i_wLxyQUG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+and+Scalable+Construction+of+Polygenic+Scores+in+Large+Biobank+Data+Sets&rft.jtitle=American+journal+of+human+genetics&rft.au=Yang%2C+Sheng&rft.au=Zhou%2C+Xiang&rft.date=2020-05-07&rft.pub=Elsevier&rft.issn=0002-9297&rft.eissn=1537-6605&rft.volume=106&rft.issue=5&rft.spage=679&rft.epage=693&rft_id=info:doi/10.1016%2Fj.ajhg.2020.03.013&rft_id=info%3Apmid%2F32330416&rft.externalDocID=PMC7212266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon