Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells
Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxypheny...
Saved in:
Published in | Biosensors & bioelectronics Vol. 77; pp. 292 - 298 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry.
•We present novel surface enhanced Raman scattering nanosensors for detection of H2O2 in living cells.•The nanosensors feature higher selectivity for H2O2 and show excellent sensitivity with a low detection limit of 80nM.•The nanosensors can be successfully used for monitoring changes of H2O2 levels within biological samples under oxidative stress. |
---|---|
AbstractList | Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry.
•We present novel surface enhanced Raman scattering nanosensors for detection of H2O2 in living cells.•The nanosensors feature higher selectivity for H2O2 and show excellent sensitivity with a low detection limit of 80nM.•The nanosensors can be successfully used for monitoring changes of H2O2 levels within biological samples under oxidative stress. Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80 nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry. Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry. |
Author | Liu, Ying-Ya He, Sai-Huan Liang, Yuan Chen, Jia-Qing Li, Hai-Tao Qu, Lu-Lu |
Author_xml | – sequence: 1 givenname: Lu-Lu surname: Qu fullname: Qu, Lu-Lu email: luluqu@jsnu.edu.cn – sequence: 2 givenname: Ying-Ya surname: Liu fullname: Liu, Ying-Ya – sequence: 3 givenname: Sai-Huan surname: He fullname: He, Sai-Huan – sequence: 4 givenname: Jia-Qing surname: Chen fullname: Chen, Jia-Qing – sequence: 5 givenname: Yuan surname: Liang fullname: Liang, Yuan – sequence: 6 givenname: Hai-Tao surname: Li fullname: Li, Hai-Tao email: haitao@jsnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26414026$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LFDEQhoOsuLOrf8CD5Oil23x0km7wIou6woIgeg7VneqZDD3JmPQMOyf_uh1n9eBh9VS88LxFUc8VuQgxICEvOas54_rNtu59zLVgXNWsq5nsnpAVb42sGiHVBVmxTulKaS0vyVXOW8aY4R17Ri6FbnjDhF6RH7d-vZlONOOEw-yPSCG4JYXsf6V8SCMMSDFsIAzo6BfYQaB5gHnG5MOaBgix8DFlOsZEHc5lUww0jnRzcimuMdA9pnjvHVIf6OSPpTjgNOXn5OkIU8YXD_OafPvw_uvNbXX3-eOnm3d31aAEnysYNbTSOSEdNCBV37olQ9uYkXNAkKZnnVDoOGuZ06BND6Zvew5OGtV28pq8Pu_dp_j9gHm2O5_LBRAwHrIVy3N4Jww3_0S5aTVXSkj-P6gSjVC6HPDqAT30O3R2n_wO0sn-VrEA4gwMKeaccPyDcGaLb7u1xbctvi3r7OJ7KbV_lQY_Q_n-nMBPj1ffnqu4vP3oMdk8eCyOfVoEWhf9Y_WfZgbH2A |
CitedBy_id | crossref_primary_10_1002_slct_201601259 crossref_primary_10_1088_1752_7163_aaa672 crossref_primary_10_1016_j_mtchem_2021_100560 crossref_primary_10_1002_cbic_201900191 crossref_primary_10_1021_acsami_7b04365 crossref_primary_10_1039_C7NR04945E crossref_primary_10_1016_j_ecoenv_2018_07_026 crossref_primary_10_1007_s00604_018_2852_0 crossref_primary_10_1021_acs_analchem_4c00076 crossref_primary_10_1002_adfm_201604923 crossref_primary_10_1016_j_talanta_2024_127361 crossref_primary_10_1016_j_bios_2016_02_019 crossref_primary_10_1016_j_snb_2018_05_070 crossref_primary_10_1016_j_snb_2021_129725 crossref_primary_10_3390_molecules27227918 crossref_primary_10_1021_acs_analchem_3c02912 crossref_primary_10_1002_jbio_201700015 crossref_primary_10_1021_acs_analchem_4c04544 crossref_primary_10_1557_jmr_2017_34 crossref_primary_10_1016_j_snb_2022_132897 crossref_primary_10_1016_j_snb_2022_132770 crossref_primary_10_1016_j_bios_2017_04_021 crossref_primary_10_1016_j_snb_2023_134631 crossref_primary_10_3390_molecules29122769 crossref_primary_10_1002_pssa_202200128 crossref_primary_10_1007_s12633_018_9758_7 crossref_primary_10_1039_C6CC03412H crossref_primary_10_1016_j_msec_2020_111691 crossref_primary_10_1021_acsami_4c16059 crossref_primary_10_2116_analsci_20P463 crossref_primary_10_4155_bio_2015_0030 crossref_primary_10_1039_C7CS00172J crossref_primary_10_1039_C8TC06299D crossref_primary_10_1016_j_snb_2018_01_169 crossref_primary_10_1080_00032719_2017_1392971 crossref_primary_10_1088_1674_1056_27_1_017801 crossref_primary_10_1007_s13738_020_01865_7 crossref_primary_10_2139_ssrn_4164534 crossref_primary_10_1039_C6AN00884D crossref_primary_10_1016_j_snb_2016_08_124 crossref_primary_10_1039_D3AN00354J crossref_primary_10_1016_j_bios_2021_113077 crossref_primary_10_1007_s00604_023_06136_9 crossref_primary_10_1016_j_snb_2017_10_151 crossref_primary_10_1016_j_jelechem_2018_10_045 crossref_primary_10_1039_D1BM00159K crossref_primary_10_1016_j_talanta_2024_125753 crossref_primary_10_1007_s00216_018_1233_1 crossref_primary_10_1016_j_talanta_2020_120863 crossref_primary_10_1039_C8RA09272A crossref_primary_10_1016_j_snb_2019_01_036 crossref_primary_10_1002_wnan_1802 crossref_primary_10_1080_10408347_2023_2255901 crossref_primary_10_1016_j_snb_2017_03_166 crossref_primary_10_1021_acsomega_1c03119 crossref_primary_10_1016_j_talanta_2024_127222 crossref_primary_10_1016_j_talanta_2024_127224 crossref_primary_10_1134_S1061934817020095 crossref_primary_10_1134_S1061934817030108 crossref_primary_10_3390_app8060848 crossref_primary_10_1021_acsanm_0c02758 crossref_primary_10_1515_nanoph_2023_0362 crossref_primary_10_1007_s00604_020_04379_4 crossref_primary_10_1039_C8NR01628C crossref_primary_10_1021_acsami_0c15311 crossref_primary_10_1039_C7RA01498H crossref_primary_10_3390_chemosensors10100391 crossref_primary_10_1002_adom_201901381 crossref_primary_10_1186_s13568_020_01004_8 crossref_primary_10_1002_anie_202403880 crossref_primary_10_1016_j_aca_2018_09_009 crossref_primary_10_1002_ange_202403880 crossref_primary_10_1016_j_jtice_2018_05_005 crossref_primary_10_1039_C9AN01964B crossref_primary_10_1016_j_aca_2018_12_061 crossref_primary_10_1039_C7CS00612H crossref_primary_10_1016_j_reactfunctpolym_2024_106110 crossref_primary_10_1016_j_cej_2021_132687 crossref_primary_10_1007_s00604_018_3129_3 crossref_primary_10_1016_j_snb_2021_131236 crossref_primary_10_1021_acsami_7b06107 |
Cites_doi | 10.1021/ja203145v 10.1021/ar200126t 10.1016/j.bios.2008.06.004 10.1161/01.ATV.0000078601.79536.6C 10.1073/pnas.1302193110 10.1021/jp076656x 10.1152/physrev.00026.2013 10.1038/nmat1983 10.1016/S0891-5849(01)00493-2 10.1021/jp404184x 10.1038/35041687 10.1038/ni1202-1129 10.1021/nn204397q 10.1002/adfm.201000792 10.1021/ja303372u 10.1021/j100214a025 10.1021/ja411547j 10.1021/ic800122v 10.2116/analsci.24.201 10.1021/ja409230g 10.1021/ac401644n 10.1016/j.bios.2013.07.063 10.1016/j.trac.2013.12.003 10.1021/cm201791r 10.1021/nn900488u 10.1039/c3cc43265c 10.1002/anie.201107025 10.1073/pnas.1012864107 10.1021/ja405120x 10.1021/ja992058n 10.1126/science.2834821 10.1021/ac504795s 10.1038/nrm2240 10.1021/cr300120g 10.1021/nl071418z 10.1021/nn300352b 10.1016/j.vibspec.2010.05.001 10.1021/es104155r 10.1021/jp054732v 10.1021/ja054474f 10.1002/anie.200804851 10.1039/C5AN00132C 10.1016/j.jcis.2007.07.073 10.1016/S0039-9140(03)00076-6 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SP 7U5 L7M 7S9 L.6 |
DOI | 10.1016/j.bios.2015.09.039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Solid State and Superconductivity Abstracts Engineering Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
EndPage | 298 |
ExternalDocumentID | 26414026 10_1016_j_bios_2015_09_039 S0956566315304358 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 P64 7SP 7U5 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c521t-af6a83dd23da4a35b8da83a847f11aea37b0925ed1080d6a67ba7b8b1ad375893 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 |
IngestDate | Tue Aug 05 10:36:03 EDT 2025 Thu Jul 10 20:26:22 EDT 2025 Wed Jul 30 11:27:47 EDT 2025 Thu Apr 03 07:09:43 EDT 2025 Tue Jul 01 02:51:19 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Fri Feb 23 02:27:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sensitive Hydrogen peroxide Living cells Selective Surface enhanced Raman scattering |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-af6a83dd23da4a35b8da83a847f11aea37b0925ed1080d6a67ba7b8b1ad375893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26414026 |
PQID | 1785242569 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000192717 proquest_miscellaneous_1786155231 proquest_miscellaneous_1785242569 pubmed_primary_26414026 crossref_primary_10_1016_j_bios_2015_09_039 crossref_citationtrail_10_1016_j_bios_2015_09_039 elsevier_sciencedirect_doi_10_1016_j_bios_2015_09_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ye, Mao, Guo, Zhang (bib42) 2014; 55 Dong, Guo, Xie, Li, Zhang, Qian (bib4) 2015; 140 Imlay, Chin, Linn (bib9) 1988; 240 Kennedy, Tay, Lyn, Rouleau, Hulse, Pezacki (bib13) 2009; 3 Le Ru, Meyer, Etchegoin (bib26) 2006; 110 Piergies, Proniewicz, Ozaki, Kim, Proniewicz (bib30) 2013; 117 Van de Bittner, Dubikovskaya, Bertozzi, Chang (bib38) 2010; 107 Karton-Lifshin, Segal, Omer, Portnoy, Satchi-Fainaro, Shabat (bib11) 2011; 133 Thomson, Camus, Hu, Campbell (bib37) 2015; 87 Xuan, Sheng, Cao, He, Wang (bib41) 2012; 51 Weinstain, Savariar, Felsen, Tsien (bib40) 2014; 136 Lin, Lipperta, Chang (bib19) 2013; 110 Hou, Fang (bib8) 2007; 316 Wang, Yan, Chen (bib39) 2013; 113 Krug, Wang, Emory, Nie (bib15) 1999; 121 Sun, Xu, Flower, Fossey, Qian, James (bib33) 2013; 49 Kundu, Knight, Willett, Lee, Taylor, Murthy (bib18) 2009; 48 Guerrini, Pazos, Penas, Vázquez, Mascareñas, Alvarez-Puebla (bib6) 2013; 135 Lee, Meisel (bib25) 1982; 86 Zamarion, Timm, Araki, Toma (bib44) 2008; 47 Qu, Li, Qin, Mu, Fossey, Long (bib31) 2013; 85 Kneipp, Kneipp, Wittig, Kneipp (bib12) 2007; 7 Li, Chen, Yang, Jin, Liu (bib23) 2010; 20 Miller, Albers, Pralle, Isacoff, Chang (bib29) 2005; 127 Kafi, Wu, Chen (bib10) 2008; 24 Lee, Khaja, Velasquez-Castano, Dasari, Sun, Petros, Taylor, Murthy (bib21) 2007; 6 Lee, Chon, Lee, Ko, Chung, Lim, Choo (bib22) 2014; 51 De Gracia Lux, Joshi-Barr, Nguyen, Mahmoud, Schopf, Fomina, Almutairi (bib5) 2012; 134 Marco, Mirella, Enrica, Pier (bib27) 2007; 8 Tetsuya, Hiroaki, Keiko, Hiroshi, Ikuko, Lemmy, Yasushi, Yoji, Takaaki, Akira (bib35) 2003; 23 Toren, Nikki (bib34) 2000; 408 Yin, Wu, Song, Zhang, Liu, Xu, Duan (bib43) 2011; 23 Auchinvole, Richardson, McGuinnes, Mallikarjun, Donaldson, McNab, Campbell (bib1) 2012; 6 Hu, Zhang, Yang (bib7) 2008; 24 Kong, Lam, Lau, Leong, Olivo (bib16) 2013; 135 Antunes, Cadenas (bib3) 2001; 30 Li, Qu, Zhai, Xue, Fossey, Long (bib24) 2011; 45 Toshimasa, Tomoaki, Masaru (bib36) 2003; 60 Kutala, Villamena, Ilangovan, Maspoch, Roques, Veciana, Rovira, Kuppusamy (bib14) 2008; 112 Alver, Parlak (bib2) 2010; 54 Kho, Dinish, Kumar, Olivo (bib17) 2012; 6 Reth (bib32) 2002; 3 Zorov, Juhaszova, Sollott (bib45) 2014; 94 Magidson, Khodjakov (bib28) 2013; 114 Lippert, Van de Bittner, Chang (bib20) 2011; 2011 Qu (10.1016/j.bios.2015.09.039_bib31) 2013; 85 Wang (10.1016/j.bios.2015.09.039_bib39) 2013; 113 Li (10.1016/j.bios.2015.09.039_bib24) 2011; 45 Piergies (10.1016/j.bios.2015.09.039_bib30) 2013; 117 Kennedy (10.1016/j.bios.2015.09.039_bib13) 2009; 3 Zorov (10.1016/j.bios.2015.09.039_bib45) 2014; 94 Tetsuya (10.1016/j.bios.2015.09.039_bib35) 2003; 23 Lee (10.1016/j.bios.2015.09.039_bib25) 1982; 86 Kong (10.1016/j.bios.2015.09.039_bib16) 2013; 135 Magidson (10.1016/j.bios.2015.09.039_bib28) 2013; 114 Xuan (10.1016/j.bios.2015.09.039_bib41) 2012; 51 De Gracia Lux (10.1016/j.bios.2015.09.039_bib5) 2012; 134 Weinstain (10.1016/j.bios.2015.09.039_bib40) 2014; 136 Dong (10.1016/j.bios.2015.09.039_bib4) 2015; 140 Karton-Lifshin (10.1016/j.bios.2015.09.039_bib11) 2011; 133 Le Ru (10.1016/j.bios.2015.09.039_bib26) 2006; 110 Toshimasa (10.1016/j.bios.2015.09.039_bib36) 2003; 60 Antunes (10.1016/j.bios.2015.09.039_bib3) 2001; 30 Auchinvole (10.1016/j.bios.2015.09.039_bib1) 2012; 6 Kneipp (10.1016/j.bios.2015.09.039_bib12) 2007; 7 Imlay (10.1016/j.bios.2015.09.039_bib9) 1988; 240 Kundu (10.1016/j.bios.2015.09.039_bib18) 2009; 48 Krug (10.1016/j.bios.2015.09.039_bib15) 1999; 121 Sun (10.1016/j.bios.2015.09.039_bib33) 2013; 49 Guerrini (10.1016/j.bios.2015.09.039_bib6) 2013; 135 Lippert (10.1016/j.bios.2015.09.039_bib20) 2011; 2011 Alver (10.1016/j.bios.2015.09.039_bib2) 2010; 54 Lee (10.1016/j.bios.2015.09.039_bib22) 2014; 51 Kafi (10.1016/j.bios.2015.09.039_bib10) 2008; 24 Marco (10.1016/j.bios.2015.09.039_bib27) 2007; 8 Thomson (10.1016/j.bios.2015.09.039_bib37) 2015; 87 Hou (10.1016/j.bios.2015.09.039_bib8) 2007; 316 Zamarion (10.1016/j.bios.2015.09.039_bib44) 2008; 47 Lin (10.1016/j.bios.2015.09.039_bib19) 2013; 110 Reth (10.1016/j.bios.2015.09.039_bib32) 2002; 3 Lee (10.1016/j.bios.2015.09.039_bib21) 2007; 6 Ye (10.1016/j.bios.2015.09.039_bib42) 2014; 55 Kutala (10.1016/j.bios.2015.09.039_bib14) 2008; 112 Toren (10.1016/j.bios.2015.09.039_bib34) 2000; 408 Yin (10.1016/j.bios.2015.09.039_bib43) 2011; 23 Hu (10.1016/j.bios.2015.09.039_bib7) 2008; 24 Kho (10.1016/j.bios.2015.09.039_bib17) 2012; 6 Li (10.1016/j.bios.2015.09.039_bib23) 2010; 20 Van de Bittner (10.1016/j.bios.2015.09.039_bib38) 2010; 107 Miller (10.1016/j.bios.2015.09.039_bib29) 2005; 127 |
References_xml | – volume: 127 start-page: 16652 year: 2005 end-page: 16659 ident: bib29 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 15758 year: 2012 end-page: 15764 ident: bib5 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 9208 year: 1999 end-page: 9214 ident: bib15 publication-title: J. Am. Chem. Soc. – volume: 114 year: 2013 ident: bib28 publication-title: Methods Cell Biol. – volume: 107 start-page: 21316 year: 2010 ident: bib38 publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 1008 year: 2001 end-page: 1018 ident: bib3 publication-title: Free Radic. Biol. Med. – volume: 51 start-page: 238 year: 2014 end-page: 243 ident: bib22 publication-title: Biosens. Bioelectron. – volume: 240 start-page: 640 year: 1988 end-page: 642 ident: bib9 publication-title: Science – volume: 55 start-page: 43 year: 2014 end-page: 54 ident: bib42 publication-title: Trends Anal. Chem. – volume: 23 start-page: 4756 year: 2011 end-page: 4764 ident: bib43 publication-title: Chem. Mater. – volume: 24 start-page: 201 year: 2008 end-page: 205 ident: bib7 publication-title: Anal. Sci. – volume: 135 start-page: 10314 year: 2013 end-page: 10317 ident: bib6 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 4719 year: 2015 end-page: 4725 ident: bib37 publication-title: Anal. Chem. – volume: 8 start-page: 722 year: 2007 end-page: 728 ident: bib27 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 47 start-page: 2934 year: 2008 end-page: 2936 ident: bib44 publication-title: Inorg. Chem. – volume: 140 start-page: 2741 year: 2015 end-page: 2746 ident: bib4 publication-title: Analyst – volume: 24 start-page: 566 year: 2008 end-page: 571 ident: bib10 publication-title: Biosens. Bioelectron. – volume: 3 start-page: 1129 year: 2002 end-page: 1134 ident: bib32 publication-title: Nat. Immunol. – volume: 6 start-page: 765 year: 2007 end-page: 769 ident: bib21 publication-title: Nat. Mater. – volume: 49 start-page: 8311 year: 2013 end-page: 8313 ident: bib33 publication-title: Chem. Commun. – volume: 2011 start-page: 793 year: 2011 end-page: 804 ident: bib20 publication-title: Acc. Chem. Res. – volume: 7 start-page: 2819 year: 2007 end-page: 2823 ident: bib12 publication-title: Nano Lett. – volume: 112 start-page: 158 year: 2008 end-page: 167 ident: bib14 publication-title: J. Phys. Chem. B – volume: 94 start-page: 909 year: 2014 end-page: 950 ident: bib45 publication-title: Physiol. Rev. – volume: 3 start-page: 2329 year: 2009 end-page: 2339 ident: bib13 publication-title: ACS Nano – volume: 135 start-page: 18028 year: 2013 end-page: 18031 ident: bib16 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 5693 year: 2013 end-page: 5705 ident: bib30 publication-title: J. Phys. Chem. A – volume: 133 start-page: 10960 year: 2011 ident: bib11 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2282 year: 2012 end-page: 2284 ident: bib41 publication-title: Angew. Chem. Int. Ed. – volume: 408 start-page: 239 year: 2000 end-page: 247 ident: bib34 publication-title: Nature – volume: 136 start-page: 874 year: 2014 end-page: 877 ident: bib40 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1 year: 2010 end-page: 9 ident: bib2 publication-title: Vib. Spectrosc. – volume: 110 start-page: 7131 year: 2013 end-page: 7135 ident: bib19 publication-title: Proc. Natl. Acad. Sci. USA – volume: 113 start-page: 1391 year: 2013 end-page: 1428 ident: bib39 publication-title: Chem. Rev. – volume: 316 start-page: 19 year: 2007 end-page: 24 ident: bib8 publication-title: J. Colloid Interface Sci – volume: 86 start-page: 3391 year: 1982 end-page: 3395 ident: bib25 publication-title: J. Phys. Chem. – volume: 110 start-page: 1944 year: 2006 end-page: 1948 ident: bib26 publication-title: J. Phys. Chem. B – volume: 60 start-page: 467 year: 2003 end-page: 475 ident: bib36 publication-title: Talanta – volume: 48 start-page: 299 year: 2009 end-page: 303 ident: bib18 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 888 year: 2012 end-page: 896 ident: bib1 publication-title: ACS Nano – volume: 45 start-page: 4046 year: 2011 end-page: 4052 ident: bib24 publication-title: Environ. Sci. Technol. – volume: 6 start-page: 4892 year: 2012 end-page: 4902 ident: bib17 publication-title: ACS Nano – volume: 23 start-page: 1224 year: 2003 end-page: 1230 ident: bib35 publication-title: Arterioscler. Thromb. Vasc. – volume: 20 start-page: 2815 year: 2010 end-page: 2824 ident: bib23 publication-title: Adv. Funct. Mater. – volume: 85 start-page: 9549 year: 2013 end-page: 9555 ident: bib31 publication-title: Anal. Chem. – volume: 133 start-page: 10960 year: 2011 ident: 10.1016/j.bios.2015.09.039_bib11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203145v – volume: 2011 start-page: 793 issue: 44 year: 2011 ident: 10.1016/j.bios.2015.09.039_bib20 publication-title: Acc. Chem. Res. doi: 10.1021/ar200126t – volume: 24 start-page: 566 year: 2008 ident: 10.1016/j.bios.2015.09.039_bib10 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.06.004 – volume: 23 start-page: 1224 year: 2003 ident: 10.1016/j.bios.2015.09.039_bib35 publication-title: Arterioscler. Thromb. Vasc. doi: 10.1161/01.ATV.0000078601.79536.6C – volume: 110 start-page: 7131 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib19 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302193110 – volume: 112 start-page: 158 year: 2008 ident: 10.1016/j.bios.2015.09.039_bib14 publication-title: J. Phys. Chem. B doi: 10.1021/jp076656x – volume: 94 start-page: 909 year: 2014 ident: 10.1016/j.bios.2015.09.039_bib45 publication-title: Physiol. Rev. doi: 10.1152/physrev.00026.2013 – volume: 6 start-page: 765 year: 2007 ident: 10.1016/j.bios.2015.09.039_bib21 publication-title: Nat. Mater. doi: 10.1038/nmat1983 – volume: 30 start-page: 1008 year: 2001 ident: 10.1016/j.bios.2015.09.039_bib3 publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00493-2 – volume: 117 start-page: 5693 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib30 publication-title: J. Phys. Chem. A doi: 10.1021/jp404184x – volume: 408 start-page: 239 year: 2000 ident: 10.1016/j.bios.2015.09.039_bib34 publication-title: Nature doi: 10.1038/35041687 – volume: 3 start-page: 1129 year: 2002 ident: 10.1016/j.bios.2015.09.039_bib32 publication-title: Nat. Immunol. doi: 10.1038/ni1202-1129 – volume: 6 start-page: 888 year: 2012 ident: 10.1016/j.bios.2015.09.039_bib1 publication-title: ACS Nano doi: 10.1021/nn204397q – volume: 20 start-page: 2815 year: 2010 ident: 10.1016/j.bios.2015.09.039_bib23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000792 – volume: 134 start-page: 15758 year: 2012 ident: 10.1016/j.bios.2015.09.039_bib5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303372u – volume: 86 start-page: 3391 year: 1982 ident: 10.1016/j.bios.2015.09.039_bib25 publication-title: J. Phys. Chem. doi: 10.1021/j100214a025 – volume: 136 start-page: 874 year: 2014 ident: 10.1016/j.bios.2015.09.039_bib40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411547j – volume: 47 start-page: 2934 year: 2008 ident: 10.1016/j.bios.2015.09.039_bib44 publication-title: Inorg. Chem. doi: 10.1021/ic800122v – volume: 24 start-page: 201 year: 2008 ident: 10.1016/j.bios.2015.09.039_bib7 publication-title: Anal. Sci. doi: 10.2116/analsci.24.201 – volume: 135 start-page: 18028 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409230g – volume: 114 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib28 publication-title: Methods Cell Biol. – volume: 85 start-page: 9549 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib31 publication-title: Anal. Chem. doi: 10.1021/ac401644n – volume: 51 start-page: 238 year: 2014 ident: 10.1016/j.bios.2015.09.039_bib22 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.07.063 – volume: 55 start-page: 43 year: 2014 ident: 10.1016/j.bios.2015.09.039_bib42 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2013.12.003 – volume: 23 start-page: 4756 year: 2011 ident: 10.1016/j.bios.2015.09.039_bib43 publication-title: Chem. Mater. doi: 10.1021/cm201791r – volume: 3 start-page: 2329 year: 2009 ident: 10.1016/j.bios.2015.09.039_bib13 publication-title: ACS Nano doi: 10.1021/nn900488u – volume: 49 start-page: 8311 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib33 publication-title: Chem. Commun. doi: 10.1039/c3cc43265c – volume: 51 start-page: 2282 year: 2012 ident: 10.1016/j.bios.2015.09.039_bib41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107025 – volume: 107 start-page: 21316 year: 2010 ident: 10.1016/j.bios.2015.09.039_bib38 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012864107 – volume: 135 start-page: 10314 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405120x – volume: 121 start-page: 9208 year: 1999 ident: 10.1016/j.bios.2015.09.039_bib15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992058n – volume: 240 start-page: 640 year: 1988 ident: 10.1016/j.bios.2015.09.039_bib9 publication-title: Science doi: 10.1126/science.2834821 – volume: 87 start-page: 4719 year: 2015 ident: 10.1016/j.bios.2015.09.039_bib37 publication-title: Anal. Chem. doi: 10.1021/ac504795s – volume: 8 start-page: 722 year: 2007 ident: 10.1016/j.bios.2015.09.039_bib27 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2240 – volume: 113 start-page: 1391 year: 2013 ident: 10.1016/j.bios.2015.09.039_bib39 publication-title: Chem. Rev. doi: 10.1021/cr300120g – volume: 7 start-page: 2819 year: 2007 ident: 10.1016/j.bios.2015.09.039_bib12 publication-title: Nano Lett. doi: 10.1021/nl071418z – volume: 6 start-page: 4892 year: 2012 ident: 10.1016/j.bios.2015.09.039_bib17 publication-title: ACS Nano doi: 10.1021/nn300352b – volume: 54 start-page: 1 year: 2010 ident: 10.1016/j.bios.2015.09.039_bib2 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2010.05.001 – volume: 45 start-page: 4046 year: 2011 ident: 10.1016/j.bios.2015.09.039_bib24 publication-title: Environ. Sci. Technol. doi: 10.1021/es104155r – volume: 110 start-page: 1944 year: 2006 ident: 10.1016/j.bios.2015.09.039_bib26 publication-title: J. Phys. Chem. B doi: 10.1021/jp054732v – volume: 127 start-page: 16652 year: 2005 ident: 10.1016/j.bios.2015.09.039_bib29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054474f – volume: 48 start-page: 299 year: 2009 ident: 10.1016/j.bios.2015.09.039_bib18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804851 – volume: 140 start-page: 2741 year: 2015 ident: 10.1016/j.bios.2015.09.039_bib4 publication-title: Analyst doi: 10.1039/C5AN00132C – volume: 316 start-page: 19 year: 2007 ident: 10.1016/j.bios.2015.09.039_bib8 publication-title: J. Colloid Interface Sci doi: 10.1016/j.jcis.2007.07.073 – volume: 60 start-page: 467 year: 2003 ident: 10.1016/j.bios.2015.09.039_bib36 publication-title: Talanta doi: 10.1016/S0039-9140(03)00076-6 |
SSID | ssj0007190 |
Score | 2.479063 |
Snippet | Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 292 |
SubjectTerms | biochemistry biocompatibility Biological Biological effects biosensors Cells (biology) Cellular detection limit Equipment Design Equipment Failure Analysis Gold Gold - chemistry HeLa Cells Hepatocytes - metabolism Humans Hydrogen peroxide Hydrogen Peroxide - metabolism Living cells monitoring nanogold Nanoparticles - chemistry Nanoparticles - ultrastructure Nanostructure Nanotechnology - instrumentation oxidation oxidative stress phenol Raman scattering Raman spectroscopy Reproducibility of Results Selective Selectivity Sensitive Sensitivity and Specificity Spectrum Analysis, Raman - instrumentation Surface enhanced Raman scattering thiols |
Title | Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells |
URI | https://dx.doi.org/10.1016/j.bios.2015.09.039 https://www.ncbi.nlm.nih.gov/pubmed/26414026 https://www.proquest.com/docview/1785242569 https://www.proquest.com/docview/1786155231 https://www.proquest.com/docview/2000192717 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCKk9VJR-bQvIlXqr0l07ztcRIdAWBIdSJG7WOHZEqq2DNrtS99L-9c7ECdDD7qFHR5PI8dieZ_v5DWOf4qoElTgXuVyoSJW5iAqbm0hSOjgjKyEr2hq4vEqnN-r8NrndYifDXRiiVfZzf5jTu9m6fzLuW3N8X9fja5LQQzAS45idYNCnC79KZdTLv_x-pHlkIuyzkN4eWfcXZwLHy9QNSXaLJGidFuuC0zrw2QWhsz32okeP_DhU8CXbcn6f7YZ8kqt99vyJuuAr9oc4HLMVb7tUNzircfAWS77t-EK8Xc4rKB13_q6jAfBv8BM8b8tOchM_wT34huybecsR3HLrFh1zy_Om4ncrO2-w-3GSGv9VW8drz2c1bVBwOg5oX7Obs9PvJ9Ooz7cQlZTWIIIqhTy2VsYWFKCrcotlwPhVCQEO4sxMCpk4S7xEm0KaGchMbgTYGJcdRfyGbfvGu3eMlwXWH8A6oTKFiC0vSOlLgpCiLGJnRkwMDa3LXoyccmLM9MA6-6HJOZqcoyeFRueM2OeHd-6DFMdG62Twn_6nQ2mMFRvf-zg4W-NIo_YC75plq0WWJ7RASzfb0EEvgub1NjLgalxHj9jb0Jse_gfhKa54Zfr-P2v_gT3DUkokOZEcsO3FfOkOETUtzFE3LI7YzvHXi-nVX60VGIg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBwQFBey9NI3FC06zydY1VRbWm7B2il3qxJ7KhBi1NtdiX2xF9nJk5WcNg9cExiR47Hnvlsf_kG4FNUlRgn1gZWyTiISyWD3KgiCDkdXBFWMqx4a-Byns6u4683yc0BnAz_wjCtsvf93qd33rq_M-l7c3JX15PvLKFHYCSiOTuloK_uwSGrUyUjODw-O5_Ntw45k36rhSX3uEL_74yneRV1w6rdMvFyp_mu-LQLf3Zx6PQJPO4BpDj2bXwKB9YdwX2fUnJzBI_-Ehh8Br-ZxrHYiLbLdkOOTaAzdOXajjIk2vWywtIK6247JoD4hj_RibbsVDfpFcKha7h8s2wF4Vth7KojbznRVOJ2Y5YNjUDBauO_amNF7cSi5j0KwScC7XO4Pv1ydTIL-pQLQcmZDQKsUlSRMWFkMEayljJ0jRTCKinRYpQV0zxMrGFqokkxzQrMClVINBGtPPLoBYxc4-wrEGVO7Uc0VsZZTKBN5Sz2FaIMZZlHthiDHDpal70eOafFWOiBePZDs3E0G0dPc03GGcPnbZ07r8axt3Qy2E__M6Y0hYu99T4OxtY02bi_0Nlm3WqZqYTXaOn-MnzWS7h5d5nQQ2taSo_hpR9N2-8hhEqL3jB9_Z-t_wAPZleXF_ribH7-Bh7Sk5Q5czJ5C6PVcm3fEYhaFe_7SfIHNUEbOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+selective+and+sensitive+surface+enhanced+Raman+scattering+nanosensors+for+detection+of+hydrogen+peroxide+in+living+cells&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Qu%2C+Lu-Lu&rft.au=Liu%2C+Ying-Ya&rft.au=He%2C+Sai-Huan&rft.au=Chen%2C+Jia-Qing&rft.date=2016-03-15&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=77&rft.spage=292&rft.epage=298&rft_id=info:doi/10.1016%2Fj.bios.2015.09.039&rft.externalDocID=S0956566315304358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |