A “σ-Hole”-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells
Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arra...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100965 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials.
[Display omitted]
•A "σ-hole”-containing small molecule is used as an additive for organic solar cells•16.5% efficiency organic solar cells are achieved with additive engineering•Excellent stability and easy processability are obtained with the additive
Energy Materials; Organic Chemistry; Supramolecular Chemistry |
---|---|
AbstractList | Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials. : Energy Materials; Organic Chemistry; Supramolecular Chemistry Subject Areas: Energy Materials, Organic Chemistry, Supramolecular Chemistry Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials. • A "σ-hole”-containing small molecule is used as an additive for organic solar cells • 16.5% efficiency organic solar cells are achieved with additive engineering • Excellent stability and easy processability are obtained with the additive Energy Materials; Organic Chemistry; Supramolecular Chemistry Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials.Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials. Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials. Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials. [Display omitted] •A "σ-hole”-containing small molecule is used as an additive for organic solar cells•16.5% efficiency organic solar cells are achieved with additive engineering•Excellent stability and easy processability are obtained with the additive Energy Materials; Organic Chemistry; Supramolecular Chemistry |
ArticleNumber | 100965 |
Author | Chen, Shanshan Fu, Jiehao Lan, Linkai Hu, Dingqin Xiao, Zeyun Chen, Haiyan Li, Yongfang Jung, Sungwoo Kan, Zhipeng Yang, Ke Sun, Kuan Lu, Shirong Yang, Qianguang Yang, Changduk Lv, Jie Duan, Tainan |
AuthorAffiliation | 4 Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China 3 Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea 1 Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China 2 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China – name: 1 Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – name: 4 Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China – name: 3 Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea |
Author_xml | – sequence: 1 givenname: Jiehao surname: Fu fullname: Fu, Jiehao organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 2 givenname: Shanshan surname: Chen fullname: Chen, Shanshan organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China – sequence: 3 givenname: Ke surname: Yang fullname: Yang, Ke organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 4 givenname: Sungwoo surname: Jung fullname: Jung, Sungwoo organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea – sequence: 5 givenname: Jie surname: Lv fullname: Lv, Jie organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 6 givenname: Linkai surname: Lan fullname: Lan, Linkai organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 7 givenname: Haiyan surname: Chen fullname: Chen, Haiyan organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 8 givenname: Dingqin surname: Hu fullname: Hu, Dingqin organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 9 givenname: Qianguang surname: Yang fullname: Yang, Qianguang organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 10 givenname: Tainan surname: Duan fullname: Duan, Tainan organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 11 givenname: Zhipeng surname: Kan fullname: Kan, Zhipeng organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 12 givenname: Changduk surname: Yang fullname: Yang, Changduk organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea – sequence: 13 givenname: Kuan surname: Sun fullname: Sun, Kuan email: kuan.sun@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China – sequence: 14 givenname: Shirong surname: Lu fullname: Lu, Shirong email: lushirong@cigit.ac.cn organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 15 givenname: Zeyun orcidid: 0000-0002-5082-5663 surname: Xiao fullname: Xiao, Zeyun email: xiao.z@cigit.ac.cn organization: Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China – sequence: 16 givenname: Yongfang surname: Li fullname: Li, Yongfang organization: Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32199291$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3DAUNSWleTQ_0EXxptCNp5Js2RKUwjBMm0Agiz62qixdTTVopFTyDGQX6G8039R_yJdUjpOSdJGVxNV5iHvOYbHng4eieIXRDCPcvlvPbFJ2RhAZB4i39FlxQCjjFUIN2Xtw3y-OU1ojlJGINLx9UezXBHNOOD4ovs_Lm6vff35VJ8HBzdV1tQh-kNZbvyq_BScH66D8HJzV5VxrO9gdlEsvezcCcDujb8qlMVZZ8OqyPI8r6a0aCTKWC3AuvSyeG-kSHN-dR8XXj8svi5Pq7PzT6WJ-VilK8FD1Gre4NdSwvsPQU9URrnpNTZ2nLetYBz1qWsCSywY0Ilh2mJOOyBrXmtX1UXE66eog1-Ii2o2MlyJIK24HIa6EjINVDgRhjLPO1KTpmqZhPTdcGmxwrzRBpqFZ68OkdbHtN6AV-CFK90j08Yu3P8Qq7ESHGKF0_MzbO4EYfm4hDWKT08rrkB7CNglSM9wSXLcsQ18_9Ppnch9RBrAJoGJIKYIRyg45lzBaWycwEmMhxFqMhRBjIcRUiEwl_1Hv1Z8kvZ9IkNPaWYgi3aYL2kZQQ16nfYr-F899zuo |
CitedBy_id | crossref_primary_10_1002_adma_202302861 crossref_primary_10_1016_j_isci_2022_104090 crossref_primary_10_1038_s41467_023_37526_5 crossref_primary_10_1016_j_orgel_2021_106161 crossref_primary_10_1002_solr_202100515 crossref_primary_10_1016_j_synthmet_2024_117586 crossref_primary_10_1039_D3TC03641C crossref_primary_10_1002_adfm_202200629 crossref_primary_10_1002_adfm_202305450 crossref_primary_10_1016_j_cej_2024_151067 crossref_primary_10_1002_adfm_202420416 crossref_primary_10_1039_D2SE00199C crossref_primary_10_1002_agt2_31 crossref_primary_10_1021_acsami_0c06759 crossref_primary_10_1002_adfm_202010535 crossref_primary_10_1021_acsami_3c07350 crossref_primary_10_1016_j_dyepig_2021_109216 crossref_primary_10_1016_j_enchem_2024_100129 crossref_primary_10_1016_j_nanoen_2023_108956 crossref_primary_10_1016_j_cej_2024_153417 crossref_primary_10_1002_advs_202401405 crossref_primary_10_1002_ange_202500085 crossref_primary_10_1002_anie_202308367 crossref_primary_10_1002_advs_202004262 crossref_primary_10_1002_advs_202105347 crossref_primary_10_1002_adfm_202100870 crossref_primary_10_1039_D2CS00262K crossref_primary_10_1002_eom2_12061 crossref_primary_10_1007_s11705_020_2010_1 crossref_primary_10_1016_j_cej_2024_150783 crossref_primary_10_1016_j_cej_2021_131583 crossref_primary_10_1038_s41467_024_46022_3 crossref_primary_10_1002_aenm_202103702 crossref_primary_10_1002_solr_202200769 crossref_primary_10_1021_acsami_0c22014 crossref_primary_10_1016_j_decarb_2023_100004 crossref_primary_10_1002_adfm_202311512 crossref_primary_10_1016_j_nanoen_2020_105272 crossref_primary_10_1021_acsenergylett_3c01178 crossref_primary_10_1021_acsaem_2c02330 crossref_primary_10_1002_anie_202500085 crossref_primary_10_1002_solr_202200805 crossref_primary_10_1021_acsaem_2c03180 crossref_primary_10_1039_D0TC03217D crossref_primary_10_1002_er_6803 crossref_primary_10_1021_acsaem_4c03087 crossref_primary_10_1002_adfm_202409315 crossref_primary_10_1016_j_cej_2022_139489 crossref_primary_10_1039_D3MA00106G crossref_primary_10_1002_smll_202408610 crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_6023_A23100439 crossref_primary_10_1016_j_synthmet_2020_116513 crossref_primary_10_1039_D3TA07542G crossref_primary_10_1039_D1TC04224F crossref_primary_10_1007_s11426_021_1121_y crossref_primary_10_1051_matecconf_202338001014 crossref_primary_10_1002_advs_202414712 crossref_primary_10_1016_j_cej_2024_158329 crossref_primary_10_1021_acsaem_1c00617 crossref_primary_10_1021_jacs_2c05303 crossref_primary_10_1016_j_dyepig_2022_110180 crossref_primary_10_1002_adfm_202211873 crossref_primary_10_1021_acsaem_2c03095 crossref_primary_10_1039_D0TA04941G crossref_primary_10_1007_s10965_023_03784_6 crossref_primary_10_1021_acsami_1c19943 crossref_primary_10_1016_j_dyepig_2020_109085 crossref_primary_10_1021_acs_jpcc_3c01448 crossref_primary_10_1039_D2TC03838B crossref_primary_10_1016_j_cej_2022_135975 crossref_primary_10_1039_D0EE02426K crossref_primary_10_1002_adfm_202411787 crossref_primary_10_1002_aenm_202300524 crossref_primary_10_1016_j_jechem_2021_03_010 crossref_primary_10_1002_ange_202308367 |
Cites_doi | 10.1002/chem.200801920 10.1063/1.1861123 10.1002/aenm.201800264 10.1002/adma.201703933 10.1038/nmat1928 10.1021/acs.chemrev.5b00484 10.1002/adfm.200600624 10.1021/jo00108a012 10.1038/s41467-018-07017-z 10.1002/anie.201811561 10.1039/c4ta01125b 10.1063/1.2408661 10.1002/adfm.201603083 10.1002/adma.201903441 10.1038/nphoton.2015.9 10.1039/c2jm16257a 10.1002/cphc.201402734 10.1002/adma.201800868 10.1002/aenm.201701691 10.1039/C6EE02598F 10.1002/adma.201902210 10.1021/acs.chemrev.5b00560 10.1002/ange.201811561 10.1016/j.joule.2019.09.010 10.1002/adma.201003690 10.1002/adma.201707114 10.1002/adfm.201605779 10.1021/acs.jpcc.5b01733 10.1016/j.chempr.2018.02.022 10.1107/S2052520617002918 10.1021/ja9086352 10.1002/adma.201705706 10.1002/adma.201705209 10.1002/adfm.201401685 10.1002/adma.201404317 10.1038/s41467-019-10098-z 10.1038/s41467-019-10351-5 10.1103/PhysRev.87.835 10.1002/adfm.200400521 10.1021/jacs.8b02695 10.1002/adma.200903677 10.1021/ja710079w 10.1038/nmat1500 10.1002/adfm.200500211 10.1021/jacs.7b02677 10.1039/C9EE02433F 10.1038/ncomms7013 10.1021/acs.chemmater.5b04346 10.1002/anie.200351647 10.1016/j.joule.2019.01.004 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100965 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_288987f32474448b9f9af1f1bcd20f45 PMC7082553 32199291 10_1016_j_isci_2020_100965 S2589004220301498 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-bd1616f5f8b71eb5c729cbd5f316f68787eb046e1a9a4ed021a719272a313d833 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Thu Aug 21 13:47:39 EDT 2025 Fri Jul 11 08:53:19 EDT 2025 Thu Jan 02 22:57:36 EST 2025 Tue Jul 01 01:03:28 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 25 21:04:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Energy Materials Supramolecular Chemistry Organic Chemistry |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-bd1616f5f8b71eb5c729cbd5f316f68787eb046e1a9a4ed021a719272a313d833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0002-5082-5663 |
OpenAccessLink | https://doaj.org/article/288987f32474448b9f9af1f1bcd20f45 |
PMID | 32199291 |
PQID | 2381621368 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_288987f32474448b9f9af1f1bcd20f45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7082553 proquest_miscellaneous_2381621368 pubmed_primary_32199291 crossref_citationtrail_10_1016_j_isci_2020_100965 crossref_primary_10_1016_j_isci_2020_100965 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100965 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Shockley, Jr (bib35) 1952; 87 Hanson, Jensen, McMurtrie, Rintoul, Micallef (bib7) 2009; 15 Zhang, Zhao, Yang, Tian, Yang (bib49) 2018; 8 Li, Shrotriya, Huang, Yao, Moriarty, Emery, Yang (bib16) 2005; 4 Fei, Eisner, Jiao, Azzouzi, Röhr, Han, Shahid, Chesman, Easton, Mcneill (bib5) 2018; 30 Yu, Yao, Hong, Qin, Zhu, Cui, Li, Hou (bib45) 2018; 9 Peet, Soci, Coffin, Nguyen, Mikhailovsky, Moses, Bazan (bib30) 2006; 89 Li, Yao, Yang, Shrotriya, Yang, Yang (bib17) 2010; 17 Liu, Koppireddi, Wang, Zhang, Li (bib23) 2019; 131 Lee, Ma, Brabec, Yuen, Moon, Kim, Lee, Bazan, Heeger (bib15) 2008; 130 Sarwar, Dragisic, Salsberg, Gouliaras, Taylor (bib33) 2010; 132 Rogers, Schmidt, Toney, Kramer, Bazan (bib32) 2011; 23 Yang, Chen, Dou, Chang, Duan, Bob, Li, Yang (bib44) 2015; 9 Wang, Jin (bib41) 2017; 73 Kolář, Hobza (bib14) 2016; 116 Tan, Wang, Li, Liu, Chen, Li, Lu, Zhu, Peng, Zhu (bib38) 2015; 24 Zhang, Qin, Zhu, Hou (bib48) 2018; 30 Liang, Babics, Savikhin, Zhang, Le Corre, Lopatin, Kan, Firdaus, Liu, McCulloch (bib19) 2018; 8 Baran, Kirchartz, Wheeler, Dimitrov, Abdelsamie, Gorman, Ashraf, Holliday, Wadsworth, Gasparini (bib1) 2016; 9 Yuan, Zhang, Zhou, Zhang, Yip, Lau, Lu, Zhu, Peng, Johnson (bib47) 2019; 3 Liu, Koppireddi, Wang, Zhang, Li (bib22) 2019; 58 Sun, Xiao, Hanssen, Klein, Dam, Pfaff, Gerthsen, Wong, Jones (bib36) 2014; 2 Mcdowell, Abdelsamie, Toney, Bazan (bib28) 2018; 30 Yu, Liu, Chen, Qin, Lau, Yin, Kong, Lu, Shi, Li (bib46) 2019; 10 Yan, Song, Huang, Peng, Huang, Ge (bib43) 2019; 31 Ma, Yang, Gong, Lee, Heeger (bib24) 2010; 15 Zhao, Li, Yao, Zhang, Zhang, Yang, Hou (bib50) 2017; 139 Más-Montoya, Janssen (bib27) 2017; 27 Cavallo, Metrangolo, Milani, Pilati, Priimagi, Resnati, Terraneo (bib2) 2016; 116 Lim, Beer (bib20) 2018; 4 Pan, Sun, Li, Tang, Zou, Li, Bai, Wei, Lv, Chen (bib29) 2019; 12 Cui, Yao, Zhang, Zhang, Wang, Hong, Xian, Xu, Zhang, Peng (bib3) 2019; 10 Machui, Maisch, Burgués-Ceballos, Langner, Krantz, Ameri, Brabec (bib25) 2015; 16 Hoven, Dang, Coffin, Peet, Nguyen, Bazan (bib9) 2010; 22 Hai, Qian, Xiao, Xiao, Xue, Wei (bib6) 2012; 22 Sun, Xiao, Lu, Zajaczkowski, Pisula, Hanssen, White, Williamson, Subbiah, Ouyang (bib37) 2015; 6 Manley, Strzalka, Fauvell, Jackson, Leonardi, Eastham, Marks, Chen (bib26) 2017; 29 Peet, Kim, Coates, Ma, Moses, Heeger, Bazan (bib31) 2007; 6 Li, Ye, Zhao, Yan, Yang, Liu, Li, Ade, Hou (bib18) 2018; 140 Lin, Wang, Zhang, Bai, Li, Zhu, Zhan (bib21) 2015; 27 Erb, Zhokhavets, Gobsch, Raleva, Stühn, Schilinsky, Waldauf, Brabec (bib4) 2005; 15 Huang, Cheng, Yang, Li, Yang (bib10) 2018; 30 Jiang, Wei, Lai, Peng, Kim, Yuan, Ye, Ade, Zou, Yan (bib12) 2019; 3 Tournebize, Rivaton, Peisert, Chassé (bib39) 2015; 119 Schulz, Ludwigs (bib34) 2017; 27 Hummelen, Knight, LePeq, Wudl, Yao, Wilkins (bib11) 1995; 60 Villers, O'Hara, Ostrowski, Biddle, Shaheen, Chabinyc, Olson, Kopidakis (bib40) 2016; 28 Wienk, Kroon, Verhees, Knol, Hummelen, van Hal, Janssen (bib42) 2003; 42 Hong, Yao, Wu, Cui, Zhang, Xu, Yu, Liao, Gao, Xian (bib8) 2019; 31 Kim, Choulis, Nelson, Bradley, Cook, Durrant (bib13) 2005; 86 Wang (10.1016/j.isci.2020.100965_bib41) 2017; 73 Yuan (10.1016/j.isci.2020.100965_bib47) 2019; 3 Huang (10.1016/j.isci.2020.100965_bib10) 2018; 30 Cavallo (10.1016/j.isci.2020.100965_bib2) 2016; 116 Tan (10.1016/j.isci.2020.100965_bib38) 2015; 24 Shockley (10.1016/j.isci.2020.100965_bib35) 1952; 87 Tournebize (10.1016/j.isci.2020.100965_bib39) 2015; 119 Hong (10.1016/j.isci.2020.100965_bib8) 2019; 31 Kim (10.1016/j.isci.2020.100965_bib13) 2005; 86 Sarwar (10.1016/j.isci.2020.100965_bib33) 2010; 132 Hummelen (10.1016/j.isci.2020.100965_bib11) 1995; 60 Erb (10.1016/j.isci.2020.100965_bib4) 2005; 15 Sun (10.1016/j.isci.2020.100965_bib36) 2014; 2 Baran (10.1016/j.isci.2020.100965_bib1) 2016; 9 Kolář (10.1016/j.isci.2020.100965_bib14) 2016; 116 Zhang (10.1016/j.isci.2020.100965_bib48) 2018; 30 Lee (10.1016/j.isci.2020.100965_bib15) 2008; 130 Hanson (10.1016/j.isci.2020.100965_bib7) 2009; 15 Yang (10.1016/j.isci.2020.100965_bib44) 2015; 9 Yu (10.1016/j.isci.2020.100965_bib46) 2019; 10 Rogers (10.1016/j.isci.2020.100965_bib32) 2011; 23 Machui (10.1016/j.isci.2020.100965_bib25) 2015; 16 Mcdowell (10.1016/j.isci.2020.100965_bib28) 2018; 30 Jiang (10.1016/j.isci.2020.100965_bib12) 2019; 3 Lim (10.1016/j.isci.2020.100965_bib20) 2018; 4 Pan (10.1016/j.isci.2020.100965_bib29) 2019; 12 Hai (10.1016/j.isci.2020.100965_bib6) 2012; 22 Lin (10.1016/j.isci.2020.100965_bib21) 2015; 27 Cui (10.1016/j.isci.2020.100965_bib3) 2019; 10 Zhao (10.1016/j.isci.2020.100965_bib50) 2017; 139 Ma (10.1016/j.isci.2020.100965_bib24) 2010; 15 Schulz (10.1016/j.isci.2020.100965_bib34) 2017; 27 Más-Montoya (10.1016/j.isci.2020.100965_bib27) 2017; 27 Yan (10.1016/j.isci.2020.100965_bib43) 2019; 31 Li (10.1016/j.isci.2020.100965_bib18) 2018; 140 Villers (10.1016/j.isci.2020.100965_bib40) 2016; 28 Li (10.1016/j.isci.2020.100965_bib16) 2005; 4 Wienk (10.1016/j.isci.2020.100965_bib42) 2003; 42 Hoven (10.1016/j.isci.2020.100965_bib9) 2010; 22 Zhang (10.1016/j.isci.2020.100965_bib49) 2018; 8 Fei (10.1016/j.isci.2020.100965_bib5) 2018; 30 Liu (10.1016/j.isci.2020.100965_bib23) 2019; 131 Peet (10.1016/j.isci.2020.100965_bib30) 2006; 89 Peet (10.1016/j.isci.2020.100965_bib31) 2007; 6 Liu (10.1016/j.isci.2020.100965_bib22) 2019; 58 Manley (10.1016/j.isci.2020.100965_bib26) 2017; 29 Yu (10.1016/j.isci.2020.100965_bib45) 2018; 9 Li (10.1016/j.isci.2020.100965_bib17) 2010; 17 Liang (10.1016/j.isci.2020.100965_bib19) 2018; 8 Sun (10.1016/j.isci.2020.100965_bib37) 2015; 6 |
References_xml | – volume: 29 start-page: 1703933 year: 2017 ident: bib26 article-title: In situ GIWAXS analysis of solvent and additive effects on PTB7 thin film microstructure evolution during spin coating publication-title: Adv. Mater. – volume: 31 start-page: 1902210 year: 2019 ident: bib43 article-title: 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy publication-title: Adv. Mater. – volume: 17 start-page: 1636 year: 2010 end-page: 1644 ident: bib17 article-title: “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes publication-title: Adv. Funct. Mater. – volume: 22 start-page: E63 year: 2010 end-page: E66 ident: bib9 article-title: Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives publication-title: Adv. Mater. – volume: 15 start-page: 1193 year: 2005 end-page: 1196 ident: bib4 article-title: Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells publication-title: Adv. Funct. Mater. – volume: 89 start-page: 252105 year: 2006 ident: bib30 article-title: Method for increasing the photoconductive response in conjugated polymer/fullerene composites publication-title: Appl. Phys. Lett. – volume: 131 start-page: 232 year: 2019 end-page: 236 ident: bib23 article-title: Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 226 year: 2019 end-page: 230 ident: bib22 article-title: Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 497 year: 2007 end-page: 500 ident: bib31 article-title: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols publication-title: Nat. Mater. – volume: 87 start-page: 835 year: 1952 end-page: 842 ident: bib35 article-title: Statistics of the recombinations of holes and electrons publication-title: Phys. Rev. – volume: 10 start-page: 2152 year: 2019 ident: bib46 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: Nat. Commun. – volume: 140 start-page: 7159 year: 2018 end-page: 7167 ident: bib18 article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 532 year: 1995 end-page: 538 ident: bib11 article-title: Preparation and characterization of fulleroid and methanofullerene derivatives publication-title: J. Org. Chem. – volume: 23 start-page: 2284 year: 2011 end-page: 2288 ident: bib32 article-title: Structural order in bulk heterojunction films prepared with solvent additives publication-title: Adv. Mater. – volume: 27 start-page: 1603083 year: 2017 ident: bib34 article-title: Controlled crystallization of conjugated polymer films from solution and solvent vapor for polymer electronics publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1800868 year: 2018 ident: bib48 article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. – volume: 22 start-page: 5336 year: 2012 end-page: 5343 ident: bib6 article-title: Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C–I⋯π halogen bonding publication-title: J. Mater. Chem. – volume: 30 start-page: 1705209 year: 2018 ident: bib5 article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses publication-title: Adv. Mater. – volume: 27 start-page: 1605779 year: 2017 ident: bib27 article-title: The effect of H- and J-aggregation on the photophysical and photovoltaic properties of small thiophene-pyridine-DPP molecules for bulk-heterojunction solar cells publication-title: Adv. Funct. Mater. – volume: 10 start-page: 2515 year: 2019 ident: bib3 article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages publication-title: Nat. Commun. – volume: 30 start-page: 1705706 year: 2018 ident: bib10 article-title: High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components publication-title: Adv. Mater. – volume: 9 start-page: 190 year: 2015 ident: bib44 article-title: High-performance multiple-donor bulk heterojunction solar cells publication-title: Nat. Photon. – volume: 139 start-page: 7148 year: 2017 end-page: 7151 ident: bib50 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1707114 year: 2018 ident: bib28 article-title: Solvent additives: key morphology-directing agents for solution-processed organic solar cells publication-title: Adv. Mater. – volume: 12 start-page: 3400 year: 2019 end-page: 3411 ident: bib29 article-title: Solution-processable n-doped graphene-containing cathode interfacial materials for high performance organic solar cells publication-title: Energy Environ. Sci. – volume: 28 start-page: 876 year: 2016 end-page: 884 ident: bib40 article-title: Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers publication-title: Chem. Mater. – volume: 42 start-page: 3371 year: 2003 end-page: 3375 ident: bib42 article-title: Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 4156 year: 2009 end-page: 4164 ident: bib7 article-title: Halogen bonding between an isoindoline nitroxide and 1,4-diiodotetrafluorobenzene: new tools and tectons for self-assembling organic spin systems publication-title: Chem. Eur. J. – volume: 3 start-page: 1140 year: 2019 end-page: 1151 ident: bib47 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule – volume: 73 start-page: 210 year: 2017 end-page: 216 ident: bib41 article-title: Cocrystal assembled by 1, 4-diiodotetrafluorobenzene and phenothiazine based on C—I⋯π/N/S halogen bond and other assisting interactions publication-title: Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. – volume: 16 start-page: 1275 year: 2015 end-page: 1280 ident: bib25 article-title: Classification of additives for organic photovoltaic devices publication-title: ChemPhysChem – volume: 27 start-page: 1170 year: 2015 end-page: 1174 ident: bib21 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. – volume: 8 start-page: 1701691 year: 2018 ident: bib49 article-title: Ternary organic solar cells with> 11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor publication-title: Adv. Energy Mater. – volume: 132 start-page: 1646 year: 2010 end-page: 1653 ident: bib33 article-title: Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 6540 year: 2015 end-page: 6547 ident: bib38 article-title: Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes publication-title: Adv. Funct. Mater. – volume: 31 start-page: 1903441 year: 2019 ident: bib8 article-title: Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency publication-title: Adv. Mater. – volume: 6 start-page: 6013 year: 2015 ident: bib37 article-title: A molecular nematic liquid crystalline material for high-performance organic photovoltaics publication-title: Nat. Commun. – volume: 15 start-page: 1617 year: 2010 end-page: 1622 ident: bib24 article-title: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology publication-title: Adv. Funct. Mater. – volume: 4 start-page: 864 year: 2005 end-page: 868 ident: bib16 article-title: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends publication-title: Nat. Mater. – volume: 116 start-page: 5155 year: 2016 end-page: 5187 ident: bib14 article-title: Computer modeling of halogen bonds and other σ-hole interactions publication-title: Chem. Rev. – volume: 116 start-page: 2478 year: 2016 end-page: 2601 ident: bib2 article-title: The halogen bond publication-title: Chem. Rev. – volume: 8 start-page: 1800264 year: 2018 ident: bib19 article-title: Carrier transport and recombination in efficient “all-small-molecule” solar cells with the nonfullerene acceptor IDTBR publication-title: Adv. Energy Mater. – volume: 86 start-page: 063502 year: 2005 ident: bib13 article-title: Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene publication-title: Appl. Phys. Lett. – volume: 9 start-page: 3783 year: 2016 end-page: 3793 ident: bib1 article-title: Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages publication-title: Energy Environ. Sci. – volume: 130 start-page: 3619 year: 2008 end-page: 3623 ident: bib15 article-title: Processing additives for improved efficiency from bulk heterojunction solar cells publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 9048 year: 2014 end-page: 9054 ident: bib36 article-title: The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells publication-title: J. Mater. Chem. A – volume: 119 start-page: 9142 year: 2015 end-page: 9148 ident: bib39 article-title: The crucial role of confined residual additives on the photostability of P3HT:PCBM active layers publication-title: J. Phys. Chem. C – volume: 9 start-page: 4645 year: 2018 ident: bib45 article-title: Design and application of volatilizable solid additives in non-fullerene organic solar cells publication-title: Nat. Commun. – volume: 3 start-page: 3020 year: 2019 end-page: 3033 ident: bib12 article-title: Alkyl chain tuning of small molecule acceptors for efficient organic solar cells publication-title: Joule – volume: 4 start-page: 731 year: 2018 end-page: 783 ident: bib20 article-title: Sigma-hole interactions in anion recognition publication-title: Chem – volume: 15 start-page: 4156 year: 2009 ident: 10.1016/j.isci.2020.100965_bib7 article-title: Halogen bonding between an isoindoline nitroxide and 1,4-diiodotetrafluorobenzene: new tools and tectons for self-assembling organic spin systems publication-title: Chem. Eur. J. doi: 10.1002/chem.200801920 – volume: 86 start-page: 063502 year: 2005 ident: 10.1016/j.isci.2020.100965_bib13 article-title: Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene publication-title: Appl. Phys. Lett. doi: 10.1063/1.1861123 – volume: 8 start-page: 1800264 year: 2018 ident: 10.1016/j.isci.2020.100965_bib19 article-title: Carrier transport and recombination in efficient “all-small-molecule” solar cells with the nonfullerene acceptor IDTBR publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800264 – volume: 29 start-page: 1703933 year: 2017 ident: 10.1016/j.isci.2020.100965_bib26 article-title: In situ GIWAXS analysis of solvent and additive effects on PTB7 thin film microstructure evolution during spin coating publication-title: Adv. Mater. doi: 10.1002/adma.201703933 – volume: 6 start-page: 497 year: 2007 ident: 10.1016/j.isci.2020.100965_bib31 article-title: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols publication-title: Nat. Mater. doi: 10.1038/nmat1928 – volume: 116 start-page: 2478 year: 2016 ident: 10.1016/j.isci.2020.100965_bib2 article-title: The halogen bond publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00484 – volume: 17 start-page: 1636 year: 2010 ident: 10.1016/j.isci.2020.100965_bib17 article-title: “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600624 – volume: 60 start-page: 532 year: 1995 ident: 10.1016/j.isci.2020.100965_bib11 article-title: Preparation and characterization of fulleroid and methanofullerene derivatives publication-title: J. Org. Chem. doi: 10.1021/jo00108a012 – volume: 9 start-page: 4645 year: 2018 ident: 10.1016/j.isci.2020.100965_bib45 article-title: Design and application of volatilizable solid additives in non-fullerene organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-07017-z – volume: 58 start-page: 226 year: 2019 ident: 10.1016/j.isci.2020.100965_bib22 article-title: Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811561 – volume: 2 start-page: 9048 year: 2014 ident: 10.1016/j.isci.2020.100965_bib36 article-title: The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01125b – volume: 89 start-page: 252105 year: 2006 ident: 10.1016/j.isci.2020.100965_bib30 article-title: Method for increasing the photoconductive response in conjugated polymer/fullerene composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.2408661 – volume: 27 start-page: 1603083 year: 2017 ident: 10.1016/j.isci.2020.100965_bib34 article-title: Controlled crystallization of conjugated polymer films from solution and solvent vapor for polymer electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603083 – volume: 31 start-page: 1903441 year: 2019 ident: 10.1016/j.isci.2020.100965_bib8 article-title: Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201903441 – volume: 9 start-page: 190 year: 2015 ident: 10.1016/j.isci.2020.100965_bib44 article-title: High-performance multiple-donor bulk heterojunction solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.9 – volume: 22 start-page: 5336 year: 2012 ident: 10.1016/j.isci.2020.100965_bib6 article-title: Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C–I⋯π halogen bonding publication-title: J. Mater. Chem. doi: 10.1039/c2jm16257a – volume: 16 start-page: 1275 year: 2015 ident: 10.1016/j.isci.2020.100965_bib25 article-title: Classification of additives for organic photovoltaic devices publication-title: ChemPhysChem doi: 10.1002/cphc.201402734 – volume: 30 start-page: 1800868 year: 2018 ident: 10.1016/j.isci.2020.100965_bib48 article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. doi: 10.1002/adma.201800868 – volume: 8 start-page: 1701691 year: 2018 ident: 10.1016/j.isci.2020.100965_bib49 article-title: Ternary organic solar cells with> 11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701691 – volume: 9 start-page: 3783 year: 2016 ident: 10.1016/j.isci.2020.100965_bib1 article-title: Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02598F – volume: 31 start-page: 1902210 year: 2019 ident: 10.1016/j.isci.2020.100965_bib43 article-title: 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy publication-title: Adv. Mater. doi: 10.1002/adma.201902210 – volume: 116 start-page: 5155 year: 2016 ident: 10.1016/j.isci.2020.100965_bib14 article-title: Computer modeling of halogen bonds and other σ-hole interactions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00560 – volume: 131 start-page: 232 year: 2019 ident: 10.1016/j.isci.2020.100965_bib23 article-title: Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201811561 – volume: 3 start-page: 3020 year: 2019 ident: 10.1016/j.isci.2020.100965_bib12 article-title: Alkyl chain tuning of small molecule acceptors for efficient organic solar cells publication-title: Joule doi: 10.1016/j.joule.2019.09.010 – volume: 23 start-page: 2284 year: 2011 ident: 10.1016/j.isci.2020.100965_bib32 article-title: Structural order in bulk heterojunction films prepared with solvent additives publication-title: Adv. Mater. doi: 10.1002/adma.201003690 – volume: 30 start-page: 1707114 year: 2018 ident: 10.1016/j.isci.2020.100965_bib28 article-title: Solvent additives: key morphology-directing agents for solution-processed organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201707114 – volume: 27 start-page: 1605779 year: 2017 ident: 10.1016/j.isci.2020.100965_bib27 article-title: The effect of H- and J-aggregation on the photophysical and photovoltaic properties of small thiophene-pyridine-DPP molecules for bulk-heterojunction solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605779 – volume: 119 start-page: 9142 year: 2015 ident: 10.1016/j.isci.2020.100965_bib39 article-title: The crucial role of confined residual additives on the photostability of P3HT:PCBM active layers publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01733 – volume: 4 start-page: 731 year: 2018 ident: 10.1016/j.isci.2020.100965_bib20 article-title: Sigma-hole interactions in anion recognition publication-title: Chem doi: 10.1016/j.chempr.2018.02.022 – volume: 73 start-page: 210 year: 2017 ident: 10.1016/j.isci.2020.100965_bib41 article-title: Cocrystal assembled by 1, 4-diiodotetrafluorobenzene and phenothiazine based on C—I⋯π/N/S halogen bond and other assisting interactions publication-title: Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. doi: 10.1107/S2052520617002918 – volume: 132 start-page: 1646 year: 2010 ident: 10.1016/j.isci.2020.100965_bib33 article-title: Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9086352 – volume: 30 start-page: 1705706 year: 2018 ident: 10.1016/j.isci.2020.100965_bib10 article-title: High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components publication-title: Adv. Mater. doi: 10.1002/adma.201705706 – volume: 30 start-page: 1705209 year: 2018 ident: 10.1016/j.isci.2020.100965_bib5 article-title: An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses publication-title: Adv. Mater. doi: 10.1002/adma.201705209 – volume: 24 start-page: 6540 year: 2015 ident: 10.1016/j.isci.2020.100965_bib38 article-title: Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401685 – volume: 27 start-page: 1170 year: 2015 ident: 10.1016/j.isci.2020.100965_bib21 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 10 start-page: 2152 year: 2019 ident: 10.1016/j.isci.2020.100965_bib46 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-10098-z – volume: 10 start-page: 2515 year: 2019 ident: 10.1016/j.isci.2020.100965_bib3 article-title: Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages publication-title: Nat. Commun. doi: 10.1038/s41467-019-10351-5 – volume: 87 start-page: 835 year: 1952 ident: 10.1016/j.isci.2020.100965_bib35 article-title: Statistics of the recombinations of holes and electrons publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.835 – volume: 15 start-page: 1193 year: 2005 ident: 10.1016/j.isci.2020.100965_bib4 article-title: Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400521 – volume: 140 start-page: 7159 year: 2018 ident: 10.1016/j.isci.2020.100965_bib18 article-title: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02695 – volume: 22 start-page: E63 year: 2010 ident: 10.1016/j.isci.2020.100965_bib9 article-title: Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives publication-title: Adv. Mater. doi: 10.1002/adma.200903677 – volume: 130 start-page: 3619 year: 2008 ident: 10.1016/j.isci.2020.100965_bib15 article-title: Processing additives for improved efficiency from bulk heterojunction solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710079w – volume: 4 start-page: 864 year: 2005 ident: 10.1016/j.isci.2020.100965_bib16 article-title: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends publication-title: Nat. Mater. doi: 10.1038/nmat1500 – volume: 15 start-page: 1617 year: 2010 ident: 10.1016/j.isci.2020.100965_bib24 article-title: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500211 – volume: 139 start-page: 7148 year: 2017 ident: 10.1016/j.isci.2020.100965_bib50 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02677 – volume: 12 start-page: 3400 year: 2019 ident: 10.1016/j.isci.2020.100965_bib29 article-title: Solution-processable n-doped graphene-containing cathode interfacial materials for high performance organic solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02433F – volume: 6 start-page: 6013 year: 2015 ident: 10.1016/j.isci.2020.100965_bib37 article-title: A molecular nematic liquid crystalline material for high-performance organic photovoltaics publication-title: Nat. Commun. doi: 10.1038/ncomms7013 – volume: 28 start-page: 876 year: 2016 ident: 10.1016/j.isci.2020.100965_bib40 article-title: Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04346 – volume: 42 start-page: 3371 year: 2003 ident: 10.1016/j.isci.2020.100965_bib42 article-title: Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200351647 – volume: 3 start-page: 1140 year: 2019 ident: 10.1016/j.isci.2020.100965_bib47 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 |
SSID | ssj0002002496 |
Score | 2.423058 |
Snippet | Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100965 |
SubjectTerms | Energy Materials Organic Chemistry Supramolecular Chemistry |
Title | A “σ-Hole”-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells |
URI | https://dx.doi.org/10.1016/j.isci.2020.100965 https://www.ncbi.nlm.nih.gov/pubmed/32199291 https://www.proquest.com/docview/2381621368 https://pubmed.ncbi.nlm.nih.gov/PMC7082553 https://doaj.org/article/288987f32474448b9f9af1f1bcd20f45 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELXQnLgg0LCETUaCEwq07dhxjs2oRy0kuMCguRmvokdRgma5j8RvDN_EP8yXUGWnW90gDReuibO4Ula9il-9IuSlF0F2SkKaKnWsG4AktdaiqR1PEN86FPjGXwMfPqrlUfP-WB5vtfpCTliRBy6Ge8u1hrQ4QdxvG0glXJc6m1hizgc-S01WL4WYt5VMneTtNZTCy53lJHKCwDWniplC7sKKV0gOeWYJdBhZtqJSFu_fCU5_g88_OZRbQenwLrkzoUk6L7O4R27FYZ98ndPry6tfP-rl2Mfry581KlCVRhD0y4jctz7ST2O_CnQeQuYO0QWWUOEApt7IV3SRhSWwKpOWYk2PF9hTehD7_uw-OTpcfD5Y1lMjhdpjv4LaBcB1KsmkXcuikx4QtXdBJgFHlYY1Gx3kyZHZzjYxQNi3LSC_llvBRNBCPCB7wzjER4SG5GdeKMhauGtiktaz2CnANDbJmZvJirC1IY2fVMax2UVv1nSyE4PGN2h8U4xfkdeba74XjY0bR7_D77MZifrY-QB4jZm8xvzLayoi11_XTFCjQAi41erGh79Yu4KBdYibK3aI48WZQeijOBNKV-RhcY3NKwqOJN-OVaTdcZqdOeyeGVbfstZ3iym8FI__x6SfkNs4FWTQ8fYp2Ts_vYjPAFKdu-d59fwG0MQbuQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%22%CF%83-Hole%22-Containing+Volatile+Solid+Additive+Enabling+16.5%25+Efficiency+Organic+Solar+Cells&rft.jtitle=iScience&rft.au=Fu%2C+Jiehao&rft.au=Chen%2C+Shanshan&rft.au=Yang%2C+Ke&rft.au=Jung%2C+Sungwoo&rft.date=2020-03-27&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft.spage=100965&rft_id=info:doi/10.1016%2Fj.isci.2020.100965&rft_id=info%3Apmid%2F32199291&rft.externalDocID=32199291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |