Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle

Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-13C6]-D-glucose labeling for...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 22; no. 5; pp. 936 - 947
Main Authors Alves, Tiago C., Pongratz, Rebecca L., Zhao, Xiaojian, Yarborough, Orlando, Sereda, Sam, Shirihai, Orian, Cline, Gary W., Mason, Graeme, Kibbey, Richard G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-13C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of 13C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of 13C-label between metabolites and has broad applicability to any glucose-oxidizing cell. [Display omitted] •LC-MS/MS positional 13C-enrichment for steady-state and dynamic flux analysis•Intersecting metabolic fluxes are disentangled by deciphering citrate isotopomers•Comprehensive precursor/product positional 13C-label transfer analysis•Quantitative mitochondrial oxidative, anaplerotic, cycling, and exchange rates Quantitative assessment of intracellular metabolism requires measuring the enzyme-to-enzyme flow of metabolites. Mitochondria have multiple nodes where metabolites intersect, scramble, and diverge, complicating isotope labeling. Alves et al. use LC-MS/MS to decipher step-wise position-specific transfer of 13C coming from glucose into subsequent metabolites through glycolysis and around the TCA cycle.
AbstractList Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U- 13 C 6 ]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase and PEP/pyruvate cycling) were calculated from the position-specific transfer of 13 C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion , MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of 13 C label between metabolites and has broad applicability to any glucose-oxidizing cell.
Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-(13)C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of (13)C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of (13)C-label between metabolites and has broad applicability to any glucose-oxidizing cell.Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-(13)C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of (13)C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of (13)C-label between metabolites and has broad applicability to any glucose-oxidizing cell.
Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-(13)C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of (13)C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of (13)C-label between metabolites and has broad applicability to any glucose-oxidizing cell.
Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic rates. Importantly, direct citrate synthesis rates were obtained by deconvolving the mass spectra generated from [U-13C6]-D-glucose labeling for position-specific enrichments of mitochondrial acetyl-CoA, oxaloacetate, and citrate. Comprehensive steady-state and dynamic analyses of key metabolic rates (pyruvate dehydrogenase, β-oxidation, pyruvate carboxylase, isocitrate dehydrogenase, and PEP/pyruvate cycling) were calculated from the position-specific transfer of 13C from sequential precursors to their products. Important limitations of previous techniques were identified. In INS-1 cells, citrate synthase rates correlated with both insulin secretion and oxygen consumption. Pyruvate carboxylase rates were substantially lower than previously reported but showed the highest fold change in response to glucose stimulation. In conclusion, MIMOSA measures key metabolic rates from the precursor/product position-specific transfer of 13C-label between metabolites and has broad applicability to any glucose-oxidizing cell. [Display omitted] •LC-MS/MS positional 13C-enrichment for steady-state and dynamic flux analysis•Intersecting metabolic fluxes are disentangled by deciphering citrate isotopomers•Comprehensive precursor/product positional 13C-label transfer analysis•Quantitative mitochondrial oxidative, anaplerotic, cycling, and exchange rates Quantitative assessment of intracellular metabolism requires measuring the enzyme-to-enzyme flow of metabolites. Mitochondria have multiple nodes where metabolites intersect, scramble, and diverge, complicating isotope labeling. Alves et al. use LC-MS/MS to decipher step-wise position-specific transfer of 13C coming from glucose into subsequent metabolites through glycolysis and around the TCA cycle.
Author Mason, Graeme
Shirihai, Orian
Alves, Tiago C.
Yarborough, Orlando
Zhao, Xiaojian
Sereda, Sam
Pongratz, Rebecca L.
Kibbey, Richard G.
Cline, Gary W.
AuthorAffiliation 3 Department of Cellular & Molecular Physiology, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
1 Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
4 Department of Medicine, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
2 Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
AuthorAffiliation_xml – name: 1 Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
– name: 2 Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
– name: 4 Department of Medicine, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
– name: 3 Department of Cellular & Molecular Physiology, Yale University School of Medicine, 300 Cedar Street, PO 208020, New Haven, Connecticut 06520-8020, USA
Author_xml – sequence: 1
  givenname: Tiago C.
  surname: Alves
  fullname: Alves, Tiago C.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 2
  givenname: Rebecca L.
  surname: Pongratz
  fullname: Pongratz, Rebecca L.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 3
  givenname: Xiaojian
  surname: Zhao
  fullname: Zhao, Xiaojian
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 4
  givenname: Orlando
  surname: Yarborough
  fullname: Yarborough, Orlando
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 5
  givenname: Sam
  surname: Sereda
  fullname: Sereda, Sam
  organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 6
  givenname: Orian
  surname: Shirihai
  fullname: Shirihai, Orian
  organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
– sequence: 7
  givenname: Gary W.
  surname: Cline
  fullname: Cline, Gary W.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 8
  givenname: Graeme
  surname: Mason
  fullname: Mason, Graeme
  organization: Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 9
  givenname: Richard G.
  surname: Kibbey
  fullname: Kibbey, Richard G.
  email: richard.kibbey@yale.edu
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26411341$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaf60X6CH4mMPsTsj2fIaSmFZmmQhpYem9CgkeZxosa2tpA3Zb1-bTULbQ04a0Pu9N8w7ZUejH4mx9wgFAspPm8IOlAoOWBWwKIDjK3aCjeB5XXI4muaqgrxEgcfsNMYNgJCiEW_YMZcloijxhF2ux0S3QSdqz7Mfibb5LxfpPPumY8zX0Se_9QMFZ7OLfveQLUfd76OLme-ydEfZzWqZrfa2p7fsdaf7SO8e3zP28-Lrzeoqv_5-uV4tr3NbcUy54Y3kVEsuLWitLZQtb7pOmHpRiq4BaA03HZRksAJuBJhGoKjJSKwarUGcsS8H3-3ODNRaGlPQvdoGN-iwV1479e_P6O7Urb9XpRQV1Hwy-PhoEPzvHcWkBhct9b0eye-iwlrgtEwt56wPf2c9hzxdbxLwg8AGH2Og7lmCoOaK1EbNFam5IgULNVU0QYv_IOuSTs7P-7r-ZfTzAaXpwveOgorW0WipdYFsUq13L-F_AH0gq4g
CitedBy_id crossref_primary_10_1126_sciadv_adg1549
crossref_primary_10_1038_s41568_023_00632_z
crossref_primary_10_1007_s11306_024_02151_w
crossref_primary_10_1016_j_jmb_2019_07_020
crossref_primary_10_1016_j_tem_2021_06_003
crossref_primary_10_1038_s41590_020_0598_4
crossref_primary_10_1146_annurev_nutr_120420_025558
crossref_primary_10_1098_rsta_2015_0378
crossref_primary_10_1016_j_nbd_2020_104742
crossref_primary_10_3390_antiox10020197
crossref_primary_10_18632_aging_100854
crossref_primary_10_1016_j_cmet_2024_12_007
crossref_primary_10_1089_ars_2021_0113
crossref_primary_10_1016_j_celrep_2024_114047
crossref_primary_10_1016_j_cmet_2016_09_018
crossref_primary_10_1128_MCB_00166_16
crossref_primary_10_1016_j_cub_2023_04_046
crossref_primary_10_1016_j_bpc_2024_107270
crossref_primary_10_1371_journal_pone_0166111
crossref_primary_10_1007_s00216_016_0174_9
crossref_primary_10_4049_jimmunol_2000628
crossref_primary_10_1021_acs_analchem_1c00767
crossref_primary_10_1126_sciadv_abi8602
crossref_primary_10_1016_j_cmet_2022_11_011
crossref_primary_10_1146_annurev_pathmechdis_012419_032742
crossref_primary_10_3390_metabo11050322
crossref_primary_10_1016_j_isci_2020_100855
crossref_primary_10_1016_j_tibs_2017_01_004
crossref_primary_10_2337_db23_0355
crossref_primary_10_1016_j_celrep_2018_11_031
crossref_primary_10_1016_j_coche_2016_08_019
crossref_primary_10_1038_s41591_019_0423_5
crossref_primary_10_1038_s41580_020_00317_7
crossref_primary_10_1152_ajpendo_00105_2017
crossref_primary_10_3389_fpls_2022_885051
crossref_primary_10_1016_j_celrep_2019_06_058
crossref_primary_10_1021_acs_analchem_1c01064
crossref_primary_10_1016_j_celrep_2023_112970
crossref_primary_10_1172_JCI173214
crossref_primary_10_3390_ijms22084100
crossref_primary_10_1038_ncomms11740
crossref_primary_10_1016_j_freeradbiomed_2016_08_010
crossref_primary_10_1038_s41374_020_00488_z
crossref_primary_10_1073_pnas_2218150120
crossref_primary_10_1038_s41586_022_04475_w
crossref_primary_10_1186_s12985_024_02480_1
crossref_primary_10_3389_fimmu_2020_591815
crossref_primary_10_3389_fphar_2021_616318
crossref_primary_10_1038_s41467_023_43900_0
crossref_primary_10_7554_eLife_56782
crossref_primary_10_1016_j_celrep_2020_108421
crossref_primary_10_1002_jms_4085
crossref_primary_10_1074_jbc_RA118_006085
crossref_primary_10_1016_j_cmet_2020_11_020
crossref_primary_10_1002_advs_202408580
crossref_primary_10_1021_acs_analchem_2c04231
crossref_primary_10_1016_j_cmet_2020_09_013
crossref_primary_10_1038_s41598_019_50183_3
crossref_primary_10_1186_s13075_021_02501_2
crossref_primary_10_1038_nature22322
crossref_primary_10_1002_1878_0261_13588
crossref_primary_10_1016_j_abb_2025_110330
crossref_primary_10_1016_j_tibs_2023_02_001
crossref_primary_10_1126_scitranslmed_abq4126
crossref_primary_10_1210_er_2017_00211
crossref_primary_10_1242_dev_202937
crossref_primary_10_1021_acs_analchem_0c01767
crossref_primary_10_1016_j_molmet_2019_09_004
crossref_primary_10_1074_jbc_M116_720631
crossref_primary_10_1016_j_cmet_2023_07_013
crossref_primary_10_3322_caac_21670
crossref_primary_10_1172_jci_insight_157572
crossref_primary_10_1016_j_ymben_2016_09_005
crossref_primary_10_1016_j_cell_2024_12_007
crossref_primary_10_1016_j_celrep_2020_107623
crossref_primary_10_1016_j_cmet_2020_04_005
crossref_primary_10_1016_j_cmet_2020_10_006
crossref_primary_10_1016_j_cmet_2022_06_003
crossref_primary_10_1007_s10549_024_07462_z
crossref_primary_10_1016_j_cmet_2020_10_007
crossref_primary_10_1111_apha_14148
crossref_primary_10_1111_dom_13010
crossref_primary_10_3389_fimmu_2022_1028130
crossref_primary_10_1038_s41467_024_51780_1
crossref_primary_10_3390_metabo14070383
crossref_primary_10_1016_j_chembiol_2017_04_009
crossref_primary_10_1016_j_pharmthera_2017_05_003
Cites_doi 10.1074/jbc.M311842200
10.1074/jbc.M604350200
10.1073/pnas.052005699
10.2337/db14-0783
10.1002/nbm.1749
10.1186/1475-2859-8-25
10.2527/2006.8413_supplE50x
10.1016/S0021-9258(18)68590-4
10.3390/ijms10041697
10.1074/jbc.M804665200
10.1093/bioinformatics/bts646
10.1002/nbm.1761
10.1074/jbc.M511908200
10.1006/abbi.1993.1028
10.1074/jbc.M109.011775
10.1074/jbc.M602954200
10.1016/S0006-3495(95)80080-9
10.1016/j.cmet.2007.02.008
10.1093/bioinformatics/btu015
10.1016/0968-0004(91)90004-F
10.2337/diabetes.51.3.712
10.1016/j.copbio.2015.02.003
10.1038/jcbfm.2010.2
10.1074/jbc.M112.414961
10.1016/S1385-299X(02)00217-9
10.1007/s00125-006-0216-5
10.1371/journal.pone.0033023
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2015.08.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 947
ExternalDocumentID PMC4635072
26411341
10_1016_j_cmet_2015_08_021
S1550413115004544
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA-021984
– fundername: NIAAA NIH HHS
  grantid: R01 AA021984
– fundername: NIDDK NIH HHS
  grantid: U24DK-059635
– fundername: NIDDK NIH HHS
  grantid: U24 DK059635
– fundername: NIDDK NIH HHS
  grantid: R01 DK092606
– fundername: NIDDK NIH HHS
  grantid: P30 DK-45735
– fundername: NIDDK NIH HHS
  grantid: K08 DK-080142
– fundername: NIDDK NIH HHS
  grantid: R01 DK-092606
– fundername: NCRR NIH HHS
  grantid: UL1 RR-0024139
– fundername: NIDDK NIH HHS
  grantid: P30-DK-034989
GroupedDBID ---
--K
0R~
0SF
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-b2962e7626c0aaac04d29ff3b7843f900db2bf04eb1502b30b93137eb6159aa03
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:12:54 EDT 2025
Fri Jul 11 16:55:16 EDT 2025
Thu Apr 03 07:09:41 EDT 2025
Tue Jul 01 03:58:15 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Aug 02 08:58:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-b2962e7626c0aaac04d29ff3b7843f900db2bf04eb1502b30b93137eb6159aa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413115004544
PMID 26411341
PQID 1731784760
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4635072
proquest_miscellaneous_1731784760
pubmed_primary_26411341
crossref_primary_10_1016_j_cmet_2015_08_021
crossref_citationtrail_10_1016_j_cmet_2015_08_021
elsevier_sciencedirect_doi_10_1016_j_cmet_2015_08_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-03
PublicationDateYYYYMMDD 2015-11-03
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Stark, Pasquel, Turcu, Pongratz, Roden, Cline, Shulman, Kibbey (bib23) 2009; 284
Weitzel, Nöh, Dalman, Niedenführ, Stute, Wiechert (bib25) 2013; 29
Hellerstein, Neese (bib6) 1992; 263
Malloy, Sherry, Jeffrey (bib14) 1988; 263
Buescher, Antoniewicz, Boros, Burgess, Brunengraber, Clish, DeBerardinis, Feron, Frezza, Ghesquiere (bib2) 2015; 34
Lorenz, El Azzouny, Kennedy, Burant (bib11) 2013; 288
Ronnebaum, Ilkayeva, Burgess, Joseph, Lu, Stevens, Becker, Sherry, Newgard, Jensen (bib19) 2006; 281
Yu, White, Doumen, Damico, LaNoue, Alpert, Lewandowski (bib28) 1995; 69
Chen, Hurd, Schroeder, Lau, Gu, Lam, Barry, Tropp, Cunningham (bib3) 2012; 25
Quek, Wittmann, Nielsen, Krömer (bib18) 2009; 8
Wikstrom, Sereda, Stiles, Elorza, Allister, Neilson, Ferrick, Wheeler, Shirihai (bib26) 2012; 7
MacDonald (bib13) 1993; 300
Jensen, Joseph, Ilkayeva, Burgess, Lu, Ronnebaum, Odegaard, Becker, Sherry, Newgard (bib8) 2006; 281
Cline, Lepine, Papas, Kibbey, Shulman (bib4) 2004; 279
Kibbey, Pongratz, Romanelli, Wollheim, Cline, Shulman (bib9) 2007; 5
Ronnebaum, Jensen, Hohmeier, Burgess, Zhou, Qian, MacNeil, Howard, Thornberry, Ilkayeva (bib20) 2008; 283
de Graaf, Rothman, Behar (bib5) 2011; 24
Mason, Falk Petersen, de Graaf, Kanamatsu, Otsuki, Shulman, Rothman (bib15) 2003; 10
Pongratz, Kibbey, Shulman, Cline (bib17) 2007; 282
Tanizawa, Nakai, Sasaki, Anno, Ohta, Inoue, Matsuo, Koga, Furukawa, Oka (bib24) 2002; 51
Patel, de Graaf, Rothman, Behar, Mason (bib16) 2010; 30
Simpson, Khokhlova, Oca-Cossio, Constantinidis (bib22) 2006; 49
Young (bib27) 2014; 30
Schryer, Peterson, Paalme, Vendelin (bib21) 2009; 10
Lu, Mulder, Zhao, Burgess, Jensen, Kamzolova, Newgard, Sherry (bib12) 2002; 99
Jeffrey, Rajagopal, Malloy, Sherry (bib7) 1991; 16
Kibbey, Choi, Lee, Cabrera, Pongratz, Zhao, Birkenfeld, Li, Berggren, Stanley, Shulman (bib10) 2014; 63
Bequette, Sunny, El-Kadi, Owens (bib1) 2006; 84
Quek (10.1016/j.cmet.2015.08.021_bib18) 2009; 8
Bequette (10.1016/j.cmet.2015.08.021_bib1) 2006; 84
Jeffrey (10.1016/j.cmet.2015.08.021_bib7) 1991; 16
Stark (10.1016/j.cmet.2015.08.021_bib23) 2009; 284
Lorenz (10.1016/j.cmet.2015.08.021_bib11) 2013; 288
Chen (10.1016/j.cmet.2015.08.021_bib3) 2012; 25
Schryer (10.1016/j.cmet.2015.08.021_bib21) 2009; 10
Tanizawa (10.1016/j.cmet.2015.08.021_bib24) 2002; 51
Kibbey (10.1016/j.cmet.2015.08.021_bib10) 2014; 63
Jensen (10.1016/j.cmet.2015.08.021_bib8) 2006; 281
Simpson (10.1016/j.cmet.2015.08.021_bib22) 2006; 49
Cline (10.1016/j.cmet.2015.08.021_bib4) 2004; 279
Malloy (10.1016/j.cmet.2015.08.021_bib14) 1988; 263
Buescher (10.1016/j.cmet.2015.08.021_bib2) 2015; 34
MacDonald (10.1016/j.cmet.2015.08.021_bib13) 1993; 300
Young (10.1016/j.cmet.2015.08.021_bib27) 2014; 30
Yu (10.1016/j.cmet.2015.08.021_bib28) 1995; 69
Lu (10.1016/j.cmet.2015.08.021_bib12) 2002; 99
Mason (10.1016/j.cmet.2015.08.021_bib15) 2003; 10
Patel (10.1016/j.cmet.2015.08.021_bib16) 2010; 30
Ronnebaum (10.1016/j.cmet.2015.08.021_bib19) 2006; 281
de Graaf (10.1016/j.cmet.2015.08.021_bib5) 2011; 24
Wikstrom (10.1016/j.cmet.2015.08.021_bib26) 2012; 7
Ronnebaum (10.1016/j.cmet.2015.08.021_bib20) 2008; 283
Hellerstein (10.1016/j.cmet.2015.08.021_bib6) 1992; 263
Weitzel (10.1016/j.cmet.2015.08.021_bib25) 2013; 29
Kibbey (10.1016/j.cmet.2015.08.021_bib9) 2007; 5
Pongratz (10.1016/j.cmet.2015.08.021_bib17) 2007; 282
25024374 - Diabetes. 2014 Dec;63(12):4218-29
2053137 - Trends Biochem Sci. 1991 Jan;16(1):5-10
16740637 - J Biol Chem. 2006 Aug 4;281(31):22342-51
25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201
19468334 - Int J Mol Sci. 2009 Apr;10(4):1697-718
12565689 - Brain Res Brain Res Protoc. 2003 Feb;10(3):181-90
15304488 - J Biol Chem. 2004 Oct 22;279(43):44370-5
18755687 - J Biol Chem. 2008 Oct 24;283(43):28909-17
8580353 - Biophys J. 1995 Nov;69(5):2090-102
21774012 - NMR Biomed. 2012 Feb;25(2):305-11
23110970 - Bioinformatics. 2013 Jan 1;29(1):143-5
11872671 - Diabetes. 2002 Mar;51(3):712-7
19409084 - Microb Cell Fact. 2009 May 01;8:25
19635791 - J Biol Chem. 2009 Sep 25;284(39):26578-90
20125180 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1200-13
3284880 - J Biol Chem. 1988 May 25;263(15):6964-71
16575559 - Diabetologia. 2006 Jun;49(6):1338-48
11880625 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2708-13
22606219 - PLoS One. 2012;7(5):e33023
17102138 - J Biol Chem. 2007 Jan 5;282(1):200-7
24413674 - Bioinformatics. 2014 May 1;30(9):1333-5
1443132 - Am J Physiol. 1992 Nov;263(5 Pt 1):E988-1001
8424653 - Arch Biochem Biophys. 1993 Jan;300(1):201-5
23426361 - J Biol Chem. 2013 Apr 12;288(15):10923-35
16912049 - J Biol Chem. 2006 Oct 13;281(41):30593-602
17403370 - Cell Metab. 2007 Apr;5(4):253-64
21919099 - NMR Biomed. 2011 Oct;24(8):958-72
16582092 - J Anim Sci. 2006 Apr;84 Suppl:E50-9
References_xml – volume: 84
  start-page: E50
  year: 2006
  end-page: E59
  ident: bib1
  article-title: Application of stable isotopes and mass isotopomer distribution analysis to the study of intermediary metabolism of nutrients
  publication-title: J. Anim. Sci.
– volume: 49
  start-page: 1338
  year: 2006
  end-page: 1348
  ident: bib22
  article-title: Insights into the role of anaplerosis in insulin secretion: A 13C NMR study
  publication-title: Diabetologia
– volume: 284
  start-page: 26578
  year: 2009
  end-page: 26590
  ident: bib23
  article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 181
  year: 2003
  end-page: 190
  ident: bib15
  article-title: A comparison of (13)C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-(13)C]glucose
  publication-title: Brain Res. Brain Res. Protoc.
– volume: 63
  start-page: 4218
  year: 2014
  end-page: 4229
  ident: bib10
  article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release
  publication-title: Diabetes
– volume: 51
  start-page: 712
  year: 2002
  end-page: 717
  ident: bib24
  article-title: Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase
  publication-title: Diabetes
– volume: 30
  start-page: 1200
  year: 2010
  end-page: 1213
  ident: bib16
  article-title: Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 29
  start-page: 143
  year: 2013
  end-page: 145
  ident: bib25
  article-title: 13CFLUX2--high-performance software suite for (13)C-metabolic flux analysis
  publication-title: Bioinformatics
– volume: 7
  start-page: e33023
  year: 2012
  ident: bib26
  article-title: A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets
  publication-title: PLoS ONE
– volume: 5
  start-page: 253
  year: 2007
  end-page: 264
  ident: bib9
  article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion
  publication-title: Cell Metab.
– volume: 300
  start-page: 201
  year: 1993
  end-page: 205
  ident: bib13
  article-title: Metabolism of the insulin secretagogue methyl succinate by pancreatic islets
  publication-title: Arch. Biochem. Biophys.
– volume: 282
  start-page: 200
  year: 2007
  end-page: 207
  ident: bib17
  article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 2708
  year: 2002
  end-page: 2713
  ident: bib12
  article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 281
  start-page: 22342
  year: 2006
  end-page: 22351
  ident: bib8
  article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 5
  year: 1991
  end-page: 10
  ident: bib7
  article-title: 13C-NMR: a simple yet comprehensive method for analysis of intermediary metabolism
  publication-title: Trends Biochem. Sci.
– volume: 263
  start-page: E988
  year: 1992
  end-page: E1001
  ident: bib6
  article-title: Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers
  publication-title: Am. J. Physiol.
– volume: 34
  start-page: 189
  year: 2015
  end-page: 201
  ident: bib2
  article-title: A roadmap for interpreting (
  publication-title: Curr. Opin. Biotechnol.
– volume: 263
  start-page: 6964
  year: 1988
  end-page: 6971
  ident: bib14
  article-title: Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 44370
  year: 2004
  end-page: 44375
  ident: bib4
  article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 30593
  year: 2006
  end-page: 30602
  ident: bib19
  article-title: A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
– volume: 69
  start-page: 2090
  year: 1995
  end-page: 2102
  ident: bib28
  article-title: Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts
  publication-title: Biophys. J.
– volume: 8
  start-page: 25
  year: 2009
  ident: bib18
  article-title: OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis
  publication-title: Microb. Cell Fact.
– volume: 25
  start-page: 305
  year: 2012
  end-page: 311
  ident: bib3
  article-title: Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-(13)C2]pyruvate in vivo
  publication-title: NMR Biomed.
– volume: 10
  start-page: 1697
  year: 2009
  end-page: 1718
  ident: bib21
  article-title: Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks
  publication-title: Int. J. Mol. Sci.
– volume: 24
  start-page: 958
  year: 2011
  end-page: 972
  ident: bib5
  article-title: State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide
  publication-title: NMR Biomed.
– volume: 30
  start-page: 1333
  year: 2014
  end-page: 1335
  ident: bib27
  article-title: INCA: a computational platform for isotopically non-stationary metabolic flux analysis
  publication-title: Bioinformatics
– volume: 288
  start-page: 10923
  year: 2013
  end-page: 10935
  ident: bib11
  article-title: Metabolome response to glucose in the β-cell line INS-1 832/13
  publication-title: J. Biol. Chem.
– volume: 283
  start-page: 28909
  year: 2008
  end-page: 28917
  ident: bib20
  article-title: Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 44370
  year: 2004
  ident: 10.1016/j.cmet.2015.08.021_bib4
  article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311842200
– volume: 281
  start-page: 22342
  year: 2006
  ident: 10.1016/j.cmet.2015.08.021_bib8
  article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604350200
– volume: 99
  start-page: 2708
  year: 2002
  ident: 10.1016/j.cmet.2015.08.021_bib12
  article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.052005699
– volume: 63
  start-page: 4218
  year: 2014
  ident: 10.1016/j.cmet.2015.08.021_bib10
  article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release
  publication-title: Diabetes
  doi: 10.2337/db14-0783
– volume: 25
  start-page: 305
  year: 2012
  ident: 10.1016/j.cmet.2015.08.021_bib3
  article-title: Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-(13)C2]pyruvate in vivo
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1749
– volume: 8
  start-page: 25
  year: 2009
  ident: 10.1016/j.cmet.2015.08.021_bib18
  article-title: OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-8-25
– volume: 84
  start-page: E50
  issue: Suppl
  year: 2006
  ident: 10.1016/j.cmet.2015.08.021_bib1
  article-title: Application of stable isotopes and mass isotopomer distribution analysis to the study of intermediary metabolism of nutrients
  publication-title: J. Anim. Sci.
  doi: 10.2527/2006.8413_supplE50x
– volume: 263
  start-page: 6964
  year: 1988
  ident: 10.1016/j.cmet.2015.08.021_bib14
  article-title: Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)68590-4
– volume: 10
  start-page: 1697
  year: 2009
  ident: 10.1016/j.cmet.2015.08.021_bib21
  article-title: Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10041697
– volume: 283
  start-page: 28909
  year: 2008
  ident: 10.1016/j.cmet.2015.08.021_bib20
  article-title: Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804665200
– volume: 263
  start-page: E988
  year: 1992
  ident: 10.1016/j.cmet.2015.08.021_bib6
  article-title: Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers
  publication-title: Am. J. Physiol.
– volume: 29
  start-page: 143
  year: 2013
  ident: 10.1016/j.cmet.2015.08.021_bib25
  article-title: 13CFLUX2--high-performance software suite for (13)C-metabolic flux analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts646
– volume: 24
  start-page: 958
  year: 2011
  ident: 10.1016/j.cmet.2015.08.021_bib5
  article-title: State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1761
– volume: 281
  start-page: 30593
  year: 2006
  ident: 10.1016/j.cmet.2015.08.021_bib19
  article-title: A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511908200
– volume: 300
  start-page: 201
  year: 1993
  ident: 10.1016/j.cmet.2015.08.021_bib13
  article-title: Metabolism of the insulin secretagogue methyl succinate by pancreatic islets
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1993.1028
– volume: 284
  start-page: 26578
  year: 2009
  ident: 10.1016/j.cmet.2015.08.021_bib23
  article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.011775
– volume: 282
  start-page: 200
  year: 2007
  ident: 10.1016/j.cmet.2015.08.021_bib17
  article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602954200
– volume: 69
  start-page: 2090
  year: 1995
  ident: 10.1016/j.cmet.2015.08.021_bib28
  article-title: Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(95)80080-9
– volume: 5
  start-page: 253
  year: 2007
  ident: 10.1016/j.cmet.2015.08.021_bib9
  article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.02.008
– volume: 30
  start-page: 1333
  year: 2014
  ident: 10.1016/j.cmet.2015.08.021_bib27
  article-title: INCA: a computational platform for isotopically non-stationary metabolic flux analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu015
– volume: 16
  start-page: 5
  year: 1991
  ident: 10.1016/j.cmet.2015.08.021_bib7
  article-title: 13C-NMR: a simple yet comprehensive method for analysis of intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(91)90004-F
– volume: 51
  start-page: 712
  year: 2002
  ident: 10.1016/j.cmet.2015.08.021_bib24
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.3.712
– volume: 34
  start-page: 189
  year: 2015
  ident: 10.1016/j.cmet.2015.08.021_bib2
  article-title: A roadmap for interpreting (13)C metabolite labeling patterns from cells
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.003
– volume: 30
  start-page: 1200
  year: 2010
  ident: 10.1016/j.cmet.2015.08.021_bib16
  article-title: Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2010.2
– volume: 288
  start-page: 10923
  year: 2013
  ident: 10.1016/j.cmet.2015.08.021_bib11
  article-title: Metabolome response to glucose in the β-cell line INS-1 832/13
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.414961
– volume: 10
  start-page: 181
  year: 2003
  ident: 10.1016/j.cmet.2015.08.021_bib15
  article-title: A comparison of (13)C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-(13)C]glucose
  publication-title: Brain Res. Brain Res. Protoc.
  doi: 10.1016/S1385-299X(02)00217-9
– volume: 49
  start-page: 1338
  year: 2006
  ident: 10.1016/j.cmet.2015.08.021_bib22
  article-title: Insights into the role of anaplerosis in insulin secretion: A 13C NMR study
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0216-5
– volume: 7
  start-page: e33023
  year: 2012
  ident: 10.1016/j.cmet.2015.08.021_bib26
  article-title: A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033023
– reference: 25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201
– reference: 16582092 - J Anim Sci. 2006 Apr;84 Suppl:E50-9
– reference: 12565689 - Brain Res Brain Res Protoc. 2003 Feb;10(3):181-90
– reference: 19468334 - Int J Mol Sci. 2009 Apr;10(4):1697-718
– reference: 11880625 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2708-13
– reference: 16740637 - J Biol Chem. 2006 Aug 4;281(31):22342-51
– reference: 17403370 - Cell Metab. 2007 Apr;5(4):253-64
– reference: 21774012 - NMR Biomed. 2012 Feb;25(2):305-11
– reference: 2053137 - Trends Biochem Sci. 1991 Jan;16(1):5-10
– reference: 22606219 - PLoS One. 2012;7(5):e33023
– reference: 25024374 - Diabetes. 2014 Dec;63(12):4218-29
– reference: 16575559 - Diabetologia. 2006 Jun;49(6):1338-48
– reference: 3284880 - J Biol Chem. 1988 May 25;263(15):6964-71
– reference: 23110970 - Bioinformatics. 2013 Jan 1;29(1):143-5
– reference: 8580353 - Biophys J. 1995 Nov;69(5):2090-102
– reference: 20125180 - J Cereb Blood Flow Metab. 2010 Jun;30(6):1200-13
– reference: 18755687 - J Biol Chem. 2008 Oct 24;283(43):28909-17
– reference: 21919099 - NMR Biomed. 2011 Oct;24(8):958-72
– reference: 23426361 - J Biol Chem. 2013 Apr 12;288(15):10923-35
– reference: 8424653 - Arch Biochem Biophys. 1993 Jan;300(1):201-5
– reference: 16912049 - J Biol Chem. 2006 Oct 13;281(41):30593-602
– reference: 19635791 - J Biol Chem. 2009 Sep 25;284(39):26578-90
– reference: 15304488 - J Biol Chem. 2004 Oct 22;279(43):44370-5
– reference: 24413674 - Bioinformatics. 2014 May 1;30(9):1333-5
– reference: 17102138 - J Biol Chem. 2007 Jan 5;282(1):200-7
– reference: 1443132 - Am J Physiol. 1992 Nov;263(5 Pt 1):E988-1001
– reference: 19409084 - Microb Cell Fact. 2009 May 01;8:25
– reference: 11872671 - Diabetes. 2002 Mar;51(3):712-7
SSID ssj0036393
Score 2.4912539
Snippet Mass isotopomer multi-ordinate spectral analysis (MIMOSA) is a step-wise flux analysis platform to measure discrete glycolytic and mitochondrial metabolic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 936
SubjectTerms Acetyl Coenzyme A - metabolism
Animals
Carbon Isotopes
Citrates - metabolism
Citric Acid - metabolism
Citric Acid Cycle - genetics
Insulin - genetics
Insulin - metabolism
Isocitrate Dehydrogenase - genetics
Isocitrate Dehydrogenase - metabolism
Oxaloacetic Acid - metabolism
Oxidation-Reduction
Oxygen Consumption
Pyruvate Carboxylase - genetics
Pyruvate Carboxylase - metabolism
Pyruvate Dehydrogenase Complex - genetics
Pyruvate Dehydrogenase Complex - metabolism
Pyruvic Acid - metabolism
Rats
Title Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle
URI https://dx.doi.org/10.1016/j.cmet.2015.08.021
https://www.ncbi.nlm.nih.gov/pubmed/26411341
https://www.proquest.com/docview/1731784760
https://pubmed.ncbi.nlm.nih.gov/PMC4635072
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiJKReUMszbUGuxA2s-JV9HGlESirBBRC5WbbjFalgN2oSCf49M97dqAGVA8fdHe9aM97Pn-SZbwg5zhR3QNwCC3JSMC20ZzYXGXNR7MnlQWisRr68Si5u9e9xf9whg7YWBtMqG-yvMT2idXOn13izN5tOe9dIrnVUi4k6cqgJqnQWi_jGP1s0hg9G4V00ZmjdFM7UOV7-MWA-pehHGU8p_rc5vSWfr3Mo_9mUhp_JVsMm6Vk94S-kE8ptsln3l3zeIb9GrRjE5JRiPhe7m87DKb0ExsxG82pRzap4YkOHD8sn2gqU0KqgwAvpzeCMDp7hxbvkdnh-M7hgTecE5rFBAXMyT2QAnEs8t9Z6ricyLwrl0kyrIud84qQruAag7nPpIF65EgrbowC7sZarPbJRVmU4INQnEIlU6sxrpbX1uXSZ1SILUnsYnHeJaF1mfCMrjt0tHkybP_bHoJsNutlgy0spuuRkNWZWi2q8a91vI2HWloYB1H933I82bAb-GTwIsWWolnMjUmBNsC0nvEv26zCu5gEEUaDIXZekawFeGaAe9_qTcnofdbk1kDeeyq8fnO838gmvYqGj-k42Fn-X4RAYz8IdxSX9AsOI_OA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIkQviDfhaSRu1IrtdfZxLBEhgaYXUpGbZTteNajsRk0i0X_PjHc3IiB64Loe71oz3vEneeb7AN7liXAI3AIPalFyLbXntpA5d5HsyRVBaupGnp6l43P9eT6YH8Cw64Whsso29zc5PWbr9km_9WZ_tVz2vxK41pEtJvLI6VtwG9FARvoNk_mHLh3jFyPzLllzMm87Z5oiL_8jUEGlHEQeTyX_dTr9jT7_LKL87VQa3Yd7LZxkJ82KH8BBqB7CnUZg8voRfJp0bBCLY0YFXfzbch2O2RQhM5-s6029quOVDRtdbn-yjqGE1SVDYMhmwxM2vMYXP4bz0cfZcMxb6QTuSaGAO1WkKmCiS72w1nqhF6ooy8RluU7KQoiFU64UGjP1QCiHASsSmZA-CsIba0XyBA6rugrPgPkUQ5EpnXudaG19oVxutcyD0h4nFz2QncuMb3nFSd7i0nQFZN8NudmQmw1pXirZg_e7OauGVeNG60EXCbO3Nwym_Rvnve3CZvCnoZsQW4V6uzYyQ9iE53IqevC0CeNuHYgQJbHc9SDbC_DOgAi590eq5UUk5taI3kSmnv_net_A3fFsempOJ2dfXsARjcSux-QlHG6utuEVwp-Nex239y981AAO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated%2C+Step-Wise%2C+Mass-Isotopomeric+Flux+Analysis+of+the+TCA+Cycle&rft.jtitle=Cell+metabolism&rft.au=Alves%2C+Tiago%C2%A0C.&rft.au=Pongratz%2C+Rebecca%C2%A0L.&rft.au=Zhao%2C+Xiaojian&rft.au=Yarborough%2C+Orlando&rft.date=2015-11-03&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=22&rft.issue=5&rft.spage=936&rft.epage=947&rft_id=info:doi/10.1016%2Fj.cmet.2015.08.021&rft.externalDocID=S1550413115004544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon