SWI/SNF-Dependent Long-Range Remodeling of Yeast HIS3 Chromatin

Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire ge...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 99; no. 24; pp. 15381 - 15386
Main Authors Kim, Yeonjung, Clark, David J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.11.2002
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription.
AbstractList Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo . We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p in vivo . The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription.
Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWI/SNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWI/SNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWI/SNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription.
Current models for the role of the SWISNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWISNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWISNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWISNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription.
Author Clark, David J.
Kim, Yeonjung
AuthorAffiliation Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 50, Room 3148, National Institutes of Health, Bethesda, MD 20892-8028
AuthorAffiliation_xml – name: Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 50, Room 3148, National Institutes of Health, Bethesda, MD 20892-8028
Author_xml – sequence: 1
  givenname: Yeonjung
  surname: Kim
  fullname: Kim, Yeonjung
– sequence: 2
  givenname: David J.
  surname: Clark
  fullname: Clark, David J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12432091$$D View this record in MEDLINE/PubMed
BookMark eNqF0U2P0zAQBmALLWK7C1dOCKI9IC7pevztA0KosGylCqQtCHGynMTppkrsEicr-Pc4aikfBzj5MM87Gs-coRMfvEPoMeA5YEkvd97GOWGEUyG0vodmgDXkgml8gmYYE5krRtgpOotxizHWXOEH6BQIoyTBGXq1_ry8XL-_yt-4nfOV80O2Cn6T31i_cdmN60Ll2sZvslBnX5yNQ3a9XNNscduHzg6Nf4ju17aN7tHhPUefrt5-XFznqw_vlovXq7zkBIa8sLjAtSg45U5XQgnAWNbKalYoWVeFpoJzoBoqQQFoKRwrLQEFBSu0xJyeo5f7vrux6FxVpkF725pd33S2_26CbcyfFd_cmk24M0ClJFP--SHfh6-ji4Ppmli6trXehTEaSSbF5H8hKEEIVSTBi7_gNoy9T0swBAMDkZad0HyPyj7E2Lv6ODFgMx3QTAc0xwOmwNPf__mLHy6WwIsDmII_y1qnHgY4VWDqsW0H921I9Nm_aRJP9mIbh9AfCU2DyVT-ASpQt2g
CitedBy_id crossref_primary_10_1128_MCB_25_20_9127_9137_2005
crossref_primary_10_1007_s00412_015_0534_9
crossref_primary_10_1016_j_cell_2004_08_011
crossref_primary_10_3390_biology9080190
crossref_primary_10_1111_j_1462_2920_2009_01991_x
crossref_primary_10_1093_nar_gkq1273
crossref_primary_10_1016_j_virol_2006_08_034
crossref_primary_10_1091_mbc_E21_05_0237
crossref_primary_10_1128_MCB_01733_07
crossref_primary_10_1016_j_virol_2006_08_033
crossref_primary_10_1128_MCB_00400_09
crossref_primary_10_1128_MCB_25_24_11156_11170_2005
crossref_primary_10_1080_073911010010524945
crossref_primary_10_1095_biolreprod_109_075952
crossref_primary_10_1002_yea_944
crossref_primary_10_1128_MCB_23_23_8829_9945_2003
crossref_primary_10_1128_MCB_02077_06
crossref_primary_10_1016_S0960_9822_03_00236_7
crossref_primary_10_1128_MCB_25_13_5626_5638_2005
crossref_primary_10_1128_EC_00116_09
crossref_primary_10_1016_j_virol_2006_12_028
crossref_primary_10_1016_j_ymeth_2003_10_021
crossref_primary_10_1038_nrm1075
crossref_primary_10_1128_EC_3_1_144_156_2004
crossref_primary_10_1128_MCB_23_22_8099_8109_2003
crossref_primary_10_1128_MCB_00678_06
crossref_primary_10_1093_nar_gkr643
crossref_primary_10_1093_nar_gkm573
crossref_primary_10_1016_j_bbagrm_2011_12_007
crossref_primary_10_1073_pnas_0701666104
crossref_primary_10_1128_MCB_00909_10
crossref_primary_10_1016_j_jmb_2006_07_015
Cites_doi 10.1126/science.1063127
10.1016/S0092-8674(00)00215-4
10.1101/gad.13.18.2369
10.1128/MCB.21.17.5826-5837.2001
10.1128/MCB.21.2.534-547.2001
10.1016/S0168-9525(00)02060-6
10.1101/gad.13.18.2339
10.1016/S0959-437X(00)00068-X
10.1016/S1097-2765(00)00129-5
10.1016/S1097-2765(00)80216-6
10.1016/S1097-2765(01)00158-7
10.1016/S0092-8674(00)81218-0
10.1128/MCB.22.6.1615-1625.2002
10.1093/emboj/18.8.2254
10.1016/S1097-2765(02)00472-0
10.1016/0092-8674(85)90276-4
10.1016/S1097-2765(00)00128-3
10.1093/nar/18.12.3495
10.1093/emboj/20.18.5219
10.1128/mcb.7.1.104-110.1987
10.1016/S0968-0004(97)01001-3
10.1038/370477a0
10.1016/S0092-8674(00)81217-9
10.1038/35006136
10.1128/mcb.11.5.2723-2735.1991
10.1128/MCB.20.6.1899-1910.2000
10.1128/mcb.6.12.4251-4258.1986
10.1101/gad.6.12a.2288
10.1016/S1097-2765(00)80217-8
10.1038/38444
10.1016/S0092-8674(00)80924-1
10.1016/0092-8674(85)90022-4
10.1016/S1097-2765(01)00200-3
10.1016/S0092-8674(01)00490-1
10.1128/MCB.20.18.6668-6676.2000
10.1128/MCB.19.2.1470
ContentType Journal Article
Copyright Copyright 1993-2002 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 26, 2002
Copyright © 2002, The National Academy of Sciences
Copyright_xml – notice: Copyright 1993-2002 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 26, 2002
– notice: Copyright © 2002, The National Academy of Sciences
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.242536699
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE - Academic
MEDLINE
CrossRef

Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 15386
ExternalDocumentID 280627871
10_1073_pnas_242536699
12432091
99_24_15381
3073781
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c521t-ba0b0f6b535e9d6861007f8a94b87fdb936551391d63113c6e4ca2181b4b97053
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:19:55 EDT 2024
Fri Oct 25 07:29:05 EDT 2024
Fri Oct 25 06:29:59 EDT 2024
Thu Oct 10 17:31:29 EDT 2024
Fri Aug 23 02:52:55 EDT 2024
Sat Sep 28 07:57:22 EDT 2024
Wed Nov 11 00:29:30 EST 2020
Wed May 29 08:07:08 EDT 2019
Fri Feb 02 07:04:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-ba0b0f6b535e9d6861007f8a94b87fdb936551391d63113c6e4ca2181b4b97053
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
This paper was submitted directly (Track II) to the PNAS office.
To whom correspondence should be addressed. E-mail: djclark@helix.nih.gov.
Edited by Gary Felsenfeld, National Institutes of Health, Bethesda, MD, and approved October 8, 2002
OpenAccessLink https://doi.org/10.1073/pnas.242536699
PMID 12432091
PQID 201416095
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_12432091
proquest_miscellaneous_18622382
pnas_primary_99_24_15381_fulltext
proquest_miscellaneous_72725347
pnas_primary_99_24_15381
jstor_primary_3073781
crossref_primary_10_1073_pnas_242536699
pubmedcentral_primary_oai_pubmedcentral_nih_gov_137725
proquest_journals_201416095
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2002-11-26
PublicationDateYYYYMMDD 2002-11-26
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2002
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 11865042 - Mol Cell Biol. 2002 Mar;22(6):1615-25
11498575 - Science. 2001 Aug 10;293(5532):1074-80
11463378 - Mol Cell. 2001 Mar;7(3):529-38
9476891 - Cell. 1998 Feb 6;92(3):307-13
11931762 - Mol Cell. 2002 Mar;9(3):541-52
11172715 - Mol Cell. 2001 Jan;7(1):97-104
11566885 - EMBO J. 2001 Sep 17;20(18):5219-31
10549298 - Mol Cell. 1999 Oct;4(4):657-64
3025648 - Mol Cell Biol. 1986 Dec;6(12):4251-8
1459453 - Genes Dev. 1992 Dec;6(12A):2288-98
11572775 - Cell. 2001 Sep 21;106(6):685-96
11163204 - Mol Cell. 2000 Dec;6(6):1297-307
11163205 - Mol Cell. 2000 Dec;6(6):1309-20
11163188 - Cell. 2000 Dec 22;103(7):1133-42
9066259 - Trends Biochem Sci. 1997 Mar;22(3):93-7
9674423 - Cell. 1998 Jul 10;94(1):17-27
2017175 - Mol Cell Biol. 1991 May;11(5):2723-35
9674424 - Cell. 1998 Jul 10;94(1):29-34
10500094 - Genes Dev. 1999 Sep 15;13(18):2369-74
10753786 - Curr Opin Genet Dev. 2000 Apr;10(2):187-92
10904263 - Trends Genet. 2000 Aug;16(8):345-51
10549297 - Mol Cell. 1999 Oct;4(4):649-55
10746732 - Nature. 2000 Mar 23;404(6776):414-7
10500090 - Genes Dev. 1999 Sep 15;13(18):2339-52
10205178 - EMBO J. 1999 Apr 15;18(8):2254-64
11486022 - Mol Cell Biol. 2001 Sep;21(17):5826-37
11134341 - Mol Cell Biol. 2001 Jan;21(2):534-47
2194162 - Nucleic Acids Res. 1990 Jun 25;18(12):3495-502
9891080 - Mol Cell Biol. 1999 Feb;19(2):1470-8
10688638 - Mol Cell Biol. 2000 Mar;20(6):1899-910
2996776 - Cell. 1985 Oct;42(3):799-808
8047169 - Nature. 1994 Aug 11;370(6489):477-81
3907851 - Cell. 1985 Nov;43(1):177-88
10958664 - Mol Cell Biol. 2000 Sep;20(18):6668-76
6287231 - Mol Cell Biol. 1982 Mar;2(3):221-32
3031449 - Mol Cell Biol. 1987 Jan;7(1):104-10
9305837 - Nature. 1997 Sep 18;389(6648):251-60
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Zakian V. A. (e_1_3_2_28_2) 1982; 2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – volume: 2
  start-page: 221
  year: 1982
  ident: e_1_3_2_28_2
  publication-title: Mol. Cell. Biol.
  contributor:
    fullname: Zakian V. A.
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1063127
– ident: e_1_3_2_15_2
  doi: 10.1016/S0092-8674(00)00215-4
– ident: e_1_3_2_9_2
  doi: 10.1101/gad.13.18.2369
– ident: e_1_3_2_38_2
  doi: 10.1128/MCB.21.17.5826-5837.2001
– ident: e_1_3_2_21_2
  doi: 10.1128/MCB.21.2.534-547.2001
– ident: e_1_3_2_7_2
  doi: 10.1016/S0168-9525(00)02060-6
– ident: e_1_3_2_3_2
  doi: 10.1101/gad.13.18.2339
– ident: e_1_3_2_6_2
  doi: 10.1016/S0959-437X(00)00068-X
– ident: e_1_3_2_24_2
  doi: 10.1016/S1097-2765(00)00129-5
– ident: e_1_3_2_8_2
  doi: 10.1016/S1097-2765(00)80216-6
– ident: e_1_3_2_16_2
  doi: 10.1016/S1097-2765(01)00158-7
– ident: e_1_3_2_12_2
  doi: 10.1016/S0092-8674(00)81218-0
– ident: e_1_3_2_33_2
  doi: 10.1128/MCB.22.6.1615-1625.2002
– ident: e_1_3_2_37_2
  doi: 10.1093/emboj/18.8.2254
– ident: e_1_3_2_36_2
  doi: 10.1016/S1097-2765(02)00472-0
– ident: e_1_3_2_10_2
  doi: 10.1016/0092-8674(85)90276-4
– ident: e_1_3_2_25_2
  doi: 10.1016/S1097-2765(00)00128-3
– ident: e_1_3_2_30_2
  doi: 10.1093/nar/18.12.3495
– ident: e_1_3_2_20_2
  doi: 10.1093/emboj/20.18.5219
– ident: e_1_3_2_32_2
  doi: 10.1128/mcb.7.1.104-110.1987
– ident: e_1_3_2_35_2
  doi: 10.1016/S0968-0004(97)01001-3
– ident: e_1_3_2_11_2
  doi: 10.1038/370477a0
– ident: e_1_3_2_13_2
  doi: 10.1016/S0092-8674(00)81217-9
– ident: e_1_3_2_34_2
  doi: 10.1038/35006136
– ident: e_1_3_2_26_2
  doi: 10.1128/mcb.11.5.2723-2735.1991
– ident: e_1_3_2_5_2
  doi: 10.1128/MCB.20.6.1899-1910.2000
– ident: e_1_3_2_29_2
  doi: 10.1128/mcb.6.12.4251-4258.1986
– ident: e_1_3_2_17_2
  doi: 10.1101/gad.6.12a.2288
– ident: e_1_3_2_27_2
– ident: e_1_3_2_23_2
  doi: 10.1016/S1097-2765(00)80217-8
– ident: e_1_3_2_1_2
  doi: 10.1038/38444
– ident: e_1_3_2_2_2
  doi: 10.1016/S0092-8674(00)80924-1
– ident: e_1_3_2_22_2
  doi: 10.1016/0092-8674(85)90022-4
– ident: e_1_3_2_18_2
  doi: 10.1016/S1097-2765(01)00200-3
– ident: e_1_3_2_19_2
  doi: 10.1016/S0092-8674(01)00490-1
– ident: e_1_3_2_31_2
  doi: 10.1128/MCB.20.18.6668-6676.2000
– ident: e_1_3_2_14_2
  doi: 10.1128/MCB.19.2.1470
SSID ssj0009580
Score 1.9249403
Snippet Current models for the role of the SWI/SNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in...
Current models for the role of the SWISNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15381
SubjectTerms Biochemistry
Biological Sciences
Chromatin
Chromatin - metabolism
Deoxyribonucleic acid
DNA
DNA Restriction Enzymes - metabolism
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA, Superhelical - genetics
DNA, Superhelical - metabolism
DNA-Binding Proteins
Enzymes
Gels
Gene Expression Regulation, Fungal - genetics
Gene Expression Regulation, Fungal - physiology
Genes
Genes, Fungal
Histones
Hydro-Lyases - biosynthesis
Hydro-Lyases - genetics
Macromolecular Substances
Nucleosomes
Plasmids
Plasmids - genetics
Promoter Regions, Genetic
Protein Kinases - metabolism
Renovations
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - biosynthesis
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Topology
Yeast
Yeasts
Title SWI/SNF-Dependent Long-Range Remodeling of Yeast HIS3 Chromatin
URI https://www.jstor.org/stable/3073781
http://www.pnas.org/content/99/24/15381.abstract
https://www.ncbi.nlm.nih.gov/pubmed/12432091
https://www.proquest.com/docview/201416095
https://search.proquest.com/docview/18622382
https://search.proquest.com/docview/72725347
https://pubmed.ncbi.nlm.nih.gov/PMC137725
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RnrggCoWmhWIkJODgzcOOEx9RxWqL1AqpVPQW2XnQSq2z2t0e-PfMOE5gEb1wzYyVZDzj-SyPvwF4R1kjsdLwGpd_Lm0huK5twrXsGmEQ0infM_LsXC0u5Zer_CpcCluHskpX25uZu72buZtrX1u5vKvjsU4s_np2Qix5WR7vwA7657hDn4h2y-HaSYarr8zkSNRYiHjpzHpGEFsopT1daCZFluh0KycNZYnEdYrq_8Kdf5dP_pGP5k_hSQCS7NPwwXvwqHXPYC-E6pp9CHzSH58jHv9-Gl-cz_nY8HbDbnv3g6_oXgFbtb4ZDmYw1nfsJ7XyYYvTC8Hq61VPcNbtw-X887eTBQ99E3hN7Qm4NYlNOmVzkbe6UaWiSoiuNFrasugaq4Witi46bZRIU1GrVtaGJs1KqwuMyhew63rXHgDrdIv4oSlplymNNCbHeC6NVUJ1iI1sBO9Hy1XLgR6j8sfahajIftVk7gj2vWEnNVpcijKN4MArjo-1xjEVrcMoevuQqOpCaUwER-MEVSH68KVUvUpMehG8maQYNnQWYlzb36-rFHdyiFayhzXohDoXsojg5TDdv38wuE0EassRJgWi7N6WoCd76u7Bcw__d-ARPB660aQ8U69gd7O6b18jKNrYY0pJ-bGPhV8TJwhY
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOcAFKJQ2FGiQkICD87LjxEdUsdqF7gqpXdFbZOdBK1pntY8D_Hpm8oKt6AGuOxOtrHn4s_z5G4A3tGsERmiWY_tnwiScqdwETImq4BohnWxmRk5ncjwXn87j8-5R2KqjVdrcXHr26tqzlxcNt3Jxnfs9T8z_Mj0mlbwo9u_CPSzXQPZn9EFqN20fnkTYf0UkeqnGhPsLq1cegWwupWoEQyPBo0CFW7tSS0wktVN0_xvyvEmg_GNHGj2Ceb-Wlojy3dusjZf_vCHz-K-LfQwPO4jqfmitu3CntE9gt2sCK_ddp1T9_iki_a8T_3Q2Yv0o3bV7VdtvbEkvFtxl2YzZwb3RrSv3Bw0JcseTU-7mF8uagLLdg_no49nxmHUTGVhOgw-Y0YEJKmliHpeqkKkkjkWVaiVMmlSFUVzSwBgVFpKHIc9lKXJN6WCEUQnW-zPYsbUtD8CtVInIpEjp_Cq00DrGTpFqI7msEHUZB972EckWrfBG1lyYJzyjuGRDGB3YawI2uFHbStLQgYPGsf9ZKfwmow6Ppte3mbKqI904cNgHPuvqGv-UeLGk0efA0WDFgqRbFm3LerPKQjwjIg6Kbvegu--Yi8SB_TaNfi-wS0cH5FaCDQ4kBr5twbRpRMHbNHn-vx8ewf3x2fQkO5nMPh_Cg3bmTcgi-QJ21stN-RKh19q8airtF4BNKTI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiEulEJpQ4EGCQk4OC87TnxEhdUu0FWlUlFOkZ0HrWiT1T4O5dcz4zxgK3rpNR4rsubhz_LnbwDe0K4RGKFZjuWfCZNwpnITMCWqgmuEdNL2jDyayvGp-HwWn21A2r-FsaT93Fx49eWVV1-cW27l7Cr3e56Yf3x0SCp5UezPisq_B_cxZYO0P6cPcrtp-_gkwhosItHLNSbcn9V64RHQ5lIqKxoaCR4FKlzbmVpyIimeovn_0OdNEuU_u9JoC37062nJKL-81dJ4-e8bUo93WfBjeNRBVfdDa7ENG2X9BLa7YrBw33WK1e-fIuL_PvFPpiPWt9RdupdN_ZPN6eWCOy9tux3cI92mcq-pWZA7npxwNz-fNwSY6x04HX36djhmXWcGllMDBGZ0YIJKmpjHpSpkKolrUaVaCZMmVWEUl9Q4RoWF5GHIc1mKXFNYGGFUgnn_DDbrpi73wK1UiQilSOkcK7TQOsaKkWojuawQfRkH3vZeyWatAEdmL84TnpFvssGVDuxYpw1mVL6SNHRgzxr2n5XCORlVehx6fdtQVnXkGwf2e-dnXX7jT4kfS1p9DhwMo5iYdNui67JZLbIQz4qIh6LbLegOPOYicWC3DaW_C-xC0gG5FmSDAYmCr49g6Fhx8DZUnt914gE8OP44yr5Opl_24WHb-iZkkXwBm8v5qnyJCGxpXtlk-wPnViuy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWI%2FSNF-Dependent+Long-Range+Remodeling+of+Yeast+HIS3+Chromatin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Yeonjung&rft.au=Clark%2C+David+J.&rft.date=2002-11-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=99&rft.issue=24&rft.spage=15381&rft.epage=15386&rft_id=info:doi/10.1073%2Fpnas.242536699&rft.externalDocID=3073781
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F24.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F24.cover.gif