Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota
While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its effi...
Saved in:
Published in | Cell metabolism Vol. 26; no. 4; pp. 672 - 685.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.
[Display omitted]
•EODF is a novel strategy for beige adipose development•EODF selectively induces WAT beiging by reshaping gut microbiota•EODF reverses high-fat-diet-induced obesity and associated metabolic disorders•The microbiota-fat axis orchestrates EODF-induced metabolic improvement
White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie and colleagues find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects of EODF on beiging and metabolic improvement. |
---|---|
AbstractList | While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means to induce beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every other day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue, and dramatically ameliorates obesity, insulin resistance and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to the elevation of the fermentation products acetate and lactate, and the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.
White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie
et al
. find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects EODF on beiging and metabolic improvement. While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. [Display omitted] •EODF is a novel strategy for beige adipose development•EODF selectively induces WAT beiging by reshaping gut microbiota•EODF reverses high-fat-diet-induced obesity and associated metabolic disorders•The microbiota-fat axis orchestrates EODF-induced metabolic improvement White adipose beiging is a promising therapy for obesity and related metabolic diseases. Here, Li, Xie and colleagues find that an EODF regimen can selectively induce the beiging of white adipose tissue and subsequently ameliorate metabolic disorders in mice. Gut microbiota orchestrate the effects of EODF on beiging and metabolic improvement. While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. |
Author | Yan, Tingting Li, Guolin Li, Licen Ma, Yinyan Brocker, Chad N. Patterson, Andrew D. Xie, Cen Patel, Daxeshkumar Krausz, Kristopher W. Tian, Yuan Gonzalez, Frank J. Nichols, Robert G. Lu, Siyu Xiang, Rong Gavrilova, Oksana |
AuthorAffiliation | 5 Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA 1 Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA 3 The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China 2 The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China 4 Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802, USA 6 The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China |
AuthorAffiliation_xml | – name: 5 Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA – name: 2 The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China – name: 6 The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China – name: 1 Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA – name: 4 Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA, 16802, USA – name: 3 The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China |
Author_xml | – sequence: 1 givenname: Guolin surname: Li fullname: Li, Guolin email: hnsdlgl@hunnu.edu.cn organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 2 givenname: Cen surname: Xie fullname: Xie, Cen organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 3 givenname: Siyu surname: Lu fullname: Lu, Siyu organization: The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China – sequence: 4 givenname: Robert G. surname: Nichols fullname: Nichols, Robert G. organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 5 givenname: Yuan surname: Tian fullname: Tian, Yuan organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 6 givenname: Licen surname: Li fullname: Li, Licen organization: The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China – sequence: 7 givenname: Daxeshkumar surname: Patel fullname: Patel, Daxeshkumar organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 8 givenname: Yinyan surname: Ma fullname: Ma, Yinyan organization: Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 9 givenname: Chad N. surname: Brocker fullname: Brocker, Chad N. organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 10 givenname: Tingting surname: Yan fullname: Yan, Tingting organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 11 givenname: Kristopher W. surname: Krausz fullname: Krausz, Kristopher W. organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 12 givenname: Rong surname: Xiang fullname: Xiang, Rong organization: The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China – sequence: 13 givenname: Oksana surname: Gavrilova fullname: Gavrilova, Oksana organization: Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 14 givenname: Andrew D. surname: Patterson fullname: Patterson, Andrew D. organization: Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 15 givenname: Frank J. surname: Gonzalez fullname: Gonzalez, Frank J. email: gonzalef@mail.nih.gov organization: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28918936$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu1DAUtVARfcAPsEBZskl6HcceR0JIpaUPqahIgFhajnPT8SixB9vTav6Gb-HLcDQtAhZd3Svd89A955DsOe-QkNcUKgpUHK8qM2GqaqCLCmQFtH1GDmjL6nLR1LCXd86hbCij--QwxhUAE6xlL8h-LVsqWyYOiL1yCcNkU0KXinMdk3W3xefgJ58wFt-XNmFx0tu1j1h8CP7ezXft-uIMTUAdM-imw2jTtui2xZelXs-AtMTiYpN-_fxkTfCd9Um_JM8HPUZ89TCPyLfzj19PL8vrm4ur05Pr0vCaptLUtDdNLbtGC7OoF2KgMMiWGwQQjMFAe4S215yygVOOTYMSWgDNut6whrMj8n6nu950E_Ym_xX0qNbBTjpslddW_Xtxdqlu_Z3iQkghWRZ4-yAQ_I8NxqQmGw2Oo3boN1HRtslRC85lhr752-uPyWO-GSB3gJxCjAEHZWzSyfrZ2o6KgpqrVCs1V6nmKhVIlfUztf6P-qj-JOndjoQ54TuLQUVj0RnsbUCTVO_tU_Tfl5i6WA |
CitedBy_id | crossref_primary_10_2147_DMSO_S392372 crossref_primary_10_26599_FSHW_2024_9250038 crossref_primary_10_1002_cyto_a_24555 crossref_primary_10_1080_19490976_2023_2237645 crossref_primary_10_1146_annurev_physiol_060721_092930 crossref_primary_10_3389_fmicb_2023_1203205 crossref_primary_10_1016_j_clnu_2024_01_005 crossref_primary_10_3390_biom14040483 crossref_primary_10_1016_j_celrep_2020_107998 crossref_primary_10_1016_j_molmet_2019_12_014 crossref_primary_10_1016_j_cmet_2018_08_005 crossref_primary_10_1186_s13063_022_06439_x crossref_primary_10_1002_advs_202301499 crossref_primary_10_3390_nu13051450 crossref_primary_10_1007_s13679_018_0308_9 crossref_primary_10_1016_j_fct_2023_114305 crossref_primary_10_1016_j_bbadis_2022_166373 crossref_primary_10_1021_acs_jafc_4c05695 crossref_primary_10_3390_nu13062101 crossref_primary_10_1007_s13238_020_00814_7 crossref_primary_10_1016_j_taap_2020_115181 crossref_primary_10_3389_fgene_2020_00297 crossref_primary_10_29169_1927_5951_2019_09_05_2 crossref_primary_10_3390_antiox14010056 crossref_primary_10_1371_journal_pone_0202784 crossref_primary_10_1016_j_clnu_2020_09_020 crossref_primary_10_12688_f1000research_20204_1 crossref_primary_10_3390_nu17010143 crossref_primary_10_3389_fimmu_2025_1501850 crossref_primary_10_1142_S0192415X2550003X crossref_primary_10_1021_acs_jafc_9b05833 crossref_primary_10_26442_00403660_2024_10_202884 crossref_primary_10_31146_1682_8658_ecg_228_8_7_27 crossref_primary_10_1002_mnfr_201700721 crossref_primary_10_1016_j_aninu_2021_10_010 crossref_primary_10_3390_nu12041096 crossref_primary_10_1016_j_arr_2024_102274 crossref_primary_10_1016_j_chembiol_2024_04_016 crossref_primary_10_1038_s41392_022_01104_w crossref_primary_10_1210_endrev_bnaa026 crossref_primary_10_3389_fendo_2022_918923 crossref_primary_10_1016_j_cmet_2021_07_007 crossref_primary_10_5187_jast_2021_e94 crossref_primary_10_3390_nu15102277 crossref_primary_10_1016_j_freeradbiomed_2024_03_021 crossref_primary_10_3390_nu17010035 crossref_primary_10_1093_hmg_ddy137 crossref_primary_10_1002_advs_202407789 crossref_primary_10_1093_nutrit_nuab108 crossref_primary_10_3389_fphys_2022_1038421 crossref_primary_10_3390_ijms23158307 crossref_primary_10_1007_s13311_019_00719_2 crossref_primary_10_3390_ijms25031882 crossref_primary_10_3390_nu16213591 crossref_primary_10_1016_j_isci_2022_104994 crossref_primary_10_1039_D2FO02063G crossref_primary_10_1016_j_jare_2024_03_023 crossref_primary_10_3389_fpubh_2023_1133614 crossref_primary_10_1007_s10068_024_01759_x crossref_primary_10_3389_fphys_2018_00193 crossref_primary_10_3389_fcimb_2021_656674 crossref_primary_10_3389_fmicb_2021_642999 crossref_primary_10_1016_j_celrep_2020_02_013 crossref_primary_10_3389_fnut_2022_838091 crossref_primary_10_3389_fendo_2019_00413 crossref_primary_10_1016_j_celrep_2020_02_051 crossref_primary_10_1016_j_cmet_2023_11_003 crossref_primary_10_1038_s41579_019_0256_8 crossref_primary_10_14814_phy2_15393 crossref_primary_10_1016_j_jprot_2022_104500 crossref_primary_10_1093_jmcb_mjab038 crossref_primary_10_1016_j_omtm_2022_03_007 crossref_primary_10_1111_cas_15492 crossref_primary_10_3390_nu14194108 crossref_primary_10_3390_ijms23147641 crossref_primary_10_1016_j_isci_2024_110202 crossref_primary_10_1161_CIRCRESAHA_120_318155 crossref_primary_10_3390_nu15194270 crossref_primary_10_3724_abbs_2022140 crossref_primary_10_3390_ijms252212321 crossref_primary_10_3389_fcell_2022_803280 crossref_primary_10_1016_j_clnu_2023_06_011 crossref_primary_10_1080_19490976_2021_1994835 crossref_primary_10_1007_s11033_022_07672_y crossref_primary_10_1038_s41574_021_00562_6 crossref_primary_10_1016_j_advnut_2025_100416 crossref_primary_10_1016_j_celrep_2022_111547 crossref_primary_10_1016_j_jare_2024_03_005 crossref_primary_10_3389_fcimb_2021_752708 crossref_primary_10_1016_j_foodres_2022_111373 crossref_primary_10_1080_21623945_2020_1870060 crossref_primary_10_1039_D1FO02886C crossref_primary_10_1113_JP281979 crossref_primary_10_3389_fmicb_2019_02689 crossref_primary_10_1111_eci_14029 crossref_primary_10_1016_j_mam_2019_07_001 crossref_primary_10_1152_ajpendo_00310_2023 crossref_primary_10_1038_s41598_019_49462_w crossref_primary_10_1016_j_mam_2019_07_005 crossref_primary_10_3390_cells12040533 crossref_primary_10_3390_nu14235080 crossref_primary_10_11569_wcjd_v32_i4_243 crossref_primary_10_3390_nu15061487 crossref_primary_10_1016_j_jtherbio_2022_103386 crossref_primary_10_3153_FH23008 crossref_primary_10_3389_fgene_2020_590369 crossref_primary_10_3389_fphar_2021_647529 crossref_primary_10_3390_healthcare11091310 crossref_primary_10_1080_19490976_2024_2390136 crossref_primary_10_3233_NHA_189000 crossref_primary_10_3390_nu15010151 crossref_primary_10_1210_clinem_dgab921 crossref_primary_10_1039_D0FO03423A crossref_primary_10_1152_physiol_00030_2019 crossref_primary_10_3390_cells8121552 crossref_primary_10_1002_14651858_CD015610 crossref_primary_10_1039_D2FO01973F crossref_primary_10_1016_j_jff_2019_103639 crossref_primary_10_3389_fnut_2022_980382 crossref_primary_10_1038_s42255_022_00687_6 crossref_primary_10_1097_j_pain_0000000000001918 crossref_primary_10_1016_j_livres_2019_01_006 crossref_primary_10_3390_endocrines3040052 crossref_primary_10_3390_nu15122743 crossref_primary_10_7554_eLife_91060_3 crossref_primary_10_3390_nu13113725 crossref_primary_10_1016_j_clnu_2024_07_024 crossref_primary_10_1002_mco2_171 crossref_primary_10_1016_j_apsb_2019_11_017 crossref_primary_10_3390_nu14214655 crossref_primary_10_3390_cells8080795 crossref_primary_10_1002_imo2_8 crossref_primary_10_1038_s41467_024_45724_y crossref_primary_10_1053_j_gastro_2020_10_057 crossref_primary_10_1038_s41392_022_01178_6 crossref_primary_10_1159_000523712 crossref_primary_10_3390_nu13072428 crossref_primary_10_3390_metabo11020062 crossref_primary_10_1080_10408398_2022_2110034 crossref_primary_10_1111_apha_13518 crossref_primary_10_3389_fgene_2018_00212 crossref_primary_10_3390_ijms20102519 crossref_primary_10_3389_fpsyt_2022_926251 crossref_primary_10_1016_j_nutres_2021_03_001 crossref_primary_10_3390_nu14050981 crossref_primary_10_7570_jomes24010 crossref_primary_10_1152_ajpendo_00278_2021 crossref_primary_10_1038_s41467_022_33352_3 crossref_primary_10_3389_fonc_2023_1138362 crossref_primary_10_3390_biomedicines9020140 crossref_primary_10_3389_fmicb_2018_01874 crossref_primary_10_3390_ijms23094759 crossref_primary_10_1016_j_jnutbio_2023_109318 crossref_primary_10_1016_j_isci_2023_107239 crossref_primary_10_1074_jbc_RA120_016303 crossref_primary_10_3389_fphys_2020_00311 crossref_primary_10_3390_biomedicines11051290 crossref_primary_10_1016_j_brainres_2024_149176 crossref_primary_10_1007_s00394_023_03241_6 crossref_primary_10_1007_s00394_022_03036_1 crossref_primary_10_23736_S2724_6507_21_03596_X crossref_primary_10_29333_ejgm_104620 crossref_primary_10_3390_foods11081118 crossref_primary_10_1038_s41522_023_00386_4 crossref_primary_10_1016_j_physbeh_2020_112827 crossref_primary_10_1016_j_gastha_2021_11_005 crossref_primary_10_1016_j_isci_2023_107046 crossref_primary_10_1021_acs_jafc_0c05798 crossref_primary_10_1016_j_lfs_2021_119675 crossref_primary_10_1021_acs_jafc_2c04888 crossref_primary_10_1007_s00394_019_01938_1 crossref_primary_10_1016_j_numecd_2023_05_005 crossref_primary_10_1016_j_archger_2023_105003 crossref_primary_10_1016_j_sleep_2020_03_020 crossref_primary_10_3389_fphys_2018_01908 crossref_primary_10_1080_01635581_2024_2367266 crossref_primary_10_3389_fcell_2022_955612 crossref_primary_10_1016_j_tifs_2024_104779 crossref_primary_10_3390_biom14111437 crossref_primary_10_1152_ajpendo_00014_2018 crossref_primary_10_1016_j_jff_2025_106735 crossref_primary_10_3390_ani14101498 crossref_primary_10_3390_nu14153134 crossref_primary_10_1016_j_carbpol_2024_122870 crossref_primary_10_1016_j_snb_2024_136207 crossref_primary_10_29219_fnr_v66_7909 crossref_primary_10_3390_nu15235005 crossref_primary_10_1080_1028415X_2023_2234704 crossref_primary_10_1186_s12967_018_1748_4 crossref_primary_10_14218_JCTH_2020_00131 crossref_primary_10_1002_oby_22964 crossref_primary_10_1016_j_jnutbio_2022_109122 crossref_primary_10_3390_nu15184072 crossref_primary_10_1210_jendso_bvad082 crossref_primary_10_1186_s12866_020_01754_2 crossref_primary_10_1002_bies_202300084 crossref_primary_10_1038_s41569_018_0097_6 crossref_primary_10_3389_fendo_2023_1215772 crossref_primary_10_1038_s41522_024_00582_w crossref_primary_10_1096_fj_201903005RR crossref_primary_10_1016_j_phrs_2022_106136 crossref_primary_10_1007_s00278_020_00471_5 crossref_primary_10_3390_ani13172783 crossref_primary_10_3389_fendo_2019_00368 crossref_primary_10_1016_j_celrep_2023_112559 crossref_primary_10_1007_s00424_023_02827_7 crossref_primary_10_3920_BM2020_0149 crossref_primary_10_1038_s41522_024_00495_8 crossref_primary_10_3389_fcell_2022_849985 crossref_primary_10_1016_j_cofs_2020_10_023 crossref_primary_10_1016_j_hsr_2024_100148 crossref_primary_10_1016_j_molmet_2019_04_002 crossref_primary_10_1002_adbi_202200337 crossref_primary_10_1128_mbio_03688_21 crossref_primary_10_3389_fmolb_2022_1038830 crossref_primary_10_1080_19490976_2020_1862612 crossref_primary_10_1007_s11756_021_00717_w crossref_primary_10_1016_j_jep_2022_115997 crossref_primary_10_16984_saufenbilder_1209954 crossref_primary_10_3389_fphys_2022_950619 crossref_primary_10_1093_nar_gkae1161 crossref_primary_10_1016_j_jnutbio_2023_109526 crossref_primary_10_3390_nu13093248 crossref_primary_10_1186_s12986_025_00906_3 crossref_primary_10_1002_cptx_54 crossref_primary_10_1016_j_tem_2021_06_004 crossref_primary_10_1016_j_tibs_2017_11_004 crossref_primary_10_1152_ajpendo_00084_2023 crossref_primary_10_1016_j_metabol_2024_155813 crossref_primary_10_1038_s42255_025_01254_5 crossref_primary_10_1039_D0FO02093A crossref_primary_10_3390_ijms242417437 crossref_primary_10_1042_CS20230973 crossref_primary_10_1016_j_mam_2018_11_003 crossref_primary_10_1016_j_clim_2020_108575 crossref_primary_10_1016_j_cmet_2020_02_008 crossref_primary_10_3390_nu14245311 crossref_primary_10_3389_fendo_2021_696505 crossref_primary_10_1007_s13668_024_00569_1 crossref_primary_10_1016_j_bbi_2021_02_011 crossref_primary_10_1016_j_it_2020_04_005 crossref_primary_10_1126_sciadv_abg8335 crossref_primary_10_1016_j_mce_2020_110869 crossref_primary_10_1172_jci_insight_150249 crossref_primary_10_3390_ijms242417420 crossref_primary_10_1172_jci_insight_153755 crossref_primary_10_1155_2023_4038546 crossref_primary_10_1186_s43066_024_00368_x crossref_primary_10_1111_1440_1681_13304 crossref_primary_10_3390_ijms21176039 crossref_primary_10_1002_mco2_212 crossref_primary_10_1152_ajpgi_00475_2020 crossref_primary_10_1096_fj_202002197R crossref_primary_10_3389_fnut_2021_784681 crossref_primary_10_1016_j_yjmcc_2020_09_006 crossref_primary_10_1096_fj_201700614R crossref_primary_10_3390_life14050559 crossref_primary_10_20517_jca_2024_01 crossref_primary_10_3390_ijms21176241 crossref_primary_10_1084_jem_20190086 crossref_primary_10_1016_j_lfs_2024_122473 crossref_primary_10_1038_s41467_020_14676_4 crossref_primary_10_15252_embr_202357268 crossref_primary_10_1007_s00394_019_01928_3 crossref_primary_10_1039_D1FO02716F crossref_primary_10_1002_advs_202204487 crossref_primary_10_1016_j_molmet_2021_101427 crossref_primary_10_3390_nu17061029 crossref_primary_10_1098_rsif_2021_0613 crossref_primary_10_1186_s12986_021_00635_3 crossref_primary_10_3389_fnut_2023_1215836 crossref_primary_10_1080_10408398_2023_2202750 crossref_primary_10_1007_s11033_022_07142_5 crossref_primary_10_3390_jcm10153219 crossref_primary_10_15252_embr_202255664 crossref_primary_10_3390_ijms231810814 crossref_primary_10_1016_j_chemosphere_2020_127959 crossref_primary_10_3390_nu16223828 crossref_primary_10_1016_j_metabol_2019_154048 crossref_primary_10_1016_j_cmet_2017_09_013 crossref_primary_10_1016_j_numecd_2021_05_002 crossref_primary_10_1080_10408398_2020_1867054 crossref_primary_10_3390_nu16071009 crossref_primary_10_1080_19490976_2021_1874815 crossref_primary_10_1096_fj_201902708R crossref_primary_10_1111_jsr_13418 crossref_primary_10_1038_s41396_019_0492_y crossref_primary_10_3389_fcvm_2020_602088 crossref_primary_10_3389_fendo_2022_908868 crossref_primary_10_1186_s13104_022_06209_7 crossref_primary_10_3389_fendo_2022_1065263 crossref_primary_10_1097_PRS_0000000000006740 crossref_primary_10_22312_sdusbed_494428 crossref_primary_10_1016_j_cmet_2020_11_010 crossref_primary_10_1016_j_apsb_2022_02_004 crossref_primary_10_3389_fmicb_2021_761210 crossref_primary_10_1097_PHM_0000000000001727 crossref_primary_10_1016_j_cmet_2019_07_016 crossref_primary_10_1093_nutrit_nuac092 crossref_primary_10_1039_D4FO02142H crossref_primary_10_1038_s41366_019_0445_6 crossref_primary_10_1016_j_bbr_2021_113163 crossref_primary_10_1038_s41418_024_01262_0 crossref_primary_10_3389_fmicb_2022_881099 crossref_primary_10_1016_j_jff_2023_105783 crossref_primary_10_1002_jsfa_13758 crossref_primary_10_1016_j_tim_2021_03_015 crossref_primary_10_1038_s42255_018_0017_4 crossref_primary_10_3389_fendo_2023_1198984 crossref_primary_10_3389_fnut_2020_00050 crossref_primary_10_3390_biom14101223 crossref_primary_10_1080_0194262X_2017_1412848 crossref_primary_10_1007_s10123_022_00272_7 crossref_primary_10_1111_1462_2920_15517 crossref_primary_10_1021_acs_jafc_0c02654 crossref_primary_10_1016_j_biopha_2023_115484 crossref_primary_10_1016_j_crfs_2024_100683 crossref_primary_10_3892_ijmm_2022_5191 crossref_primary_10_3389_fendo_2023_1289571 crossref_primary_10_3389_fnut_2022_860575 crossref_primary_10_1001_jamanetworkopen_2024_16786 crossref_primary_10_1038_s41580_021_00411_4 crossref_primary_10_3390_nu16244310 crossref_primary_10_1007_s13679_024_00579_8 crossref_primary_10_1016_j_celrep_2021_109506 crossref_primary_10_1186_s12864_018_5235_3 crossref_primary_10_1038_s41467_022_34964_5 crossref_primary_10_1038_s43587_022_00311_y crossref_primary_10_1152_ajpgi_00304_2019 crossref_primary_10_1016_j_fshw_2021_07_018 crossref_primary_10_2174_0929867327666200505090449 crossref_primary_10_3389_fnut_2024_1393292 crossref_primary_10_1186_s12915_019_0693_x crossref_primary_10_1002_advs_202101991 crossref_primary_10_1371_journal_pcbi_1009947 crossref_primary_10_1016_j_jnha_2024_100165 crossref_primary_10_1016_j_metabol_2021_154712 crossref_primary_10_3390_medicina55040084 crossref_primary_10_1073_pnas_1912573116 crossref_primary_10_1186_s13578_021_00710_5 crossref_primary_10_12677_HJMCe_2023_114027 crossref_primary_10_1016_j_phymed_2024_155528 crossref_primary_10_1007_s00125_021_05464_w crossref_primary_10_1016_j_jot_2022_09_006 crossref_primary_10_1136_gutjnl_2023_329998 crossref_primary_10_1080_27694127_2024_2396696 crossref_primary_10_37527_2022_72_2_004 crossref_primary_10_1093_nutrit_nuad026 crossref_primary_10_1016_j_molmet_2017_10_011 crossref_primary_10_1016_j_jff_2023_105731 crossref_primary_10_1038_s41598_020_79211_3 crossref_primary_10_3233_NHA_180044 crossref_primary_10_1016_j_cbd_2021_100823 crossref_primary_10_3390_nu12092749 crossref_primary_10_1186_s12986_022_00694_0 crossref_primary_10_2337_db21_0535 crossref_primary_10_3390_ijms19113552 crossref_primary_10_1016_j_foodres_2022_111501 crossref_primary_10_1007_s11010_024_04928_y crossref_primary_10_1186_s40168_022_01430_9 crossref_primary_10_3390_nu14030456 crossref_primary_10_3389_fnut_2024_1387394 crossref_primary_10_3390_nu14193995 crossref_primary_10_3889_oamjms_2022_9508 crossref_primary_10_1002_adbi_202300100 crossref_primary_10_1007_s13105_019_00723_2 crossref_primary_10_1016_j_jad_2021_06_028 crossref_primary_10_1016_j_mito_2020_03_009 crossref_primary_10_1111_1753_0407_13288 crossref_primary_10_1038_s41392_024_01771_x crossref_primary_10_1039_D2FO02415B crossref_primary_10_3390_nu11071613 crossref_primary_10_1038_s43587_024_00678_0 crossref_primary_10_7554_eLife_91060 crossref_primary_10_3390_ijms25158352 crossref_primary_10_1111_ijfs_16530 crossref_primary_10_1002_mnfr_202200496 crossref_primary_10_1186_s12986_025_00904_5 crossref_primary_10_1186_s12915_021_00987_5 crossref_primary_10_31883_pjfns_143164 crossref_primary_10_3389_fphys_2021_689747 crossref_primary_10_1016_j_cmet_2019_09_016 crossref_primary_10_1039_C8FO02154F crossref_primary_10_1016_j_phrs_2021_105548 crossref_primary_10_1080_13813455_2023_2268301 crossref_primary_10_3390_nu11081943 crossref_primary_10_3389_fneur_2019_01245 crossref_primary_10_1016_j_jnutbio_2021_108856 crossref_primary_10_1016_j_mib_2023_102287 crossref_primary_10_12938_bmfh_2023_111 crossref_primary_10_1038_nrendo_2017_131 crossref_primary_10_3390_medicines10020018 crossref_primary_10_3390_nu14091758 crossref_primary_10_3390_nu15051164 crossref_primary_10_1017_S0007114520004055 crossref_primary_10_1016_j_celrep_2024_115225 crossref_primary_10_3389_fmicb_2022_922727 crossref_primary_10_1016_j_freeradbiomed_2020_04_013 crossref_primary_10_3390_nu14020251 crossref_primary_10_1002_mco2_70030 crossref_primary_10_1016_j_envint_2023_108274 crossref_primary_10_1016_j_tjnut_2023_04_012 crossref_primary_10_18502_sjms_v15i5_7147 crossref_primary_10_2478_cpp_2022_0006 crossref_primary_10_1113_JP283995 crossref_primary_10_1128_spectrum_03558_22 crossref_primary_10_1016_j_nut_2024_112370 crossref_primary_10_3390_nu15020456 crossref_primary_10_31590_ejosat_935513 crossref_primary_10_1016_j_fbio_2024_104255 crossref_primary_10_1093_ajcn_nqaa388 crossref_primary_10_3390_cells14020084 crossref_primary_10_1002_mnfr_202200173 crossref_primary_10_3390_app132212201 crossref_primary_10_1111_imm_13829 crossref_primary_10_1016_j_xcrm_2021_100397 crossref_primary_10_1038_cr_2017_130 crossref_primary_10_20473_fmi_v60i2_54389 crossref_primary_10_2147_IJN_S441847 |
Cites_doi | 10.1016/0014-5793(84)80822-4 10.1016/j.cell.2014.09.048 10.1073/pnas.1310261110 10.1038/srep41066 10.1038/nm.3994 10.3164/jcbn.16-23 10.1038/nri.2016.42 10.1186/2251-6581-12-4 10.1038/nri.2016.18 10.1210/endo.140.4.6668 10.1073/pnas.0605374104 10.1016/j.cell.2015.02.020 10.1128/MCB.15.6.3012 10.2337/db14-0595 10.1016/j.numecd.2012.01.013 10.1097/CRD.0b013e31829cabff 10.1186/gb-2011-12-6-r60 10.1021/pr200938v 10.2220/biomedres.30.217 10.1136/gutjnl-2015-310798 10.1016/j.cmet.2012.04.019 10.1074/jbc.270.49.29483 10.1016/j.cmet.2016.05.001 10.1016/j.cmet.2015.09.007 10.1101/gad.211649.112 10.1194/jlr.R036012 10.1371/journal.pcbi.1002358 10.1126/science.1223813 10.1016/j.cmet.2007.05.003 10.1038/nbt.2676 10.1038/nm.3361 10.1161/CIRCULATIONAHA.111.087213 10.1146/annurev.pharmtox.44.101802.121659 10.1016/j.bbalip.2012.12.002 10.1038/nmeth.3176 10.2337/db13-1885 10.1038/nm.3819 10.1242/jeb.050989 10.1016/S0092-8674(01)00240-9 10.1016/j.cmet.2013.12.008 10.1016/j.cmet.2014.12.009 10.1038/ijo.2016.23 10.1038/nmeth.1923 10.1016/j.celrep.2013.10.044 10.1128/AEM.01043-13 10.1371/journal.pone.0177953 10.1016/j.jand.2015.02.018 10.1096/fj.10-164921 10.1016/j.cmet.2012.10.007 10.1016/j.cmet.2014.07.005 10.1126/science.1190816 10.1038/ncomms10166 10.1016/j.cell.2011.11.062 10.1093/bioinformatics/bts342 10.1016/j.molmet.2015.03.001 10.1002/cphy.c150013 10.1056/NEJMp068177 10.1038/nmeth.3589 10.1016/j.cell.2012.05.016 10.1021/pr2011507 10.1016/j.cell.2015.11.004 |
ContentType | Journal Article |
Copyright | 2017 Published by Elsevier Inc. |
Copyright_xml | – notice: 2017 – notice: Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2017.08.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 685.e4 |
ExternalDocumentID | PMC5668683 28918936 10_1016_j_cmet_2017_08_019 S1550413117305041 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES022186 |
GroupedDBID | --- --K 0R~ 0SF 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-c21dc428b4a6c7276f10f895ce006330f1de09da513f515e44e80900a3bdc3453 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:09:04 EDT 2025 Fri Jul 11 05:00:26 EDT 2025 Mon Jul 21 05:58:09 EDT 2025 Tue Jul 01 03:58:16 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Fri Aug 02 08:58:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | metabolic syndrome short-chain fatty acid intermittent fasting every-other-day fasting (EODF) browning beige adipocytes gut microbiota obesity |
Language | English |
License | This article is made available under the Elsevier license. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-c21dc428b4a6c7276f10f895ce006330f1de09da513f515e44e80900a3bdc3453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413117305041 |
PMID | 28918936 |
PQID | 1940196558 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668683 proquest_miscellaneous_1940196558 pubmed_primary_28918936 crossref_citationtrail_10_1016_j_cmet_2017_08_019 crossref_primary_10_1016_j_cmet_2017_08_019 elsevier_sciencedirect_doi_10_1016_j_cmet_2017_08_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-03 |
PublicationDateYYYYMMDD | 2017-10-03 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bäckhed, Manchester, Semenkovich, Gordon (bib3) 2007; 104 Kozich, Westcott, Baxter, Highlander, Schloss (bib32) 2013; 79 Patterson, Laughlin, LaCroix, Hartman, Natarajan, Senger, Martínez, Villaseñor, Sears, Marinac, Gallo (bib45) 2015; 115 Suárez-Zamorano, Fabbiano, Chevalier, Stojanović, Colin, Stevanović, Veyrat-Durebex, Tarallo, Rigo, Germain (bib56) 2015; 21 Hill, Wyatt, Peters (bib22) 2012; 126 Mestdagh, Dumas, Rezzi, Kochhar, Holmes, Claus, Nicholson (bib39) 2012; 11 Jiang, Xie, Lv, Li, Krausz, Shi, Brocker, Desai, Amin, Bisson (bib28) 2015; 6 Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bib51) 2011; 12 Cannon, Nedergaard (bib7) 2011; 214 Longo, Mattson (bib36) 2014; 19 Carrière, Jeanson, Berger-Müller, André, Chenouard, Arnaud, Barreau, Walther, Galinier, Wdziekonski (bib8) 2014; 63 Nedergaard, Cannon (bib42) 2014; 20 Nicholson, Holmes, Kinross, Burcelin, Gibson, Jia, Pettersson (bib43) 2012; 336 López-Bueno, González-Jiménez, Navarro-Prado, Montero-Alonso, Schmidt-RioValle (bib37) 2014; 31 Spiegelman, Flier (bib55) 2001; 104 Langmead, Salzberg (bib34) 2012; 9 Robidoux, Martin, Collins (bib47) 2004; 44 Secor, Carey (bib50) 2016; 6 Kim, Nam, Kang, Lee, Lee, Hwang, Kim (bib30) 2017; 7 Eshghinia, Mohammadzadeh (bib16) 2013; 12 Tian, Zhang, Wang, Tang (bib60) 2012; 11 Iwanaga, Kuchiiwa, Saito (bib27) 2009; 30 Mund, Frishman (bib41) 2013; 21 Hatori, Vollmers, Zarrinpar, DiTacchio, Bushong, Gill, Leblanc, Chaix, Joens, Fitzpatrick (bib20) 2012; 15 Fontana, Partridge (bib17) 2015; 161 Holmes, Li, Marchesi, Nicholson (bib23) 2012; 16 Markan, Naber, Ameka, Anderegg, Mangelsdorf, Kliewer, Mohammadi, Potthoff (bib38) 2014; 63 den Besten, van Eunen, Groen, Venema, Reijngoud, Bakker (bib13) 2013; 54 Young, Arch, Ashwell (bib65) 1984; 167 Cypess, Weiner, Roberts-Toler, Franquet Elía, Kessler, Kahn, English, Chatman, Trauger, Doria, Kolodny (bib11) 2015; 21 Kajimura, Spiegelman, Seale (bib29) 2015; 22 Takeda (bib58) 2016; 16 Ziętak, Kovatcheva-Datchary, Markiewicz, Ståhlman, Kozak, Bäckhed (bib66) 2016; 23 Shabalina, Petrovic, de Jong, Kalinovich, Cannon, Nedergaard (bib52) 2013; 5 Hayashi, Nagasaka (bib21) 1983; 245 Truong, Franzosa, Tickle, Scholz, Weingart, Pasolli, Tett, Huttenhower, Segata (bib61) 2015; 12 Abubucker, Segata, Goll, Schubert, Izard, Cantarel, Rodriguez-Mueller, Zucker, Thiagarajan, Henrissat (bib2) 2012; 8 Sivitz, Fink, Donohoue (bib54) 1999; 140 Patel, Krausz, Xie, Beyoğlu, Gonzalez, Idle (bib44) 2017; 12 Sahuri-Arisoylu, Brody, Parkinson, Parkes, Navaratnam, Miller, Thomas, Frost, Bell (bib49) 2016; 40 Harms, Seale (bib19) 2013; 19 Hossain, Kawar, El Nahas (bib24) 2007; 356 Chen, Bittinger, Charlson, Hoffmann, Lewis, Wu, Collman, Bushman, Li (bib9) 2012; 28 Hanatani, Motoshima, Takaki, Kawasaki, Igata, Matsumura, Kondo, Senokuchi, Ishii, Kawashima (bib18) 2016; 59 Langille, Zaneveld, Caporaso, McDonald, Knights, Reyes, Clemente, Burkepile, Vega Thurber, Knight (bib33) 2013; 31 Thaiss, Zeevi, Levy, Zilberman-Schapira, Suez, Tengeler, Abramson, Katz, Korem, Zmora (bib59) 2014; 159 Rabot, Membrez, Bruneau, Gérard, Harach, Moser, Raymond, Mansourian, Chou (bib46) 2010; 24 Dutchak, Katafuchi, Bookout, Choi, Yu, Mangelsdorf, Kliewer (bib15) 2012; 148 Buchfink, Xie, Huson (bib6) 2015; 12 Rooks, Garrett (bib48) 2016; 16 Wu, Boström, Sparks, Ye, Choi, Giang, Khandekar, Virtanen, Nuutila, Schaart (bib62) 2012; 150 De Matteis, Lucertini, Guescini, Polidori, Zeppa, Stocchi, Cinti, Cuppini (bib12) 2013; 23 Inagaki, Dutchak, Zhao, Ding, Gautron, Parameswara, Li, Goetz, Mohammadi, Esser (bib25) 2007; 5 Chevalier, Stojanović, Colin, Suarez-Zamorano, Tarallo, Veyrat-Durebex, Rigo, Fabbiano, Stevanović, Hagemann (bib10) 2015; 163 Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim, Xue, Chondronikola, Cypess, Tseng (bib53) 2015; 21 Wu, Cohen, Spiegelman (bib63) 2013; 27 Lee, Pineau, Drago, Lee, Owens, Kroetz, Fernandez-Salguero, Westphal, Gonzalez (bib35) 1995; 15 Knehans, Romsos (bib31) 1983; 244 Bonet, Oliver, Palou (bib4) 2013; 1831 Desautels, Dulos (bib14) 1988; 255 Abreu-Vieira, Xiao, Gavrilova, Reitman (bib1) 2015; 4 Montagner, Polizzi, Fouché, Ducheix, Lippi, Lasserre, Barquissau, Régnier, Lukowicz, Benhamed (bib40) 2016; 65 Ishibashi, Seale (bib26) 2010; 328 Susulic, Frederich, Lawitts, Tozzo, Kahn, Harper, Himms-Hagen, Flier, Lowell (bib57) 1995; 270 Ye, Wu, Cohen, Kazak, Khandekar, Jedrychowski, Zeng, Gygi, Spiegelman (bib64) 2013; 110 Rooks (10.1016/j.cmet.2017.08.019_bib48) 2016; 16 Rabot (10.1016/j.cmet.2017.08.019_bib46) 2010; 24 Sivitz (10.1016/j.cmet.2017.08.019_bib54) 1999; 140 Langille (10.1016/j.cmet.2017.08.019_bib33) 2013; 31 Shinoda (10.1016/j.cmet.2017.08.019_bib53) 2015; 21 Thaiss (10.1016/j.cmet.2017.08.019_bib59) 2014; 159 Wu (10.1016/j.cmet.2017.08.019_bib62) 2012; 150 Shabalina (10.1016/j.cmet.2017.08.019_bib52) 2013; 5 Carrière (10.1016/j.cmet.2017.08.019_bib8) 2014; 63 Cypess (10.1016/j.cmet.2017.08.019_bib11) 2015; 21 Patterson (10.1016/j.cmet.2017.08.019_bib45) 2015; 115 Ziętak (10.1016/j.cmet.2017.08.019_bib66) 2016; 23 Chevalier (10.1016/j.cmet.2017.08.019_bib10) 2015; 163 Kajimura (10.1016/j.cmet.2017.08.019_bib29) 2015; 22 Iwanaga (10.1016/j.cmet.2017.08.019_bib27) 2009; 30 Hayashi (10.1016/j.cmet.2017.08.019_bib21) 1983; 245 Abreu-Vieira (10.1016/j.cmet.2017.08.019_bib1) 2015; 4 Nedergaard (10.1016/j.cmet.2017.08.019_bib42) 2014; 20 De Matteis (10.1016/j.cmet.2017.08.019_bib12) 2013; 23 Holmes (10.1016/j.cmet.2017.08.019_bib23) 2012; 16 Bäckhed (10.1016/j.cmet.2017.08.019_bib3) 2007; 104 Sahuri-Arisoylu (10.1016/j.cmet.2017.08.019_bib49) 2016; 40 López-Bueno (10.1016/j.cmet.2017.08.019_bib37) 2014; 31 Hatori (10.1016/j.cmet.2017.08.019_bib20) 2012; 15 Jiang (10.1016/j.cmet.2017.08.019_bib28) 2015; 6 Suárez-Zamorano (10.1016/j.cmet.2017.08.019_bib56) 2015; 21 Spiegelman (10.1016/j.cmet.2017.08.019_bib55) 2001; 104 Langmead (10.1016/j.cmet.2017.08.019_bib34) 2012; 9 Hill (10.1016/j.cmet.2017.08.019_bib22) 2012; 126 Longo (10.1016/j.cmet.2017.08.019_bib36) 2014; 19 Hanatani (10.1016/j.cmet.2017.08.019_bib18) 2016; 59 Mund (10.1016/j.cmet.2017.08.019_bib41) 2013; 21 Eshghinia (10.1016/j.cmet.2017.08.019_bib16) 2013; 12 Nicholson (10.1016/j.cmet.2017.08.019_bib43) 2012; 336 Montagner (10.1016/j.cmet.2017.08.019_bib40) 2016; 65 Takeda (10.1016/j.cmet.2017.08.019_bib58) 2016; 16 Kim (10.1016/j.cmet.2017.08.019_bib30) 2017; 7 Robidoux (10.1016/j.cmet.2017.08.019_bib47) 2004; 44 Secor (10.1016/j.cmet.2017.08.019_bib50) 2016; 6 Truong (10.1016/j.cmet.2017.08.019_bib61) 2015; 12 Tian (10.1016/j.cmet.2017.08.019_bib60) 2012; 11 Cannon (10.1016/j.cmet.2017.08.019_bib7) 2011; 214 Young (10.1016/j.cmet.2017.08.019_bib65) 1984; 167 Chen (10.1016/j.cmet.2017.08.019_bib9) 2012; 28 Wu (10.1016/j.cmet.2017.08.019_bib63) 2013; 27 Knehans (10.1016/j.cmet.2017.08.019_bib31) 1983; 244 Patel (10.1016/j.cmet.2017.08.019_bib44) 2017; 12 Lee (10.1016/j.cmet.2017.08.019_bib35) 1995; 15 Bonet (10.1016/j.cmet.2017.08.019_bib4) 2013; 1831 Mestdagh (10.1016/j.cmet.2017.08.019_bib39) 2012; 11 Abubucker (10.1016/j.cmet.2017.08.019_bib2) 2012; 8 Ye (10.1016/j.cmet.2017.08.019_bib64) 2013; 110 den Besten (10.1016/j.cmet.2017.08.019_bib13) 2013; 54 Desautels (10.1016/j.cmet.2017.08.019_bib14) 1988; 255 Segata (10.1016/j.cmet.2017.08.019_bib51) 2011; 12 Harms (10.1016/j.cmet.2017.08.019_bib19) 2013; 19 Dutchak (10.1016/j.cmet.2017.08.019_bib15) 2012; 148 Kozich (10.1016/j.cmet.2017.08.019_bib32) 2013; 79 Ishibashi (10.1016/j.cmet.2017.08.019_bib26) 2010; 328 Fontana (10.1016/j.cmet.2017.08.019_bib17) 2015; 161 Inagaki (10.1016/j.cmet.2017.08.019_bib25) 2007; 5 Markan (10.1016/j.cmet.2017.08.019_bib38) 2014; 63 Buchfink (10.1016/j.cmet.2017.08.019_bib6) 2015; 12 Hossain (10.1016/j.cmet.2017.08.019_bib24) 2007; 356 Susulic (10.1016/j.cmet.2017.08.019_bib57) 1995; 270 28960211 - Nat Rev Endocrinol. 2017 Nov;13(11):623 29117546 - Cell Metab. 2017 Nov 7;26(5):801 |
References_xml | – volume: 15 start-page: 3012 year: 1995 end-page: 3022 ident: bib35 article-title: Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators publication-title: Mol. Cell. Biol. – volume: 19 start-page: 1252 year: 2013 end-page: 1263 ident: bib19 article-title: Brown and beige fat: development, function and therapeutic potential publication-title: Nat. Med. – volume: 21 start-page: 389 year: 2015 end-page: 394 ident: bib53 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat. Med. – volume: 23 start-page: 582 year: 2013 end-page: 590 ident: bib12 article-title: Exercise as a new physiological stimulus for brown adipose tissue activity publication-title: Nutr. Metab. Cardiovasc. Dis. – volume: 126 start-page: 126 year: 2012 end-page: 132 ident: bib22 article-title: Energy balance and obesity publication-title: Circulation – volume: 104 start-page: 531 year: 2001 end-page: 543 ident: bib55 article-title: Obesity and the regulation of energy balance publication-title: Cell – volume: 8 start-page: e1002358 year: 2012 ident: bib2 article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome publication-title: PLoS Comput. Biol. – volume: 11 start-page: 620 year: 2012 end-page: 630 ident: bib39 article-title: Gut microbiota modulate the metabolism of brown adipose tissue in mice publication-title: J. Proteome Res. – volume: 16 start-page: 559 year: 2012 end-page: 564 ident: bib23 article-title: Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk publication-title: Cell Metab. – volume: 65 start-page: 1202 year: 2016 end-page: 1214 ident: bib40 article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD publication-title: Gut – volume: 167 start-page: 10 year: 1984 end-page: 14 ident: bib65 article-title: Brown adipose tissue in the parametrial fat pad of the mouse publication-title: FEBS Lett. – volume: 140 start-page: 1511 year: 1999 end-page: 1519 ident: bib54 article-title: Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression publication-title: Endocrinology – volume: 15 start-page: 848 year: 2012 end-page: 860 ident: bib20 article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet publication-title: Cell Metab. – volume: 16 start-page: 341 year: 2016 end-page: 352 ident: bib48 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. – volume: 148 start-page: 556 year: 2012 end-page: 567 ident: bib15 article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones publication-title: Cell – volume: 19 start-page: 181 year: 2014 end-page: 192 ident: bib36 article-title: Fasting: molecular mechanisms and clinical applications publication-title: Cell Metab. – volume: 336 start-page: 1262 year: 2012 end-page: 1267 ident: bib43 article-title: Host-gut microbiota metabolic interactions publication-title: Science – volume: 163 start-page: 1360 year: 2015 end-page: 1374 ident: bib10 article-title: Gut microbiota orchestrates energy homeostasis during cold publication-title: Cell – volume: 12 start-page: R60 year: 2011 ident: bib51 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. – volume: 115 start-page: 1203 year: 2015 end-page: 1212 ident: bib45 article-title: Intermittent fasting and human metabolic health publication-title: J. Acad. Nutr. Diet. – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: bib6 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods – volume: 63 start-page: 4057 year: 2014 end-page: 4063 ident: bib38 article-title: Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding publication-title: Diabetes – volume: 31 start-page: 1067 year: 2014 end-page: 1073 ident: bib37 article-title: Influence of age and religious fasting on the body composition of Muslim women living in a westernized context publication-title: Nutr. Hosp. – volume: 44 start-page: 297 year: 2004 end-page: 323 ident: bib47 article-title: Beta-adrenergic receptors and regulation of energy expenditure: a family affair publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib34 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 270 start-page: 29483 year: 1995 end-page: 29492 ident: bib57 article-title: Targeted disruption of the beta 3-adrenergic receptor gene publication-title: J. Biol. Chem. – volume: 24 start-page: 4948 year: 2010 end-page: 4959 ident: bib46 article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism publication-title: FASEB J. – volume: 12 start-page: 4 year: 2013 ident: bib16 article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women publication-title: J. Diabetes Metab. Disord. – volume: 255 start-page: E120 year: 1988 end-page: E128 ident: bib14 article-title: Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice publication-title: Am. J. Physiol. – volume: 30 start-page: 217 year: 2009 end-page: 225 ident: bib27 article-title: Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue publication-title: Biomed. Res. – volume: 54 start-page: 2325 year: 2013 end-page: 2340 ident: bib13 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J. Lipid Res. – volume: 6 start-page: 10166 year: 2015 ident: bib28 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat. Commun. – volume: 20 start-page: 396 year: 2014 end-page: 407 ident: bib42 article-title: The browning of white adipose tissue: some burning issues publication-title: Cell Metab. – volume: 40 start-page: 955 year: 2016 end-page: 963 ident: bib49 article-title: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate publication-title: Int. J. Obes. – volume: 150 start-page: 366 year: 2012 end-page: 376 ident: bib62 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell – volume: 1831 start-page: 969 year: 2013 end-page: 985 ident: bib4 article-title: Pharmacological and nutritional agents promoting browning of white adipose tissue publication-title: Biochim. Biophys. Acta – volume: 63 start-page: 3253 year: 2014 end-page: 3265 ident: bib8 article-title: Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure publication-title: Diabetes – volume: 28 start-page: 2106 year: 2012 end-page: 2113 ident: bib9 article-title: Associating microbiome composition with environmental covariates using generalized UniFrac distances publication-title: Bioinformatics – volume: 159 start-page: 514 year: 2014 end-page: 529 ident: bib59 article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis publication-title: Cell – volume: 21 start-page: 1497 year: 2015 end-page: 1501 ident: bib56 article-title: Microbiota depletion promotes browning of white adipose tissue and reduces obesity publication-title: Nat. Med. – volume: 245 start-page: E582 year: 1983 end-page: E586 ident: bib21 article-title: Suppression of norepinephrine-induced thermogenesis in brown adipose tissue by fasting publication-title: Am. J. Physiol. – volume: 22 start-page: 546 year: 2015 end-page: 559 ident: bib29 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metab. – volume: 12 start-page: e0177953 year: 2017 ident: bib44 article-title: Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice publication-title: PLoS One – volume: 23 start-page: 1216 year: 2016 end-page: 1223 ident: bib66 article-title: Altered microbiota contributes to reduced diet-induced obesity upon cold exposure publication-title: Cell Metab. – volume: 21 start-page: 265 year: 2013 end-page: 269 ident: bib41 article-title: Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans publication-title: Cardiol. Rev. – volume: 12 start-page: 902 year: 2015 end-page: 903 ident: bib61 article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling publication-title: Nat. Methods – volume: 110 start-page: 12480 year: 2013 end-page: 12485 ident: bib64 article-title: Fat cells directly sense temperature to activate thermogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 59 start-page: 207 year: 2016 end-page: 214 ident: bib18 article-title: Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice publication-title: J. Clin. Biochem. Nutr. – volume: 5 start-page: 1196 year: 2013 end-page: 1203 ident: bib52 article-title: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic publication-title: Cell Rep. – volume: 21 start-page: 33 year: 2015 end-page: 38 ident: bib11 article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist publication-title: Cell Metab. – volume: 4 start-page: 461 year: 2015 end-page: 470 ident: bib1 article-title: Integration of body temperature into the analysis of energy expenditure in the mouse publication-title: Mol. Metab. – volume: 161 start-page: 106 year: 2015 end-page: 118 ident: bib17 article-title: Promoting health and longevity through diet: from model organisms to humans publication-title: Cell – volume: 11 start-page: 1397 year: 2012 end-page: 1411 ident: bib60 article-title: Age-related topographical metabolic signatures for the rat gastrointestinal contents publication-title: J. Proteome Res. – volume: 27 start-page: 234 year: 2013 end-page: 250 ident: bib63 article-title: Adaptive thermogenesis in adipocytes: is beige the new brown? publication-title: Genes Dev. – volume: 7 start-page: 41066 year: 2017 ident: bib30 article-title: Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells publication-title: Sci. Rep. – volume: 6 start-page: 773 year: 2016 end-page: 825 ident: bib50 article-title: Integrative physiology of fasting publication-title: Compr. Physiol. – volume: 5 start-page: 415 year: 2007 end-page: 425 ident: bib25 article-title: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21 publication-title: Cell Metab. – volume: 328 start-page: 1113 year: 2010 end-page: 1114 ident: bib26 article-title: Medicine. Beige can be slimming publication-title: Science – volume: 104 start-page: 979 year: 2007 end-page: 984 ident: bib3 article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 206 year: 2016 ident: bib58 article-title: Metabolic bridge between microbiota and humans publication-title: Nat. Rev. Immunol. – volume: 244 start-page: E567 year: 1983 end-page: E574 ident: bib31 article-title: Norepinephrine turnover in obese (ob/ob) mice: effects of age, fasting, and acute cold publication-title: Am. J. Physiol. – volume: 356 start-page: 213 year: 2007 end-page: 215 ident: bib24 article-title: Obesity and diabetes in the developing world--a growing challenge publication-title: N. Engl. J. Med. – volume: 214 start-page: 242 year: 2011 end-page: 253 ident: bib7 article-title: Nonshivering thermogenesis and its adequate measurement in metabolic studies publication-title: J. Exp. Biol. – volume: 31 start-page: 814 year: 2013 end-page: 821 ident: bib33 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. – volume: 79 start-page: 5112 year: 2013 end-page: 5120 ident: bib32 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl. Environ. Microbiol. – volume: 167 start-page: 10 year: 1984 ident: 10.1016/j.cmet.2017.08.019_bib65 article-title: Brown adipose tissue in the parametrial fat pad of the mouse publication-title: FEBS Lett. doi: 10.1016/0014-5793(84)80822-4 – volume: 159 start-page: 514 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib59 article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis publication-title: Cell doi: 10.1016/j.cell.2014.09.048 – volume: 110 start-page: 12480 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib64 article-title: Fat cells directly sense temperature to activate thermogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1310261110 – volume: 7 start-page: 41066 year: 2017 ident: 10.1016/j.cmet.2017.08.019_bib30 article-title: Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells publication-title: Sci. Rep. doi: 10.1038/srep41066 – volume: 21 start-page: 1497 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib56 article-title: Microbiota depletion promotes browning of white adipose tissue and reduces obesity publication-title: Nat. Med. doi: 10.1038/nm.3994 – volume: 59 start-page: 207 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib18 article-title: Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice publication-title: J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.16-23 – volume: 16 start-page: 341 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib48 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.42 – volume: 12 start-page: 4 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib16 article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women publication-title: J. Diabetes Metab. Disord. doi: 10.1186/2251-6581-12-4 – volume: 244 start-page: E567 year: 1983 ident: 10.1016/j.cmet.2017.08.019_bib31 article-title: Norepinephrine turnover in obese (ob/ob) mice: effects of age, fasting, and acute cold publication-title: Am. J. Physiol. – volume: 16 start-page: 206 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib58 article-title: Metabolic bridge between microbiota and humans publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.18 – volume: 140 start-page: 1511 year: 1999 ident: 10.1016/j.cmet.2017.08.019_bib54 article-title: Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression publication-title: Endocrinology doi: 10.1210/endo.140.4.6668 – volume: 104 start-page: 979 year: 2007 ident: 10.1016/j.cmet.2017.08.019_bib3 article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0605374104 – volume: 161 start-page: 106 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib17 article-title: Promoting health and longevity through diet: from model organisms to humans publication-title: Cell doi: 10.1016/j.cell.2015.02.020 – volume: 245 start-page: E582 year: 1983 ident: 10.1016/j.cmet.2017.08.019_bib21 article-title: Suppression of norepinephrine-induced thermogenesis in brown adipose tissue by fasting publication-title: Am. J. Physiol. – volume: 15 start-page: 3012 year: 1995 ident: 10.1016/j.cmet.2017.08.019_bib35 article-title: Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.6.3012 – volume: 63 start-page: 4057 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib38 article-title: Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding publication-title: Diabetes doi: 10.2337/db14-0595 – volume: 23 start-page: 582 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib12 article-title: Exercise as a new physiological stimulus for brown adipose tissue activity publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2012.01.013 – volume: 21 start-page: 265 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib41 article-title: Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans publication-title: Cardiol. Rev. doi: 10.1097/CRD.0b013e31829cabff – volume: 12 start-page: R60 year: 2011 ident: 10.1016/j.cmet.2017.08.019_bib51 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 11 start-page: 620 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib39 article-title: Gut microbiota modulate the metabolism of brown adipose tissue in mice publication-title: J. Proteome Res. doi: 10.1021/pr200938v – volume: 31 start-page: 1067 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib37 article-title: Influence of age and religious fasting on the body composition of Muslim women living in a westernized context publication-title: Nutr. Hosp. – volume: 30 start-page: 217 year: 2009 ident: 10.1016/j.cmet.2017.08.019_bib27 article-title: Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue publication-title: Biomed. Res. doi: 10.2220/biomedres.30.217 – volume: 65 start-page: 1202 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib40 article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD publication-title: Gut doi: 10.1136/gutjnl-2015-310798 – volume: 15 start-page: 848 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib20 article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.019 – volume: 270 start-page: 29483 year: 1995 ident: 10.1016/j.cmet.2017.08.019_bib57 article-title: Targeted disruption of the beta 3-adrenergic receptor gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.49.29483 – volume: 23 start-page: 1216 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib66 article-title: Altered microbiota contributes to reduced diet-induced obesity upon cold exposure publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.001 – volume: 22 start-page: 546 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib29 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.007 – volume: 27 start-page: 234 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib63 article-title: Adaptive thermogenesis in adipocytes: is beige the new brown? publication-title: Genes Dev. doi: 10.1101/gad.211649.112 – volume: 54 start-page: 2325 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib13 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J. Lipid Res. doi: 10.1194/jlr.R036012 – volume: 8 start-page: e1002358 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib2 article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002358 – volume: 336 start-page: 1262 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib43 article-title: Host-gut microbiota metabolic interactions publication-title: Science doi: 10.1126/science.1223813 – volume: 5 start-page: 415 year: 2007 ident: 10.1016/j.cmet.2017.08.019_bib25 article-title: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21 publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.05.003 – volume: 31 start-page: 814 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib33 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2676 – volume: 19 start-page: 1252 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib19 article-title: Brown and beige fat: development, function and therapeutic potential publication-title: Nat. Med. doi: 10.1038/nm.3361 – volume: 126 start-page: 126 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib22 article-title: Energy balance and obesity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.087213 – volume: 44 start-page: 297 year: 2004 ident: 10.1016/j.cmet.2017.08.019_bib47 article-title: Beta-adrenergic receptors and regulation of energy expenditure: a family affair publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.44.101802.121659 – volume: 1831 start-page: 969 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib4 article-title: Pharmacological and nutritional agents promoting browning of white adipose tissue publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2012.12.002 – volume: 12 start-page: 59 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib6 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 63 start-page: 3253 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib8 article-title: Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure publication-title: Diabetes doi: 10.2337/db13-1885 – volume: 21 start-page: 389 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib53 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat. Med. doi: 10.1038/nm.3819 – volume: 214 start-page: 242 year: 2011 ident: 10.1016/j.cmet.2017.08.019_bib7 article-title: Nonshivering thermogenesis and its adequate measurement in metabolic studies publication-title: J. Exp. Biol. doi: 10.1242/jeb.050989 – volume: 104 start-page: 531 year: 2001 ident: 10.1016/j.cmet.2017.08.019_bib55 article-title: Obesity and the regulation of energy balance publication-title: Cell doi: 10.1016/S0092-8674(01)00240-9 – volume: 19 start-page: 181 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib36 article-title: Fasting: molecular mechanisms and clinical applications publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.008 – volume: 21 start-page: 33 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib11 article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.12.009 – volume: 40 start-page: 955 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib49 article-title: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate publication-title: Int. J. Obes. doi: 10.1038/ijo.2016.23 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib34 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 5 start-page: 1196 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib52 article-title: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.10.044 – volume: 79 start-page: 5112 year: 2013 ident: 10.1016/j.cmet.2017.08.019_bib32 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01043-13 – volume: 12 start-page: e0177953 year: 2017 ident: 10.1016/j.cmet.2017.08.019_bib44 article-title: Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice publication-title: PLoS One doi: 10.1371/journal.pone.0177953 – volume: 115 start-page: 1203 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib45 article-title: Intermittent fasting and human metabolic health publication-title: J. Acad. Nutr. Diet. doi: 10.1016/j.jand.2015.02.018 – volume: 24 start-page: 4948 year: 2010 ident: 10.1016/j.cmet.2017.08.019_bib46 article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism publication-title: FASEB J. doi: 10.1096/fj.10-164921 – volume: 16 start-page: 559 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib23 article-title: Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.10.007 – volume: 20 start-page: 396 year: 2014 ident: 10.1016/j.cmet.2017.08.019_bib42 article-title: The browning of white adipose tissue: some burning issues publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.07.005 – volume: 328 start-page: 1113 year: 2010 ident: 10.1016/j.cmet.2017.08.019_bib26 article-title: Medicine. Beige can be slimming publication-title: Science doi: 10.1126/science.1190816 – volume: 6 start-page: 10166 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib28 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat. Commun. doi: 10.1038/ncomms10166 – volume: 255 start-page: E120 year: 1988 ident: 10.1016/j.cmet.2017.08.019_bib14 article-title: Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice publication-title: Am. J. Physiol. – volume: 148 start-page: 556 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib15 article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones publication-title: Cell doi: 10.1016/j.cell.2011.11.062 – volume: 28 start-page: 2106 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib9 article-title: Associating microbiome composition with environmental covariates using generalized UniFrac distances publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts342 – volume: 4 start-page: 461 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib1 article-title: Integration of body temperature into the analysis of energy expenditure in the mouse publication-title: Mol. Metab. doi: 10.1016/j.molmet.2015.03.001 – volume: 6 start-page: 773 year: 2016 ident: 10.1016/j.cmet.2017.08.019_bib50 article-title: Integrative physiology of fasting publication-title: Compr. Physiol. doi: 10.1002/cphy.c150013 – volume: 356 start-page: 213 year: 2007 ident: 10.1016/j.cmet.2017.08.019_bib24 article-title: Obesity and diabetes in the developing world--a growing challenge publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp068177 – volume: 12 start-page: 902 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib61 article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling publication-title: Nat. Methods doi: 10.1038/nmeth.3589 – volume: 150 start-page: 366 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib62 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell doi: 10.1016/j.cell.2012.05.016 – volume: 11 start-page: 1397 year: 2012 ident: 10.1016/j.cmet.2017.08.019_bib60 article-title: Age-related topographical metabolic signatures for the rat gastrointestinal contents publication-title: J. Proteome Res. doi: 10.1021/pr2011507 – volume: 163 start-page: 1360 year: 2015 ident: 10.1016/j.cmet.2017.08.019_bib10 article-title: Gut microbiota orchestrates energy homeostasis during cold publication-title: Cell doi: 10.1016/j.cell.2015.11.004 – reference: 28960211 - Nat Rev Endocrinol. 2017 Nov;13(11):623 – reference: 29117546 - Cell Metab. 2017 Nov 7;26(5):801 |
SSID | ssj0036393 |
Score | 2.6648483 |
Snippet | While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 672 |
SubjectTerms | Adipose Tissue, Beige - metabolism Adipose Tissue, White - metabolism Animals beige adipocytes browning Energy Metabolism every-other-day fasting (EODF) Fasting Fatty Liver - complications Fatty Liver - metabolism Fatty Liver - microbiology Fatty Liver - therapy Fibroblast Growth Factors - metabolism Gastrointestinal Microbiome gut microbiota Insulin Resistance intermittent fasting metabolic syndrome Metabolic Syndrome - complications Metabolic Syndrome - metabolism Metabolic Syndrome - microbiology Metabolic Syndrome - therapy Mice, Inbred C57BL obesity Obesity - complications Obesity - metabolism Obesity - microbiology Obesity - therapy short-chain fatty acid Signal Transduction Thermogenesis |
Title | Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota |
URI | https://dx.doi.org/10.1016/j.cmet.2017.08.019 https://www.ncbi.nlm.nih.gov/pubmed/28918936 https://www.proquest.com/docview/1940196558 https://pubmed.ncbi.nlm.nih.gov/PMC5668683 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUOgltGmabtIUFXorZq3Vh-VjmnYbCi2FNLA3IeuDuDTeJfYe8m_6W_rLOiPbSzYNOfRmWyMQGnn0ZL95Q8i7IjoYn1JZUAUcUHS0mXXRZUXlvKxChKCZCLLf1Pml-LKQix1yNubCIK1yiP19TE_RengyHWZzuqrr6QWCa4FqMbBI8QriMBc6JfEtPozRmMMOnEj2YJyh9ZA403O83HVAPiUrkownqu08vDn9Cz7vcyjvbErzZ2RvQJP0tB_wc7ITmn3ypK8vefuC1Ol733XdATDu6Ny2yHGm3xMDL7Q0Fcejp75eLdtA04Ec223j6ceEJlswGioH0OqWXlxZzK6igBnp53X35_fXupdx6uwBuZx_-nF2ng21FTKHJQwyN2PewdGjElY5wDAqsjzqUrqAoIXnkfmQl95KxiNAniBE0HmZ55ZX3nEh-Uuy2yyb8IrQYqatliK6oqiEkt5WLs4Cd9DZ2-DjhLBxUo0bhMex_sUvMzLMfhp0hEFHGCyKycoJeb_ps-plNx61lqOvzNbiMbAvPNrv7ehYA28V_iqxTViuW8NKkbQWpZ6Qw97Rm3HAEZUBylMTUmwtgY0BKnZvtzT1VVLuBuysleZH_zneY_IU7xKXkL8mu93NOpwAJuqqN2nR_wU1jg5i |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILKq-yUMBI3FC08fqR5FjaLltoK6S20t4sxw81iGZXJHvov-G38MuYcZIVC6gHblE8liyPPfM5-fwNIe-yYGF8SiVeZXBAyYNJjA02yUrrZOkDBM1IkD1Ts0vxaS7nW-RguAuDtMo-9ncxPUbr_s24n83xsqrG5wiuBarFwCLFpzvkLqCBDHfn8fzDEI45pODIsgfrBM37mzMdycteeyRUsizqeKLczr-z09_o808S5W9ZabpDHvZwku53I35Etnz9mNzrCkzePCFV_OB3XbWAjFs6NQ2SnOmXSMHzDY3V8ei-q5aLxtN4Isd2Uzt6GOFkA0Z96QBa3tDzK4PXqyiARvpx1f78cVp1Ok6teUoup0cXB7OkL66QWKxhkNgJcxbOHqUwygKIUYGlIS-k9YhaeBqY82nhjGQ8AObxQvg8LdLU8NJZLiR_RrbrRe2fE5pNcpNLEWyWlUJJZ0obJp5b6OyMd2FE2DCp2vbK41gA45seKGZfNTpCoyM0VsVkxYi8X_dZdrobt1rLwVd6Y_VoSAy39ns7OFbDtsJ_Jab2i1WjWSGi2KLMR2S3c_R6HHBGZQDz1IhkG0tgbYCS3ZstdXUVpbsBPOcq5y_-c7xvyP3ZxemJPjk--_ySPMCWSCzke2S7_b7yrwAgteXruAF-AcufEYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermittent+Fasting+Promotes+White+Adipose+Browning+and+Decreases+Obesity+by+Shaping+the+Gut+Microbiota&rft.jtitle=Cell+metabolism&rft.au=Li%2C+Guolin&rft.au=Xie%2C+Cen&rft.au=Lu%2C+Siyu&rft.au=Nichols%2C+Robert+G&rft.date=2017-10-03&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=26&rft.issue=4&rft.spage=672&rft_id=info:doi/10.1016%2Fj.cmet.2017.08.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |