Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells

Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxypheny...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 77; pp. 292 - 298
Main Authors Qu, Lu-Lu, Liu, Ying-Ya, He, Sai-Huan, Chen, Jia-Qing, Liang, Yuan, Li, Hai-Tao
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry. •We present novel surface enhanced Raman scattering nanosensors for detection of H2O2 in living cells.•The nanosensors feature higher selectivity for H2O2 and show excellent sensitivity with a low detection limit of 80nM.•The nanosensors can be successfully used for monitoring changes of H2O2 levels within biological samples under oxidative stress.
AbstractList Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry. •We present novel surface enhanced Raman scattering nanosensors for detection of H2O2 in living cells.•The nanosensors feature higher selectivity for H2O2 and show excellent sensitivity with a low detection limit of 80nM.•The nanosensors can be successfully used for monitoring changes of H2O2 levels within biological samples under oxidative stress.
Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80 nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry.
Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry.
Author Liu, Ying-Ya
He, Sai-Huan
Liang, Yuan
Chen, Jia-Qing
Li, Hai-Tao
Qu, Lu-Lu
Author_xml – sequence: 1
  givenname: Lu-Lu
  surname: Qu
  fullname: Qu, Lu-Lu
  email: luluqu@jsnu.edu.cn
– sequence: 2
  givenname: Ying-Ya
  surname: Liu
  fullname: Liu, Ying-Ya
– sequence: 3
  givenname: Sai-Huan
  surname: He
  fullname: He, Sai-Huan
– sequence: 4
  givenname: Jia-Qing
  surname: Chen
  fullname: Chen, Jia-Qing
– sequence: 5
  givenname: Yuan
  surname: Liang
  fullname: Liang, Yuan
– sequence: 6
  givenname: Hai-Tao
  surname: Li
  fullname: Li, Hai-Tao
  email: haitao@jsnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26414026$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuLOrf8CD5Oil23x0km7wIou6woIgeg7VneqZDD3JmPQMOyf_uh1n9eBh9VS88LxFUc8VuQgxICEvOas54_rNtu59zLVgXNWsq5nsnpAVb42sGiHVBVmxTulKaS0vyVXOW8aY4R17Ri6FbnjDhF6RH7d-vZlONOOEw-yPSCG4JYXsf6V8SCMMSDFsIAzo6BfYQaB5gHnG5MOaBgix8DFlOsZEHc5lUww0jnRzcimuMdA9pnjvHVIf6OSPpTjgNOXn5OkIU8YXD_OafPvw_uvNbXX3-eOnm3d31aAEnysYNbTSOSEdNCBV37olQ9uYkXNAkKZnnVDoOGuZ06BND6Zvew5OGtV28pq8Pu_dp_j9gHm2O5_LBRAwHrIVy3N4Jww3_0S5aTVXSkj-P6gSjVC6HPDqAT30O3R2n_wO0sn-VrEA4gwMKeaccPyDcGaLb7u1xbctvi3r7OJ7KbV_lQY_Q_n-nMBPj1ffnqu4vP3oMdk8eCyOfVoEWhf9Y_WfZgbH2A
CitedBy_id crossref_primary_10_1002_slct_201601259
crossref_primary_10_1088_1752_7163_aaa672
crossref_primary_10_1016_j_mtchem_2021_100560
crossref_primary_10_1002_cbic_201900191
crossref_primary_10_1021_acsami_7b04365
crossref_primary_10_1039_C7NR04945E
crossref_primary_10_1016_j_ecoenv_2018_07_026
crossref_primary_10_1007_s00604_018_2852_0
crossref_primary_10_1021_acs_analchem_4c00076
crossref_primary_10_1002_adfm_201604923
crossref_primary_10_1016_j_talanta_2024_127361
crossref_primary_10_1016_j_bios_2016_02_019
crossref_primary_10_1016_j_snb_2018_05_070
crossref_primary_10_1016_j_snb_2021_129725
crossref_primary_10_3390_molecules27227918
crossref_primary_10_1021_acs_analchem_3c02912
crossref_primary_10_1002_jbio_201700015
crossref_primary_10_1021_acs_analchem_4c04544
crossref_primary_10_1557_jmr_2017_34
crossref_primary_10_1016_j_snb_2022_132897
crossref_primary_10_1016_j_snb_2022_132770
crossref_primary_10_1016_j_bios_2017_04_021
crossref_primary_10_1016_j_snb_2023_134631
crossref_primary_10_3390_molecules29122769
crossref_primary_10_1002_pssa_202200128
crossref_primary_10_1007_s12633_018_9758_7
crossref_primary_10_1039_C6CC03412H
crossref_primary_10_1016_j_msec_2020_111691
crossref_primary_10_1021_acsami_4c16059
crossref_primary_10_2116_analsci_20P463
crossref_primary_10_4155_bio_2015_0030
crossref_primary_10_1039_C7CS00172J
crossref_primary_10_1039_C8TC06299D
crossref_primary_10_1016_j_snb_2018_01_169
crossref_primary_10_1080_00032719_2017_1392971
crossref_primary_10_1088_1674_1056_27_1_017801
crossref_primary_10_1007_s13738_020_01865_7
crossref_primary_10_2139_ssrn_4164534
crossref_primary_10_1039_C6AN00884D
crossref_primary_10_1016_j_snb_2016_08_124
crossref_primary_10_1039_D3AN00354J
crossref_primary_10_1016_j_bios_2021_113077
crossref_primary_10_1007_s00604_023_06136_9
crossref_primary_10_1016_j_snb_2017_10_151
crossref_primary_10_1016_j_jelechem_2018_10_045
crossref_primary_10_1039_D1BM00159K
crossref_primary_10_1016_j_talanta_2024_125753
crossref_primary_10_1007_s00216_018_1233_1
crossref_primary_10_1016_j_talanta_2020_120863
crossref_primary_10_1039_C8RA09272A
crossref_primary_10_1016_j_snb_2019_01_036
crossref_primary_10_1002_wnan_1802
crossref_primary_10_1080_10408347_2023_2255901
crossref_primary_10_1016_j_snb_2017_03_166
crossref_primary_10_1021_acsomega_1c03119
crossref_primary_10_1016_j_talanta_2024_127222
crossref_primary_10_1016_j_talanta_2024_127224
crossref_primary_10_1134_S1061934817020095
crossref_primary_10_1134_S1061934817030108
crossref_primary_10_3390_app8060848
crossref_primary_10_1021_acsanm_0c02758
crossref_primary_10_1515_nanoph_2023_0362
crossref_primary_10_1007_s00604_020_04379_4
crossref_primary_10_1039_C8NR01628C
crossref_primary_10_1021_acsami_0c15311
crossref_primary_10_1039_C7RA01498H
crossref_primary_10_3390_chemosensors10100391
crossref_primary_10_1002_adom_201901381
crossref_primary_10_1186_s13568_020_01004_8
crossref_primary_10_1002_anie_202403880
crossref_primary_10_1016_j_aca_2018_09_009
crossref_primary_10_1002_ange_202403880
crossref_primary_10_1016_j_jtice_2018_05_005
crossref_primary_10_1039_C9AN01964B
crossref_primary_10_1016_j_aca_2018_12_061
crossref_primary_10_1039_C7CS00612H
crossref_primary_10_1016_j_reactfunctpolym_2024_106110
crossref_primary_10_1016_j_cej_2021_132687
crossref_primary_10_1007_s00604_018_3129_3
crossref_primary_10_1016_j_snb_2021_131236
crossref_primary_10_1021_acsami_7b06107
Cites_doi 10.1021/ja203145v
10.1021/ar200126t
10.1016/j.bios.2008.06.004
10.1161/01.ATV.0000078601.79536.6C
10.1073/pnas.1302193110
10.1021/jp076656x
10.1152/physrev.00026.2013
10.1038/nmat1983
10.1016/S0891-5849(01)00493-2
10.1021/jp404184x
10.1038/35041687
10.1038/ni1202-1129
10.1021/nn204397q
10.1002/adfm.201000792
10.1021/ja303372u
10.1021/j100214a025
10.1021/ja411547j
10.1021/ic800122v
10.2116/analsci.24.201
10.1021/ja409230g
10.1021/ac401644n
10.1016/j.bios.2013.07.063
10.1016/j.trac.2013.12.003
10.1021/cm201791r
10.1021/nn900488u
10.1039/c3cc43265c
10.1002/anie.201107025
10.1073/pnas.1012864107
10.1021/ja405120x
10.1021/ja992058n
10.1126/science.2834821
10.1021/ac504795s
10.1038/nrm2240
10.1021/cr300120g
10.1021/nl071418z
10.1021/nn300352b
10.1016/j.vibspec.2010.05.001
10.1021/es104155r
10.1021/jp054732v
10.1021/ja054474f
10.1002/anie.200804851
10.1039/C5AN00132C
10.1016/j.jcis.2007.07.073
10.1016/S0039-9140(03)00076-6
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SP
7U5
L7M
7S9
L.6
DOI 10.1016/j.bios.2015.09.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
Solid State and Superconductivity Abstracts
Engineering Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 298
ExternalDocumentID 26414026
10_1016_j_bios_2015_09_039
S0956566315304358
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
SBG
SCB
SCH
SEW
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
P64
7SP
7U5
L7M
7S9
L.6
ID FETCH-LOGICAL-c521t-af6a83dd23da4a35b8da83a847f11aea37b0925ed1080d6a67ba7b8b1ad375893
IEDL.DBID .~1
ISSN 0956-5663
IngestDate Tue Aug 05 10:36:03 EDT 2025
Thu Jul 10 20:26:22 EDT 2025
Wed Jul 30 11:27:47 EDT 2025
Thu Apr 03 07:09:43 EDT 2025
Tue Jul 01 02:51:19 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Fri Feb 23 02:27:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensitive
Hydrogen peroxide
Living cells
Selective
Surface enhanced Raman scattering
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-af6a83dd23da4a35b8da83a847f11aea37b0925ed1080d6a67ba7b8b1ad375893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26414026
PQID 1785242569
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2000192717
proquest_miscellaneous_1786155231
proquest_miscellaneous_1785242569
pubmed_primary_26414026
crossref_primary_10_1016_j_bios_2015_09_039
crossref_citationtrail_10_1016_j_bios_2015_09_039
elsevier_sciencedirect_doi_10_1016_j_bios_2015_09_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ye, Mao, Guo, Zhang (bib42) 2014; 55
Dong, Guo, Xie, Li, Zhang, Qian (bib4) 2015; 140
Imlay, Chin, Linn (bib9) 1988; 240
Kennedy, Tay, Lyn, Rouleau, Hulse, Pezacki (bib13) 2009; 3
Le Ru, Meyer, Etchegoin (bib26) 2006; 110
Piergies, Proniewicz, Ozaki, Kim, Proniewicz (bib30) 2013; 117
Van de Bittner, Dubikovskaya, Bertozzi, Chang (bib38) 2010; 107
Karton-Lifshin, Segal, Omer, Portnoy, Satchi-Fainaro, Shabat (bib11) 2011; 133
Thomson, Camus, Hu, Campbell (bib37) 2015; 87
Xuan, Sheng, Cao, He, Wang (bib41) 2012; 51
Weinstain, Savariar, Felsen, Tsien (bib40) 2014; 136
Lin, Lipperta, Chang (bib19) 2013; 110
Hou, Fang (bib8) 2007; 316
Wang, Yan, Chen (bib39) 2013; 113
Krug, Wang, Emory, Nie (bib15) 1999; 121
Sun, Xu, Flower, Fossey, Qian, James (bib33) 2013; 49
Kundu, Knight, Willett, Lee, Taylor, Murthy (bib18) 2009; 48
Guerrini, Pazos, Penas, Vázquez, Mascareñas, Alvarez-Puebla (bib6) 2013; 135
Lee, Meisel (bib25) 1982; 86
Zamarion, Timm, Araki, Toma (bib44) 2008; 47
Qu, Li, Qin, Mu, Fossey, Long (bib31) 2013; 85
Kneipp, Kneipp, Wittig, Kneipp (bib12) 2007; 7
Li, Chen, Yang, Jin, Liu (bib23) 2010; 20
Miller, Albers, Pralle, Isacoff, Chang (bib29) 2005; 127
Kafi, Wu, Chen (bib10) 2008; 24
Lee, Khaja, Velasquez-Castano, Dasari, Sun, Petros, Taylor, Murthy (bib21) 2007; 6
Lee, Chon, Lee, Ko, Chung, Lim, Choo (bib22) 2014; 51
De Gracia Lux, Joshi-Barr, Nguyen, Mahmoud, Schopf, Fomina, Almutairi (bib5) 2012; 134
Marco, Mirella, Enrica, Pier (bib27) 2007; 8
Tetsuya, Hiroaki, Keiko, Hiroshi, Ikuko, Lemmy, Yasushi, Yoji, Takaaki, Akira (bib35) 2003; 23
Toren, Nikki (bib34) 2000; 408
Yin, Wu, Song, Zhang, Liu, Xu, Duan (bib43) 2011; 23
Auchinvole, Richardson, McGuinnes, Mallikarjun, Donaldson, McNab, Campbell (bib1) 2012; 6
Hu, Zhang, Yang (bib7) 2008; 24
Kong, Lam, Lau, Leong, Olivo (bib16) 2013; 135
Antunes, Cadenas (bib3) 2001; 30
Li, Qu, Zhai, Xue, Fossey, Long (bib24) 2011; 45
Toshimasa, Tomoaki, Masaru (bib36) 2003; 60
Kutala, Villamena, Ilangovan, Maspoch, Roques, Veciana, Rovira, Kuppusamy (bib14) 2008; 112
Alver, Parlak (bib2) 2010; 54
Kho, Dinish, Kumar, Olivo (bib17) 2012; 6
Reth (bib32) 2002; 3
Zorov, Juhaszova, Sollott (bib45) 2014; 94
Magidson, Khodjakov (bib28) 2013; 114
Lippert, Van de Bittner, Chang (bib20) 2011; 2011
Qu (10.1016/j.bios.2015.09.039_bib31) 2013; 85
Wang (10.1016/j.bios.2015.09.039_bib39) 2013; 113
Li (10.1016/j.bios.2015.09.039_bib24) 2011; 45
Piergies (10.1016/j.bios.2015.09.039_bib30) 2013; 117
Kennedy (10.1016/j.bios.2015.09.039_bib13) 2009; 3
Zorov (10.1016/j.bios.2015.09.039_bib45) 2014; 94
Tetsuya (10.1016/j.bios.2015.09.039_bib35) 2003; 23
Lee (10.1016/j.bios.2015.09.039_bib25) 1982; 86
Kong (10.1016/j.bios.2015.09.039_bib16) 2013; 135
Magidson (10.1016/j.bios.2015.09.039_bib28) 2013; 114
Xuan (10.1016/j.bios.2015.09.039_bib41) 2012; 51
De Gracia Lux (10.1016/j.bios.2015.09.039_bib5) 2012; 134
Weinstain (10.1016/j.bios.2015.09.039_bib40) 2014; 136
Dong (10.1016/j.bios.2015.09.039_bib4) 2015; 140
Karton-Lifshin (10.1016/j.bios.2015.09.039_bib11) 2011; 133
Le Ru (10.1016/j.bios.2015.09.039_bib26) 2006; 110
Toshimasa (10.1016/j.bios.2015.09.039_bib36) 2003; 60
Antunes (10.1016/j.bios.2015.09.039_bib3) 2001; 30
Auchinvole (10.1016/j.bios.2015.09.039_bib1) 2012; 6
Kneipp (10.1016/j.bios.2015.09.039_bib12) 2007; 7
Imlay (10.1016/j.bios.2015.09.039_bib9) 1988; 240
Kundu (10.1016/j.bios.2015.09.039_bib18) 2009; 48
Krug (10.1016/j.bios.2015.09.039_bib15) 1999; 121
Sun (10.1016/j.bios.2015.09.039_bib33) 2013; 49
Guerrini (10.1016/j.bios.2015.09.039_bib6) 2013; 135
Lippert (10.1016/j.bios.2015.09.039_bib20) 2011; 2011
Alver (10.1016/j.bios.2015.09.039_bib2) 2010; 54
Lee (10.1016/j.bios.2015.09.039_bib22) 2014; 51
Kafi (10.1016/j.bios.2015.09.039_bib10) 2008; 24
Marco (10.1016/j.bios.2015.09.039_bib27) 2007; 8
Thomson (10.1016/j.bios.2015.09.039_bib37) 2015; 87
Hou (10.1016/j.bios.2015.09.039_bib8) 2007; 316
Zamarion (10.1016/j.bios.2015.09.039_bib44) 2008; 47
Lin (10.1016/j.bios.2015.09.039_bib19) 2013; 110
Reth (10.1016/j.bios.2015.09.039_bib32) 2002; 3
Lee (10.1016/j.bios.2015.09.039_bib21) 2007; 6
Ye (10.1016/j.bios.2015.09.039_bib42) 2014; 55
Kutala (10.1016/j.bios.2015.09.039_bib14) 2008; 112
Toren (10.1016/j.bios.2015.09.039_bib34) 2000; 408
Yin (10.1016/j.bios.2015.09.039_bib43) 2011; 23
Hu (10.1016/j.bios.2015.09.039_bib7) 2008; 24
Kho (10.1016/j.bios.2015.09.039_bib17) 2012; 6
Li (10.1016/j.bios.2015.09.039_bib23) 2010; 20
Van de Bittner (10.1016/j.bios.2015.09.039_bib38) 2010; 107
Miller (10.1016/j.bios.2015.09.039_bib29) 2005; 127
References_xml – volume: 127
  start-page: 16652
  year: 2005
  end-page: 16659
  ident: bib29
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 15758
  year: 2012
  end-page: 15764
  ident: bib5
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 9208
  year: 1999
  end-page: 9214
  ident: bib15
  publication-title: J. Am. Chem. Soc.
– volume: 114
  year: 2013
  ident: bib28
  publication-title: Methods Cell Biol.
– volume: 107
  start-page: 21316
  year: 2010
  ident: bib38
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 1008
  year: 2001
  end-page: 1018
  ident: bib3
  publication-title: Free Radic. Biol. Med.
– volume: 51
  start-page: 238
  year: 2014
  end-page: 243
  ident: bib22
  publication-title: Biosens. Bioelectron.
– volume: 240
  start-page: 640
  year: 1988
  end-page: 642
  ident: bib9
  publication-title: Science
– volume: 55
  start-page: 43
  year: 2014
  end-page: 54
  ident: bib42
  publication-title: Trends Anal. Chem.
– volume: 23
  start-page: 4756
  year: 2011
  end-page: 4764
  ident: bib43
  publication-title: Chem. Mater.
– volume: 24
  start-page: 201
  year: 2008
  end-page: 205
  ident: bib7
  publication-title: Anal. Sci.
– volume: 135
  start-page: 10314
  year: 2013
  end-page: 10317
  ident: bib6
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 4719
  year: 2015
  end-page: 4725
  ident: bib37
  publication-title: Anal. Chem.
– volume: 8
  start-page: 722
  year: 2007
  end-page: 728
  ident: bib27
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 47
  start-page: 2934
  year: 2008
  end-page: 2936
  ident: bib44
  publication-title: Inorg. Chem.
– volume: 140
  start-page: 2741
  year: 2015
  end-page: 2746
  ident: bib4
  publication-title: Analyst
– volume: 24
  start-page: 566
  year: 2008
  end-page: 571
  ident: bib10
  publication-title: Biosens. Bioelectron.
– volume: 3
  start-page: 1129
  year: 2002
  end-page: 1134
  ident: bib32
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 765
  year: 2007
  end-page: 769
  ident: bib21
  publication-title: Nat. Mater.
– volume: 49
  start-page: 8311
  year: 2013
  end-page: 8313
  ident: bib33
  publication-title: Chem. Commun.
– volume: 2011
  start-page: 793
  year: 2011
  end-page: 804
  ident: bib20
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 2819
  year: 2007
  end-page: 2823
  ident: bib12
  publication-title: Nano Lett.
– volume: 112
  start-page: 158
  year: 2008
  end-page: 167
  ident: bib14
  publication-title: J. Phys. Chem. B
– volume: 94
  start-page: 909
  year: 2014
  end-page: 950
  ident: bib45
  publication-title: Physiol. Rev.
– volume: 3
  start-page: 2329
  year: 2009
  end-page: 2339
  ident: bib13
  publication-title: ACS Nano
– volume: 135
  start-page: 18028
  year: 2013
  end-page: 18031
  ident: bib16
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 5693
  year: 2013
  end-page: 5705
  ident: bib30
  publication-title: J. Phys. Chem. A
– volume: 133
  start-page: 10960
  year: 2011
  ident: bib11
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2282
  year: 2012
  end-page: 2284
  ident: bib41
  publication-title: Angew. Chem. Int. Ed.
– volume: 408
  start-page: 239
  year: 2000
  end-page: 247
  ident: bib34
  publication-title: Nature
– volume: 136
  start-page: 874
  year: 2014
  end-page: 877
  ident: bib40
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib2
  publication-title: Vib. Spectrosc.
– volume: 110
  start-page: 7131
  year: 2013
  end-page: 7135
  ident: bib19
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 113
  start-page: 1391
  year: 2013
  end-page: 1428
  ident: bib39
  publication-title: Chem. Rev.
– volume: 316
  start-page: 19
  year: 2007
  end-page: 24
  ident: bib8
  publication-title: J. Colloid Interface Sci
– volume: 86
  start-page: 3391
  year: 1982
  end-page: 3395
  ident: bib25
  publication-title: J. Phys. Chem.
– volume: 110
  start-page: 1944
  year: 2006
  end-page: 1948
  ident: bib26
  publication-title: J. Phys. Chem. B
– volume: 60
  start-page: 467
  year: 2003
  end-page: 475
  ident: bib36
  publication-title: Talanta
– volume: 48
  start-page: 299
  year: 2009
  end-page: 303
  ident: bib18
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 888
  year: 2012
  end-page: 896
  ident: bib1
  publication-title: ACS Nano
– volume: 45
  start-page: 4046
  year: 2011
  end-page: 4052
  ident: bib24
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 4892
  year: 2012
  end-page: 4902
  ident: bib17
  publication-title: ACS Nano
– volume: 23
  start-page: 1224
  year: 2003
  end-page: 1230
  ident: bib35
  publication-title: Arterioscler. Thromb. Vasc.
– volume: 20
  start-page: 2815
  year: 2010
  end-page: 2824
  ident: bib23
  publication-title: Adv. Funct. Mater.
– volume: 85
  start-page: 9549
  year: 2013
  end-page: 9555
  ident: bib31
  publication-title: Anal. Chem.
– volume: 133
  start-page: 10960
  year: 2011
  ident: 10.1016/j.bios.2015.09.039_bib11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203145v
– volume: 2011
  start-page: 793
  issue: 44
  year: 2011
  ident: 10.1016/j.bios.2015.09.039_bib20
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200126t
– volume: 24
  start-page: 566
  year: 2008
  ident: 10.1016/j.bios.2015.09.039_bib10
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.06.004
– volume: 23
  start-page: 1224
  year: 2003
  ident: 10.1016/j.bios.2015.09.039_bib35
  publication-title: Arterioscler. Thromb. Vasc.
  doi: 10.1161/01.ATV.0000078601.79536.6C
– volume: 110
  start-page: 7131
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib19
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1302193110
– volume: 112
  start-page: 158
  year: 2008
  ident: 10.1016/j.bios.2015.09.039_bib14
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076656x
– volume: 94
  start-page: 909
  year: 2014
  ident: 10.1016/j.bios.2015.09.039_bib45
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00026.2013
– volume: 6
  start-page: 765
  year: 2007
  ident: 10.1016/j.bios.2015.09.039_bib21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1983
– volume: 30
  start-page: 1008
  year: 2001
  ident: 10.1016/j.bios.2015.09.039_bib3
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00493-2
– volume: 117
  start-page: 5693
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib30
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp404184x
– volume: 408
  start-page: 239
  year: 2000
  ident: 10.1016/j.bios.2015.09.039_bib34
  publication-title: Nature
  doi: 10.1038/35041687
– volume: 3
  start-page: 1129
  year: 2002
  ident: 10.1016/j.bios.2015.09.039_bib32
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1202-1129
– volume: 6
  start-page: 888
  year: 2012
  ident: 10.1016/j.bios.2015.09.039_bib1
  publication-title: ACS Nano
  doi: 10.1021/nn204397q
– volume: 20
  start-page: 2815
  year: 2010
  ident: 10.1016/j.bios.2015.09.039_bib23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000792
– volume: 134
  start-page: 15758
  year: 2012
  ident: 10.1016/j.bios.2015.09.039_bib5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303372u
– volume: 86
  start-page: 3391
  year: 1982
  ident: 10.1016/j.bios.2015.09.039_bib25
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100214a025
– volume: 136
  start-page: 874
  year: 2014
  ident: 10.1016/j.bios.2015.09.039_bib40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411547j
– volume: 47
  start-page: 2934
  year: 2008
  ident: 10.1016/j.bios.2015.09.039_bib44
  publication-title: Inorg. Chem.
  doi: 10.1021/ic800122v
– volume: 24
  start-page: 201
  year: 2008
  ident: 10.1016/j.bios.2015.09.039_bib7
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.24.201
– volume: 135
  start-page: 18028
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409230g
– volume: 114
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib28
  publication-title: Methods Cell Biol.
– volume: 85
  start-page: 9549
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib31
  publication-title: Anal. Chem.
  doi: 10.1021/ac401644n
– volume: 51
  start-page: 238
  year: 2014
  ident: 10.1016/j.bios.2015.09.039_bib22
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.07.063
– volume: 55
  start-page: 43
  year: 2014
  ident: 10.1016/j.bios.2015.09.039_bib42
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.12.003
– volume: 23
  start-page: 4756
  year: 2011
  ident: 10.1016/j.bios.2015.09.039_bib43
  publication-title: Chem. Mater.
  doi: 10.1021/cm201791r
– volume: 3
  start-page: 2329
  year: 2009
  ident: 10.1016/j.bios.2015.09.039_bib13
  publication-title: ACS Nano
  doi: 10.1021/nn900488u
– volume: 49
  start-page: 8311
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib33
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43265c
– volume: 51
  start-page: 2282
  year: 2012
  ident: 10.1016/j.bios.2015.09.039_bib41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107025
– volume: 107
  start-page: 21316
  year: 2010
  ident: 10.1016/j.bios.2015.09.039_bib38
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012864107
– volume: 135
  start-page: 10314
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405120x
– volume: 121
  start-page: 9208
  year: 1999
  ident: 10.1016/j.bios.2015.09.039_bib15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992058n
– volume: 240
  start-page: 640
  year: 1988
  ident: 10.1016/j.bios.2015.09.039_bib9
  publication-title: Science
  doi: 10.1126/science.2834821
– volume: 87
  start-page: 4719
  year: 2015
  ident: 10.1016/j.bios.2015.09.039_bib37
  publication-title: Anal. Chem.
  doi: 10.1021/ac504795s
– volume: 8
  start-page: 722
  year: 2007
  ident: 10.1016/j.bios.2015.09.039_bib27
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2240
– volume: 113
  start-page: 1391
  year: 2013
  ident: 10.1016/j.bios.2015.09.039_bib39
  publication-title: Chem. Rev.
  doi: 10.1021/cr300120g
– volume: 7
  start-page: 2819
  year: 2007
  ident: 10.1016/j.bios.2015.09.039_bib12
  publication-title: Nano Lett.
  doi: 10.1021/nl071418z
– volume: 6
  start-page: 4892
  year: 2012
  ident: 10.1016/j.bios.2015.09.039_bib17
  publication-title: ACS Nano
  doi: 10.1021/nn300352b
– volume: 54
  start-page: 1
  year: 2010
  ident: 10.1016/j.bios.2015.09.039_bib2
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2010.05.001
– volume: 45
  start-page: 4046
  year: 2011
  ident: 10.1016/j.bios.2015.09.039_bib24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104155r
– volume: 110
  start-page: 1944
  year: 2006
  ident: 10.1016/j.bios.2015.09.039_bib26
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054732v
– volume: 127
  start-page: 16652
  year: 2005
  ident: 10.1016/j.bios.2015.09.039_bib29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054474f
– volume: 48
  start-page: 299
  year: 2009
  ident: 10.1016/j.bios.2015.09.039_bib18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804851
– volume: 140
  start-page: 2741
  year: 2015
  ident: 10.1016/j.bios.2015.09.039_bib4
  publication-title: Analyst
  doi: 10.1039/C5AN00132C
– volume: 316
  start-page: 19
  year: 2007
  ident: 10.1016/j.bios.2015.09.039_bib8
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/j.jcis.2007.07.073
– volume: 60
  start-page: 467
  year: 2003
  ident: 10.1016/j.bios.2015.09.039_bib36
  publication-title: Talanta
  doi: 10.1016/S0039-9140(03)00076-6
SSID ssj0007190
Score 2.479063
Snippet Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms biochemistry
biocompatibility
Biological
Biological effects
biosensors
Cells (biology)
Cellular
detection limit
Equipment Design
Equipment Failure Analysis
Gold
Gold - chemistry
HeLa Cells
Hepatocytes - metabolism
Humans
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Living cells
monitoring
nanogold
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanostructure
Nanotechnology - instrumentation
oxidation
oxidative stress
phenol
Raman scattering
Raman spectroscopy
Reproducibility of Results
Selective
Selectivity
Sensitive
Sensitivity and Specificity
Spectrum Analysis, Raman - instrumentation
Surface enhanced Raman scattering
thiols
Title Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells
URI https://dx.doi.org/10.1016/j.bios.2015.09.039
https://www.ncbi.nlm.nih.gov/pubmed/26414026
https://www.proquest.com/docview/1785242569
https://www.proquest.com/docview/1786155231
https://www.proquest.com/docview/2000192717
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCKk9VJR-bQvIlXqr0l07ztcRIdAWBIdSJG7WOHZEqq2DNrtS99L-9c7ECdDD7qFHR5PI8dieZ_v5DWOf4qoElTgXuVyoSJW5iAqbm0hSOjgjKyEr2hq4vEqnN-r8NrndYifDXRiiVfZzf5jTu9m6fzLuW3N8X9fja5LQQzAS45idYNCnC79KZdTLv_x-pHlkIuyzkN4eWfcXZwLHy9QNSXaLJGidFuuC0zrw2QWhsz32okeP_DhU8CXbcn6f7YZ8kqt99vyJuuAr9oc4HLMVb7tUNzircfAWS77t-EK8Xc4rKB13_q6jAfBv8BM8b8tOchM_wT34huybecsR3HLrFh1zy_Om4ncrO2-w-3GSGv9VW8drz2c1bVBwOg5oX7Obs9PvJ9Ooz7cQlZTWIIIqhTy2VsYWFKCrcotlwPhVCQEO4sxMCpk4S7xEm0KaGchMbgTYGJcdRfyGbfvGu3eMlwXWH8A6oTKFiC0vSOlLgpCiLGJnRkwMDa3LXoyccmLM9MA6-6HJOZqcoyeFRueM2OeHd-6DFMdG62Twn_6nQ2mMFRvf-zg4W-NIo_YC75plq0WWJ7RASzfb0EEvgub1NjLgalxHj9jb0Jse_gfhKa54Zfr-P2v_gT3DUkokOZEcsO3FfOkOETUtzFE3LI7YzvHXi-nVX60VGIg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBwQFBey9NI3FC06zydY1VRbWm7B2il3qxJ7KhBi1NtdiX2xF9nJk5WcNg9cExiR47Hnvlsf_kG4FNUlRgn1gZWyTiISyWD3KgiCDkdXBFWMqx4a-Byns6u4683yc0BnAz_wjCtsvf93qd33rq_M-l7c3JX15PvLKFHYCSiOTuloK_uwSGrUyUjODw-O5_Ntw45k36rhSX3uEL_74yneRV1w6rdMvFyp_mu-LQLf3Zx6PQJPO4BpDj2bXwKB9YdwX2fUnJzBI_-Ehh8Br-ZxrHYiLbLdkOOTaAzdOXajjIk2vWywtIK6247JoD4hj_RibbsVDfpFcKha7h8s2wF4Vth7KojbznRVOJ2Y5YNjUDBauO_amNF7cSi5j0KwScC7XO4Pv1ydTIL-pQLQcmZDQKsUlSRMWFkMEayljJ0jRTCKinRYpQV0zxMrGFqokkxzQrMClVINBGtPPLoBYxc4-wrEGVO7Uc0VsZZTKBN5Sz2FaIMZZlHthiDHDpal70eOafFWOiBePZDs3E0G0dPc03GGcPnbZ07r8axt3Qy2E__M6Y0hYu99T4OxtY02bi_0Nlm3WqZqYTXaOn-MnzWS7h5d5nQQ2taSo_hpR9N2-8hhEqL3jB9_Z-t_wAPZleXF_ribH7-Bh7Sk5Q5czJ5C6PVcm3fEYhaFe_7SfIHNUEbOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+selective+and+sensitive+surface+enhanced+Raman+scattering+nanosensors+for+detection+of+hydrogen+peroxide+in+living+cells&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Qu%2C+Lu-Lu&rft.au=Liu%2C+Ying-Ya&rft.au=He%2C+Sai-Huan&rft.au=Chen%2C+Jia-Qing&rft.date=2016-03-15&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=77&rft.spage=292&rft.epage=298&rft_id=info:doi/10.1016%2Fj.bios.2015.09.039&rft.externalDocID=S0956566315304358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon