SWI/SNF-Dependent Long-Range Remodeling of Yeast HIS3 Chromatin
Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire ge...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 99; no. 24; pp. 15381 - 15386 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.11.2002
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription. |
---|---|
AbstractList | Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene
in vivo
. We compared the native chromatin structures of a small yeast plasmid containing the
HIS3
gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the
HIS3
promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p
in vivo
. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced
HIS3
chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of
HIS3
creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the
HIS3
promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription. Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription. Current models for the role of the SWISNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWISNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWISNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWISNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription. |
Author | Clark, David J. Kim, Yeonjung |
AuthorAffiliation | Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 50, Room 3148, National Institutes of Health, Bethesda, MD 20892-8028 |
AuthorAffiliation_xml | – name: Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 50, Room 3148, National Institutes of Health, Bethesda, MD 20892-8028 |
Author_xml | – sequence: 1 givenname: Yeonjung surname: Kim fullname: Kim, Yeonjung – sequence: 2 givenname: David J. surname: Clark fullname: Clark, David J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12432091$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U2P0zAQBmALLWK7C1dOCKI9IC7pevztA0KosGylCqQtCHGynMTppkrsEicr-Pc4aikfBzj5MM87Gs-coRMfvEPoMeA5YEkvd97GOWGEUyG0vodmgDXkgml8gmYYE5krRtgpOotxizHWXOEH6BQIoyTBGXq1_ry8XL-_yt-4nfOV80O2Cn6T31i_cdmN60Ll2sZvslBnX5yNQ3a9XNNscduHzg6Nf4ju17aN7tHhPUefrt5-XFznqw_vlovXq7zkBIa8sLjAtSg45U5XQgnAWNbKalYoWVeFpoJzoBoqQQFoKRwrLQEFBSu0xJyeo5f7vrux6FxVpkF725pd33S2_26CbcyfFd_cmk24M0ClJFP--SHfh6-ji4Ppmli6trXehTEaSSbF5H8hKEEIVSTBi7_gNoy9T0swBAMDkZad0HyPyj7E2Lv6ODFgMx3QTAc0xwOmwNPf__mLHy6WwIsDmII_y1qnHgY4VWDqsW0H921I9Nm_aRJP9mIbh9AfCU2DyVT-ASpQt2g |
CitedBy_id | crossref_primary_10_1128_MCB_25_20_9127_9137_2005 crossref_primary_10_1007_s00412_015_0534_9 crossref_primary_10_1016_j_cell_2004_08_011 crossref_primary_10_3390_biology9080190 crossref_primary_10_1111_j_1462_2920_2009_01991_x crossref_primary_10_1093_nar_gkq1273 crossref_primary_10_1016_j_virol_2006_08_034 crossref_primary_10_1091_mbc_E21_05_0237 crossref_primary_10_1128_MCB_01733_07 crossref_primary_10_1016_j_virol_2006_08_033 crossref_primary_10_1128_MCB_00400_09 crossref_primary_10_1128_MCB_25_24_11156_11170_2005 crossref_primary_10_1080_073911010010524945 crossref_primary_10_1095_biolreprod_109_075952 crossref_primary_10_1002_yea_944 crossref_primary_10_1128_MCB_23_23_8829_9945_2003 crossref_primary_10_1128_MCB_02077_06 crossref_primary_10_1016_S0960_9822_03_00236_7 crossref_primary_10_1128_MCB_25_13_5626_5638_2005 crossref_primary_10_1128_EC_00116_09 crossref_primary_10_1016_j_virol_2006_12_028 crossref_primary_10_1016_j_ymeth_2003_10_021 crossref_primary_10_1038_nrm1075 crossref_primary_10_1128_EC_3_1_144_156_2004 crossref_primary_10_1128_MCB_23_22_8099_8109_2003 crossref_primary_10_1128_MCB_00678_06 crossref_primary_10_1093_nar_gkr643 crossref_primary_10_1093_nar_gkm573 crossref_primary_10_1016_j_bbagrm_2011_12_007 crossref_primary_10_1073_pnas_0701666104 crossref_primary_10_1128_MCB_00909_10 crossref_primary_10_1016_j_jmb_2006_07_015 |
Cites_doi | 10.1126/science.1063127 10.1016/S0092-8674(00)00215-4 10.1101/gad.13.18.2369 10.1128/MCB.21.17.5826-5837.2001 10.1128/MCB.21.2.534-547.2001 10.1016/S0168-9525(00)02060-6 10.1101/gad.13.18.2339 10.1016/S0959-437X(00)00068-X 10.1016/S1097-2765(00)00129-5 10.1016/S1097-2765(00)80216-6 10.1016/S1097-2765(01)00158-7 10.1016/S0092-8674(00)81218-0 10.1128/MCB.22.6.1615-1625.2002 10.1093/emboj/18.8.2254 10.1016/S1097-2765(02)00472-0 10.1016/0092-8674(85)90276-4 10.1016/S1097-2765(00)00128-3 10.1093/nar/18.12.3495 10.1093/emboj/20.18.5219 10.1128/mcb.7.1.104-110.1987 10.1016/S0968-0004(97)01001-3 10.1038/370477a0 10.1016/S0092-8674(00)81217-9 10.1038/35006136 10.1128/mcb.11.5.2723-2735.1991 10.1128/MCB.20.6.1899-1910.2000 10.1128/mcb.6.12.4251-4258.1986 10.1101/gad.6.12a.2288 10.1016/S1097-2765(00)80217-8 10.1038/38444 10.1016/S0092-8674(00)80924-1 10.1016/0092-8674(85)90022-4 10.1016/S1097-2765(01)00200-3 10.1016/S0092-8674(01)00490-1 10.1128/MCB.20.18.6668-6676.2000 10.1128/MCB.19.2.1470 |
ContentType | Journal Article |
Copyright | Copyright 1993-2002 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 26, 2002 Copyright © 2002, The National Academy of Sciences |
Copyright_xml | – notice: Copyright 1993-2002 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 26, 2002 – notice: Copyright © 2002, The National Academy of Sciences |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.242536699 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 15386 |
ExternalDocumentID | 280627871 10_1073_pnas_242536699 12432091 99_24_15381 3073781 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c521t-ba0b0f6b535e9d6861007f8a94b87fdb936551391d63113c6e4ca2181b4b97053 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:19:55 EDT 2024 Fri Oct 25 07:29:05 EDT 2024 Fri Oct 25 06:29:59 EDT 2024 Thu Oct 10 17:31:29 EDT 2024 Fri Aug 23 02:52:55 EDT 2024 Sat Sep 28 07:57:22 EDT 2024 Wed Nov 11 00:29:30 EST 2020 Wed May 29 08:07:08 EDT 2019 Fri Feb 02 07:04:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-ba0b0f6b535e9d6861007f8a94b87fdb936551391d63113c6e4ca2181b4b97053 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 This paper was submitted directly (Track II) to the PNAS office. To whom correspondence should be addressed. E-mail: djclark@helix.nih.gov. Edited by Gary Felsenfeld, National Institutes of Health, Bethesda, MD, and approved October 8, 2002 |
OpenAccessLink | https://doi.org/10.1073/pnas.242536699 |
PMID | 12432091 |
PQID | 201416095 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_12432091 proquest_miscellaneous_18622382 pnas_primary_99_24_15381_fulltext proquest_miscellaneous_72725347 pnas_primary_99_24_15381 jstor_primary_3073781 crossref_primary_10_1073_pnas_242536699 pubmedcentral_primary_oai_pubmedcentral_nih_gov_137725 proquest_journals_201416095 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2002-11-26 |
PublicationDateYYYYMMDD | 2002-11-26 |
PublicationDate_xml | – month: 11 year: 2002 text: 2002-11-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2002 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 11865042 - Mol Cell Biol. 2002 Mar;22(6):1615-25 11498575 - Science. 2001 Aug 10;293(5532):1074-80 11463378 - Mol Cell. 2001 Mar;7(3):529-38 9476891 - Cell. 1998 Feb 6;92(3):307-13 11931762 - Mol Cell. 2002 Mar;9(3):541-52 11172715 - Mol Cell. 2001 Jan;7(1):97-104 11566885 - EMBO J. 2001 Sep 17;20(18):5219-31 10549298 - Mol Cell. 1999 Oct;4(4):657-64 3025648 - Mol Cell Biol. 1986 Dec;6(12):4251-8 1459453 - Genes Dev. 1992 Dec;6(12A):2288-98 11572775 - Cell. 2001 Sep 21;106(6):685-96 11163204 - Mol Cell. 2000 Dec;6(6):1297-307 11163205 - Mol Cell. 2000 Dec;6(6):1309-20 11163188 - Cell. 2000 Dec 22;103(7):1133-42 9066259 - Trends Biochem Sci. 1997 Mar;22(3):93-7 9674423 - Cell. 1998 Jul 10;94(1):17-27 2017175 - Mol Cell Biol. 1991 May;11(5):2723-35 9674424 - Cell. 1998 Jul 10;94(1):29-34 10500094 - Genes Dev. 1999 Sep 15;13(18):2369-74 10753786 - Curr Opin Genet Dev. 2000 Apr;10(2):187-92 10904263 - Trends Genet. 2000 Aug;16(8):345-51 10549297 - Mol Cell. 1999 Oct;4(4):649-55 10746732 - Nature. 2000 Mar 23;404(6776):414-7 10500090 - Genes Dev. 1999 Sep 15;13(18):2339-52 10205178 - EMBO J. 1999 Apr 15;18(8):2254-64 11486022 - Mol Cell Biol. 2001 Sep;21(17):5826-37 11134341 - Mol Cell Biol. 2001 Jan;21(2):534-47 2194162 - Nucleic Acids Res. 1990 Jun 25;18(12):3495-502 9891080 - Mol Cell Biol. 1999 Feb;19(2):1470-8 10688638 - Mol Cell Biol. 2000 Mar;20(6):1899-910 2996776 - Cell. 1985 Oct;42(3):799-808 8047169 - Nature. 1994 Aug 11;370(6489):477-81 3907851 - Cell. 1985 Nov;43(1):177-88 10958664 - Mol Cell Biol. 2000 Sep;20(18):6668-76 6287231 - Mol Cell Biol. 1982 Mar;2(3):221-32 3031449 - Mol Cell Biol. 1987 Jan;7(1):104-10 9305837 - Nature. 1997 Sep 18;389(6648):251-60 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Zakian V. A. (e_1_3_2_28_2) 1982; 2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – volume: 2 start-page: 221 year: 1982 ident: e_1_3_2_28_2 publication-title: Mol. Cell. Biol. contributor: fullname: Zakian V. A. – ident: e_1_3_2_4_2 doi: 10.1126/science.1063127 – ident: e_1_3_2_15_2 doi: 10.1016/S0092-8674(00)00215-4 – ident: e_1_3_2_9_2 doi: 10.1101/gad.13.18.2369 – ident: e_1_3_2_38_2 doi: 10.1128/MCB.21.17.5826-5837.2001 – ident: e_1_3_2_21_2 doi: 10.1128/MCB.21.2.534-547.2001 – ident: e_1_3_2_7_2 doi: 10.1016/S0168-9525(00)02060-6 – ident: e_1_3_2_3_2 doi: 10.1101/gad.13.18.2339 – ident: e_1_3_2_6_2 doi: 10.1016/S0959-437X(00)00068-X – ident: e_1_3_2_24_2 doi: 10.1016/S1097-2765(00)00129-5 – ident: e_1_3_2_8_2 doi: 10.1016/S1097-2765(00)80216-6 – ident: e_1_3_2_16_2 doi: 10.1016/S1097-2765(01)00158-7 – ident: e_1_3_2_12_2 doi: 10.1016/S0092-8674(00)81218-0 – ident: e_1_3_2_33_2 doi: 10.1128/MCB.22.6.1615-1625.2002 – ident: e_1_3_2_37_2 doi: 10.1093/emboj/18.8.2254 – ident: e_1_3_2_36_2 doi: 10.1016/S1097-2765(02)00472-0 – ident: e_1_3_2_10_2 doi: 10.1016/0092-8674(85)90276-4 – ident: e_1_3_2_25_2 doi: 10.1016/S1097-2765(00)00128-3 – ident: e_1_3_2_30_2 doi: 10.1093/nar/18.12.3495 – ident: e_1_3_2_20_2 doi: 10.1093/emboj/20.18.5219 – ident: e_1_3_2_32_2 doi: 10.1128/mcb.7.1.104-110.1987 – ident: e_1_3_2_35_2 doi: 10.1016/S0968-0004(97)01001-3 – ident: e_1_3_2_11_2 doi: 10.1038/370477a0 – ident: e_1_3_2_13_2 doi: 10.1016/S0092-8674(00)81217-9 – ident: e_1_3_2_34_2 doi: 10.1038/35006136 – ident: e_1_3_2_26_2 doi: 10.1128/mcb.11.5.2723-2735.1991 – ident: e_1_3_2_5_2 doi: 10.1128/MCB.20.6.1899-1910.2000 – ident: e_1_3_2_29_2 doi: 10.1128/mcb.6.12.4251-4258.1986 – ident: e_1_3_2_17_2 doi: 10.1101/gad.6.12a.2288 – ident: e_1_3_2_27_2 – ident: e_1_3_2_23_2 doi: 10.1016/S1097-2765(00)80217-8 – ident: e_1_3_2_1_2 doi: 10.1038/38444 – ident: e_1_3_2_2_2 doi: 10.1016/S0092-8674(00)80924-1 – ident: e_1_3_2_22_2 doi: 10.1016/0092-8674(85)90022-4 – ident: e_1_3_2_18_2 doi: 10.1016/S1097-2765(01)00200-3 – ident: e_1_3_2_19_2 doi: 10.1016/S0092-8674(01)00490-1 – ident: e_1_3_2_31_2 doi: 10.1128/MCB.20.18.6668-6676.2000 – ident: e_1_3_2_14_2 doi: 10.1128/MCB.19.2.1470 |
SSID | ssj0009580 |
Score | 1.9249403 |
Snippet | Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in... Current models for the role of the SWISNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15381 |
SubjectTerms | Biochemistry Biological Sciences Chromatin Chromatin - metabolism Deoxyribonucleic acid DNA DNA Restriction Enzymes - metabolism DNA, Fungal - genetics DNA, Fungal - metabolism DNA, Superhelical - genetics DNA, Superhelical - metabolism DNA-Binding Proteins Enzymes Gels Gene Expression Regulation, Fungal - genetics Gene Expression Regulation, Fungal - physiology Genes Genes, Fungal Histones Hydro-Lyases - biosynthesis Hydro-Lyases - genetics Macromolecular Substances Nucleosomes Plasmids Plasmids - genetics Promoter Regions, Genetic Protein Kinases - metabolism Renovations Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - biosynthesis Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Topology Yeast Yeasts |
Title | SWI/SNF-Dependent Long-Range Remodeling of Yeast HIS3 Chromatin |
URI | https://www.jstor.org/stable/3073781 http://www.pnas.org/content/99/24/15381.abstract https://www.ncbi.nlm.nih.gov/pubmed/12432091 https://www.proquest.com/docview/201416095 https://search.proquest.com/docview/18622382 https://search.proquest.com/docview/72725347 https://pubmed.ncbi.nlm.nih.gov/PMC137725 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RnrggCoWmhWIkJODgzcOOEx9RxWqL1AqpVPQW2XnQSq2z2t0e-PfMOE5gEb1wzYyVZDzj-SyPvwF4R1kjsdLwGpd_Lm0huK5twrXsGmEQ0infM_LsXC0u5Zer_CpcCluHskpX25uZu72buZtrX1u5vKvjsU4s_np2Qix5WR7vwA7657hDn4h2y-HaSYarr8zkSNRYiHjpzHpGEFsopT1daCZFluh0KycNZYnEdYrq_8Kdf5dP_pGP5k_hSQCS7NPwwXvwqHXPYC-E6pp9CHzSH58jHv9-Gl-cz_nY8HbDbnv3g6_oXgFbtb4ZDmYw1nfsJ7XyYYvTC8Hq61VPcNbtw-X887eTBQ99E3hN7Qm4NYlNOmVzkbe6UaWiSoiuNFrasugaq4Witi46bZRIU1GrVtaGJs1KqwuMyhew63rXHgDrdIv4oSlplymNNCbHeC6NVUJ1iI1sBO9Hy1XLgR6j8sfahajIftVk7gj2vWEnNVpcijKN4MArjo-1xjEVrcMoevuQqOpCaUwER-MEVSH68KVUvUpMehG8maQYNnQWYlzb36-rFHdyiFayhzXohDoXsojg5TDdv38wuE0EassRJgWi7N6WoCd76u7Bcw__d-ARPB660aQ8U69gd7O6b18jKNrYY0pJ-bGPhV8TJwhY |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOcAFKJQ2FGiQkICD87LjxEdUsdqF7gqpXdFbZOdBK1pntY8D_Hpm8oKt6AGuOxOtrHn4s_z5G4A3tGsERmiWY_tnwiScqdwETImq4BohnWxmRk5ncjwXn87j8-5R2KqjVdrcXHr26tqzlxcNt3Jxnfs9T8z_Mj0mlbwo9u_CPSzXQPZn9EFqN20fnkTYf0UkeqnGhPsLq1cegWwupWoEQyPBo0CFW7tSS0wktVN0_xvyvEmg_GNHGj2Ceb-Wlojy3dusjZf_vCHz-K-LfQwPO4jqfmitu3CntE9gt2sCK_ddp1T9_iki_a8T_3Q2Yv0o3bV7VdtvbEkvFtxl2YzZwb3RrSv3Bw0JcseTU-7mF8uagLLdg_no49nxmHUTGVhOgw-Y0YEJKmliHpeqkKkkjkWVaiVMmlSFUVzSwBgVFpKHIc9lKXJN6WCEUQnW-zPYsbUtD8CtVInIpEjp_Cq00DrGTpFqI7msEHUZB972EckWrfBG1lyYJzyjuGRDGB3YawI2uFHbStLQgYPGsf9ZKfwmow6Ppte3mbKqI904cNgHPuvqGv-UeLGk0efA0WDFgqRbFm3LerPKQjwjIg6Kbvegu--Yi8SB_TaNfi-wS0cH5FaCDQ4kBr5twbRpRMHbNHn-vx8ewf3x2fQkO5nMPh_Cg3bmTcgi-QJ21stN-RKh19q8airtF4BNKTI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiEulEJpQ4EGCQk4OC87TnxEhdUu0FWlUlFOkZ0HrWiT1T4O5dcz4zxgK3rpNR4rsubhz_LnbwDe0K4RGKFZjuWfCZNwpnITMCWqgmuEdNL2jDyayvGp-HwWn21A2r-FsaT93Fx49eWVV1-cW27l7Cr3e56Yf3x0SCp5UezPisq_B_cxZYO0P6cPcrtp-_gkwhosItHLNSbcn9V64RHQ5lIqKxoaCR4FKlzbmVpyIimeovn_0OdNEuU_u9JoC37062nJKL-81dJ4-e8bUo93WfBjeNRBVfdDa7ENG2X9BLa7YrBw33WK1e-fIuL_PvFPpiPWt9RdupdN_ZPN6eWCOy9tux3cI92mcq-pWZA7npxwNz-fNwSY6x04HX36djhmXWcGllMDBGZ0YIJKmpjHpSpkKolrUaVaCZMmVWEUl9Q4RoWF5GHIc1mKXFNYGGFUgnn_DDbrpi73wK1UiQilSOkcK7TQOsaKkWojuawQfRkH3vZeyWatAEdmL84TnpFvssGVDuxYpw1mVL6SNHRgzxr2n5XCORlVehx6fdtQVnXkGwf2e-dnXX7jT4kfS1p9DhwMo5iYdNui67JZLbIQz4qIh6LbLegOPOYicWC3DaW_C-xC0gG5FmSDAYmCr49g6Fhx8DZUnt914gE8OP44yr5Opl_24WHb-iZkkXwBm8v5qnyJCGxpXtlk-wPnViuy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWI%2FSNF-Dependent+Long-Range+Remodeling+of+Yeast+HIS3+Chromatin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Yeonjung&rft.au=Clark%2C+David+J.&rft.date=2002-11-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=99&rft.issue=24&rft.spage=15381&rft.epage=15386&rft_id=info:doi/10.1073%2Fpnas.242536699&rft.externalDocID=3073781 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F24.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F24.cover.gif |