Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets
Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with m...
Saved in:
Published in | American journal of human genetics Vol. 106; no. 5; pp. 679 - 693 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.05.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%–101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%–522.74% accuracy gain. In these real data applications, DBSLMM is 1.03–28.11 times faster and uses only 7.4%–24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets. |
---|---|
AbstractList | Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets. Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size distribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average of 2.03%-101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from BioBank Japan, DBSLMM achieves an average of 14.74%-522.74% accuracy gain. In these real data applications, DBSLMM is 1.03-28.11 times faster and uses only 7.4%-24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall, DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets. |
Author | Zhou, Xiang Yang, Sheng |
Author_xml | – sequence: 1 givenname: Sheng surname: Yang fullname: Yang, Sheng organization: Department of Biostatistics, Nanjing Medical University, Nanjing, Jiangsu 211166, China – sequence: 2 givenname: Xiang surname: Zhou fullname: Zhou, Xiang email: xzhousph@umich.edu organization: Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32330416$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvFDEQhC0URDaBP8AB-chlBr_mJSGksDyllQAFzlZPT8_Gy6wdbE-k_HtmtSECDjn1ob-qblWdsRMfPDH2XIpSClm_2pWwu9qWSihRCl0KqR-xlax0U9S1qE7YSgihik51zSk7S2knhJSt0E_YqVZaCyPrFft2gThHyMTBD_wSYYJ-Ir4OPuU4Y3bB8zDyr2G63ZJ3uCAhUuLO8w3ELfG3LvTgf_J3kIFfUk5P2eMRpkTP7uY5-_Hh_ff1p2Lz5ePn9cWmwErJXKDBptKDRJJmQNk2ujUVGtBdP7Z93TVELSAO7agNKNI9EFamVh30rYJG6nP25uh7Pfd7GpB8jjDZ6-j2EG9tAGf_3Xh3ZbfhxjZKKlXXi8HLO4MYfs2Ust27hDRN4CnMySrdmbbTRpoFffH3rfsjf3JcAHUEMIaUIo33iBT2UJbd2UNZ9lCWFdouZS2i9j8RugyHyJd_3fSw9PVRSkvCN46iTejIIw0uEmY7BPeQ_DcTM7BC |
CitedBy_id | crossref_primary_10_1007_s00439_024_02717_7 crossref_primary_10_1093_bib_bbad470 crossref_primary_10_1111_jcpp_13611 crossref_primary_10_1186_s12916_022_02583_y crossref_primary_10_1093_bioinformatics_btae551 crossref_primary_10_3389_fgene_2022_1017380 crossref_primary_10_1038_s41568_023_00599_x crossref_primary_10_1371_journal_pgen_1009021 crossref_primary_10_1016_j_ajhg_2023_03_009 crossref_primary_10_1186_s12920_023_01598_5 crossref_primary_10_1371_journal_pgen_1009697 crossref_primary_10_1016_j_ajhg_2022_11_007 crossref_primary_10_1016_j_ajhg_2021_03_002 crossref_primary_10_1186_s13059_024_03400_w crossref_primary_10_1016_j_ajhg_2022_05_013 crossref_primary_10_1016_j_ajhg_2023_08_016 crossref_primary_10_3389_fpubh_2022_905178 crossref_primary_10_1016_j_ajhg_2023_05_010 crossref_primary_10_1186_s13059_021_02479_9 crossref_primary_10_1007_s13668_022_00430_3 crossref_primary_10_1016_j_tig_2021_06_004 crossref_primary_10_1093_g3journal_jkae288 crossref_primary_10_1371_journal_pone_0260569 crossref_primary_10_7555_JBR_37_20230319 crossref_primary_10_1038_s41587_022_01273_7 crossref_primary_10_1016_j_ajhg_2021_04_014 crossref_primary_10_12688_wellcomeopenres_21375_1 crossref_primary_10_1097_CM9_0000000000002716 crossref_primary_10_1093_bioinformatics_btac024 crossref_primary_10_1186_s13073_024_01291_x crossref_primary_10_1186_s13059_021_02404_0 crossref_primary_10_1186_s12879_024_09189_0 crossref_primary_10_1186_s12967_024_05152_4 crossref_primary_10_3389_fgene_2025_1507395 crossref_primary_10_1016_j_psyneuen_2022_105875 crossref_primary_10_3389_fgene_2021_637322 crossref_primary_10_1016_j_ajhg_2022_09_001 crossref_primary_10_3389_fgene_2021_612045 crossref_primary_10_1371_journal_pcbi_1010328 crossref_primary_10_1093_nar_gkad1029 crossref_primary_10_7554_eLife_90636 crossref_primary_10_1007_s00439_024_02716_8 crossref_primary_10_1038_s41588_022_01036_9 crossref_primary_10_3389_fgene_2022_801397 crossref_primary_10_7554_eLife_90636_3 crossref_primary_10_1038_s41581_024_00886_2 crossref_primary_10_2139_ssrn_3927054 crossref_primary_10_1371_journal_pgen_1009754 crossref_primary_10_1214_24_AOS2378 crossref_primary_10_1038_s41431_024_01762_0 crossref_primary_10_1093_bib_bbac039 crossref_primary_10_1016_j_xgen_2024_100539 crossref_primary_10_1093_nar_gkae873 crossref_primary_10_12688_f1000research_76218_2 crossref_primary_10_12688_f1000research_76218_1 crossref_primary_10_1093_gpbjnl_qzae077 crossref_primary_10_1007_s11121_025_01781_3 crossref_primary_10_1016_j_envint_2023_108202 crossref_primary_10_1016_j_xhgg_2025_100422 crossref_primary_10_3389_fgene_2023_1164274 crossref_primary_10_1016_j_ajhg_2024_06_003 crossref_primary_10_1093_bib_bbac552 crossref_primary_10_1111_cts_13893 crossref_primary_10_1371_journal_pgen_1009670 crossref_primary_10_1016_j_ajhg_2020_08_025 crossref_primary_10_1002_pmic_202300359 crossref_primary_10_1016_j_ebiom_2024_105530 crossref_primary_10_2139_ssrn_3808292 crossref_primary_10_1186_s40249_023_01056_5 crossref_primary_10_3389_fonc_2024_1305684 crossref_primary_10_1038_s41431_021_01028_z |
Cites_doi | 10.1214/17-AOAS1052 10.1093/bioinformatics/btv546 10.1093/ije/dyr120 10.1016/j.ajhg.2011.11.029 10.1371/journal.pgen.1008222 10.1016/j.cell.2017.05.038 10.1038/srep41262 10.1371/journal.pgen.1003348 10.1016/j.ajhg.2019.11.001 10.7554/eLife.43657 10.1038/ng.3390 10.1038/s41467-019-12653-0 10.1016/j.ajhg.2011.04.001 10.1534/genetics.117.300271 10.1038/ejhg.2011.39 10.1038/ng.608 10.1214/11-AOAS455 10.1016/j.je.2016.12.005 10.1016/0377-0427(88)90358-5 10.1371/journal.pmed.1001779 10.1038/ng.3097 10.1371/journal.pgen.1008060 10.1093/emph/eoy036 10.1038/s41588-018-0183-z 10.1186/1471-2105-12-186 10.1016/j.ajhg.2019.06.006 10.1056/NEJMsr1809937 10.1038/ng.3211 10.1038/ng.3506 10.1101/gr.169375.113 10.1016/j.ajhg.2017.06.005 10.1038/s41467-017-00470-2 10.1093/genetics/157.4.1819 10.1038/s41467-019-09718-5 10.1186/s13742-015-0047-8 10.1038/s41588-019-0481-0 10.1038/s41467-019-12276-5 10.1371/journal.pgen.1006836 10.1038/s41586-019-1457-z 10.1016/j.ajhg.2018.04.001 10.1093/bioinformatics/btu848 10.1038/s41588-018-0047-6 10.1093/brain/awy279 10.3168/jds.2007-0980 10.1371/journal.pone.0003395 10.1016/j.cell.2019.03.051 10.1038/nature11632 10.1001/jama.2019.10987 10.1038/nrg2898 10.1371/journal.pgen.1003264 10.1038/ng.3951 10.1198/016214501753382273 10.1111/j.1467-9868.2005.00503.x 10.1016/j.ajhg.2009.10.005 10.1016/j.ajhg.2019.05.018 10.1016/j.cell.2019.03.028 10.1371/journal.pgen.1002051 10.1111/j.2517-6161.1996.tb02080.x 10.1371/journal.pgen.1008202 10.1038/s41588-019-0379-x 10.1093/gigascience/giz082 10.1016/j.ajhg.2018.11.002 10.1038/nature14177 10.1038/s41576-018-0018-x 10.1038/ng.3367 10.1016/j.ajhg.2010.11.011 10.1214/10-AOS798 10.1016/j.ajhg.2018.11.008 10.1016/j.tig.2018.07.004 10.1038/nmeth.2848 10.1002/gepi.22050 10.1534/genetics.119.301859 10.1038/nature08185 10.1371/journal.pcbi.1005589 10.1016/j.ajhg.2015.09.001 |
ContentType | Journal Article |
Copyright | 2020 American Society of Human Genetics Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. 2020 American Society of Human Genetics. 2020 American Society of Human Genetics |
Copyright_xml | – notice: 2020 American Society of Human Genetics – notice: Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. – notice: 2020 American Society of Human Genetics. 2020 American Society of Human Genetics |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ajhg.2020.03.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 693 |
ExternalDocumentID | PMC7212266 32330416 10_1016_j_ajhg_2020_03_013 S0002929720301099 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG009124 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_QA137853 |
GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAWTL AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK E3Z EBS ECV F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 O-L O9- OK1 P2P PQQKQ RCE RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VQA WH7 WQ6 ZA5 ZCA .55 .GJ 34R 3O- 41~ AAFWJ AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AFPUW AGCDD AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP C1A CITATION EJD FA8 FGOYB HZ~ MVM NEJ OHT OZT R2- RIG VH1 WOQ X7M XOL ZCG ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-c4c753d1ce14dc1873845c4a39bf8b697ee8accd8f34a2e3baec54629ab82a713 |
IEDL.DBID | IXB |
ISSN | 0002-9297 1537-6605 |
IngestDate | Thu Aug 21 14:06:25 EDT 2025 Mon Jul 21 10:38:15 EDT 2025 Mon Jul 21 06:06:24 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 03:39:19 EDT 2025 Fri Feb 23 02:43:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | complex traits deterministic Bayesian sparse linear mixed model polygenic risk score UK Biobank polygenic score |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-c4c753d1ce14dc1873845c4a39bf8b697ee8accd8f34a2e3baec54629ab82a713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0002929720301099 |
PMID | 32330416 |
PQID | 2394893414 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7212266 proquest_miscellaneous_2394893414 pubmed_primary_32330416 crossref_primary_10_1016_j_ajhg_2020_03_013 crossref_citationtrail_10_1016_j_ajhg_2020_03_013 elsevier_sciencedirect_doi_10_1016_j_ajhg_2020_03_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-07 |
PublicationDateYYYYMMDD | 2020-05-07 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of human genetics |
PublicationTitleAlternate | Am J Hum Genet |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Khera, Chaffin, Wade, Zahid, Brancale, Xia, Distefano, Senol-Cosar, Haas, Bick (bib7) 2019; 177 Tibshirani (bib79) 1996; 58 Young (bib40) 2019; 15 Cheng, Yang, Shi, Yang, Peng, Liu (bib48) 2019 Ge, Chen, Ni, Feng, Smoller (bib17) 2019; 10 Wang, Guo, Ni, Yang, Visscher, Yengo (bib78) 2020 Vilhjálmsson, Yang, Finucane, Gusev, Lindström, Ripke, Genovese, Loh, Bhatia, Do (bib13) 2015; 97 Fritsche, Gruber, Wu, Schmidt, Zawistowski, Moser, Blanc, Brummett, Kheterpal, Abecasis, Mukherjee (bib36) 2018; 102 Kaasschieter (bib61) 1988; 24 Akiyama, Ishigaki, Sakaue, Momozawa, Horikoshi, Hirata, Matsuda, Ikegawa, Takahashi, Kanai (bib74) 2019; 10 Visscher, Wray, Zhang, Sklar, McCarthy, Brown, Yang (bib3) 2017; 101 Zeng, Zhou (bib28) 2017; 8 Yang, Bakshi, Zhu, Hemani, Vinkhuyzen, Lee, Robinson, Perry, Nolte, van Vliet-Ostaptchouk (bib38) 2015; 47 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray (bib51) 2015; 12 Choi, Heng Mak, O’Reilly (bib50) 2018 Zhao, Yi, Wu, Zhong, Lin, Hohman, Fletcher, Lu (bib19) 2019 Rosenberg, Edge, Pritchard, Feldman (bib41) 2018; 2019 Yuan, Zhu, Zeng, Yang, Sun, Yang, Liu, Zhou (bib47) 2019 Fan, Song (bib82) 2010; 38 Márquez-Luna, Gazal, Loh, Furlotte, Auton, Price (bib14) 2018 Hu, Lu, Powles, Yao, Yang, Fang, Xu, Zhao (bib20) 2017; 13 Habier, Fernando, Kizilkaya, Garrick (bib42) 2011; 12 Nagai, Hirata, Kamatani, Muto, Matsuda, Kiyohara, Ninomiya, Tamakoshi, Yamagata, Mushiroda (bib52) 2017; 27 Wray, Kemper, Hayes, Goddard, Visscher (bib12) 2019; 211 Locke, Kahali, Berndt, Justice, Pers, Day, Powell, Vedantam, Buchkovich, Yang (bib72) 2015; 518 Choi, O’Reilly (bib23) 2019; 8 Zhou, Carbonetto, Stephens (bib15) 2013; 9 Martin, Kanai, Kamatani, Okada, Neale, Daly (bib77) 2019; 51 de los Campos, Gianola, Allison (bib8) 2010; 11 Fritsche, Beesley, VandeHaar, Peng, Salvatore, Zawistowski, Gagliano Taliun, Das, LeFaive, Kaleba (bib11) 2019; 15 Purcell, Wray, Stone, Visscher, O’Donovan, Sullivan, Sklar (bib18) 2009; 460 Euesden, Lewis, O’Reilly (bib22) 2015; 31 Khera, Chaffin, Aragam, Haas, Roselli, Choi, Natarajan, Lander, Lubitz, Ellinor, Kathiresan (bib34) 2018; 50 Selzam, Ritchie, Pingault, Reynolds, O’Reilly, Plomin (bib10) 2019; 105 Privé, Vilhjálmsson, Aschard, Blum (bib25) 2019; 105 Boyle, Li, Pritchard (bib58) 2017; 169 Zou, Hastie (bib81) 2005; 67 Nagpal, Meng, Epstein, Tsoi, Patrick, Gibson, De Jager, Bennett, Wingo, Wingo, Yang (bib46) 2019; 105 Dudbridge (bib9) 2013; 9 Gusev, Ko, Shi, Bhatia, Chung, Penninx, Jansen, de Geus, Boomsma, Wright (bib44) 2016; 48 Abecasis, Auton, Brooks, DePristo, Durbin, Handsaker, Kang, Marth, McVean (bib76) 2012; 491 Yang, Weedon, Purcell, Lettre, Estrada, Willer, Smith, Ingelsson, O’Connell, Mangino (bib68) 2011; 19 Akiyama, Okada, Kanai, Takahashi, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda (bib75) 2017; 49 Berisa, Pickrell (bib62) 2016; 32 Kim, Grueneberg, Vazquez, Hsu, de Los Campos (bib56) 2017; 207 Chen, Chen, Collins, Guo, Peto, Wu, Li (bib53) 2011; 40 Torkamani, Wineinger, Topol (bib32) 2018; 19 Speed, Balding (bib24) 2014; 24 Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bib39) 2010; 42 Gibson (bib31) 2019; 15 Zhou, Stephens (bib65) 2014; 11 Zhou (bib60) 2017; 11 Ferreira, Hottenga, Warrington, Medland, Willemsen, Lawrence, Gordon, de Geus, Henders, Smit (bib71) 2009; 85 Denny, Rutter, Goldstein, Philippakis, Smoller, Jenkins, Dishman (bib55) 2019; 381 Meuwissen, Hayes, Goddard (bib43) 2001; 157 Toulopoulou, Zhang, Cherny, Dickinson, Berman, Straub, Sham, Weinberger (bib5) 2019; 142 Yang, Lee, Goddard, Visscher (bib64) 2011; 88 Lloyd-Jones, Zeng, Sidorenko, Yengo, Moser, Kemper, Wang, Zheng, Magi, Esko (bib29) 2019; 10 So, Sham (bib30) 2017; 7 Watanabe, Stringer, Frei, Umićević Mirkov, de Leeuw, Polderman, van der Sluis, Andreassen, Neale, Posthuma (bib69) 2019; 51 Bulik-Sullivan, Loh, Finucane, Ripke, Yang, Patterson, Daly, Price, Neale (bib63) 2015; 47 Chang, Chow, Tellier, Vattikuti, Purcell, Lee (bib57) 2015; 4 Kanai, Akiyama, Takahashi, Matoba, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda (bib73) 2018; 50 de Los Campos, Vazquez, Hsu, Lello (bib6) 2018; 34 Robinson, Kleinman, Graff, Vinkhuyzen, Couper, Miller, Peyrot, Abdellaoui, Zietsch, Nolte (bib27) 2017 Mak, Porsch, Choi, Zhou, Sham (bib16) 2017; 41 Kichaev, Bhatia, Loh, Gazal, Burch, Freund, Schoech, Pasaniuc, Price (bib66) 2019; 104 Wood, Esko, Yang, Vedantam, Pers, Gustafsson, Chu, Estrada, Luan, Kutalik (bib70) 2014; 46 VanRaden (bib26) 2008; 91 Hu, Lu, Liu, Zhang, Li, Zhao (bib21) 2017; 13 Makowsky, Pajewski, Klimentidis, Vazquez, Duarte, Allison, de los Campos (bib37) 2011; 7 Fan, Li (bib80) 2001; 96 So, Kwan, Cherny, Sham (bib4) 2011; 88 Guan, Stephens (bib59) 2011; 5 Owens, Davidson, Krist, Barry, Cabana, Caughey, Doubeni, Epling, Kubik, Landefeld (bib2) 2019; 322 Mavaddat, Michailidou, Dennis, Lush, Fachal, Lee, Tyrer, Chen, Wang, Bolla (bib35) 2019; 104 Daetwyler, Villanueva, Woolliams (bib67) 2008; 3 Gamazon, Wheeler, Shah, Mozaffari, Aquino-Michaels, Carroll, Eyler, Denny, Nicolae, Cox, Im (bib45) 2015; 47 Locke, Steinberg, Chiang, Service, Havulinna, Stell, Pirinen, Abel, Chiang, Fulton (bib54) 2019; 572 Richardson, Harrison, Hemani, Davey Smith (bib49) 2019; 8 Visscher, Brown, McCarthy, Yang (bib1) 2012; 90 Torkamani, Topol (bib33) 2019; 177 Choi (10.1016/j.ajhg.2020.03.013_bib50) 2018 Chang (10.1016/j.ajhg.2020.03.013_bib57) 2015; 4 Zhou (10.1016/j.ajhg.2020.03.013_bib65) 2014; 11 Locke (10.1016/j.ajhg.2020.03.013_bib72) 2015; 518 Akiyama (10.1016/j.ajhg.2020.03.013_bib74) 2019; 10 So (10.1016/j.ajhg.2020.03.013_bib4) 2011; 88 Ferreira (10.1016/j.ajhg.2020.03.013_bib71) 2009; 85 Young (10.1016/j.ajhg.2020.03.013_bib40) 2019; 15 Lloyd-Jones (10.1016/j.ajhg.2020.03.013_bib29) 2019; 10 Fritsche (10.1016/j.ajhg.2020.03.013_bib11) 2019; 15 Márquez-Luna (10.1016/j.ajhg.2020.03.013_bib14) 2018 Yang (10.1016/j.ajhg.2020.03.013_bib39) 2010; 42 Zou (10.1016/j.ajhg.2020.03.013_bib81) 2005; 67 Wood (10.1016/j.ajhg.2020.03.013_bib70) 2014; 46 Torkamani (10.1016/j.ajhg.2020.03.013_bib33) 2019; 177 Wray (10.1016/j.ajhg.2020.03.013_bib12) 2019; 211 Hu (10.1016/j.ajhg.2020.03.013_bib20) 2017; 13 VanRaden (10.1016/j.ajhg.2020.03.013_bib26) 2008; 91 Selzam (10.1016/j.ajhg.2020.03.013_bib10) 2019; 105 Richardson (10.1016/j.ajhg.2020.03.013_bib49) 2019; 8 Kaasschieter (10.1016/j.ajhg.2020.03.013_bib61) 1988; 24 Fan (10.1016/j.ajhg.2020.03.013_bib82) 2010; 38 Fritsche (10.1016/j.ajhg.2020.03.013_bib36) 2018; 102 Rosenberg (10.1016/j.ajhg.2020.03.013_bib41) 2018; 2019 Cheng (10.1016/j.ajhg.2020.03.013_bib48) 2019 Sudlow (10.1016/j.ajhg.2020.03.013_bib51) 2015; 12 Chen (10.1016/j.ajhg.2020.03.013_bib53) 2011; 40 Wang (10.1016/j.ajhg.2020.03.013_bib78) 2020 Mavaddat (10.1016/j.ajhg.2020.03.013_bib35) 2019; 104 Tibshirani (10.1016/j.ajhg.2020.03.013_bib79) 1996; 58 Martin (10.1016/j.ajhg.2020.03.013_bib77) 2019; 51 Kim (10.1016/j.ajhg.2020.03.013_bib56) 2017; 207 Yuan (10.1016/j.ajhg.2020.03.013_bib47) 2019 Boyle (10.1016/j.ajhg.2020.03.013_bib58) 2017; 169 Fan (10.1016/j.ajhg.2020.03.013_bib80) 2001; 96 Nagpal (10.1016/j.ajhg.2020.03.013_bib46) 2019; 105 Zeng (10.1016/j.ajhg.2020.03.013_bib28) 2017; 8 Khera (10.1016/j.ajhg.2020.03.013_bib34) 2018; 50 Berisa (10.1016/j.ajhg.2020.03.013_bib62) 2016; 32 Owens (10.1016/j.ajhg.2020.03.013_bib2) 2019; 322 So (10.1016/j.ajhg.2020.03.013_bib30) 2017; 7 Guan (10.1016/j.ajhg.2020.03.013_bib59) 2011; 5 Locke (10.1016/j.ajhg.2020.03.013_bib54) 2019; 572 Yang (10.1016/j.ajhg.2020.03.013_bib64) 2011; 88 Torkamani (10.1016/j.ajhg.2020.03.013_bib32) 2018; 19 Makowsky (10.1016/j.ajhg.2020.03.013_bib37) 2011; 7 Kanai (10.1016/j.ajhg.2020.03.013_bib73) 2018; 50 Speed (10.1016/j.ajhg.2020.03.013_bib24) 2014; 24 Gusev (10.1016/j.ajhg.2020.03.013_bib44) 2016; 48 Hu (10.1016/j.ajhg.2020.03.013_bib21) 2017; 13 Kichaev (10.1016/j.ajhg.2020.03.013_bib66) 2019; 104 Nagai (10.1016/j.ajhg.2020.03.013_bib52) 2017; 27 Bulik-Sullivan (10.1016/j.ajhg.2020.03.013_bib63) 2015; 47 Khera (10.1016/j.ajhg.2020.03.013_bib7) 2019; 177 Visscher (10.1016/j.ajhg.2020.03.013_bib3) 2017; 101 Privé (10.1016/j.ajhg.2020.03.013_bib25) 2019; 105 Akiyama (10.1016/j.ajhg.2020.03.013_bib75) 2017; 49 de Los Campos (10.1016/j.ajhg.2020.03.013_bib6) 2018; 34 Choi (10.1016/j.ajhg.2020.03.013_bib23) 2019; 8 Yang (10.1016/j.ajhg.2020.03.013_bib68) 2011; 19 Gamazon (10.1016/j.ajhg.2020.03.013_bib45) 2015; 47 Vilhjálmsson (10.1016/j.ajhg.2020.03.013_bib13) 2015; 97 Euesden (10.1016/j.ajhg.2020.03.013_bib22) 2015; 31 Abecasis (10.1016/j.ajhg.2020.03.013_bib76) 2012; 491 Zhou (10.1016/j.ajhg.2020.03.013_bib15) 2013; 9 Zhao (10.1016/j.ajhg.2020.03.013_bib19) 2019 de los Campos (10.1016/j.ajhg.2020.03.013_bib8) 2010; 11 Dudbridge (10.1016/j.ajhg.2020.03.013_bib9) 2013; 9 Robinson (10.1016/j.ajhg.2020.03.013_bib27) 2017 Zhou (10.1016/j.ajhg.2020.03.013_bib60) 2017; 11 Purcell (10.1016/j.ajhg.2020.03.013_bib18) 2009; 460 Yang (10.1016/j.ajhg.2020.03.013_bib38) 2015; 47 Toulopoulou (10.1016/j.ajhg.2020.03.013_bib5) 2019; 142 Watanabe (10.1016/j.ajhg.2020.03.013_bib69) 2019; 51 Ge (10.1016/j.ajhg.2020.03.013_bib17) 2019; 10 Habier (10.1016/j.ajhg.2020.03.013_bib42) 2011; 12 Visscher (10.1016/j.ajhg.2020.03.013_bib1) 2012; 90 Daetwyler (10.1016/j.ajhg.2020.03.013_bib67) 2008; 3 Mak (10.1016/j.ajhg.2020.03.013_bib16) 2017; 41 Denny (10.1016/j.ajhg.2020.03.013_bib55) 2019; 381 Gibson (10.1016/j.ajhg.2020.03.013_bib31) 2019; 15 Meuwissen (10.1016/j.ajhg.2020.03.013_bib43) 2001; 157 |
References_xml | – volume: 13 start-page: e1006836 year: 2017 ident: bib21 article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction publication-title: PLoS Genet. – volume: 51 start-page: 584 year: 2019 end-page: 591 ident: bib77 article-title: Clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat. Genet. – volume: 11 start-page: 2027 year: 2017 end-page: 2051 ident: bib60 article-title: A unified framework for variance component estimation with summary statistics in genome-wide association studies publication-title: Ann. Appl. Stat. – year: 2020 ident: bib78 article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations publication-title: bioRxiv – volume: 9 start-page: e1003264 year: 2013 ident: bib15 article-title: Polygenic modeling with bayesian sparse linear mixed models publication-title: PLoS Genet. – volume: 91 start-page: 4414 year: 2008 end-page: 4423 ident: bib26 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. – volume: 19 start-page: 807 year: 2011 end-page: 812 ident: bib68 article-title: Genomic inflation factors under polygenic inheritance publication-title: Eur. J. Hum. Genet. – volume: 24 start-page: 1550 year: 2014 end-page: 1557 ident: bib24 article-title: MultiBLUP: improved SNP-based prediction for complex traits publication-title: Genome Res. – volume: 11 start-page: 407 year: 2014 end-page: 409 ident: bib65 article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies publication-title: Nat. Methods – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib79 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. B – volume: 572 start-page: 323 year: 2019 end-page: 328 ident: bib54 article-title: Exome sequencing of Finnish isolates enhances rare-variant association power publication-title: Nature – volume: 10 start-page: 5086 year: 2019 ident: bib29 article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics publication-title: Nat. Commun. – volume: 50 start-page: 390 year: 2018 end-page: 400 ident: bib73 article-title: Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases publication-title: Nat. Genet. – volume: 34 start-page: 746 year: 2018 end-page: 754 ident: bib6 article-title: Complex-trait prediction in the era of big data publication-title: Trends Genet. – volume: 11 start-page: 880 year: 2010 end-page: 886 ident: bib8 article-title: Predicting genetic predisposition in humans: the promise of whole-genome markers publication-title: Nat. Rev. Genet. – year: 2019 ident: bib19 article-title: Fine-tuning Polygenic Risk Scores with GWAS Summary Statistics publication-title: bioRxiv – volume: 12 start-page: e1001779 year: 2015 ident: bib51 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. – volume: 104 start-page: 21 year: 2019 end-page: 34 ident: bib35 article-title: Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes publication-title: Am. J. Hum. Genet. – volume: 177 start-page: 587 year: 2019 end-page: 596.e9 ident: bib7 article-title: Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood publication-title: Cell – volume: 4 start-page: 7 year: 2015 ident: bib57 article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets publication-title: Gigascience – volume: 460 start-page: 748 year: 2009 end-page: 752 ident: bib18 article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder publication-title: Nature – volume: 8 start-page: 456 year: 2017 ident: bib28 article-title: Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models publication-title: Nat. Commun. – start-page: 1 year: 2017 ident: bib27 article-title: Genetic evidence of assortative mating in humans publication-title: Nat. Hum. Behav. – volume: 7 start-page: e1002051 year: 2011 ident: bib37 article-title: Beyond missing heritability: prediction of complex traits publication-title: PLoS Genet. – volume: 24 start-page: 265 year: 1988 end-page: 275 ident: bib61 article-title: Preconditioned conjugate gradients for solving singular systems publication-title: J. Comput. Appl. Math. – volume: 8 start-page: e43657 year: 2019 ident: bib49 article-title: An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome publication-title: eLife – volume: 42 start-page: 565 year: 2010 end-page: 569 ident: bib39 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. – volume: 38 start-page: 3567 year: 2010 end-page: 3604 ident: bib82 article-title: Sure independence screening in generalized linear models with NP-dimensionality publication-title: Ann. Stat. – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: bib80 article-title: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties publication-title: J. Am. Stat. Assoc. – volume: 169 start-page: 1177 year: 2017 end-page: 1186 ident: bib58 article-title: An expanded view of complex traits: from polygenic to omnigenic publication-title: Cell – volume: 105 start-page: 1213 year: 2019 end-page: 1221 ident: bib25 article-title: Making the Most of Clumping and Thresholding for Polygenic Scores publication-title: Am. J. Hum. Genet. – volume: 46 start-page: 1173 year: 2014 end-page: 1186 ident: bib70 article-title: Defining the role of common variation in the genomic and biological architecture of adult human height publication-title: Nat. Genet. – volume: 49 start-page: 1458 year: 2017 end-page: 1467 ident: bib75 article-title: Genome-wide association study identifies 112 new loci for body mass index in the Japanese population publication-title: Nat. Genet. – volume: 50 start-page: 1219 year: 2018 end-page: 1224 ident: bib34 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nat. Genet. – volume: 27 start-page: S2 year: 2017 end-page: S8 ident: bib52 article-title: Overview of the BioBank Japan Project: Study design and profile publication-title: J. Epidemiol. – volume: 15 start-page: e1008202 year: 2019 ident: bib11 article-title: Exploring various polygenic risk scores for skin cancer in the phenomes of the Michigan genomics initiative and the UK Biobank with a visual catalog: PRSWeb publication-title: PLoS Genet. – volume: 211 start-page: 1131 year: 2019 end-page: 1141 ident: bib12 article-title: Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction publication-title: Genetics – volume: 207 start-page: 1135 year: 2017 end-page: 1145 ident: bib56 article-title: Will Big Data Close the Missing Heritability Gap? publication-title: Genetics – volume: 3 start-page: e3395 year: 2008 ident: bib67 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PLoS ONE – volume: 10 start-page: 1776 year: 2019 ident: bib17 article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors publication-title: Nat. Commun. – volume: 104 start-page: 65 year: 2019 end-page: 75 ident: bib66 article-title: Leveraging polygenic functional enrichment to improve GWAS power publication-title: Am. J. Hum. Genet. – volume: 31 start-page: 1466 year: 2015 end-page: 1468 ident: bib22 article-title: PRSice: Polygenic Risk Score software publication-title: Bioinformatics – volume: 19 start-page: 581 year: 2018 end-page: 590 ident: bib32 article-title: The personal and clinical utility of polygenic risk scores publication-title: Nat. Rev. Genet. – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: bib64 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. – volume: 142 start-page: 471 year: 2019 end-page: 485 ident: bib5 article-title: Polygenic risk score increases schizophrenia liability through cognition-relevant pathways publication-title: Brain – volume: 15 start-page: e1008222 year: 2019 ident: bib40 article-title: Solving the missing heritability problem publication-title: PLoS Genet. – volume: 51 start-page: 1339 year: 2019 end-page: 1348 ident: bib69 article-title: A global overview of pleiotropy and genetic architecture in complex traits publication-title: Nat. Genet. – volume: 90 start-page: 7 year: 2012 end-page: 24 ident: bib1 article-title: Five years of GWAS discovery publication-title: Am. J. Hum. Genet. – volume: 157 start-page: 1819 year: 2001 end-page: 1829 ident: bib43 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics – volume: 48 start-page: 245 year: 2016 end-page: 252 ident: bib44 article-title: Integrative approaches for large-scale transcriptome-wide association studies publication-title: Nat. Genet. – volume: 381 start-page: 668 year: 2019 end-page: 676 ident: bib55 article-title: The “All of Us” Research Program publication-title: N. Engl. J. Med. – volume: 85 start-page: 745 year: 2009 end-page: 749 ident: bib71 article-title: Sequence variants in three loci influence monocyte counts and erythrocyte volume publication-title: Am. J. Hum. Genet. – volume: 177 start-page: 518 year: 2019 end-page: 520 ident: bib33 article-title: Polygenic Risk Scores Expand to Obesity publication-title: Cell – volume: 2019 start-page: 26 year: 2018 end-page: 34 ident: bib41 article-title: Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences publication-title: Evol. Med. Public Health – volume: 12 start-page: 186 year: 2011 ident: bib42 article-title: Extension of the bayesian alphabet for genomic selection publication-title: BMC Bioinformatics – volume: 10 start-page: 4393 year: 2019 ident: bib74 article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population publication-title: Nat. Commun. – volume: 105 start-page: 351 year: 2019 end-page: 363 ident: bib10 article-title: Comparing Within- and Between-Family Polygenic Score Prediction publication-title: Am. J. Hum. Genet. – volume: 40 start-page: 1652 year: 2011 end-page: 1666 ident: bib53 article-title: China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up publication-title: Int. J. Epidemiol. – volume: 105 start-page: 258 year: 2019 end-page: 266 ident: bib46 article-title: TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits publication-title: Am. J. Hum. Genet. – volume: 88 start-page: 548 year: 2011 end-page: 565 ident: bib4 article-title: Risk prediction of complex diseases from family history and known susceptibility loci, with applications for cancer screening publication-title: Am. J. Hum. Genet. – volume: 8 start-page: 8 year: 2019 ident: bib23 article-title: PRSice-2: Polygenic Risk Score software for biobank-scale data publication-title: Gigascience – year: 2018 ident: bib50 article-title: A guide to performing Polygenic Risk Score analyses publication-title: bioRxiv – volume: 101 start-page: 5 year: 2017 end-page: 22 ident: bib3 article-title: 10 years of GWAS discovery: biology, function, and translation publication-title: Am. J. Hum. Genet. – volume: 97 start-page: 576 year: 2015 end-page: 592 ident: bib13 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. – volume: 41 start-page: 469 year: 2017 end-page: 480 ident: bib16 article-title: Polygenic scores via penalized regression on summary statistics publication-title: Genet. Epidemiol. – volume: 15 start-page: e1008060 year: 2019 ident: bib31 article-title: On the utilization of polygenic risk scores for therapeutic targeting publication-title: PLoS Genet. – volume: 7 start-page: 41262 year: 2017 ident: bib30 article-title: Improving polygenic risk prediction from summary statistics by an empirical Bayes approach publication-title: Sci. Rep. – year: 2019 ident: bib47 article-title: Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies publication-title: bioRxiv – volume: 518 start-page: 197 year: 2015 end-page: 206 ident: bib72 article-title: Genetic studies of body mass index yield new insights for obesity biology publication-title: Nature – volume: 32 start-page: 283 year: 2016 end-page: 285 ident: bib62 article-title: Approximately independent linkage disequilibrium blocks in human populations publication-title: Bioinformatics – year: 2019 ident: bib48 article-title: MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting linkage disequilibrium and horizontal pleiotropy publication-title: bioRxiv – volume: 102 start-page: 1048 year: 2018 end-page: 1061 ident: bib36 article-title: Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative publication-title: Am. J. Hum. Genet. – volume: 47 start-page: 1114 year: 2015 end-page: 1120 ident: bib38 article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index publication-title: Nat. Genet. – volume: 322 start-page: 652 year: 2019 end-page: 665 ident: bib2 article-title: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement publication-title: JAMA – volume: 13 start-page: e1005589 year: 2017 ident: bib20 article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases publication-title: PLoS Comput. Biol. – volume: 47 start-page: 1091 year: 2015 end-page: 1098 ident: bib45 article-title: A gene-based association method for mapping traits using reference transcriptome data publication-title: Nat. Genet. – volume: 5 start-page: 1780 year: 2011 end-page: 1815 ident: bib59 article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems publication-title: Ann. Appl. Stat. – volume: 47 start-page: 291 year: 2015 end-page: 295 ident: bib63 article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat. Genet. – volume: 9 start-page: e1003348 year: 2013 ident: bib9 article-title: Power and predictive accuracy of polygenic risk scores publication-title: PLoS Genet. – year: 2018 ident: bib14 article-title: Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets publication-title: bioRxiv – volume: 491 start-page: 56 year: 2012 end-page: 65 ident: bib76 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib81 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – volume: 11 start-page: 2027 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib60 article-title: A unified framework for variance component estimation with summary statistics in genome-wide association studies publication-title: Ann. Appl. Stat. doi: 10.1214/17-AOAS1052 – volume: 32 start-page: 283 year: 2016 ident: 10.1016/j.ajhg.2020.03.013_bib62 article-title: Approximately independent linkage disequilibrium blocks in human populations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv546 – year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib14 article-title: Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets publication-title: bioRxiv – volume: 40 start-page: 1652 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib53 article-title: China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyr120 – volume: 90 start-page: 7 year: 2012 ident: 10.1016/j.ajhg.2020.03.013_bib1 article-title: Five years of GWAS discovery publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.11.029 – volume: 15 start-page: e1008222 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib40 article-title: Solving the missing heritability problem publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008222 – volume: 169 start-page: 1177 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib58 article-title: An expanded view of complex traits: from polygenic to omnigenic publication-title: Cell doi: 10.1016/j.cell.2017.05.038 – volume: 7 start-page: 41262 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib30 article-title: Improving polygenic risk prediction from summary statistics by an empirical Bayes approach publication-title: Sci. Rep. doi: 10.1038/srep41262 – volume: 9 start-page: e1003348 year: 2013 ident: 10.1016/j.ajhg.2020.03.013_bib9 article-title: Power and predictive accuracy of polygenic risk scores publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003348 – volume: 105 start-page: 1213 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib25 article-title: Making the Most of Clumping and Thresholding for Polygenic Scores publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2019.11.001 – volume: 8 start-page: e43657 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib49 article-title: An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome publication-title: eLife doi: 10.7554/eLife.43657 – volume: 47 start-page: 1114 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib38 article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index publication-title: Nat. Genet. doi: 10.1038/ng.3390 – volume: 10 start-page: 5086 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib29 article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics publication-title: Nat. Commun. doi: 10.1038/s41467-019-12653-0 – volume: 88 start-page: 548 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib4 article-title: Risk prediction of complex diseases from family history and known susceptibility loci, with applications for cancer screening publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.04.001 – volume: 207 start-page: 1135 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib56 article-title: Will Big Data Close the Missing Heritability Gap? publication-title: Genetics doi: 10.1534/genetics.117.300271 – volume: 19 start-page: 807 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib68 article-title: Genomic inflation factors under polygenic inheritance publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2011.39 – volume: 42 start-page: 565 year: 2010 ident: 10.1016/j.ajhg.2020.03.013_bib39 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 – volume: 5 start-page: 1780 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib59 article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems publication-title: Ann. Appl. Stat. doi: 10.1214/11-AOAS455 – volume: 27 start-page: S2 issue: 3S year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib52 article-title: Overview of the BioBank Japan Project: Study design and profile publication-title: J. Epidemiol. doi: 10.1016/j.je.2016.12.005 – volume: 24 start-page: 265 year: 1988 ident: 10.1016/j.ajhg.2020.03.013_bib61 article-title: Preconditioned conjugate gradients for solving singular systems publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(88)90358-5 – volume: 12 start-page: e1001779 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib51 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – volume: 46 start-page: 1173 year: 2014 ident: 10.1016/j.ajhg.2020.03.013_bib70 article-title: Defining the role of common variation in the genomic and biological architecture of adult human height publication-title: Nat. Genet. doi: 10.1038/ng.3097 – volume: 15 start-page: e1008060 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib31 article-title: On the utilization of polygenic risk scores for therapeutic targeting publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008060 – volume: 2019 start-page: 26 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib41 article-title: Interpreting polygenic scores, polygenic adaptation, and human phenotypic differences publication-title: Evol. Med. Public Health doi: 10.1093/emph/eoy036 – volume: 50 start-page: 1219 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib34 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nat. Genet. doi: 10.1038/s41588-018-0183-z – volume: 12 start-page: 186 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib42 article-title: Extension of the bayesian alphabet for genomic selection publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-186 – volume: 105 start-page: 351 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib10 article-title: Comparing Within- and Between-Family Polygenic Score Prediction publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2019.06.006 – volume: 381 start-page: 668 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib55 article-title: The “All of Us” Research Program publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr1809937 – volume: 47 start-page: 291 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib63 article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.3211 – volume: 48 start-page: 245 year: 2016 ident: 10.1016/j.ajhg.2020.03.013_bib44 article-title: Integrative approaches for large-scale transcriptome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.3506 – year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib47 article-title: Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies publication-title: bioRxiv – volume: 24 start-page: 1550 year: 2014 ident: 10.1016/j.ajhg.2020.03.013_bib24 article-title: MultiBLUP: improved SNP-based prediction for complex traits publication-title: Genome Res. doi: 10.1101/gr.169375.113 – volume: 101 start-page: 5 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib3 article-title: 10 years of GWAS discovery: biology, function, and translation publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.06.005 – volume: 8 start-page: 456 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib28 article-title: Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models publication-title: Nat. Commun. doi: 10.1038/s41467-017-00470-2 – volume: 157 start-page: 1819 year: 2001 ident: 10.1016/j.ajhg.2020.03.013_bib43 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 10 start-page: 1776 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib17 article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors publication-title: Nat. Commun. doi: 10.1038/s41467-019-09718-5 – volume: 4 start-page: 7 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib57 article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets publication-title: Gigascience doi: 10.1186/s13742-015-0047-8 – volume: 51 start-page: 1339 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib69 article-title: A global overview of pleiotropy and genetic architecture in complex traits publication-title: Nat. Genet. doi: 10.1038/s41588-019-0481-0 – volume: 10 start-page: 4393 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib74 article-title: Characterizing rare and low-frequency height-associated variants in the Japanese population publication-title: Nat. Commun. doi: 10.1038/s41467-019-12276-5 – volume: 13 start-page: e1006836 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib21 article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006836 – volume: 572 start-page: 323 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib54 article-title: Exome sequencing of Finnish isolates enhances rare-variant association power publication-title: Nature doi: 10.1038/s41586-019-1457-z – volume: 102 start-page: 1048 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib36 article-title: Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.04.001 – volume: 31 start-page: 1466 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib22 article-title: PRSice: Polygenic Risk Score software publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu848 – volume: 50 start-page: 390 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib73 article-title: Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases publication-title: Nat. Genet. doi: 10.1038/s41588-018-0047-6 – volume: 142 start-page: 471 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib5 article-title: Polygenic risk score increases schizophrenia liability through cognition-relevant pathways publication-title: Brain doi: 10.1093/brain/awy279 – volume: 91 start-page: 4414 year: 2008 ident: 10.1016/j.ajhg.2020.03.013_bib26 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. doi: 10.3168/jds.2007-0980 – volume: 3 start-page: e3395 year: 2008 ident: 10.1016/j.ajhg.2020.03.013_bib67 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0003395 – volume: 177 start-page: 518 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib33 article-title: Polygenic Risk Scores Expand to Obesity publication-title: Cell doi: 10.1016/j.cell.2019.03.051 – volume: 491 start-page: 56 year: 2012 ident: 10.1016/j.ajhg.2020.03.013_bib76 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 322 start-page: 652 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib2 article-title: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement publication-title: JAMA doi: 10.1001/jama.2019.10987 – volume: 11 start-page: 880 year: 2010 ident: 10.1016/j.ajhg.2020.03.013_bib8 article-title: Predicting genetic predisposition in humans: the promise of whole-genome markers publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2898 – volume: 9 start-page: e1003264 year: 2013 ident: 10.1016/j.ajhg.2020.03.013_bib15 article-title: Polygenic modeling with bayesian sparse linear mixed models publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003264 – volume: 49 start-page: 1458 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib75 article-title: Genome-wide association study identifies 112 new loci for body mass index in the Japanese population publication-title: Nat. Genet. doi: 10.1038/ng.3951 – volume: 96 start-page: 1348 year: 2001 ident: 10.1016/j.ajhg.2020.03.013_bib80 article-title: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.ajhg.2020.03.013_bib81 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 85 start-page: 745 year: 2009 ident: 10.1016/j.ajhg.2020.03.013_bib71 article-title: Sequence variants in three loci influence monocyte counts and erythrocyte volume publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.10.005 – start-page: 1 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib27 article-title: Genetic evidence of assortative mating in humans publication-title: Nat. Hum. Behav. – volume: 105 start-page: 258 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib46 article-title: TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2019.05.018 – year: 2020 ident: 10.1016/j.ajhg.2020.03.013_bib78 article-title: Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations publication-title: bioRxiv – year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib19 article-title: Fine-tuning Polygenic Risk Scores with GWAS Summary Statistics publication-title: bioRxiv – volume: 177 start-page: 587 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib7 article-title: Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood publication-title: Cell doi: 10.1016/j.cell.2019.03.028 – volume: 7 start-page: e1002051 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib37 article-title: Beyond missing heritability: prediction of complex traits publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002051 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.ajhg.2020.03.013_bib79 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 15 start-page: e1008202 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib11 article-title: Exploring various polygenic risk scores for skin cancer in the phenomes of the Michigan genomics initiative and the UK Biobank with a visual catalog: PRSWeb publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008202 – volume: 51 start-page: 584 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib77 article-title: Clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat. Genet. doi: 10.1038/s41588-019-0379-x – volume: 8 start-page: 8 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib23 article-title: PRSice-2: Polygenic Risk Score software for biobank-scale data publication-title: Gigascience doi: 10.1093/gigascience/giz082 – volume: 104 start-page: 21 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib35 article-title: Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.11.002 – volume: 518 start-page: 197 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib72 article-title: Genetic studies of body mass index yield new insights for obesity biology publication-title: Nature doi: 10.1038/nature14177 – volume: 19 start-page: 581 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib32 article-title: The personal and clinical utility of polygenic risk scores publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0018-x – volume: 47 start-page: 1091 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib45 article-title: A gene-based association method for mapping traits using reference transcriptome data publication-title: Nat. Genet. doi: 10.1038/ng.3367 – volume: 88 start-page: 76 year: 2011 ident: 10.1016/j.ajhg.2020.03.013_bib64 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 38 start-page: 3567 year: 2010 ident: 10.1016/j.ajhg.2020.03.013_bib82 article-title: Sure independence screening in generalized linear models with NP-dimensionality publication-title: Ann. Stat. doi: 10.1214/10-AOS798 – volume: 104 start-page: 65 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib66 article-title: Leveraging polygenic functional enrichment to improve GWAS power publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.11.008 – volume: 34 start-page: 746 year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib6 article-title: Complex-trait prediction in the era of big data publication-title: Trends Genet. doi: 10.1016/j.tig.2018.07.004 – volume: 11 start-page: 407 year: 2014 ident: 10.1016/j.ajhg.2020.03.013_bib65 article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies publication-title: Nat. Methods doi: 10.1038/nmeth.2848 – volume: 41 start-page: 469 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib16 article-title: Polygenic scores via penalized regression on summary statistics publication-title: Genet. Epidemiol. doi: 10.1002/gepi.22050 – volume: 211 start-page: 1131 year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib12 article-title: Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction publication-title: Genetics doi: 10.1534/genetics.119.301859 – volume: 460 start-page: 748 year: 2009 ident: 10.1016/j.ajhg.2020.03.013_bib18 article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder publication-title: Nature doi: 10.1038/nature08185 – volume: 13 start-page: e1005589 year: 2017 ident: 10.1016/j.ajhg.2020.03.013_bib20 article-title: Leveraging functional annotations in genetic risk prediction for human complex diseases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005589 – year: 2018 ident: 10.1016/j.ajhg.2020.03.013_bib50 article-title: A guide to performing Polygenic Risk Score analyses publication-title: bioRxiv – volume: 97 start-page: 576 year: 2015 ident: 10.1016/j.ajhg.2020.03.013_bib13 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – year: 2019 ident: 10.1016/j.ajhg.2020.03.013_bib48 article-title: MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting linkage disequilibrium and horizontal pleiotropy publication-title: bioRxiv |
SSID | ssj0011803 |
Score | 2.5738168 |
Snippet | Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized medicine. Accurate PGS... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 679 |
SubjectTerms | Bayes Theorem complex traits Databases, Factual - standards Datasets as Topic - standards deterministic Bayesian sparse linear mixed model Female Humans Linear Models Male Multifactorial Inheritance polygenic risk score polygenic score Polymorphism, Single Nucleotide Reproducibility of Results Sample Size UK Biobank United Kingdom White People - genetics |
Title | Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets |
URI | https://dx.doi.org/10.1016/j.ajhg.2020.03.013 https://www.ncbi.nlm.nih.gov/pubmed/32330416 https://www.proquest.com/docview/2394893414 https://pubmed.ncbi.nlm.nih.gov/PMC7212266 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKJSQuqJTXUqgGiRuKmnkkmRzbQqkQIFCptLfRjGeWplRJpW4P_fe181ixVPTAMYknGtmOx47tzwDvGCYr6RKzWhuTmarKs1AFm5noZQxB5r6HFPr6rTw-NZ_nxXwDDqdeGC6rHG3_YNN7az3e2Ru5uXfZNNzjmys63DmP2Od3yA5rY_smvvnBKpMgba4nF5ipx8aZocbLn5_9ohhR5T3QqdT_OpzuOp9_11D-cSgdbcHj0ZsU-8OGn8BGarfh4TBf8uYp_NhHvGYsCOHbKE5IHNwoJXhI5wQbK7qF-N5d3JAeNUgkHYXfomnFF64QF_Sm4Nvf4oNfenGSllfP4PTo48_D42ycoZAhjyrI0CAFJFFikiaitJW2pkDjdR0WNpR1lZL1iNEutPEq6eATFqZUtQ9WeYpgn8Nm27XpJQhUdSmDUaGwFb2g8EYmVHGhIqKJOc5ATsxzOAKM85yLCzdVkp07ZrhjhrtcO2L4DN6v1lwO8Br3UheTTNyakjiy__euezsJ0NHXwykR36bu-srxYHjy2Iw0M3gxCHS1D634X48sZ1CtiXpFwMjc60_a5qxH6Kawmtza8tV_7ncHHvFVX1dZvYZNUon0hnyfZdiFB5_mcrdX8VsIlgLY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI5KEYIL4s1SHkHihkadPGaSObaFagvbCtRW2luUOFk6pZqp1O2h_x57HisWRA9cZ5wosj2xPbY_M_aBYLKSKiGrlNaZNibPggk209GLGILIfQcpdHhUTk_1l3kx32B7Yy8MlVUOd39_p3e39fBke-Dm9mVdU49vLtG4Ux6xy-_cYXfRGzA0v-FgvrtKJQibq9EHJvKhc6Yv8vLnZz8wSJR5h3Qq1L-s09_e559FlL9Zpf1H7OHgTvKd_sSP2UZqnrB7_YDJm6fs-w7ANYFBcN9EfozyoE4pTlM6R9xY3i74t_biBhWpBiRpMf7mdcNnVCLOcafgm5_8k196fpyWV8_Y6f7nk71pNgxRyIBmFWSgASOSKCAJHUFYo6wuQHtVhYUNZWVSsh4g2oXSXiYVfIJCl7LywUqPIexzttm0TXrJOMiqFEHLUFiDGxReiwQyLmQE0DGHCRMj8xwMCOM06OLCjaVk544Y7ojhLlcOGT5hH1drLnt8jVupi1Embk1LHBqAW9e9HwXo8POhnIhvUnt95WgyPLpsWugJe9ELdHUOJelnjygnzKyJekVA0Nzrb5r6rIPoxrga_dry1X-e9x27Pz05nLnZwdHXLfaA3nRFluY120T1SG_QEVqGt52i_wLxyQUG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+and+Scalable+Construction+of+Polygenic+Scores+in+Large+Biobank+Data+Sets&rft.jtitle=American+journal+of+human+genetics&rft.au=Yang%2C+Sheng&rft.au=Zhou%2C+Xiang&rft.date=2020-05-07&rft.pub=Elsevier&rft.issn=0002-9297&rft.eissn=1537-6605&rft.volume=106&rft.issue=5&rft.spage=679&rft.epage=693&rft_id=info:doi/10.1016%2Fj.ajhg.2020.03.013&rft_id=info%3Apmid%2F32330416&rft.externalDocID=PMC7212266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |