Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota

While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its effi...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 26; no. 4; pp. 672 - 685.e4
Main Authors Li, Guolin, Xie, Cen, Lu, Siyu, Nichols, Robert G., Tian, Yuan, Li, Licen, Patel, Daxeshkumar, Ma, Yinyan, Brocker, Chad N., Yan, Tingting, Krausz, Kristopher W., Xiang, Rong, Gavrilova, Oksana, Patterson, Andrew D., Gonzalez, Frank J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. [Display omitted] •EODF is a novel strategy for beige adipose development•EODF selectively induces WAT beiging by reshaping gut microbiota•EODF reverses high-fat-diet-induced obesity and associated metabolic disorders•The microbiota-fat axis orchestrates EODF-induced metabolic improvement White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie and colleagues find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects of EODF on beiging and metabolic improvement.
AbstractList While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means to induce beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every other day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue, and dramatically ameliorates obesity, insulin resistance and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to the elevation of the fermentation products acetate and lactate, and the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie et al . find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects EODF on beiging and metabolic improvement.
While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.
While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. [Display omitted] •EODF is a novel strategy for beige adipose development•EODF selectively induces WAT beiging by reshaping gut microbiota•EODF reverses high-fat-diet-induced obesity and associated metabolic disorders•The microbiota-fat axis orchestrates EODF-induced metabolic improvement White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie and colleagues find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects of EODF on beiging and metabolic improvement.
While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.
Author Yan, Tingting
Li, Guolin
Li, Licen
Ma, Yinyan
Brocker, Chad N.
Patterson, Andrew D.
Xie, Cen
Patel, Daxeshkumar
Krausz, Kristopher W.
Tian, Yuan
Gonzalez, Frank J.
Nichols, Robert G.
Lu, Siyu
Xiang, Rong
Gavrilova, Oksana
AuthorAffiliation 5 Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
1 Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
3 The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
2 The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
4 Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802, USA
6 The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China
AuthorAffiliation_xml – name: 5 Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– name: 2 The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
– name: 6 The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China
– name: 1 Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
– name: 4 Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802, USA
– name: 3 The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
Author_xml – sequence: 1
  givenname: Guolin
  surname: Li
  fullname: Li, Guolin
  email: hnsdlgl@hunnu.edu.cn
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Cen
  surname: Xie
  fullname: Xie, Cen
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
  organization: The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
– sequence: 4
  givenname: Robert G.
  surname: Nichols
  fullname: Nichols, Robert G.
  organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 5
  givenname: Yuan
  surname: Tian
  fullname: Tian, Yuan
  organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 6
  givenname: Licen
  surname: Li
  fullname: Li, Licen
  organization: The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
– sequence: 7
  givenname: Daxeshkumar
  surname: Patel
  fullname: Patel, Daxeshkumar
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Yinyan
  surname: Ma
  fullname: Ma, Yinyan
  organization: Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 9
  givenname: Chad N.
  surname: Brocker
  fullname: Brocker, Chad N.
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 10
  givenname: Tingting
  surname: Yan
  fullname: Yan, Tingting
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 11
  givenname: Kristopher W.
  surname: Krausz
  fullname: Krausz, Kristopher W.
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 12
  givenname: Rong
  surname: Xiang
  fullname: Xiang, Rong
  organization: The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China
– sequence: 13
  givenname: Oksana
  surname: Gavrilova
  fullname: Gavrilova, Oksana
  organization: Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 14
  givenname: Andrew D.
  surname: Patterson
  fullname: Patterson, Andrew D.
  organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 15
  givenname: Frank J.
  surname: Gonzalez
  fullname: Gonzalez, Frank J.
  email: gonzalef@mail.nih.gov
  organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28918936$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcAPsEBZskl6HcceR0JIpaUPqahIgFhajnPT8SixB9vTav6Gb-HLcDQtAhZd3Svd89A955DsOe-QkNcUKgpUHK8qM2GqaqCLCmQFtH1GDmjL6nLR1LCXd86hbCij--QwxhUAE6xlL8h-LVsqWyYOiL1yCcNkU0KXinMdk3W3xefgJ58wFt-XNmFx0tu1j1h8CP7ezXft-uIMTUAdM-imw2jTtui2xZelXs-AtMTiYpN-_fxkTfCd9Um_JM8HPUZ89TCPyLfzj19PL8vrm4ur05Pr0vCaptLUtDdNLbtGC7OoF2KgMMiWGwQQjMFAe4S215yygVOOTYMSWgDNut6whrMj8n6nu950E_Ym_xX0qNbBTjpslddW_Xtxdqlu_Z3iQkghWRZ4-yAQ_I8NxqQmGw2Oo3boN1HRtslRC85lhr752-uPyWO-GSB3gJxCjAEHZWzSyfrZ2o6KgpqrVCs1V6nmKhVIlfUztf6P-qj-JOndjoQ54TuLQUVj0RnsbUCTVO_tU_Tfl5i6WA
CitedBy_id crossref_primary_10_2147_DMSO_S392372
crossref_primary_10_26599_FSHW_2024_9250038
crossref_primary_10_1002_cyto_a_24555
crossref_primary_10_1080_19490976_2023_2237645
crossref_primary_10_1146_annurev_physiol_060721_092930
crossref_primary_10_3389_fmicb_2023_1203205
crossref_primary_10_1016_j_clnu_2024_01_005
crossref_primary_10_3390_biom14040483
crossref_primary_10_1016_j_celrep_2020_107998
crossref_primary_10_1016_j_molmet_2019_12_014
crossref_primary_10_1016_j_cmet_2018_08_005
crossref_primary_10_1186_s13063_022_06439_x
crossref_primary_10_1002_advs_202301499
crossref_primary_10_3390_nu13051450
crossref_primary_10_1007_s13679_018_0308_9
crossref_primary_10_1016_j_fct_2023_114305
crossref_primary_10_1016_j_bbadis_2022_166373
crossref_primary_10_1021_acs_jafc_4c05695
crossref_primary_10_3390_nu13062101
crossref_primary_10_1007_s13238_020_00814_7
crossref_primary_10_1016_j_taap_2020_115181
crossref_primary_10_3389_fgene_2020_00297
crossref_primary_10_29169_1927_5951_2019_09_05_2
crossref_primary_10_3390_antiox14010056
crossref_primary_10_1371_journal_pone_0202784
crossref_primary_10_1016_j_clnu_2020_09_020
crossref_primary_10_12688_f1000research_20204_1
crossref_primary_10_3390_nu17010143
crossref_primary_10_3389_fimmu_2025_1501850
crossref_primary_10_1142_S0192415X2550003X
crossref_primary_10_1021_acs_jafc_9b05833
crossref_primary_10_26442_00403660_2024_10_202884
crossref_primary_10_31146_1682_8658_ecg_228_8_7_27
crossref_primary_10_1002_mnfr_201700721
crossref_primary_10_1016_j_aninu_2021_10_010
crossref_primary_10_3390_nu12041096
crossref_primary_10_1016_j_arr_2024_102274
crossref_primary_10_1016_j_chembiol_2024_04_016
crossref_primary_10_1038_s41392_022_01104_w
crossref_primary_10_1210_endrev_bnaa026
crossref_primary_10_3389_fendo_2022_918923
crossref_primary_10_1016_j_cmet_2021_07_007
crossref_primary_10_5187_jast_2021_e94
crossref_primary_10_3390_nu15102277
crossref_primary_10_1016_j_freeradbiomed_2024_03_021
crossref_primary_10_3390_nu17010035
crossref_primary_10_1093_hmg_ddy137
crossref_primary_10_1002_advs_202407789
crossref_primary_10_1093_nutrit_nuab108
crossref_primary_10_3389_fphys_2022_1038421
crossref_primary_10_3390_ijms23158307
crossref_primary_10_1007_s13311_019_00719_2
crossref_primary_10_3390_ijms25031882
crossref_primary_10_3390_nu16213591
crossref_primary_10_1016_j_isci_2022_104994
crossref_primary_10_1039_D2FO02063G
crossref_primary_10_1016_j_jare_2024_03_023
crossref_primary_10_3389_fpubh_2023_1133614
crossref_primary_10_1007_s10068_024_01759_x
crossref_primary_10_3389_fphys_2018_00193
crossref_primary_10_3389_fcimb_2021_656674
crossref_primary_10_3389_fmicb_2021_642999
crossref_primary_10_1016_j_celrep_2020_02_013
crossref_primary_10_3389_fnut_2022_838091
crossref_primary_10_3389_fendo_2019_00413
crossref_primary_10_1016_j_celrep_2020_02_051
crossref_primary_10_1016_j_cmet_2023_11_003
crossref_primary_10_1038_s41579_019_0256_8
crossref_primary_10_14814_phy2_15393
crossref_primary_10_1016_j_jprot_2022_104500
crossref_primary_10_1093_jmcb_mjab038
crossref_primary_10_1016_j_omtm_2022_03_007
crossref_primary_10_1111_cas_15492
crossref_primary_10_3390_nu14194108
crossref_primary_10_3390_ijms23147641
crossref_primary_10_1016_j_isci_2024_110202
crossref_primary_10_1161_CIRCRESAHA_120_318155
crossref_primary_10_3390_nu15194270
crossref_primary_10_3724_abbs_2022140
crossref_primary_10_3390_ijms252212321
crossref_primary_10_3389_fcell_2022_803280
crossref_primary_10_1016_j_clnu_2023_06_011
crossref_primary_10_1080_19490976_2021_1994835
crossref_primary_10_1007_s11033_022_07672_y
crossref_primary_10_1038_s41574_021_00562_6
crossref_primary_10_1016_j_advnut_2025_100416
crossref_primary_10_1016_j_celrep_2022_111547
crossref_primary_10_1016_j_jare_2024_03_005
crossref_primary_10_3389_fcimb_2021_752708
crossref_primary_10_1016_j_foodres_2022_111373
crossref_primary_10_1080_21623945_2020_1870060
crossref_primary_10_1039_D1FO02886C
crossref_primary_10_1113_JP281979
crossref_primary_10_3389_fmicb_2019_02689
crossref_primary_10_1111_eci_14029
crossref_primary_10_1016_j_mam_2019_07_001
crossref_primary_10_1152_ajpendo_00310_2023
crossref_primary_10_1038_s41598_019_49462_w
crossref_primary_10_1016_j_mam_2019_07_005
crossref_primary_10_3390_cells12040533
crossref_primary_10_3390_nu14235080
crossref_primary_10_11569_wcjd_v32_i4_243
crossref_primary_10_3390_nu15061487
crossref_primary_10_1016_j_jtherbio_2022_103386
crossref_primary_10_3153_FH23008
crossref_primary_10_3389_fgene_2020_590369
crossref_primary_10_3389_fphar_2021_647529
crossref_primary_10_3390_healthcare11091310
crossref_primary_10_1080_19490976_2024_2390136
crossref_primary_10_3233_NHA_189000
crossref_primary_10_3390_nu15010151
crossref_primary_10_1210_clinem_dgab921
crossref_primary_10_1039_D0FO03423A
crossref_primary_10_1152_physiol_00030_2019
crossref_primary_10_3390_cells8121552
crossref_primary_10_1002_14651858_CD015610
crossref_primary_10_1039_D2FO01973F
crossref_primary_10_1016_j_jff_2019_103639
crossref_primary_10_3389_fnut_2022_980382
crossref_primary_10_1038_s42255_022_00687_6
crossref_primary_10_1097_j_pain_0000000000001918
crossref_primary_10_1016_j_livres_2019_01_006
crossref_primary_10_3390_endocrines3040052
crossref_primary_10_3390_nu15122743
crossref_primary_10_7554_eLife_91060_3
crossref_primary_10_3390_nu13113725
crossref_primary_10_1016_j_clnu_2024_07_024
crossref_primary_10_1002_mco2_171
crossref_primary_10_1016_j_apsb_2019_11_017
crossref_primary_10_3390_nu14214655
crossref_primary_10_3390_cells8080795
crossref_primary_10_1002_imo2_8
crossref_primary_10_1038_s41467_024_45724_y
crossref_primary_10_1053_j_gastro_2020_10_057
crossref_primary_10_1038_s41392_022_01178_6
crossref_primary_10_1159_000523712
crossref_primary_10_3390_nu13072428
crossref_primary_10_3390_metabo11020062
crossref_primary_10_1080_10408398_2022_2110034
crossref_primary_10_1111_apha_13518
crossref_primary_10_3389_fgene_2018_00212
crossref_primary_10_3390_ijms20102519
crossref_primary_10_3389_fpsyt_2022_926251
crossref_primary_10_1016_j_nutres_2021_03_001
crossref_primary_10_3390_nu14050981
crossref_primary_10_7570_jomes24010
crossref_primary_10_1152_ajpendo_00278_2021
crossref_primary_10_1038_s41467_022_33352_3
crossref_primary_10_3389_fonc_2023_1138362
crossref_primary_10_3390_biomedicines9020140
crossref_primary_10_3389_fmicb_2018_01874
crossref_primary_10_3390_ijms23094759
crossref_primary_10_1016_j_jnutbio_2023_109318
crossref_primary_10_1016_j_isci_2023_107239
crossref_primary_10_1074_jbc_RA120_016303
crossref_primary_10_3389_fphys_2020_00311
crossref_primary_10_3390_biomedicines11051290
crossref_primary_10_1016_j_brainres_2024_149176
crossref_primary_10_1007_s00394_023_03241_6
crossref_primary_10_1007_s00394_022_03036_1
crossref_primary_10_23736_S2724_6507_21_03596_X
crossref_primary_10_29333_ejgm_104620
crossref_primary_10_3390_foods11081118
crossref_primary_10_1038_s41522_023_00386_4
crossref_primary_10_1016_j_physbeh_2020_112827
crossref_primary_10_1016_j_gastha_2021_11_005
crossref_primary_10_1016_j_isci_2023_107046
crossref_primary_10_1021_acs_jafc_0c05798
crossref_primary_10_1016_j_lfs_2021_119675
crossref_primary_10_1021_acs_jafc_2c04888
crossref_primary_10_1007_s00394_019_01938_1
crossref_primary_10_1016_j_numecd_2023_05_005
crossref_primary_10_1016_j_archger_2023_105003
crossref_primary_10_1016_j_sleep_2020_03_020
crossref_primary_10_3389_fphys_2018_01908
crossref_primary_10_1080_01635581_2024_2367266
crossref_primary_10_3389_fcell_2022_955612
crossref_primary_10_1016_j_tifs_2024_104779
crossref_primary_10_3390_biom14111437
crossref_primary_10_1152_ajpendo_00014_2018
crossref_primary_10_1016_j_jff_2025_106735
crossref_primary_10_3390_ani14101498
crossref_primary_10_3390_nu14153134
crossref_primary_10_1016_j_carbpol_2024_122870
crossref_primary_10_1016_j_snb_2024_136207
crossref_primary_10_29219_fnr_v66_7909
crossref_primary_10_3390_nu15235005
crossref_primary_10_1080_1028415X_2023_2234704
crossref_primary_10_1186_s12967_018_1748_4
crossref_primary_10_14218_JCTH_2020_00131
crossref_primary_10_1002_oby_22964
crossref_primary_10_1016_j_jnutbio_2022_109122
crossref_primary_10_3390_nu15184072
crossref_primary_10_1210_jendso_bvad082
crossref_primary_10_1186_s12866_020_01754_2
crossref_primary_10_1002_bies_202300084
crossref_primary_10_1038_s41569_018_0097_6
crossref_primary_10_3389_fendo_2023_1215772
crossref_primary_10_1038_s41522_024_00582_w
crossref_primary_10_1096_fj_201903005RR
crossref_primary_10_1016_j_phrs_2022_106136
crossref_primary_10_1007_s00278_020_00471_5
crossref_primary_10_3390_ani13172783
crossref_primary_10_3389_fendo_2019_00368
crossref_primary_10_1016_j_celrep_2023_112559
crossref_primary_10_1007_s00424_023_02827_7
crossref_primary_10_3920_BM2020_0149
crossref_primary_10_1038_s41522_024_00495_8
crossref_primary_10_3389_fcell_2022_849985
crossref_primary_10_1016_j_cofs_2020_10_023
crossref_primary_10_1016_j_hsr_2024_100148
crossref_primary_10_1016_j_molmet_2019_04_002
crossref_primary_10_1002_adbi_202200337
crossref_primary_10_1128_mbio_03688_21
crossref_primary_10_3389_fmolb_2022_1038830
crossref_primary_10_1080_19490976_2020_1862612
crossref_primary_10_1007_s11756_021_00717_w
crossref_primary_10_1016_j_jep_2022_115997
crossref_primary_10_16984_saufenbilder_1209954
crossref_primary_10_3389_fphys_2022_950619
crossref_primary_10_1093_nar_gkae1161
crossref_primary_10_1016_j_jnutbio_2023_109526
crossref_primary_10_3390_nu13093248
crossref_primary_10_1186_s12986_025_00906_3
crossref_primary_10_1002_cptx_54
crossref_primary_10_1016_j_tem_2021_06_004
crossref_primary_10_1016_j_tibs_2017_11_004
crossref_primary_10_1152_ajpendo_00084_2023
crossref_primary_10_1016_j_metabol_2024_155813
crossref_primary_10_1038_s42255_025_01254_5
crossref_primary_10_1039_D0FO02093A
crossref_primary_10_3390_ijms242417437
crossref_primary_10_1042_CS20230973
crossref_primary_10_1016_j_mam_2018_11_003
crossref_primary_10_1016_j_clim_2020_108575
crossref_primary_10_1016_j_cmet_2020_02_008
crossref_primary_10_3390_nu14245311
crossref_primary_10_3389_fendo_2021_696505
crossref_primary_10_1007_s13668_024_00569_1
crossref_primary_10_1016_j_bbi_2021_02_011
crossref_primary_10_1016_j_it_2020_04_005
crossref_primary_10_1126_sciadv_abg8335
crossref_primary_10_1016_j_mce_2020_110869
crossref_primary_10_1172_jci_insight_150249
crossref_primary_10_3390_ijms242417420
crossref_primary_10_1172_jci_insight_153755
crossref_primary_10_1155_2023_4038546
crossref_primary_10_1186_s43066_024_00368_x
crossref_primary_10_1111_1440_1681_13304
crossref_primary_10_3390_ijms21176039
crossref_primary_10_1002_mco2_212
crossref_primary_10_1152_ajpgi_00475_2020
crossref_primary_10_1096_fj_202002197R
crossref_primary_10_3389_fnut_2021_784681
crossref_primary_10_1016_j_yjmcc_2020_09_006
crossref_primary_10_1096_fj_201700614R
crossref_primary_10_3390_life14050559
crossref_primary_10_20517_jca_2024_01
crossref_primary_10_3390_ijms21176241
crossref_primary_10_1084_jem_20190086
crossref_primary_10_1016_j_lfs_2024_122473
crossref_primary_10_1038_s41467_020_14676_4
crossref_primary_10_15252_embr_202357268
crossref_primary_10_1007_s00394_019_01928_3
crossref_primary_10_1039_D1FO02716F
crossref_primary_10_1002_advs_202204487
crossref_primary_10_1016_j_molmet_2021_101427
crossref_primary_10_3390_nu17061029
crossref_primary_10_1098_rsif_2021_0613
crossref_primary_10_1186_s12986_021_00635_3
crossref_primary_10_3389_fnut_2023_1215836
crossref_primary_10_1080_10408398_2023_2202750
crossref_primary_10_1007_s11033_022_07142_5
crossref_primary_10_3390_jcm10153219
crossref_primary_10_15252_embr_202255664
crossref_primary_10_3390_ijms231810814
crossref_primary_10_1016_j_chemosphere_2020_127959
crossref_primary_10_3390_nu16223828
crossref_primary_10_1016_j_metabol_2019_154048
crossref_primary_10_1016_j_cmet_2017_09_013
crossref_primary_10_1016_j_numecd_2021_05_002
crossref_primary_10_1080_10408398_2020_1867054
crossref_primary_10_3390_nu16071009
crossref_primary_10_1080_19490976_2021_1874815
crossref_primary_10_1096_fj_201902708R
crossref_primary_10_1111_jsr_13418
crossref_primary_10_1038_s41396_019_0492_y
crossref_primary_10_3389_fcvm_2020_602088
crossref_primary_10_3389_fendo_2022_908868
crossref_primary_10_1186_s13104_022_06209_7
crossref_primary_10_3389_fendo_2022_1065263
crossref_primary_10_1097_PRS_0000000000006740
crossref_primary_10_22312_sdusbed_494428
crossref_primary_10_1016_j_cmet_2020_11_010
crossref_primary_10_1016_j_apsb_2022_02_004
crossref_primary_10_3389_fmicb_2021_761210
crossref_primary_10_1097_PHM_0000000000001727
crossref_primary_10_1016_j_cmet_2019_07_016
crossref_primary_10_1093_nutrit_nuac092
crossref_primary_10_1039_D4FO02142H
crossref_primary_10_1038_s41366_019_0445_6
crossref_primary_10_1016_j_bbr_2021_113163
crossref_primary_10_1038_s41418_024_01262_0
crossref_primary_10_3389_fmicb_2022_881099
crossref_primary_10_1016_j_jff_2023_105783
crossref_primary_10_1002_jsfa_13758
crossref_primary_10_1016_j_tim_2021_03_015
crossref_primary_10_1038_s42255_018_0017_4
crossref_primary_10_3389_fendo_2023_1198984
crossref_primary_10_3389_fnut_2020_00050
crossref_primary_10_3390_biom14101223
crossref_primary_10_1080_0194262X_2017_1412848
crossref_primary_10_1007_s10123_022_00272_7
crossref_primary_10_1111_1462_2920_15517
crossref_primary_10_1021_acs_jafc_0c02654
crossref_primary_10_1016_j_biopha_2023_115484
crossref_primary_10_1016_j_crfs_2024_100683
crossref_primary_10_3892_ijmm_2022_5191
crossref_primary_10_3389_fendo_2023_1289571
crossref_primary_10_3389_fnut_2022_860575
crossref_primary_10_1001_jamanetworkopen_2024_16786
crossref_primary_10_1038_s41580_021_00411_4
crossref_primary_10_3390_nu16244310
crossref_primary_10_1007_s13679_024_00579_8
crossref_primary_10_1016_j_celrep_2021_109506
crossref_primary_10_1186_s12864_018_5235_3
crossref_primary_10_1038_s41467_022_34964_5
crossref_primary_10_1038_s43587_022_00311_y
crossref_primary_10_1152_ajpgi_00304_2019
crossref_primary_10_1016_j_fshw_2021_07_018
crossref_primary_10_2174_0929867327666200505090449
crossref_primary_10_3389_fnut_2024_1393292
crossref_primary_10_1186_s12915_019_0693_x
crossref_primary_10_1002_advs_202101991
crossref_primary_10_1371_journal_pcbi_1009947
crossref_primary_10_1016_j_jnha_2024_100165
crossref_primary_10_1016_j_metabol_2021_154712
crossref_primary_10_3390_medicina55040084
crossref_primary_10_1073_pnas_1912573116
crossref_primary_10_1186_s13578_021_00710_5
crossref_primary_10_12677_HJMCe_2023_114027
crossref_primary_10_1016_j_phymed_2024_155528
crossref_primary_10_1007_s00125_021_05464_w
crossref_primary_10_1016_j_jot_2022_09_006
crossref_primary_10_1136_gutjnl_2023_329998
crossref_primary_10_1080_27694127_2024_2396696
crossref_primary_10_37527_2022_72_2_004
crossref_primary_10_1093_nutrit_nuad026
crossref_primary_10_1016_j_molmet_2017_10_011
crossref_primary_10_1016_j_jff_2023_105731
crossref_primary_10_1038_s41598_020_79211_3
crossref_primary_10_3233_NHA_180044
crossref_primary_10_1016_j_cbd_2021_100823
crossref_primary_10_3390_nu12092749
crossref_primary_10_1186_s12986_022_00694_0
crossref_primary_10_2337_db21_0535
crossref_primary_10_3390_ijms19113552
crossref_primary_10_1016_j_foodres_2022_111501
crossref_primary_10_1007_s11010_024_04928_y
crossref_primary_10_1186_s40168_022_01430_9
crossref_primary_10_3390_nu14030456
crossref_primary_10_3389_fnut_2024_1387394
crossref_primary_10_3390_nu14193995
crossref_primary_10_3889_oamjms_2022_9508
crossref_primary_10_1002_adbi_202300100
crossref_primary_10_1007_s13105_019_00723_2
crossref_primary_10_1016_j_jad_2021_06_028
crossref_primary_10_1016_j_mito_2020_03_009
crossref_primary_10_1111_1753_0407_13288
crossref_primary_10_1038_s41392_024_01771_x
crossref_primary_10_1039_D2FO02415B
crossref_primary_10_3390_nu11071613
crossref_primary_10_1038_s43587_024_00678_0
crossref_primary_10_7554_eLife_91060
crossref_primary_10_3390_ijms25158352
crossref_primary_10_1111_ijfs_16530
crossref_primary_10_1002_mnfr_202200496
crossref_primary_10_1186_s12986_025_00904_5
crossref_primary_10_1186_s12915_021_00987_5
crossref_primary_10_31883_pjfns_143164
crossref_primary_10_3389_fphys_2021_689747
crossref_primary_10_1016_j_cmet_2019_09_016
crossref_primary_10_1039_C8FO02154F
crossref_primary_10_1016_j_phrs_2021_105548
crossref_primary_10_1080_13813455_2023_2268301
crossref_primary_10_3390_nu11081943
crossref_primary_10_3389_fneur_2019_01245
crossref_primary_10_1016_j_jnutbio_2021_108856
crossref_primary_10_1016_j_mib_2023_102287
crossref_primary_10_12938_bmfh_2023_111
crossref_primary_10_1038_nrendo_2017_131
crossref_primary_10_3390_medicines10020018
crossref_primary_10_3390_nu14091758
crossref_primary_10_3390_nu15051164
crossref_primary_10_1017_S0007114520004055
crossref_primary_10_1016_j_celrep_2024_115225
crossref_primary_10_3389_fmicb_2022_922727
crossref_primary_10_1016_j_freeradbiomed_2020_04_013
crossref_primary_10_3390_nu14020251
crossref_primary_10_1002_mco2_70030
crossref_primary_10_1016_j_envint_2023_108274
crossref_primary_10_1016_j_tjnut_2023_04_012
crossref_primary_10_18502_sjms_v15i5_7147
crossref_primary_10_2478_cpp_2022_0006
crossref_primary_10_1113_JP283995
crossref_primary_10_1128_spectrum_03558_22
crossref_primary_10_1016_j_nut_2024_112370
crossref_primary_10_3390_nu15020456
crossref_primary_10_31590_ejosat_935513
crossref_primary_10_1016_j_fbio_2024_104255
crossref_primary_10_1093_ajcn_nqaa388
crossref_primary_10_3390_cells14020084
crossref_primary_10_1002_mnfr_202200173
crossref_primary_10_3390_app132212201
crossref_primary_10_1111_imm_13829
crossref_primary_10_1016_j_xcrm_2021_100397
crossref_primary_10_1038_cr_2017_130
crossref_primary_10_20473_fmi_v60i2_54389
crossref_primary_10_2147_IJN_S441847
Cites_doi 10.1016/0014-5793(84)80822-4
10.1016/j.cell.2014.09.048
10.1073/pnas.1310261110
10.1038/srep41066
10.1038/nm.3994
10.3164/jcbn.16-23
10.1038/nri.2016.42
10.1186/2251-6581-12-4
10.1038/nri.2016.18
10.1210/endo.140.4.6668
10.1073/pnas.0605374104
10.1016/j.cell.2015.02.020
10.1128/MCB.15.6.3012
10.2337/db14-0595
10.1016/j.numecd.2012.01.013
10.1097/CRD.0b013e31829cabff
10.1186/gb-2011-12-6-r60
10.1021/pr200938v
10.2220/biomedres.30.217
10.1136/gutjnl-2015-310798
10.1016/j.cmet.2012.04.019
10.1074/jbc.270.49.29483
10.1016/j.cmet.2016.05.001
10.1016/j.cmet.2015.09.007
10.1101/gad.211649.112
10.1194/jlr.R036012
10.1371/journal.pcbi.1002358
10.1126/science.1223813
10.1016/j.cmet.2007.05.003
10.1038/nbt.2676
10.1038/nm.3361
10.1161/CIRCULATIONAHA.111.087213
10.1146/annurev.pharmtox.44.101802.121659
10.1016/j.bbalip.2012.12.002
10.1038/nmeth.3176
10.2337/db13-1885
10.1038/nm.3819
10.1242/jeb.050989
10.1016/S0092-8674(01)00240-9
10.1016/j.cmet.2013.12.008
10.1016/j.cmet.2014.12.009
10.1038/ijo.2016.23
10.1038/nmeth.1923
10.1016/j.celrep.2013.10.044
10.1128/AEM.01043-13
10.1371/journal.pone.0177953
10.1016/j.jand.2015.02.018
10.1096/fj.10-164921
10.1016/j.cmet.2012.10.007
10.1016/j.cmet.2014.07.005
10.1126/science.1190816
10.1038/ncomms10166
10.1016/j.cell.2011.11.062
10.1093/bioinformatics/bts342
10.1016/j.molmet.2015.03.001
10.1002/cphy.c150013
10.1056/NEJMp068177
10.1038/nmeth.3589
10.1016/j.cell.2012.05.016
10.1021/pr2011507
10.1016/j.cell.2015.11.004
ContentType Journal Article
Copyright 2017
Published by Elsevier Inc.
Copyright_xml – notice: 2017
– notice: Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2017.08.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 685.e4
ExternalDocumentID PMC5668683
28918936
10_1016_j_cmet_2017_08_019
S1550413117305041
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES022186
GroupedDBID ---
--K
0R~
0SF
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-c21dc428b4a6c7276f10f895ce006330f1de09da513f515e44e80900a3bdc3453
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:09:04 EDT 2025
Fri Jul 11 05:00:26 EDT 2025
Mon Jul 21 05:58:09 EDT 2025
Tue Jul 01 03:58:16 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Fri Aug 02 08:58:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords metabolic syndrome
short-chain fatty acid
intermittent fasting
every-other-day fasting (EODF)
browning
beige adipocytes
gut microbiota
obesity
Language English
License This article is made available under the Elsevier license.
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-c21dc428b4a6c7276f10f895ce006330f1de09da513f515e44e80900a3bdc3453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413117305041
PMID 28918936
PQID 1940196558
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668683
proquest_miscellaneous_1940196558
pubmed_primary_28918936
crossref_citationtrail_10_1016_j_cmet_2017_08_019
crossref_primary_10_1016_j_cmet_2017_08_019
elsevier_sciencedirect_doi_10_1016_j_cmet_2017_08_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-03
PublicationDateYYYYMMDD 2017-10-03
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bäckhed, Manchester, Semenkovich, Gordon (bib3) 2007; 104
Kozich, Westcott, Baxter, Highlander, Schloss (bib32) 2013; 79
Patterson, Laughlin, LaCroix, Hartman, Natarajan, Senger, Martínez, Villaseñor, Sears, Marinac, Gallo (bib45) 2015; 115
Suárez-Zamorano, Fabbiano, Chevalier, Stojanović, Colin, Stevanović, Veyrat-Durebex, Tarallo, Rigo, Germain (bib56) 2015; 21
Hill, Wyatt, Peters (bib22) 2012; 126
Mestdagh, Dumas, Rezzi, Kochhar, Holmes, Claus, Nicholson (bib39) 2012; 11
Jiang, Xie, Lv, Li, Krausz, Shi, Brocker, Desai, Amin, Bisson (bib28) 2015; 6
Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bib51) 2011; 12
Cannon, Nedergaard (bib7) 2011; 214
Longo, Mattson (bib36) 2014; 19
Carrière, Jeanson, Berger-Müller, André, Chenouard, Arnaud, Barreau, Walther, Galinier, Wdziekonski (bib8) 2014; 63
Nedergaard, Cannon (bib42) 2014; 20
Nicholson, Holmes, Kinross, Burcelin, Gibson, Jia, Pettersson (bib43) 2012; 336
López-Bueno, González-Jiménez, Navarro-Prado, Montero-Alonso, Schmidt-RioValle (bib37) 2014; 31
Spiegelman, Flier (bib55) 2001; 104
Langmead, Salzberg (bib34) 2012; 9
Robidoux, Martin, Collins (bib47) 2004; 44
Secor, Carey (bib50) 2016; 6
Kim, Nam, Kang, Lee, Lee, Hwang, Kim (bib30) 2017; 7
Eshghinia, Mohammadzadeh (bib16) 2013; 12
Tian, Zhang, Wang, Tang (bib60) 2012; 11
Iwanaga, Kuchiiwa, Saito (bib27) 2009; 30
Mund, Frishman (bib41) 2013; 21
Hatori, Vollmers, Zarrinpar, DiTacchio, Bushong, Gill, Leblanc, Chaix, Joens, Fitzpatrick (bib20) 2012; 15
Fontana, Partridge (bib17) 2015; 161
Holmes, Li, Marchesi, Nicholson (bib23) 2012; 16
Markan, Naber, Ameka, Anderegg, Mangelsdorf, Kliewer, Mohammadi, Potthoff (bib38) 2014; 63
den Besten, van Eunen, Groen, Venema, Reijngoud, Bakker (bib13) 2013; 54
Young, Arch, Ashwell (bib65) 1984; 167
Cypess, Weiner, Roberts-Toler, Franquet Elía, Kessler, Kahn, English, Chatman, Trauger, Doria, Kolodny (bib11) 2015; 21
Kajimura, Spiegelman, Seale (bib29) 2015; 22
Takeda (bib58) 2016; 16
Ziętak, Kovatcheva-Datchary, Markiewicz, Ståhlman, Kozak, Bäckhed (bib66) 2016; 23
Shabalina, Petrovic, de Jong, Kalinovich, Cannon, Nedergaard (bib52) 2013; 5
Hayashi, Nagasaka (bib21) 1983; 245
Truong, Franzosa, Tickle, Scholz, Weingart, Pasolli, Tett, Huttenhower, Segata (bib61) 2015; 12
Abubucker, Segata, Goll, Schubert, Izard, Cantarel, Rodriguez-Mueller, Zucker, Thiagarajan, Henrissat (bib2) 2012; 8
Sivitz, Fink, Donohoue (bib54) 1999; 140
Patel, Krausz, Xie, Beyoğlu, Gonzalez, Idle (bib44) 2017; 12
Sahuri-Arisoylu, Brody, Parkinson, Parkes, Navaratnam, Miller, Thomas, Frost, Bell (bib49) 2016; 40
Harms, Seale (bib19) 2013; 19
Hossain, Kawar, El Nahas (bib24) 2007; 356
Chen, Bittinger, Charlson, Hoffmann, Lewis, Wu, Collman, Bushman, Li (bib9) 2012; 28
Hanatani, Motoshima, Takaki, Kawasaki, Igata, Matsumura, Kondo, Senokuchi, Ishii, Kawashima (bib18) 2016; 59
Langille, Zaneveld, Caporaso, McDonald, Knights, Reyes, Clemente, Burkepile, Vega Thurber, Knight (bib33) 2013; 31
Thaiss, Zeevi, Levy, Zilberman-Schapira, Suez, Tengeler, Abramson, Katz, Korem, Zmora (bib59) 2014; 159
Rabot, Membrez, Bruneau, Gérard, Harach, Moser, Raymond, Mansourian, Chou (bib46) 2010; 24
Dutchak, Katafuchi, Bookout, Choi, Yu, Mangelsdorf, Kliewer (bib15) 2012; 148
Buchfink, Xie, Huson (bib6) 2015; 12
Rooks, Garrett (bib48) 2016; 16
Wu, Boström, Sparks, Ye, Choi, Giang, Khandekar, Virtanen, Nuutila, Schaart (bib62) 2012; 150
De Matteis, Lucertini, Guescini, Polidori, Zeppa, Stocchi, Cinti, Cuppini (bib12) 2013; 23
Inagaki, Dutchak, Zhao, Ding, Gautron, Parameswara, Li, Goetz, Mohammadi, Esser (bib25) 2007; 5
Chevalier, Stojanović, Colin, Suarez-Zamorano, Tarallo, Veyrat-Durebex, Rigo, Fabbiano, Stevanović, Hagemann (bib10) 2015; 163
Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim, Xue, Chondronikola, Cypess, Tseng (bib53) 2015; 21
Wu, Cohen, Spiegelman (bib63) 2013; 27
Lee, Pineau, Drago, Lee, Owens, Kroetz, Fernandez-Salguero, Westphal, Gonzalez (bib35) 1995; 15
Knehans, Romsos (bib31) 1983; 244
Bonet, Oliver, Palou (bib4) 2013; 1831
Desautels, Dulos (bib14) 1988; 255
Abreu-Vieira, Xiao, Gavrilova, Reitman (bib1) 2015; 4
Montagner, Polizzi, Fouché, Ducheix, Lippi, Lasserre, Barquissau, Régnier, Lukowicz, Benhamed (bib40) 2016; 65
Ishibashi, Seale (bib26) 2010; 328
Susulic, Frederich, Lawitts, Tozzo, Kahn, Harper, Himms-Hagen, Flier, Lowell (bib57) 1995; 270
Ye, Wu, Cohen, Kazak, Khandekar, Jedrychowski, Zeng, Gygi, Spiegelman (bib64) 2013; 110
Rooks (10.1016/j.cmet.2017.08.019_bib48) 2016; 16
Rabot (10.1016/j.cmet.2017.08.019_bib46) 2010; 24
Sivitz (10.1016/j.cmet.2017.08.019_bib54) 1999; 140
Langille (10.1016/j.cmet.2017.08.019_bib33) 2013; 31
Shinoda (10.1016/j.cmet.2017.08.019_bib53) 2015; 21
Thaiss (10.1016/j.cmet.2017.08.019_bib59) 2014; 159
Wu (10.1016/j.cmet.2017.08.019_bib62) 2012; 150
Shabalina (10.1016/j.cmet.2017.08.019_bib52) 2013; 5
Carrière (10.1016/j.cmet.2017.08.019_bib8) 2014; 63
Cypess (10.1016/j.cmet.2017.08.019_bib11) 2015; 21
Patterson (10.1016/j.cmet.2017.08.019_bib45) 2015; 115
Ziętak (10.1016/j.cmet.2017.08.019_bib66) 2016; 23
Chevalier (10.1016/j.cmet.2017.08.019_bib10) 2015; 163
Kajimura (10.1016/j.cmet.2017.08.019_bib29) 2015; 22
Iwanaga (10.1016/j.cmet.2017.08.019_bib27) 2009; 30
Hayashi (10.1016/j.cmet.2017.08.019_bib21) 1983; 245
Abreu-Vieira (10.1016/j.cmet.2017.08.019_bib1) 2015; 4
Nedergaard (10.1016/j.cmet.2017.08.019_bib42) 2014; 20
De Matteis (10.1016/j.cmet.2017.08.019_bib12) 2013; 23
Holmes (10.1016/j.cmet.2017.08.019_bib23) 2012; 16
Bäckhed (10.1016/j.cmet.2017.08.019_bib3) 2007; 104
Sahuri-Arisoylu (10.1016/j.cmet.2017.08.019_bib49) 2016; 40
López-Bueno (10.1016/j.cmet.2017.08.019_bib37) 2014; 31
Hatori (10.1016/j.cmet.2017.08.019_bib20) 2012; 15
Jiang (10.1016/j.cmet.2017.08.019_bib28) 2015; 6
Suárez-Zamorano (10.1016/j.cmet.2017.08.019_bib56) 2015; 21
Spiegelman (10.1016/j.cmet.2017.08.019_bib55) 2001; 104
Langmead (10.1016/j.cmet.2017.08.019_bib34) 2012; 9
Hill (10.1016/j.cmet.2017.08.019_bib22) 2012; 126
Longo (10.1016/j.cmet.2017.08.019_bib36) 2014; 19
Hanatani (10.1016/j.cmet.2017.08.019_bib18) 2016; 59
Mund (10.1016/j.cmet.2017.08.019_bib41) 2013; 21
Eshghinia (10.1016/j.cmet.2017.08.019_bib16) 2013; 12
Nicholson (10.1016/j.cmet.2017.08.019_bib43) 2012; 336
Montagner (10.1016/j.cmet.2017.08.019_bib40) 2016; 65
Takeda (10.1016/j.cmet.2017.08.019_bib58) 2016; 16
Kim (10.1016/j.cmet.2017.08.019_bib30) 2017; 7
Robidoux (10.1016/j.cmet.2017.08.019_bib47) 2004; 44
Secor (10.1016/j.cmet.2017.08.019_bib50) 2016; 6
Truong (10.1016/j.cmet.2017.08.019_bib61) 2015; 12
Tian (10.1016/j.cmet.2017.08.019_bib60) 2012; 11
Cannon (10.1016/j.cmet.2017.08.019_bib7) 2011; 214
Young (10.1016/j.cmet.2017.08.019_bib65) 1984; 167
Chen (10.1016/j.cmet.2017.08.019_bib9) 2012; 28
Wu (10.1016/j.cmet.2017.08.019_bib63) 2013; 27
Knehans (10.1016/j.cmet.2017.08.019_bib31) 1983; 244
Patel (10.1016/j.cmet.2017.08.019_bib44) 2017; 12
Lee (10.1016/j.cmet.2017.08.019_bib35) 1995; 15
Bonet (10.1016/j.cmet.2017.08.019_bib4) 2013; 1831
Mestdagh (10.1016/j.cmet.2017.08.019_bib39) 2012; 11
Abubucker (10.1016/j.cmet.2017.08.019_bib2) 2012; 8
Ye (10.1016/j.cmet.2017.08.019_bib64) 2013; 110
den Besten (10.1016/j.cmet.2017.08.019_bib13) 2013; 54
Desautels (10.1016/j.cmet.2017.08.019_bib14) 1988; 255
Segata (10.1016/j.cmet.2017.08.019_bib51) 2011; 12
Harms (10.1016/j.cmet.2017.08.019_bib19) 2013; 19
Dutchak (10.1016/j.cmet.2017.08.019_bib15) 2012; 148
Kozich (10.1016/j.cmet.2017.08.019_bib32) 2013; 79
Ishibashi (10.1016/j.cmet.2017.08.019_bib26) 2010; 328
Fontana (10.1016/j.cmet.2017.08.019_bib17) 2015; 161
Inagaki (10.1016/j.cmet.2017.08.019_bib25) 2007; 5
Markan (10.1016/j.cmet.2017.08.019_bib38) 2014; 63
Buchfink (10.1016/j.cmet.2017.08.019_bib6) 2015; 12
Hossain (10.1016/j.cmet.2017.08.019_bib24) 2007; 356
Susulic (10.1016/j.cmet.2017.08.019_bib57) 1995; 270
28960211 - Nat Rev Endocrinol. 2017 Nov;13(11):623
29117546 - Cell Metab. 2017 Nov 7;26(5):801
References_xml – volume: 15
  start-page: 3012
  year: 1995
  end-page: 3022
  ident: bib35
  article-title: Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 1252
  year: 2013
  end-page: 1263
  ident: bib19
  article-title: Brown and beige fat: development, function and therapeutic potential
  publication-title: Nat. Med.
– volume: 21
  start-page: 389
  year: 2015
  end-page: 394
  ident: bib53
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat. Med.
– volume: 23
  start-page: 582
  year: 2013
  end-page: 590
  ident: bib12
  article-title: Exercise as a new physiological stimulus for brown adipose tissue activity
  publication-title: Nutr. Metab. Cardiovasc. Dis.
– volume: 126
  start-page: 126
  year: 2012
  end-page: 132
  ident: bib22
  article-title: Energy balance and obesity
  publication-title: Circulation
– volume: 104
  start-page: 531
  year: 2001
  end-page: 543
  ident: bib55
  article-title: Obesity and the regulation of energy balance
  publication-title: Cell
– volume: 8
  start-page: e1002358
  year: 2012
  ident: bib2
  article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome
  publication-title: PLoS Comput. Biol.
– volume: 11
  start-page: 620
  year: 2012
  end-page: 630
  ident: bib39
  article-title: Gut microbiota modulate the metabolism of brown adipose tissue in mice
  publication-title: J. Proteome Res.
– volume: 16
  start-page: 559
  year: 2012
  end-page: 564
  ident: bib23
  article-title: Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk
  publication-title: Cell Metab.
– volume: 65
  start-page: 1202
  year: 2016
  end-page: 1214
  ident: bib40
  article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD
  publication-title: Gut
– volume: 167
  start-page: 10
  year: 1984
  end-page: 14
  ident: bib65
  article-title: Brown adipose tissue in the parametrial fat pad of the mouse
  publication-title: FEBS Lett.
– volume: 140
  start-page: 1511
  year: 1999
  end-page: 1519
  ident: bib54
  article-title: Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression
  publication-title: Endocrinology
– volume: 15
  start-page: 848
  year: 2012
  end-page: 860
  ident: bib20
  article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
  publication-title: Cell Metab.
– volume: 16
  start-page: 341
  year: 2016
  end-page: 352
  ident: bib48
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat. Rev. Immunol.
– volume: 148
  start-page: 556
  year: 2012
  end-page: 567
  ident: bib15
  article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
  publication-title: Cell
– volume: 19
  start-page: 181
  year: 2014
  end-page: 192
  ident: bib36
  article-title: Fasting: molecular mechanisms and clinical applications
  publication-title: Cell Metab.
– volume: 336
  start-page: 1262
  year: 2012
  end-page: 1267
  ident: bib43
  article-title: Host-gut microbiota metabolic interactions
  publication-title: Science
– volume: 163
  start-page: 1360
  year: 2015
  end-page: 1374
  ident: bib10
  article-title: Gut microbiota orchestrates energy homeostasis during cold
  publication-title: Cell
– volume: 12
  start-page: R60
  year: 2011
  ident: bib51
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
– volume: 115
  start-page: 1203
  year: 2015
  end-page: 1212
  ident: bib45
  article-title: Intermittent fasting and human metabolic health
  publication-title: J. Acad. Nutr. Diet.
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  ident: bib6
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
– volume: 63
  start-page: 4057
  year: 2014
  end-page: 4063
  ident: bib38
  article-title: Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
  publication-title: Diabetes
– volume: 31
  start-page: 1067
  year: 2014
  end-page: 1073
  ident: bib37
  article-title: Influence of age and religious fasting on the body composition of Muslim women living in a westernized context
  publication-title: Nutr. Hosp.
– volume: 44
  start-page: 297
  year: 2004
  end-page: 323
  ident: bib47
  article-title: Beta-adrenergic receptors and regulation of energy expenditure: a family affair
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib34
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 270
  start-page: 29483
  year: 1995
  end-page: 29492
  ident: bib57
  article-title: Targeted disruption of the beta 3-adrenergic receptor gene
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 4948
  year: 2010
  end-page: 4959
  ident: bib46
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J.
– volume: 12
  start-page: 4
  year: 2013
  ident: bib16
  article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women
  publication-title: J. Diabetes Metab. Disord.
– volume: 255
  start-page: E120
  year: 1988
  end-page: E128
  ident: bib14
  article-title: Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice
  publication-title: Am. J. Physiol.
– volume: 30
  start-page: 217
  year: 2009
  end-page: 225
  ident: bib27
  article-title: Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue
  publication-title: Biomed. Res.
– volume: 54
  start-page: 2325
  year: 2013
  end-page: 2340
  ident: bib13
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J. Lipid Res.
– volume: 6
  start-page: 10166
  year: 2015
  ident: bib28
  article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction
  publication-title: Nat. Commun.
– volume: 20
  start-page: 396
  year: 2014
  end-page: 407
  ident: bib42
  article-title: The browning of white adipose tissue: some burning issues
  publication-title: Cell Metab.
– volume: 40
  start-page: 955
  year: 2016
  end-page: 963
  ident: bib49
  article-title: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate
  publication-title: Int. J. Obes.
– volume: 150
  start-page: 366
  year: 2012
  end-page: 376
  ident: bib62
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
– volume: 1831
  start-page: 969
  year: 2013
  end-page: 985
  ident: bib4
  article-title: Pharmacological and nutritional agents promoting browning of white adipose tissue
  publication-title: Biochim. Biophys. Acta
– volume: 63
  start-page: 3253
  year: 2014
  end-page: 3265
  ident: bib8
  article-title: Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure
  publication-title: Diabetes
– volume: 28
  start-page: 2106
  year: 2012
  end-page: 2113
  ident: bib9
  article-title: Associating microbiome composition with environmental covariates using generalized UniFrac distances
  publication-title: Bioinformatics
– volume: 159
  start-page: 514
  year: 2014
  end-page: 529
  ident: bib59
  article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
  publication-title: Cell
– volume: 21
  start-page: 1497
  year: 2015
  end-page: 1501
  ident: bib56
  article-title: Microbiota depletion promotes browning of white adipose tissue and reduces obesity
  publication-title: Nat. Med.
– volume: 245
  start-page: E582
  year: 1983
  end-page: E586
  ident: bib21
  article-title: Suppression of norepinephrine-induced thermogenesis in brown adipose tissue by fasting
  publication-title: Am. J. Physiol.
– volume: 22
  start-page: 546
  year: 2015
  end-page: 559
  ident: bib29
  article-title: Brown and beige fat: physiological roles beyond heat generation
  publication-title: Cell Metab.
– volume: 12
  start-page: e0177953
  year: 2017
  ident: bib44
  article-title: Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice
  publication-title: PLoS One
– volume: 23
  start-page: 1216
  year: 2016
  end-page: 1223
  ident: bib66
  article-title: Altered microbiota contributes to reduced diet-induced obesity upon cold exposure
  publication-title: Cell Metab.
– volume: 21
  start-page: 265
  year: 2013
  end-page: 269
  ident: bib41
  article-title: Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans
  publication-title: Cardiol. Rev.
– volume: 12
  start-page: 902
  year: 2015
  end-page: 903
  ident: bib61
  article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling
  publication-title: Nat. Methods
– volume: 110
  start-page: 12480
  year: 2013
  end-page: 12485
  ident: bib64
  article-title: Fat cells directly sense temperature to activate thermogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59
  start-page: 207
  year: 2016
  end-page: 214
  ident: bib18
  article-title: Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice
  publication-title: J. Clin. Biochem. Nutr.
– volume: 5
  start-page: 1196
  year: 2013
  end-page: 1203
  ident: bib52
  article-title: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic
  publication-title: Cell Rep.
– volume: 21
  start-page: 33
  year: 2015
  end-page: 38
  ident: bib11
  article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist
  publication-title: Cell Metab.
– volume: 4
  start-page: 461
  year: 2015
  end-page: 470
  ident: bib1
  article-title: Integration of body temperature into the analysis of energy expenditure in the mouse
  publication-title: Mol. Metab.
– volume: 161
  start-page: 106
  year: 2015
  end-page: 118
  ident: bib17
  article-title: Promoting health and longevity through diet: from model organisms to humans
  publication-title: Cell
– volume: 11
  start-page: 1397
  year: 2012
  end-page: 1411
  ident: bib60
  article-title: Age-related topographical metabolic signatures for the rat gastrointestinal contents
  publication-title: J. Proteome Res.
– volume: 27
  start-page: 234
  year: 2013
  end-page: 250
  ident: bib63
  article-title: Adaptive thermogenesis in adipocytes: is beige the new brown?
  publication-title: Genes Dev.
– volume: 7
  start-page: 41066
  year: 2017
  ident: bib30
  article-title: Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells
  publication-title: Sci. Rep.
– volume: 6
  start-page: 773
  year: 2016
  end-page: 825
  ident: bib50
  article-title: Integrative physiology of fasting
  publication-title: Compr. Physiol.
– volume: 5
  start-page: 415
  year: 2007
  end-page: 425
  ident: bib25
  article-title: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
  publication-title: Cell Metab.
– volume: 328
  start-page: 1113
  year: 2010
  end-page: 1114
  ident: bib26
  article-title: Medicine. Beige can be slimming
  publication-title: Science
– volume: 104
  start-page: 979
  year: 2007
  end-page: 984
  ident: bib3
  article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 206
  year: 2016
  ident: bib58
  article-title: Metabolic bridge between microbiota and humans
  publication-title: Nat. Rev. Immunol.
– volume: 244
  start-page: E567
  year: 1983
  end-page: E574
  ident: bib31
  article-title: Norepinephrine turnover in obese (ob/ob) mice: effects of age, fasting, and acute cold
  publication-title: Am. J. Physiol.
– volume: 356
  start-page: 213
  year: 2007
  end-page: 215
  ident: bib24
  article-title: Obesity and diabetes in the developing world--a growing challenge
  publication-title: N. Engl. J. Med.
– volume: 214
  start-page: 242
  year: 2011
  end-page: 253
  ident: bib7
  article-title: Nonshivering thermogenesis and its adequate measurement in metabolic studies
  publication-title: J. Exp. Biol.
– volume: 31
  start-page: 814
  year: 2013
  end-page: 821
  ident: bib33
  article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
  publication-title: Nat. Biotechnol.
– volume: 79
  start-page: 5112
  year: 2013
  end-page: 5120
  ident: bib32
  article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform
  publication-title: Appl. Environ. Microbiol.
– volume: 167
  start-page: 10
  year: 1984
  ident: 10.1016/j.cmet.2017.08.019_bib65
  article-title: Brown adipose tissue in the parametrial fat pad of the mouse
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(84)80822-4
– volume: 159
  start-page: 514
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib59
  article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.048
– volume: 110
  start-page: 12480
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib64
  article-title: Fat cells directly sense temperature to activate thermogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1310261110
– volume: 7
  start-page: 41066
  year: 2017
  ident: 10.1016/j.cmet.2017.08.019_bib30
  article-title: Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep41066
– volume: 21
  start-page: 1497
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib56
  article-title: Microbiota depletion promotes browning of white adipose tissue and reduces obesity
  publication-title: Nat. Med.
  doi: 10.1038/nm.3994
– volume: 59
  start-page: 207
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib18
  article-title: Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice
  publication-title: J. Clin. Biochem. Nutr.
  doi: 10.3164/jcbn.16-23
– volume: 16
  start-page: 341
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib48
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.42
– volume: 12
  start-page: 4
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib16
  article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women
  publication-title: J. Diabetes Metab. Disord.
  doi: 10.1186/2251-6581-12-4
– volume: 244
  start-page: E567
  year: 1983
  ident: 10.1016/j.cmet.2017.08.019_bib31
  article-title: Norepinephrine turnover in obese (ob/ob) mice: effects of age, fasting, and acute cold
  publication-title: Am. J. Physiol.
– volume: 16
  start-page: 206
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib58
  article-title: Metabolic bridge between microbiota and humans
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.18
– volume: 140
  start-page: 1511
  year: 1999
  ident: 10.1016/j.cmet.2017.08.019_bib54
  article-title: Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression
  publication-title: Endocrinology
  doi: 10.1210/endo.140.4.6668
– volume: 104
  start-page: 979
  year: 2007
  ident: 10.1016/j.cmet.2017.08.019_bib3
  article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605374104
– volume: 161
  start-page: 106
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib17
  article-title: Promoting health and longevity through diet: from model organisms to humans
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.020
– volume: 245
  start-page: E582
  year: 1983
  ident: 10.1016/j.cmet.2017.08.019_bib21
  article-title: Suppression of norepinephrine-induced thermogenesis in brown adipose tissue by fasting
  publication-title: Am. J. Physiol.
– volume: 15
  start-page: 3012
  year: 1995
  ident: 10.1016/j.cmet.2017.08.019_bib35
  article-title: Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.6.3012
– volume: 63
  start-page: 4057
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib38
  article-title: Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
  publication-title: Diabetes
  doi: 10.2337/db14-0595
– volume: 23
  start-page: 582
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib12
  article-title: Exercise as a new physiological stimulus for brown adipose tissue activity
  publication-title: Nutr. Metab. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2012.01.013
– volume: 21
  start-page: 265
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib41
  article-title: Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans
  publication-title: Cardiol. Rev.
  doi: 10.1097/CRD.0b013e31829cabff
– volume: 12
  start-page: R60
  year: 2011
  ident: 10.1016/j.cmet.2017.08.019_bib51
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-6-r60
– volume: 11
  start-page: 620
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib39
  article-title: Gut microbiota modulate the metabolism of brown adipose tissue in mice
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200938v
– volume: 31
  start-page: 1067
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib37
  article-title: Influence of age and religious fasting on the body composition of Muslim women living in a westernized context
  publication-title: Nutr. Hosp.
– volume: 30
  start-page: 217
  year: 2009
  ident: 10.1016/j.cmet.2017.08.019_bib27
  article-title: Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue
  publication-title: Biomed. Res.
  doi: 10.2220/biomedres.30.217
– volume: 65
  start-page: 1202
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib40
  article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310798
– volume: 15
  start-page: 848
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib20
  article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.019
– volume: 270
  start-page: 29483
  year: 1995
  ident: 10.1016/j.cmet.2017.08.019_bib57
  article-title: Targeted disruption of the beta 3-adrenergic receptor gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.49.29483
– volume: 23
  start-page: 1216
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib66
  article-title: Altered microbiota contributes to reduced diet-induced obesity upon cold exposure
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.001
– volume: 22
  start-page: 546
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib29
  article-title: Brown and beige fat: physiological roles beyond heat generation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.007
– volume: 27
  start-page: 234
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib63
  article-title: Adaptive thermogenesis in adipocytes: is beige the new brown?
  publication-title: Genes Dev.
  doi: 10.1101/gad.211649.112
– volume: 54
  start-page: 2325
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib13
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R036012
– volume: 8
  start-page: e1002358
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib2
  article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002358
– volume: 336
  start-page: 1262
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib43
  article-title: Host-gut microbiota metabolic interactions
  publication-title: Science
  doi: 10.1126/science.1223813
– volume: 5
  start-page: 415
  year: 2007
  ident: 10.1016/j.cmet.2017.08.019_bib25
  article-title: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.05.003
– volume: 31
  start-page: 814
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib33
  article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2676
– volume: 19
  start-page: 1252
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib19
  article-title: Brown and beige fat: development, function and therapeutic potential
  publication-title: Nat. Med.
  doi: 10.1038/nm.3361
– volume: 126
  start-page: 126
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib22
  article-title: Energy balance and obesity
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.087213
– volume: 44
  start-page: 297
  year: 2004
  ident: 10.1016/j.cmet.2017.08.019_bib47
  article-title: Beta-adrenergic receptors and regulation of energy expenditure: a family affair
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.44.101802.121659
– volume: 1831
  start-page: 969
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib4
  article-title: Pharmacological and nutritional agents promoting browning of white adipose tissue
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2012.12.002
– volume: 12
  start-page: 59
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib6
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3176
– volume: 63
  start-page: 3253
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib8
  article-title: Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure
  publication-title: Diabetes
  doi: 10.2337/db13-1885
– volume: 21
  start-page: 389
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib53
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat. Med.
  doi: 10.1038/nm.3819
– volume: 214
  start-page: 242
  year: 2011
  ident: 10.1016/j.cmet.2017.08.019_bib7
  article-title: Nonshivering thermogenesis and its adequate measurement in metabolic studies
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.050989
– volume: 104
  start-page: 531
  year: 2001
  ident: 10.1016/j.cmet.2017.08.019_bib55
  article-title: Obesity and the regulation of energy balance
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00240-9
– volume: 19
  start-page: 181
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib36
  article-title: Fasting: molecular mechanisms and clinical applications
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.12.008
– volume: 21
  start-page: 33
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib11
  article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.12.009
– volume: 40
  start-page: 955
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib49
  article-title: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2016.23
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib34
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 5
  start-page: 1196
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib52
  article-title: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.10.044
– volume: 79
  start-page: 5112
  year: 2013
  ident: 10.1016/j.cmet.2017.08.019_bib32
  article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01043-13
– volume: 12
  start-page: e0177953
  year: 2017
  ident: 10.1016/j.cmet.2017.08.019_bib44
  article-title: Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177953
– volume: 115
  start-page: 1203
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib45
  article-title: Intermittent fasting and human metabolic health
  publication-title: J. Acad. Nutr. Diet.
  doi: 10.1016/j.jand.2015.02.018
– volume: 24
  start-page: 4948
  year: 2010
  ident: 10.1016/j.cmet.2017.08.019_bib46
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J.
  doi: 10.1096/fj.10-164921
– volume: 16
  start-page: 559
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib23
  article-title: Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.10.007
– volume: 20
  start-page: 396
  year: 2014
  ident: 10.1016/j.cmet.2017.08.019_bib42
  article-title: The browning of white adipose tissue: some burning issues
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.07.005
– volume: 328
  start-page: 1113
  year: 2010
  ident: 10.1016/j.cmet.2017.08.019_bib26
  article-title: Medicine. Beige can be slimming
  publication-title: Science
  doi: 10.1126/science.1190816
– volume: 6
  start-page: 10166
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib28
  article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10166
– volume: 255
  start-page: E120
  year: 1988
  ident: 10.1016/j.cmet.2017.08.019_bib14
  article-title: Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice
  publication-title: Am. J. Physiol.
– volume: 148
  start-page: 556
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib15
  article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.062
– volume: 28
  start-page: 2106
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib9
  article-title: Associating microbiome composition with environmental covariates using generalized UniFrac distances
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts342
– volume: 4
  start-page: 461
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib1
  article-title: Integration of body temperature into the analysis of energy expenditure in the mouse
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2015.03.001
– volume: 6
  start-page: 773
  year: 2016
  ident: 10.1016/j.cmet.2017.08.019_bib50
  article-title: Integrative physiology of fasting
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c150013
– volume: 356
  start-page: 213
  year: 2007
  ident: 10.1016/j.cmet.2017.08.019_bib24
  article-title: Obesity and diabetes in the developing world--a growing challenge
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp068177
– volume: 12
  start-page: 902
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib61
  article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3589
– volume: 150
  start-page: 366
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib62
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.016
– volume: 11
  start-page: 1397
  year: 2012
  ident: 10.1016/j.cmet.2017.08.019_bib60
  article-title: Age-related topographical metabolic signatures for the rat gastrointestinal contents
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2011507
– volume: 163
  start-page: 1360
  year: 2015
  ident: 10.1016/j.cmet.2017.08.019_bib10
  article-title: Gut microbiota orchestrates energy homeostasis during cold
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.004
– reference: 28960211 - Nat Rev Endocrinol. 2017 Nov;13(11):623
– reference: 29117546 - Cell Metab. 2017 Nov 7;26(5):801
SSID ssj0036393
Score 2.6648483
Snippet While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 672
SubjectTerms Adipose Tissue, Beige - metabolism
Adipose Tissue, White - metabolism
Animals
beige adipocytes
browning
Energy Metabolism
every-other-day fasting (EODF)
Fasting
Fatty Liver - complications
Fatty Liver - metabolism
Fatty Liver - microbiology
Fatty Liver - therapy
Fibroblast Growth Factors - metabolism
Gastrointestinal Microbiome
gut microbiota
Insulin Resistance
intermittent fasting
metabolic syndrome
Metabolic Syndrome - complications
Metabolic Syndrome - metabolism
Metabolic Syndrome - microbiology
Metabolic Syndrome - therapy
Mice, Inbred C57BL
obesity
Obesity - complications
Obesity - metabolism
Obesity - microbiology
Obesity - therapy
short-chain fatty acid
Signal Transduction
Thermogenesis
Title Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota
URI https://dx.doi.org/10.1016/j.cmet.2017.08.019
https://www.ncbi.nlm.nih.gov/pubmed/28918936
https://www.proquest.com/docview/1940196558
https://pubmed.ncbi.nlm.nih.gov/PMC5668683
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUOgltGmabtIUFXorZq3Vh-VjmnYbCi2FNLA3IeuDuDTeJfYe8m_6W_rLOiPbSzYNOfRmWyMQGnn0ZL95Q8i7IjoYn1JZUAUcUHS0mXXRZUXlvKxChKCZCLLf1Pml-LKQix1yNubCIK1yiP19TE_RengyHWZzuqrr6QWCa4FqMbBI8QriMBc6JfEtPozRmMMOnEj2YJyh9ZA403O83HVAPiUrkownqu08vDn9Cz7vcyjvbErzZ2RvQJP0tB_wc7ITmn3ypK8vefuC1Ol733XdATDu6Ny2yHGm3xMDL7Q0Fcejp75eLdtA04Ec223j6ceEJlswGioH0OqWXlxZzK6igBnp53X35_fXupdx6uwBuZx_-nF2ng21FTKHJQwyN2PewdGjElY5wDAqsjzqUrqAoIXnkfmQl95KxiNAniBE0HmZ55ZX3nEh-Uuy2yyb8IrQYqatliK6oqiEkt5WLs4Cd9DZ2-DjhLBxUo0bhMex_sUvMzLMfhp0hEFHGCyKycoJeb_ps-plNx61lqOvzNbiMbAvPNrv7ehYA28V_iqxTViuW8NKkbQWpZ6Qw97Rm3HAEZUBylMTUmwtgY0BKnZvtzT1VVLuBuysleZH_zneY_IU7xKXkL8mu93NOpwAJuqqN2nR_wU1jg5i
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILKq-yUMBI3FC08fqR5FjaLltoK6S20t4sxw81iGZXJHvov-G38MuYcZIVC6gHblE8liyPPfM5-fwNIe-yYGF8SiVeZXBAyYNJjA02yUrrZOkDBM1IkD1Ts0vxaS7nW-RguAuDtMo-9ncxPUbr_s24n83xsqrG5wiuBarFwCLFpzvkLqCBDHfn8fzDEI45pODIsgfrBM37mzMdycteeyRUsizqeKLczr-z09_o808S5W9ZabpDHvZwku53I35Etnz9mNzrCkzePCFV_OB3XbWAjFs6NQ2SnOmXSMHzDY3V8ei-q5aLxtN4Isd2Uzt6GOFkA0Z96QBa3tDzK4PXqyiARvpx1f78cVp1Ok6teUoup0cXB7OkL66QWKxhkNgJcxbOHqUwygKIUYGlIS-k9YhaeBqY82nhjGQ8AObxQvg8LdLU8NJZLiR_RrbrRe2fE5pNcpNLEWyWlUJJZ0obJp5b6OyMd2FE2DCp2vbK41gA45seKGZfNTpCoyM0VsVkxYi8X_dZdrobt1rLwVd6Y_VoSAy39ns7OFbDtsJ_Jab2i1WjWSGi2KLMR2S3c_R6HHBGZQDz1IhkG0tgbYCS3ZstdXUVpbsBPOcq5y_-c7xvyP3ZxemJPjk--_ySPMCWSCzke2S7_b7yrwAgteXruAF-AcufEYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermittent+Fasting+Promotes+White+Adipose+Browning+and+Decreases+Obesity+by+Shaping+the+Gut+Microbiota&rft.jtitle=Cell+metabolism&rft.au=Li%2C+Guolin&rft.au=Xie%2C+Cen&rft.au=Lu%2C+Siyu&rft.au=Nichols%2C+Robert+G&rft.date=2017-10-03&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=26&rft.issue=4&rft.spage=672&rft_id=info:doi/10.1016%2Fj.cmet.2017.08.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon