Bezafibrate Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Hypertriglyceridemic Patients with Type 2 Diabetes Mellitus

Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus...

Full description

Saved in:
Bibliographic Details
Published inJournal of Atherosclerosis and Thrombosis Vol. 26; no. 7; pp. 659 - 669
Main Authors Ohira, Masahiro, Kawana, Hidetoshi, Shimizu, Naomi, Shirai, Kohji, Tatsuno, Ichiro, Nakamura, Shoko, Oka, Rena, Saiki, Atsuhito, Watanabe, Yasuhiro, Nagayama, Daiji, Tanaka, Sho, Imamura, Haruki, Yamaguchi, Takashi, Sato, Yuta
Format Journal Article
LanguageEnglish
Published Japan Japan Atherosclerosis Society 01.07.2019
Subjects
Online AccessGet full text
ISSN1340-3478
1880-3873
1880-3873
DOI10.5551/jat.45799

Cover

Abstract Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress.Methods: A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period.Results: Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease.Conclusion: Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
AbstractList Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress.Methods: A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period.Results: Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease.Conclusion: Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress. Methods: A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period. Results: Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease. Conclusion: Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress.AIMCardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress.A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period.METHODSA randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period.Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease.RESULTSSerum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease.Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.CONCLUSIONBezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress. A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period. Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease. Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Author Watanabe, Yasuhiro
Tanaka, Sho
Oka, Rena
Nakamura, Shoko
Ohira, Masahiro
Nagayama, Daiji
Shimizu, Naomi
Tatsuno, Ichiro
Kawana, Hidetoshi
Imamura, Haruki
Shirai, Kohji
Sato, Yuta
Yamaguchi, Takashi
Saiki, Atsuhito
Author_xml – sequence: 1
  fullname: Ohira, Masahiro
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Kawana, Hidetoshi
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Shimizu, Naomi
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Shirai, Kohji
  organization: Mihama Katori Clinic
– sequence: 1
  fullname: Tatsuno, Ichiro
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Nakamura, Shoko
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Oka, Rena
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Saiki, Atsuhito
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Watanabe, Yasuhiro
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Nagayama, Daiji
  organization: Nagayama Clinic
– sequence: 1
  fullname: Tanaka, Sho
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Imamura, Haruki
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Yamaguchi, Takashi
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
– sequence: 1
  fullname: Sato, Yuta
  organization: Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30584220$$D View this record in MEDLINE/PubMed
BookMark eNptkU2P0zAQhi20iP2AA38A-QiH7Dp2nKQXUCkfu9IikFi4WhN70ro4Sdd2gPIv-Mc47VIB4uIZeZ55Z-z3lBz1Q4-EPM7ZuZQyv1hDPC9kNZvdIyd5XbNM1JU4SrkoUl5U9TE5DWHNmBBS8gfkWDBZF5yzE_LzJf6A1jYeItJ5h84OUxro3Ef0Fhz9GG3b9hjSVQgpoKHNli7AGztk8_6LQ_oZgh4deHrVG_xObU8vtxv00dul2-okY7Czmn6AaLGPgX6zcUVvEkI5fWWhwWngO3TOxjE8JPdbcAEf3cUz8unN65vFZXb9_u3VYn6dacnzmDUoy1obrfMih0rwsjUGJDRgapNzEIVuBOpSaOASSlFxaKomZ-2sYtoUhokz8nyvuxmbDo1Om3lwauNtB36rBrDq70pvV2o5fFVlyWdVIZPA0zsBP9yOGKLqbNDpFdDjMAbF85KJspZVmdAnf846DPntQwKe7QHthxA8tgckZ2ryWCWP1c7jxF78w2ob09cO05rW_bfjxb5jHSIs8aANPlrtcEfyUlXTses4VPQKvMJe_AL_QMUL
CitedBy_id crossref_primary_10_1159_000537687
crossref_primary_10_5551_jat_51409
crossref_primary_10_3390_jcm11030768
crossref_primary_10_5551_jat_RV17043
crossref_primary_10_18632_aging_205707
crossref_primary_10_2147_VHRM_S351602
crossref_primary_10_3390_jcm12247734
crossref_primary_10_1016_j_jjcc_2021_07_011
crossref_primary_10_5551_jat_60343
crossref_primary_10_1016_j_heliyon_2024_e28284
crossref_primary_10_3389_fendo_2023_1260764
crossref_primary_10_5551_jat_61101
crossref_primary_10_5551_jat_63695
crossref_primary_10_1093_ckj_sfad131
Cites_doi 10.1016/j.atherosclerosis.2007.11.008
10.1016/j.orcp.2011.08.154
10.1016/S0140-6736(07)60527-3
10.1038/362801a0
10.1038/35013000
10.1161/01.CIR.0000126824.12785.B6
10.1186/1475-2840-11-140
10.1016/j.amjcard.2008.08.033
10.1001/jama.288.20.2579
10.1016/0021-9150(84)90171-0
10.1016/S0021-9150(03)00156-4
10.1016/j.atherosclerosis.2007.05.029
10.5551/jat.ED098
10.1007/s11883-003-0086-y
10.5551/jat.281
10.1016/j.atherosclerosis.2008.05.055
10.5551/jat.13.101
10.5551/jat.42440
10.1016/S0021-9150(00)00394-4
10.5551/jat.497
10.5551/jat.40691
10.5551/jat.31385
10.1161/01.HYP.26.3.485
10.1161/01.CIR.0000093660.86242.BB
ContentType Journal Article
Copyright 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
2019 Japan Atherosclerosis Society 2019
Copyright_xml – notice: 2019 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
– notice: 2019 Japan Atherosclerosis Society 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.5551/jat.45799
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1880-3873
EndPage 669
ExternalDocumentID PMC6629745
30584220
10_5551_jat_45799
article_jat_26_7_26_45799_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
5VS
AAFWJ
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DIK
DU5
E3Z
F5P
GX1
HYE
JMI
JSF
JSH
KQ8
OK1
OVT
P6G
RJT
RNS
RPM
RZJ
TR2
X7M
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-be568cdcc141a7326fdda5abad8d12a34cb3ec63ca25a6372ab7b10f970cd4d03
ISSN 1340-3478
1880-3873
IngestDate Thu Aug 21 18:26:06 EDT 2025
Fri Jul 11 01:56:26 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 02:27:11 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Sep 03 06:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords Cardio-ankle vascular index (CAVI)
Arterial stiffness
Bezafibrate
Triglyceride
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.http://creativecommons.org/licenses/by-nc-sa/3.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-be568cdcc141a7326fdda5abad8d12a34cb3ec63ca25a6372ab7b10f970cd4d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6629745
PMID 30584220
PQID 2160368576
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6629745
proquest_miscellaneous_2160368576
pubmed_primary_30584220
crossref_primary_10_5551_jat_45799
crossref_citationtrail_10_5551_jat_45799
jstage_primary_article_jat_26_7_26_45799_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190701
  day: 1
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Atherosclerosis and Thrombosis
PublicationTitleAlternate JAT
PublicationYear 2019
Publisher Japan Atherosclerosis Society
Publisher_xml – name: Japan Atherosclerosis Society
References 3) Miyata M. Noninvasive Assessment of Arterial Stiffness Using Oscillometric Methods: baPWV, CAVI, API, and AVI. J Atheroscler Thromb 2018; 25: 790-791
50) Tenenbaum A, Motro M, Fisman EZ, Schwammenthal E, Adler Y, Goldenberg I, Leor J, Boyko V, Mandelzweig L, Behar S. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation. 2004; 109: 2097-2202
46) Schuster H, Fagerberg B, Edwards S, Halmos T, Lopatynski J, Stender S, Birketvedt GS, Tonstad S, Gause-Nilsson I, Halldórsdóttir S, Ohman KP.; SIR Investigators. Tesaglitazar, a dual peroxisome proliferator-activated receptor alpha/gamma agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance. Atherosclerosis. 2008; 197: 355-362
12) Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998; 339: 229-234
28) Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008; 197: 12-24
21) Tenenbaum A, Fisman EZ. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction. Cardiovasc. Diabetol. 2012; 11: 125
27) Ueno Y, Tanaka R, Yamashiro K, Miyamoto N, Hira K, Kurita N, Sakurai M, Urabe T, Shimada K, Miyazaki T, Daida H, Hattori N. Age Stratification and Impact of Eicosapentaenoic Acid and Docosahexaenoic Acid to Arachidonic Acid Ratios in Ischemic Stroke Patients. J Atheroscler Thromb. 2018; 25: 593-605
16) Assmann G, Schulte H, Funke H, von Eckardstein A. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur. Heart. J. 1998; 19 Suppl: M8-14
5) Sato Y, Nagayama D, Saiki A, Watanabe R, Watanabe Y, Imamura H, Yamaguchi T, Ban N, Kawana H, Nagumo A, Ohira M, Endo K, Kurosu T, Tomaru T, Shirai K, Tatsuno I. Cardio-Ankle Vascular Index is Independently Associated with Future Cardiovascular Events in Outpatients with Metabolic Disorders. J Atheroscler Thromb 2016; 23: 596-605
14) Kameda K, Matsuzawa Y, Kubo M, Ishikawa K, Maejima I, Yamamura T, Yamamoto A, Tarui S. Increased frequency of lipoprotein disorders similar to type III hyperlipoproteinemia in survivors of myocardial infarction in Japan. Atherosclerosis. 1984; 51: 241-249
18) Chapman MJ. Fibrates in 2003: therapeutic action in atherogenic dyslipidemia and future perspectives. Atherosclerosis. 2003; 171: 1-13
31) Kobayashi J, Hashimoto H, Fukamachi I, Tashiro J, Shirai K, Saito Y, Yoshida S. Lipoprotein lipase mass and activity in severe hypertriglyceridemia. Clin. Chem. Acta. 1993; 216: 113-123
43) Beltowski J, Wójcicka G, Mydlarczyk M, Jamorz A. The effect of peroxisome proliferator-activated receptors alpha (PPARalpha) agonist, fenofibrate, on lipid peroxidation, total antioxidant capacity, and plasma peroxidase 1 (PON1) activity. J. Physiol. Pharmacol. 2002; 53: 463-475
44) Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002; 288: 2579-2588
38) Von Schacky C. The role of omega-3 fatty acids in cardiovascular disease. Curr. Atheroscler. Rep. 2003; 5: 139-145
9) Endo K, Saiki A, Ohira M, Miyashita Y, Shirai K. Cardio-ankle vascular index may reflect endothelial function in type 2 diabetes. Int. J. Clin. Pract. 2011; 65: 1200-1201
36) Wilkinson IB, Cockcroft JR, Webb DJ. Pulse wave analysis and arterial stiffness. J. Cardiovasc. Phamacol. 1998; 32 Suppl 3: S33-37
41) Kato T, Umeda A, Miyagawa K, Takeda H, Adachi T, Toyoda S, Taguchi I, Inoue T, Node K. Varenicline-assisted smoking cessation decreases oxidative stress and restores endothelial function. Hypertens. Res. 2014; 37: 655-658
8) Yamanaka M, Sakuma M, Matsushita A, Tanaka S, Yamamoto Y, Asai T, Arai H. The Effects of Long-Term Dietary Therapy on Patients with Hypertriglyceridemia. J Atherscler Thromb 2019; 26: 39-49
17) Sone H, Tanaka S, Tanaka S, Iimuro S, Oida K, Yamasaki Y, Oikawa S, Ishibashi S, Katayama S, Ohashi Y, Akanuma Y, Yamada N.; Japan Diabetes Complications Study Group. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J. Clin. Endocrinol. Metab. 2011; 96: 3448-3456
34) Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995; 26: 485-490
47) Goldenberg I, Benderly M, Sidi R, Boyko V, Tenenbaum A, Tanne D, Behar S. Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum levels of low-density lipoprotein cholesterol in patients with coronary heart disease (from the Bezafibrate Infarction Prevention Trial). Am. J. Cardiol. 2009; 103: 41-45
42) Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 45-51
4) Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101-107
32) Hasegawa M. Fundamental research on human aortic pulse wave velocity. Jikei Medical Journal 1970; 85: 742-760
33) Migdalis IN, Gerolimou B, Kozanidou, G, Voudouris G, Hatzigakis SM, Petropoulos A. Effect of gemfibrozil on early carotid atherosclerosis in diabetic patients with hyperlipidaemia. Int. Angiol. 1997; 16: 258-261
15) Hitsumoto T, Iizuka T, Takahashi M, Yoshinaga K, Matsumoto J, Shimizu K, Kaku M, Sugiyama Y, Sakurai T, Aoyagi K, Kanai M, Noike H, Ohsawa H, Watanabe H, Shirai K. Relationship between insulin resistance and oxidative stress in vivo. J. Cardiol. 2003; 42: 119-127
29) Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Shirato K; Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007; 369: 1090-1098
40) Nakajima A, Aoki Y, Shibata Y, Sonobe M, Terajima F, Takahashi H, Saito M, Taniguchi S, Yamada M, Nakagawa K. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis. Mod. Rheumatol. 2014; 24: 926-930
37) Miyashita Y, Endo K, Saiki A, Ban N, Yamaguchi T, Kawana H, Nagayama D, Ohira M, Oyama T, Shirai K. Effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardio-ankle vascular index in type 2 diabetic patients. J Athroscler Thromb 2009; 16: 539-545
35) Yamashina A, Tomiyama H, Arai T, Koji Y, Yambe M, Motobe H, Glunizia Z, Yamamoto Y, Hori S. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003; 26: 801-806
6) Nagayama D, Saiki A, Endo K, Yamaguchi T, Ban N, Kawana H, Ohira M, Oyama T, Miyashita Y, Shirai K. Improvement of cardio-ankle vascular index by glimepiride in type 2 diabetic patients. Int. J. Clin. Pract. 2010; 64: 1796-1801
24) Elkeles RS, Diamond JR, Poulter C, Dhanjil S, Nicolaides AN, Mahmood S, Richmond W, Mather H, Sharp P, Feher MD. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes. Care. 1998; 21: 641-648
19) Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000; 405: 421-424
45) Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part 1: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003; 108: 1912-1916
13) Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K , Laakso M. Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes. Care. 2005; 28: 2901-2907
39) Ebisawa S, Kashima Y, Miyashita Y, Yamazaki S, Abe N, Saigusa T, Miura T, Motoki H, Izawa A, Ikeda U. Impact of endovascular therapy on oxidative stress in patients with peripheral artery disease. Circ. J. 2014; 78: 1445-1450
2) Singh RB, Mengi SA, Xu YJ, Ameja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process. Exp. Clin. Cardiol. 2002; 7: 40-53
11) Nagayama D, Watanabe Y, Saiki A, Shirai K, Tatsuno I. Lipid Parameters are Independently Associated with Cardio-Ankle Vascular Index (CAVI) in Healthy Japanese Subjects. J. Atherscler. Thromb. 2018; 25: 621-623
23) Totsuka M, Miyashita Y, Ito Y, Watanabe H, Murano T, Shirai K. Enhancement of preheparin serum lipoprotein lipase mass by bezafibrate administration. Atherosclerosis. 2000; 153: 175-179
1) Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801-809
48) Kitajima K, Miura S, Matsuo Y, Uehara Y, Saku K. Newly developed PPAR-alpha agonist (R)-K-13675 inhibits the secretion of inflammatory markers without affecting cell proliferation or tube formation. Atherosclerosis. 2009; 203: 75-81
51) Teramoto T, Shirai K, Daida H, Yamada N. Effects of bezafibrate on lipid and glucose metabolism in dyslipidemic patients with diabetes: the J-BENEFIT study. Cardiovasc. Diabetol. 2012; 11: 29
30) Satoh N, Shimatsu A, Kotani K, Himeno A, Majima T, Yamada K, Suganami T, Ogawa Y. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens. Res. 2009; 32: 1004-1008
10) Nagayama D, Endo K, Ohira M, Yamaguchi T, Ban N, Kawana H, Nagumo A, Saiki A, Oyama T, Miyashita Y, Shirai K. Eff
44
45
46
47
48
49
50
51
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 49) Zahradka P, Wright B, Fuerst M, Yurkova K, Molnar K, Taylor CG. Peroxisome proliferator-activated receptor alpha and gamma ligands differentially affect smooth muscle cell proliferation and migration. J. Pharmacol. Exp. Ther. 2006; 317: 651-659
– reference: 33) Migdalis IN, Gerolimou B, Kozanidou, G, Voudouris G, Hatzigakis SM, Petropoulos A. Effect of gemfibrozil on early carotid atherosclerosis in diabetic patients with hyperlipidaemia. Int. Angiol. 1997; 16: 258-261
– reference: 6) Nagayama D, Saiki A, Endo K, Yamaguchi T, Ban N, Kawana H, Ohira M, Oyama T, Miyashita Y, Shirai K. Improvement of cardio-ankle vascular index by glimepiride in type 2 diabetic patients. Int. J. Clin. Pract. 2010; 64: 1796-1801
– reference: 5) Sato Y, Nagayama D, Saiki A, Watanabe R, Watanabe Y, Imamura H, Yamaguchi T, Ban N, Kawana H, Nagumo A, Ohira M, Endo K, Kurosu T, Tomaru T, Shirai K, Tatsuno I. Cardio-Ankle Vascular Index is Independently Associated with Future Cardiovascular Events in Outpatients with Metabolic Disorders. J Atheroscler Thromb 2016; 23: 596-605
– reference: 10) Nagayama D, Endo K, Ohira M, Yamaguchi T, Ban N, Kawana H, Nagumo A, Saiki A, Oyama T, Miyashita Y, Shirai K. Effects of body weight reduction on cardio-ankle vascular index (CAVI). Obes. Res. Clin. Pract. 2013; 7: e139-e145
– reference: 44) Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002; 288: 2579-2588
– reference: 31) Kobayashi J, Hashimoto H, Fukamachi I, Tashiro J, Shirai K, Saito Y, Yoshida S. Lipoprotein lipase mass and activity in severe hypertriglyceridemia. Clin. Chem. Acta. 1993; 216: 113-123
– reference: 2) Singh RB, Mengi SA, Xu YJ, Ameja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process. Exp. Clin. Cardiol. 2002; 7: 40-53
– reference: 4) Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101-107
– reference: 25) Tenenbaum A, Motro M, Fisman EZ, Tanne D, Boyko V, Behar S. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. Arch. Intern. Med. 2005; 165: 1154-1160
– reference: 43) Beltowski J, Wójcicka G, Mydlarczyk M, Jamorz A. The effect of peroxisome proliferator-activated receptors alpha (PPARalpha) agonist, fenofibrate, on lipid peroxidation, total antioxidant capacity, and plasma peroxidase 1 (PON1) activity. J. Physiol. Pharmacol. 2002; 53: 463-475
– reference: 39) Ebisawa S, Kashima Y, Miyashita Y, Yamazaki S, Abe N, Saigusa T, Miura T, Motoki H, Izawa A, Ikeda U. Impact of endovascular therapy on oxidative stress in patients with peripheral artery disease. Circ. J. 2014; 78: 1445-1450
– reference: 41) Kato T, Umeda A, Miyagawa K, Takeda H, Adachi T, Toyoda S, Taguchi I, Inoue T, Node K. Varenicline-assisted smoking cessation decreases oxidative stress and restores endothelial function. Hypertens. Res. 2014; 37: 655-658
– reference: 3) Miyata M. Noninvasive Assessment of Arterial Stiffness Using Oscillometric Methods: baPWV, CAVI, API, and AVI. J Atheroscler Thromb 2018; 25: 790-791
– reference: 16) Assmann G, Schulte H, Funke H, von Eckardstein A. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur. Heart. J. 1998; 19 Suppl: M8-14
– reference: 18) Chapman MJ. Fibrates in 2003: therapeutic action in atherogenic dyslipidemia and future perspectives. Atherosclerosis. 2003; 171: 1-13
– reference: 19) Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000; 405: 421-424
– reference: 45) Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part 1: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003; 108: 1912-1916
– reference: 35) Yamashina A, Tomiyama H, Arai T, Koji Y, Yambe M, Motobe H, Glunizia Z, Yamamoto Y, Hori S. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003; 26: 801-806
– reference: 17) Sone H, Tanaka S, Tanaka S, Iimuro S, Oida K, Yamasaki Y, Oikawa S, Ishibashi S, Katayama S, Ohashi Y, Akanuma Y, Yamada N.; Japan Diabetes Complications Study Group. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J. Clin. Endocrinol. Metab. 2011; 96: 3448-3456
– reference: 50) Tenenbaum A, Motro M, Fisman EZ, Schwammenthal E, Adler Y, Goldenberg I, Leor J, Boyko V, Mandelzweig L, Behar S. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation. 2004; 109: 2097-2202
– reference: 14) Kameda K, Matsuzawa Y, Kubo M, Ishikawa K, Maejima I, Yamamura T, Yamamoto A, Tarui S. Increased frequency of lipoprotein disorders similar to type III hyperlipoproteinemia in survivors of myocardial infarction in Japan. Atherosclerosis. 1984; 51: 241-249
– reference: 13) Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K , Laakso M. Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes. Care. 2005; 28: 2901-2907
– reference: 29) Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Shirato K; Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007; 369: 1090-1098
– reference: 48) Kitajima K, Miura S, Matsuo Y, Uehara Y, Saku K. Newly developed PPAR-alpha agonist (R)-K-13675 inhibits the secretion of inflammatory markers without affecting cell proliferation or tube formation. Atherosclerosis. 2009; 203: 75-81
– reference: 12) Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998; 339: 229-234
– reference: 47) Goldenberg I, Benderly M, Sidi R, Boyko V, Tenenbaum A, Tanne D, Behar S. Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum levels of low-density lipoprotein cholesterol in patients with coronary heart disease (from the Bezafibrate Infarction Prevention Trial). Am. J. Cardiol. 2009; 103: 41-45
– reference: 38) Von Schacky C. The role of omega-3 fatty acids in cardiovascular disease. Curr. Atheroscler. Rep. 2003; 5: 139-145
– reference: 40) Nakajima A, Aoki Y, Shibata Y, Sonobe M, Terajima F, Takahashi H, Saito M, Taniguchi S, Yamada M, Nakagawa K. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis. Mod. Rheumatol. 2014; 24: 926-930
– reference: 22) Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc. Diabetol. 2012; 11: 140
– reference: 20) Guerre-Millo M, Gervois P, Raspé E, Madsen L, Poulain P, Derudas B, Herbert JM, Winegar DA, Willson TM, Fruchart JC, Berge RK, Staels B. Peroxisome proliferatoractivated receptor alpha activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 2000; 275: 16638-16642
– reference: 51) Teramoto T, Shirai K, Daida H, Yamada N. Effects of bezafibrate on lipid and glucose metabolism in dyslipidemic patients with diabetes: the J-BENEFIT study. Cardiovasc. Diabetol. 2012; 11: 29
– reference: 1) Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801-809
– reference: 21) Tenenbaum A, Fisman EZ. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction. Cardiovasc. Diabetol. 2012; 11: 125
– reference: 36) Wilkinson IB, Cockcroft JR, Webb DJ. Pulse wave analysis and arterial stiffness. J. Cardiovasc. Phamacol. 1998; 32 Suppl 3: S33-37
– reference: 11) Nagayama D, Watanabe Y, Saiki A, Shirai K, Tatsuno I. Lipid Parameters are Independently Associated with Cardio-Ankle Vascular Index (CAVI) in Healthy Japanese Subjects. J. Atherscler. Thromb. 2018; 25: 621-623
– reference: 42) Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 45-51
– reference: 23) Totsuka M, Miyashita Y, Ito Y, Watanabe H, Murano T, Shirai K. Enhancement of preheparin serum lipoprotein lipase mass by bezafibrate administration. Atherosclerosis. 2000; 153: 175-179
– reference: 30) Satoh N, Shimatsu A, Kotani K, Himeno A, Majima T, Yamada K, Suganami T, Ogawa Y. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens. Res. 2009; 32: 1004-1008
– reference: 9) Endo K, Saiki A, Ohira M, Miyashita Y, Shirai K. Cardio-ankle vascular index may reflect endothelial function in type 2 diabetes. Int. J. Clin. Pract. 2011; 65: 1200-1201
– reference: 46) Schuster H, Fagerberg B, Edwards S, Halmos T, Lopatynski J, Stender S, Birketvedt GS, Tonstad S, Gause-Nilsson I, Halldórsdóttir S, Ohman KP.; SIR Investigators. Tesaglitazar, a dual peroxisome proliferator-activated receptor alpha/gamma agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance. Atherosclerosis. 2008; 197: 355-362
– reference: 7) Miyashita Y, Saiki A, Endo K, Ban N, Yamaguchi T, Kawana H, Nagayama D, Ohira M, Oyama T, Shirai K. Effects of olmesartan, an angiotensin II receptor blocker, and amlodipine, a calcium channel blocker, on Cardio-Ankle Vascular Index (CAVI) in type 2 diabetic patients with hypertension. J Atheroscler Thromb 2009; 16: 621-626
– reference: 26) Zhu S, Su G, Meng QH. Inhibitory effects of micronized fenofibrate on carotid atherosclerosis in patients with essential hypertension. Clin. Chem. 2006; 52: 2036-2042
– reference: 27) Ueno Y, Tanaka R, Yamashiro K, Miyamoto N, Hira K, Kurita N, Sakurai M, Urabe T, Shimada K, Miyazaki T, Daida H, Hattori N. Age Stratification and Impact of Eicosapentaenoic Acid and Docosahexaenoic Acid to Arachidonic Acid Ratios in Ischemic Stroke Patients. J Atheroscler Thromb. 2018; 25: 593-605
– reference: 24) Elkeles RS, Diamond JR, Poulter C, Dhanjil S, Nicolaides AN, Mahmood S, Richmond W, Mather H, Sharp P, Feher MD. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes. Care. 1998; 21: 641-648
– reference: 34) Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995; 26: 485-490
– reference: 15) Hitsumoto T, Iizuka T, Takahashi M, Yoshinaga K, Matsumoto J, Shimizu K, Kaku M, Sugiyama Y, Sakurai T, Aoyagi K, Kanai M, Noike H, Ohsawa H, Watanabe H, Shirai K. Relationship between insulin resistance and oxidative stress in vivo. J. Cardiol. 2003; 42: 119-127
– reference: 32) Hasegawa M. Fundamental research on human aortic pulse wave velocity. Jikei Medical Journal 1970; 85: 742-760
– reference: 28) Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008; 197: 12-24
– reference: 8) Yamanaka M, Sakuma M, Matsushita A, Tanaka S, Yamamoto Y, Asai T, Arai H. The Effects of Long-Term Dietary Therapy on Patients with Hypertriglyceridemia. J Atherscler Thromb 2019; 26: 39-49
– reference: 37) Miyashita Y, Endo K, Saiki A, Ban N, Yamaguchi T, Kawana H, Nagayama D, Ohira M, Oyama T, Shirai K. Effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardio-ankle vascular index in type 2 diabetic patients. J Athroscler Thromb 2009; 16: 539-545
– ident: 2
– ident: 28
  doi: 10.1016/j.atherosclerosis.2007.11.008
– ident: 39
– ident: 10
  doi: 10.1016/j.orcp.2011.08.154
– ident: 12
– ident: 35
– ident: 51
– ident: 16
– ident: 31
– ident: 9
– ident: 49
– ident: 26
– ident: 41
– ident: 17
– ident: 29
  doi: 10.1016/S0140-6736(07)60527-3
– ident: 1
  doi: 10.1038/362801a0
– ident: 19
  doi: 10.1038/35013000
– ident: 13
– ident: 30
– ident: 50
  doi: 10.1161/01.CIR.0000126824.12785.B6
– ident: 22
  doi: 10.1186/1475-2840-11-140
– ident: 47
  doi: 10.1016/j.amjcard.2008.08.033
– ident: 44
  doi: 10.1001/jama.288.20.2579
– ident: 14
  doi: 10.1016/0021-9150(84)90171-0
– ident: 40
– ident: 43
– ident: 18
  doi: 10.1016/S0021-9150(03)00156-4
– ident: 46
  doi: 10.1016/j.atherosclerosis.2007.05.029
– ident: 33
– ident: 3
  doi: 10.5551/jat.ED098
– ident: 38
  doi: 10.1007/s11883-003-0086-y
– ident: 24
– ident: 37
  doi: 10.5551/jat.281
– ident: 48
  doi: 10.1016/j.atherosclerosis.2008.05.055
– ident: 4
  doi: 10.5551/jat.13.101
– ident: 8
  doi: 10.5551/jat.42440
– ident: 20
– ident: 42
– ident: 23
  doi: 10.1016/S0021-9150(00)00394-4
– ident: 36
– ident: 7
  doi: 10.5551/jat.497
– ident: 11
– ident: 27
  doi: 10.5551/jat.40691
– ident: 5
  doi: 10.5551/jat.31385
– ident: 34
  doi: 10.1161/01.HYP.26.3.485
– ident: 15
– ident: 32
– ident: 6
– ident: 45
  doi: 10.1161/01.CIR.0000093660.86242.BB
– ident: 21
– ident: 25
SSID ssj0033552
Score 2.3197126
Snippet Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the...
Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the...
Aim: Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms Arterial stiffness
Bezafibrate
Cardio-ankle vascular index (CAVI)
Original
Triglyceride
Title Bezafibrate Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Hypertriglyceridemic Patients with Type 2 Diabetes Mellitus
URI https://www.jstage.jst.go.jp/article/jat/26/7/26_45799/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30584220
https://www.proquest.com/docview/2160368576
https://pubmed.ncbi.nlm.nih.gov/PMC6629745
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Atherosclerosis and Thrombosis, 2019/07/01, Vol.26(7), pp.659-669
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKghAXxJvykkEckFaB1nHi9FiWXQralsN2UW-R4zhttm2C2vTQ_Rf8Av4qM3YS0qWHhYvV2lMn6nyZzIznQcjbHvcUQKHrdHXMHa595fRYrJ1YRDwCc0x0GCYnD0f-4Jx_nXiTVutXI2ppU0Tv1eXevJL_4SrMAV8xS_YfOFtvChPwGfgLI3AYxmvx-KO-lAnau4VJD1lguj36UfsYp4mu8LMiTRIjzOzhrlU3j0wMqtPP5gt9-L0KRf2CdRPR_TEA03RVgNW-2CrYpgyft_VXy2S4sXXcfqoct0Ms61mUPoS_VV2jZeZruHsY03UZtbnKlxF-rQWPXMop9mYxGJJzbPNUO4Bm6apsnJ3PLurpkZzKLfzMRuenzYW5XG5MD6XDs1k-z5veDZNQVXk3rEAG-YL1f60Q1HvmSilu8-5LtIqGSPZtxfGrrwoPVEXTogB7egjbpGm3HPfoW3hyfnoajo8n4xvkJhPCxAF8ntQxRC4oa-Y4vbohW7oKt_5Qb7yj8Ny6AJ1_qveZM1ejchtqzvgeuVsyjfYt2O6Tls4ekNvDMgLjIfnZwBxtYI5WmKM15miFORptaRNztMIcNZijaUb3YY5WmKOIOYqYo4xWmKMV5h6R85Pj8dHAKdt6OAq7ZziR9vxAxUp1eVcKMB-SOJaejGQcxF0mXa4iVyvfVZJ50ncFk5GIup0E5IaKedxxH5ODLM_0U0Ldng8GfocnfodzIeJIsaDHEk8IraRKWJu8q_77UJU177H1yiIE2xfZFAKbQsOmNnlTk_6whV72EQWWgTVJ-ewbEuaHAgdDWq9g9iQIqzZ5XbE8BAmOx3Iy0_lmHTLs9O4HYPi3yRMLgXp7eBsHnLFOm4gdcNQEWB1-dyVLZ6ZKvO-znuDes2tc9zm58-fZe0EOitVGvwRdu4heGbz_BltF4uE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bezafibrate+Ameliorates+Arterial+Stiffness+Assessed+by+Cardio-Ankle+Vascular+Index+in+Hypertriglyceridemic+Patients+with+Type+2+Diabetes+Mellitus&rft.jtitle=Journal+of+atherosclerosis+and+thrombosis&rft.au=Yamaguchi%2C+Takashi&rft.au=Shirai%2C+Kohji&rft.au=Nagayama%2C+Daiji&rft.au=Nakamura%2C+Shoko&rft.date=2019-07-01&rft.issn=1880-3873&rft.eissn=1880-3873&rft.volume=26&rft.issue=7&rft.spage=659&rft_id=info:doi/10.5551%2Fjat.45799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon