Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs
Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure m...
Saved in:
Published in | Drug metabolism and pharmacokinetics Vol. 41; p. 100424 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2021
The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution. |
---|---|
AbstractList | Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution. Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution. |
ArticleNumber | 100424 |
Author | Ishihara, Hiroshi Suzuki, Yuta |
Author_xml | – sequence: 1 givenname: Yuta surname: Suzuki fullname: Suzuki, Yuta email: y14-suzuki@hhc.eisai.co.jp organization: hhc Data Creation Center, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan – sequence: 2 givenname: Hiroshi surname: Ishihara fullname: Ishihara, Hiroshi organization: hhc Data Creation Center, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34757287$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu1DAUtVARfcAPsEBetosMthPnISGkasqjUkURArbWjX0z4yGxUzsz0mz4dhymRcCiK1vH5yGfc0qOnHdIyEvOFpzx8vVmYYbxx0IwwRPAClE8ISe8rlnGGsGO0j0vqqzIy-qYnMa4YSzPZSGekeOEy0rU1Qn5eWW7DgM6jdQ6Oq2R9na0hjpwfoQwWd0jnVCvne_9ak9xGHu_R3NgB0QK4xj8LiHRfvl0Sc8_w2SjDeAuKDhDh9_g8vb79VXGG7oDra3DC2rCdhWfk6cd9BFf3J9n5Nv7d1-XH7Ob2w_Xy8ubTEvBpwxaTL9komYaypYXVd7pumXG8MYUpWBam7ZtddMANI3sctkZLWVdGRA1SA75GXl78B237YBGo5sC9GoMdoCwVx6s-vfF2bVa-Z2qZWqXl8ng_N4g-LstxkkNNmrse3Dot1EJ2ZRMCCmKRH31d9afkIfSE6E-EHTwMQbslLZTKs3P0bZXnKl5X7VR875q3lcd9k1S8Z_0wf1R0ZuDCFPDO4tBRW3nxY0NqCdlvH1M_guh0L-w |
CitedBy_id | crossref_primary_10_1002_bit_28269 crossref_primary_10_3390_ph16081088 crossref_primary_10_1002_adtp_202200265 crossref_primary_10_1186_s12943_023_01807_w crossref_primary_10_3390_pharmaceutics15041184 crossref_primary_10_1016_j_colsurfb_2024_113807 crossref_primary_10_1016_j_ijpx_2024_100283 crossref_primary_10_1021_acs_molpharmaceut_3c00479 crossref_primary_10_1021_jacs_3c08729 crossref_primary_10_1016_j_ijpharm_2024_124867 crossref_primary_10_1021_acs_molpharmaceut_3c00477 crossref_primary_10_1007_s11033_024_09576_5 crossref_primary_10_1021_acsami_3c15424 crossref_primary_10_1038_s41596_024_01134_4 crossref_primary_10_1038_s41467_024_50568_7 crossref_primary_10_3389_fphar_2024_1454785 crossref_primary_10_1016_j_omtn_2024_102292 crossref_primary_10_1016_j_ijbiomac_2022_09_065 crossref_primary_10_3390_app12031373 crossref_primary_10_1248_cpb_c24_00089 crossref_primary_10_1186_s11671_023_03824_6 crossref_primary_10_3389_fimmu_2023_1294929 crossref_primary_10_1016_j_biotechadv_2025_108546 crossref_primary_10_1007_s00432_022_04298_2 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_3390_pharmaceutics14122682 crossref_primary_10_1016_j_matt_2022_03_006 crossref_primary_10_1038_s41565_024_01833_9 crossref_primary_10_3390_vaccines12030237 crossref_primary_10_35825_2587_5728_2024_8_3_205_231 crossref_primary_10_1002_anie_202304977 crossref_primary_10_1016_j_ejps_2024_106973 crossref_primary_10_1038_s41375_023_01854_8 crossref_primary_10_3390_pharmaceutics15020597 crossref_primary_10_25259_AJBPS_3_2022 crossref_primary_10_1016_j_chroma_2025_465663 crossref_primary_10_1080_17425247_2022_2144827 crossref_primary_10_3390_pharmaceutics14112520 crossref_primary_10_1016_j_ymthe_2024_04_035 crossref_primary_10_1039_D3NA00198A crossref_primary_10_1039_D4NR00019F crossref_primary_10_1007_s00194_022_00587_9 crossref_primary_10_3390_pharmaceutics15071972 crossref_primary_10_7717_peerj_18048 crossref_primary_10_1089_nat_2022_0054 crossref_primary_10_1002_advs_202309917 crossref_primary_10_1080_01616412_2024_2345024 crossref_primary_10_1021_acs_molpharmaceut_1c00879 crossref_primary_10_1007_s13346_024_01773_w crossref_primary_10_1007_s13346_023_01433_5 crossref_primary_10_1016_j_addr_2023_115175 crossref_primary_10_3389_fmolb_2023_1270101 crossref_primary_10_3389_fbioe_2023_1112755 crossref_primary_10_1016_j_jconrel_2024_07_055 crossref_primary_10_1039_D2BM01846B crossref_primary_10_1002_agt2_369 crossref_primary_10_5501_wjv_v12_i5_242 crossref_primary_10_1021_acsanm_4c00466 crossref_primary_10_1039_D4NR00278D crossref_primary_10_1002_adma_202419538 crossref_primary_10_1016_j_biomaterials_2023_122243 crossref_primary_10_1016_j_jddst_2024_106282 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_1002_smll_202206968 crossref_primary_10_1016_j_ijpharm_2024_125109 crossref_primary_10_1021_acschembio_3c00612 crossref_primary_10_1186_s12645_023_00194_7 crossref_primary_10_1016_j_biotechadv_2024_108395 crossref_primary_10_3389_fimmu_2023_1129296 crossref_primary_10_1007_s11095_023_03471_7 crossref_primary_10_3390_pharmaceutics14040736 crossref_primary_10_1016_j_omtm_2024_101258 crossref_primary_10_1016_j_onano_2023_100174 crossref_primary_10_1080_21645515_2022_2079344 crossref_primary_10_3390_biomedicines11020511 crossref_primary_10_1038_s41598_022_22509_1 crossref_primary_10_1039_D2SM00618A crossref_primary_10_3390_biomedicines11071783 crossref_primary_10_1109_RBME_2024_3494715 crossref_primary_10_3390_cells13010084 crossref_primary_10_3390_pharmaceutics14081586 crossref_primary_10_1016_j_apsb_2023_10_012 crossref_primary_10_1021_acs_molpharmaceut_3c01084 crossref_primary_10_1038_s41573_023_00859_3 crossref_primary_10_1002_cbic_202400481 crossref_primary_10_1002_ange_202304977 crossref_primary_10_1016_j_ejpb_2024_114242 crossref_primary_10_1016_j_ijpharm_2024_125114 crossref_primary_10_1088_2399_1984_ad70e6 crossref_primary_10_1016_j_cej_2024_155438 crossref_primary_10_1063_5_0257548 crossref_primary_10_1021_acsnano_3c05853 crossref_primary_10_3390_pharmaceutics14040881 crossref_primary_10_1016_j_jconrel_2022_10_061 crossref_primary_10_1016_j_apmt_2023_101754 crossref_primary_10_1038_s41417_023_00589_z crossref_primary_10_1111_eci_14039 crossref_primary_10_1021_acs_molpharmaceut_3c00547 crossref_primary_10_3390_pharmaceutics14122808 crossref_primary_10_1016_j_chemphyslip_2023_105294 crossref_primary_10_1007_s12274_024_6575_8 crossref_primary_10_1039_D3SM00351E crossref_primary_10_3390_pharmaceutics14102129 crossref_primary_10_3389_fphar_2022_995481 crossref_primary_10_1016_j_ijpharm_2023_123688 crossref_primary_10_3389_fbioe_2024_1349077 crossref_primary_10_1016_j_ijpharm_2023_122874 crossref_primary_10_3390_ijms23052408 crossref_primary_10_1007_s12668_024_01589_5 crossref_primary_10_1016_j_jconrel_2023_07_047 crossref_primary_10_1002_jgm_3733 crossref_primary_10_1016_j_susmat_2023_e00642 crossref_primary_10_1016_j_addr_2023_114990 crossref_primary_10_1158_1078_0432_CCR_21_3304 crossref_primary_10_2147_TCRM_S361706 crossref_primary_10_3390_ijms25137333 crossref_primary_10_3390_pharmaceutics15041158 crossref_primary_10_1021_acsnano_3c07461 crossref_primary_10_1016_j_jconrel_2024_11_004 crossref_primary_10_3390_vaccines11050937 crossref_primary_10_1002_pi_6474 crossref_primary_10_3390_ijms24021553 crossref_primary_10_53941_rmd_2024_100003 crossref_primary_10_1016_j_jconrel_2025_113624 crossref_primary_10_1080_17425247_2025_2452295 crossref_primary_10_1002_adma_202314354 crossref_primary_10_2174_0122106812284202231228095045 crossref_primary_10_3390_ijms23084359 crossref_primary_10_1038_s41565_023_01371_w crossref_primary_10_1016_j_addr_2023_114962 crossref_primary_10_1016_j_apsb_2024_06_011 crossref_primary_10_1007_s11095_024_03679_1 crossref_primary_10_3389_fimmu_2024_1509322 crossref_primary_10_1016_j_ymthe_2024_01_020 crossref_primary_10_3762_bjnano_14_95 crossref_primary_10_1021_acsomega_3c01703 crossref_primary_10_1111_aji_13934 crossref_primary_10_1007_s12668_024_01538_2 crossref_primary_10_3390_jpm14111092 crossref_primary_10_1016_j_omtn_2022_09_017 crossref_primary_10_1002_smll_202309200 crossref_primary_10_1002_adfm_202406878 crossref_primary_10_1021_acs_molpharmaceut_3c00767 crossref_primary_10_1016_j_jconrel_2024_11_010 crossref_primary_10_1080_15257770_2024_2347499 crossref_primary_10_3390_biom13060926 crossref_primary_10_1016_j_jconrel_2023_12_017 crossref_primary_10_1016_j_ejps_2024_106708 crossref_primary_10_3390_vaccines12020186 crossref_primary_10_1016_j_biomaterials_2024_122859 crossref_primary_10_1002_adma_202209624 crossref_primary_10_1016_j_jchromb_2024_124005 crossref_primary_10_1016_j_addr_2024_115446 crossref_primary_10_1016_j_jconrel_2023_10_034 crossref_primary_10_1039_D4PM00128A crossref_primary_10_3390_v14071553 crossref_primary_10_3390_vaccines10060866 crossref_primary_10_3389_fimmu_2022_974433 crossref_primary_10_1016_j_cclet_2024_110225 crossref_primary_10_3390_pharmaceutics17030387 crossref_primary_10_1016_j_omtn_2024_102263 crossref_primary_10_1002_cpt_3000 |
Cites_doi | 10.1517/17425247.2012.642363 10.1038/s41565-018-0273-1 10.1038/nbt.3298 10.1016/j.addr.2020.07.022 10.1016/j.omtn.2019.01.013 10.1016/j.jaip.2020.12.047 10.1038/s41586-020-2622-0 10.1016/j.tips.2021.03.002 10.1016/j.addr.2020.06.002 10.1038/s41541-021-00311-w 10.1073/pnas.0910603106 10.1016/j.addr.2020.06.026 10.1038/mt.2013.124 10.1038/s41467-020-17409-9 10.1016/j.biochi.2007.03.001 10.1038/s41467-019-12275-6 10.1016/j.jconrel.2015.10.024 10.1016/j.ijpharm.2020.119792 10.1038/mt.2010.85 10.1016/j.ymthe.2005.11.002 10.1016/S0169-409X(01)00154-5 10.1056/NEJMoa1716153 10.1016/j.ijpharm.2016.06.124 10.1021/acsbiomaterials.5b00203 10.4161/rna.22269 10.1056/NEJMoa2035389 10.1016/j.ymthe.2017.08.006 10.1016/j.ijpharm.2017.01.016 10.1016/j.cell.2020.07.024 10.1016/j.immuni.2005.06.008 10.1002/smll.201805097 10.1001/jama.2021.1967 10.1186/s12883-017-0948-5 10.2147/IJN.S123062 10.1002/jcph.1480 10.1038/mt.2011.190 10.1073/pnas.1322937111 10.1021/acsmedchemlett.8b00652 10.1038/nrd.2017.243 10.1016/j.ymthe.2021.04.001 10.1016/j.addr.2020.07.024 10.1038/d41586-021-01661-0 10.1016/j.jaip.2020.11.011 10.1056/NEJMoa2034577 10.1038/s41565-019-0591-y 10.1016/j.immuni.2020.07.019 10.1093/nar/gkx135 10.3390/vaccines9010065 10.1021/acs.langmuir.0c03039 10.1038/s41541-020-0159-8 10.1038/mt.2008.200 10.1021/acs.jmedchem.0c01407 10.1074/jbc.X112.442855 10.1016/j.jconrel.2012.09.009 10.1016/j.ijpharm.2021.120586 10.1126/sciadv.aaz6893 10.1016/j.ymthe.2018.03.010 10.1002/anie.201203263 10.1038/mtna.2013.66 |
ContentType | Journal Article |
Copyright | 2021 The Japanese Society for the Study of Xenobiotics Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. 2021 The Japanese Society for the Study of Xenobiotics |
Copyright_xml | – notice: 2021 The Japanese Society for the Study of Xenobiotics – notice: Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. – notice: 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. 2021 The Japanese Society for the Study of Xenobiotics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.dmpk.2021.100424 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1880-0920 |
EndPage | 100424 |
ExternalDocumentID | PMC8502116 34757287 10_1016_j_dmpk_2021_100424 S1347436721000458 |
Genre | Journal Article Review |
GroupedDBID | --- --M 0R~ 29G 2WC 4.4 457 53G 5GY 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BKOMP BLXMC CS3 DIK DU5 E3Z EBS EFJIC EFLBG EJD F5P FDB FEDTE FIRID FYGXN GBLVA GX1 HH5 HVGLF HZ~ JMI JSF JSH KOM KQ8 M41 MOJWN M~E O9- OAUVE RJT RNS ROL RZJ SPCBC SSP SSZ T5K TKC TR2 ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION OVT SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-abe2020280ca6b1473fc8b0dd19d4620ccdbbbc99aa995f35fdc5587da28a51a3 |
IEDL.DBID | AIKHN |
ISSN | 1347-4367 1880-0920 |
IngestDate | Thu Aug 21 13:39:35 EDT 2025 Fri Jul 11 15:03:00 EDT 2025 Mon Jul 21 06:02:28 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 03:08:32 EDT 2025 Fri Feb 23 02:41:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 SARS-CoV-2 Elasomeran Tozinameran Patisiran Ionizable lipid COVID-19 vaccine moderna Lipid nanoparticles LNP mRNA vaccine |
Language | English |
License | Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-abe2020280ca6b1473fc8b0dd19d4620ccdbbbc99aa995f35fdc5587da28a51a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8502116 |
PMID | 34757287 |
PQID | 2596022524 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8502116 proquest_miscellaneous_2596022524 pubmed_primary_34757287 crossref_citationtrail_10_1016_j_dmpk_2021_100424 crossref_primary_10_1016_j_dmpk_2021_100424 elsevier_sciencedirect_doi_10_1016_j_dmpk_2021_100424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Drug metabolism and pharmacokinetics |
PublicationTitleAlternate | Drug Metab Pharmacokinet |
PublicationYear | 2021 |
Publisher | Elsevier Ltd The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd – name: The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd |
References | Takakusa, Iwazaki, Nishikawa, Yoshida, Obika, Inoue (bib1) 2021; 52 Svitkin, Cheng, Chakraborty, Presnyak, John, Sonenberg (bib31) 2017; 45 García, Meurs, Esteban (bib32) 2007; 89 Ball, Bajaj, Whitehead (bib46) 2017; 12 Zhou, Stone, Jakubovic, Phillips, Sussman, Park (bib60) 2021; 9 Zhang, Li, Deng, Zhao, Huang, Yang (bib66) 2020; 182 Witzigmann, Kulkarni, Leung, Chen, Cullis, van der Meel (bib16) 2020; 159 Suzuki, Ishihara (bib39) 2016; 510 Corbett, Edwards, Leist, Abiona, Boyoglu-Barnum, Gillespie (bib61) 2020; 586 Nelson, Sorensen, Mintri, Rabideau, Zheng, Besin (bib36) 2020; 6 Shimabukuro, Cole, Su (bib58) 2021; 325 de Alwis, Gan, Chen, Leong, Tan, Zhang (bib65) 2021; 29(6) Terada, Kulkarni, Huynh, Chen, van der Meel, Tam (bib49) 2021; 37 Akita, Noguchi, Hatakeyama, Sato, Tange, Nakai (bib5) 2015; 1 Patel, Ibrahim, Cheng (bib17) 2021; 42(6) Comirnaty (bib22) 2021 Karikó, Muramatsu, Welsh, Ludwig, Kato, Akira (bib33) 2008; 16 (bib23) 2021 Karikó, Buckstein, Ni, Weissman (bib30) 2005; 23 Buschmann, Carrasco, Alishetty, Paige, Alameh, Weissman (bib20) 2021; 9 Hajj, Ball, Deluty, Singh, Strelkova, Knapp (bib7) 2019; 15 Adams, Gonzalez-Duarte, O'Riordan, Yang, Ueda, Kristen (bib24) 2018; 379 Bailey-Hytholt, Ghosh, Dugas, Zarraga, Bandekar (bib48) 2021; 168 Adams, Suhr, Dyck, Litchy, Leahy, Chen (bib26) 2017; 17 Rajappan, Tanis, Mukthavaram, Roberts, Nguyen, Tachikawa (bib9) 2020; 63 Maier, Jayaraman, Matsuda, Liu, Barros, Querbes (bib52) 2013; 21 Dolgin (bib64) 2021; 594 Hassett, Benenato, Jacquinet, Lee, Woods, Yuzhakov (bib11) 2019; 15 Dong, Love, Dorkin, Sirirungruang, Zhang, Chen (bib4) 2014; 111 Sabnis, Kumarasinghe, Salerno, Mihai, Ketova, Senn (bib10) 2018; 26 Pardi, Hogan, Porter, Weissman (bib18) 2018; 17 EMA (bib37) 2020 Love, Mahon, Levins, Whitehead, Querbes, Dorkin (bib2) 2010; 107 Caruthers (bib34) 2013; 288 Gindy, Leone, Cunningham (bib47) 2012; 9 (bib44) 2017 Kuboyama, Yagi, Naoi, Era, Yagi, Nakasato (bib8) 2019; 10 Akinc, Querbes, De, Qin, Frank-Kamenetsky, Jayaprakash (bib38) 2010; 18 Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot (bib45) 2021; 601 Banerji, Wickner, Saff, Stone, Robinson, Long (bib59) 2021; 9 Schlake, Thess, Fotin-Mleczek, Kallen (bib35) 2012; 9 McKay, Hu, Blakney, Samnuan, Brown, Penn (bib67) 2020; 11 Jayaraman, Ansell, Mui, Tam, Chen, Du (bib12) 2012; 5 Suzuki, Suzuki, Hihara, Kubara, Kondo, Hyodo (bib55) 2020; 588 Suzuki, Hyodo, Suzuki, Tanaka, Kikuchi, Ishihara (bib53) 2017; 519 Baden, El Sahly, Essink, Kotloff, Frey, Novak (bib28) 2021; 384 Szebeni, Simberg, González-Fernández, Barenholz, Dobrovolskaia (bib25) 2018; 13 Sato, Hatakeyama, Sakurai, Hyodo, Akita, Harashima (bib3) 2012; 163 Wittrup, Ai, Liu, Hamar, Trifonova, Charisse (bib40) 2015; 33 Liang, Lindgren, Lin, Thompson, Ols, Röhss (bib51) 2017; 25 Basha, Novobrantseva, Rosin, Tam, Hafez, Wong (bib42) 2011; 19 Onpattro (bib21) 2021 Suzuki, Hyodo, Tanaka, Ishihara (bib6) 2015; 220 Maugeri, Nawaz, Papadimitriou, Angerfors, Camponeschi, Na (bib41) 2019; 10 Besin, Milton, Sabnis, Howell, Mihai, Burke (bib56) 2019; 3 Jackson, Kester, Casimiro, Gurunathan, DeRosa (bib19) 2020; 5 Kobiyama, Imai, Jounai, Nakayama, Hioki, Iwatsuki-Horimoto (bib68) 2021 Samaridou, Heyes, Lutwyche (bib15) 2020; 154–155 Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros (bib14) 2019; 14 Kozma, Shimizu, Ishida, Szebeni (bib54) 2020; 154–155 Yonezawa, Koide, Asai (bib13) 2020; 154–155 Zhang, Goel, Attarwala, Sweetser, Clausen, Robbie (bib57) 2020; 60 Rauch, Roth, Schwendt, Fotin-Mleczek, Mueller, Petsch (bib63) 2021; 6 Oussoren, Storm (bib50) 2001; 50 Mui, Tam, Jayaraman, Ansell, Du, Tam (bib43) 2013; 2 Laczkó, Hogan, Toulmin, Hicks, Lederer, Gaudette (bib62) 2020; 53 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart (bib27) 2020; 383 Judge, Bola, Lee, MacLachlan (bib29) 2006; 13 Zhang (10.1016/j.dmpk.2021.100424_bib66) 2020; 182 Kobiyama (10.1016/j.dmpk.2021.100424_bib68) 2021 Yonezawa (10.1016/j.dmpk.2021.100424_bib13) 2020; 154–155 Adams (10.1016/j.dmpk.2021.100424_bib26) 2017; 17 Takakusa (10.1016/j.dmpk.2021.100424_bib1) 2021; 52 Kuboyama (10.1016/j.dmpk.2021.100424_bib8) 2019; 10 Liang (10.1016/j.dmpk.2021.100424_bib51) 2017; 25 Ball (10.1016/j.dmpk.2021.100424_bib46) 2017; 12 Akinc (10.1016/j.dmpk.2021.100424_bib14) 2019; 14 Sabnis (10.1016/j.dmpk.2021.100424_bib10) 2018; 26 Comirnaty (10.1016/j.dmpk.2021.100424_bib22) Jackson (10.1016/j.dmpk.2021.100424_bib19) 2020; 5 Zhou (10.1016/j.dmpk.2021.100424_bib60) 2021; 9 Caruthers (10.1016/j.dmpk.2021.100424_bib34) 2013; 288 Hajj (10.1016/j.dmpk.2021.100424_bib7) 2019; 15 Buschmann (10.1016/j.dmpk.2021.100424_bib20) 2021; 9 Jayaraman (10.1016/j.dmpk.2021.100424_bib12) 2012; 51 Svitkin (10.1016/j.dmpk.2021.100424_bib31) 2017; 45 Kozma (10.1016/j.dmpk.2021.100424_bib54) 2020; 154–155 Suzuki (10.1016/j.dmpk.2021.100424_bib53) 2017; 519 Corbett (10.1016/j.dmpk.2021.100424_bib61) 2020; 586 Rajappan (10.1016/j.dmpk.2021.100424_bib9) 2020; 63 Bailey-Hytholt (10.1016/j.dmpk.2021.100424_bib48) 2021; 168 Suzuki (10.1016/j.dmpk.2021.100424_bib6) 2015; 220 Pardi (10.1016/j.dmpk.2021.100424_bib18) 2018; 17 de Alwis (10.1016/j.dmpk.2021.100424_bib65) 2021; 29(6) Dong (10.1016/j.dmpk.2021.100424_bib4) 2014; 111 Nelson (10.1016/j.dmpk.2021.100424_bib36) 2020; 6 Dolgin (10.1016/j.dmpk.2021.100424_bib64) 2021; 594 McKay (10.1016/j.dmpk.2021.100424_bib67) 2020; 11 Onpattro (10.1016/j.dmpk.2021.100424_bib21) EMA (10.1016/j.dmpk.2021.100424_bib37) (10.1016/j.dmpk.2021.100424_bib44) 2017 Witzigmann (10.1016/j.dmpk.2021.100424_bib16) 2020; 159 Schoenmaker (10.1016/j.dmpk.2021.100424_bib45) 2021; 601 Patel (10.1016/j.dmpk.2021.100424_bib17) 2021; 42(6) Shimabukuro (10.1016/j.dmpk.2021.100424_bib58) 2021; 325 Laczkó (10.1016/j.dmpk.2021.100424_bib62) 2020; 53 Banerji (10.1016/j.dmpk.2021.100424_bib59) 2021; 9 Karikó (10.1016/j.dmpk.2021.100424_bib30) 2005; 23 Karikó (10.1016/j.dmpk.2021.100424_bib33) 2008; 16 Rauch (10.1016/j.dmpk.2021.100424_bib63) 2021; 6 Maugeri (10.1016/j.dmpk.2021.100424_bib41) 2019; 10 Adams (10.1016/j.dmpk.2021.100424_bib24) 2018; 379 Terada (10.1016/j.dmpk.2021.100424_bib49) 2021; 37 García (10.1016/j.dmpk.2021.100424_bib32) 2007; 89 Hassett (10.1016/j.dmpk.2021.100424_bib11) 2019; 15 Akinc (10.1016/j.dmpk.2021.100424_bib38) 2010; 18 Suzuki (10.1016/j.dmpk.2021.100424_bib39) 2016; 510 Schlake (10.1016/j.dmpk.2021.100424_bib35) 2012; 9 Polack (10.1016/j.dmpk.2021.100424_bib27) 2020; 383 Baden (10.1016/j.dmpk.2021.100424_bib28) 2021; 384 Wittrup (10.1016/j.dmpk.2021.100424_bib40) 2015; 33 Oussoren (10.1016/j.dmpk.2021.100424_bib50) 2001; 50 Maier (10.1016/j.dmpk.2021.100424_bib52) 2013; 21 Besin (10.1016/j.dmpk.2021.100424_bib56) 2019; 3 Suzuki (10.1016/j.dmpk.2021.100424_bib55) 2020; 588 Samaridou (10.1016/j.dmpk.2021.100424_bib15) 2020; 154–155 Judge (10.1016/j.dmpk.2021.100424_bib29) 2006; 13 Basha (10.1016/j.dmpk.2021.100424_bib42) 2011; 19 Love (10.1016/j.dmpk.2021.100424_bib2) 2010; 107 Akita (10.1016/j.dmpk.2021.100424_bib5) 2015; 1 Mui (10.1016/j.dmpk.2021.100424_bib43) 2013; 2 Gindy (10.1016/j.dmpk.2021.100424_bib47) 2012; 9 Zhang (10.1016/j.dmpk.2021.100424_bib57) 2020; 60 Szebeni (10.1016/j.dmpk.2021.100424_bib25) 2018; 13 Sato (10.1016/j.dmpk.2021.100424_bib3) 2012; 163 |
References_xml | – volume: 107 start-page: 1864 year: 2010 end-page: 1869 ident: bib2 article-title: Lipid-like materials for low-dose, in vivo gene silencing publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 749 year: 2019 end-page: 753 ident: bib8 article-title: Simplifying the chemical structure of cationic lipids for siRNA-lipid nanoparticles publication-title: ACS Med Chem Lett – volume: 586 start-page: 567 year: 2020 end-page: 571 ident: bib61 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature – volume: 45 start-page: 6023 year: 2017 end-page: 6036 ident: bib31 article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density publication-title: Nucleic Acids Res – volume: 163 start-page: 267 year: 2012 end-page: 276 ident: bib3 article-title: A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo publication-title: J Contr Release – volume: 23 start-page: 165 year: 2005 end-page: 175 ident: bib30 article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity – volume: 5 start-page: 8529 year: 2012 end-page: 8533 ident: bib12 article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing InVivo publication-title: Angew Chem Int Ed – volume: 17 start-page: 261 year: 2018 end-page: 279 ident: bib18 article-title: mRNA vaccines - a new era in vaccinology publication-title: Nat Rev Drug Discov – volume: 220 start-page: 44 year: 2015 end-page: 50 ident: bib6 article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo publication-title: J Contr Release – volume: 89 start-page: 799 year: 2007 end-page: 811 ident: bib32 article-title: The dsRNA protein kinase PKR: virus and cell control publication-title: Biochimie – volume: 10 start-page: 4333 year: 2019 ident: bib41 article-title: Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells publication-title: Nat Commun – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: bib14 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat Nanotechnol – volume: 6 year: 2020 ident: bib36 article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation publication-title: Sci Adv – volume: 21 start-page: 1570 year: 2013 end-page: 1578 ident: bib52 article-title: Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics publication-title: Mol Ther – volume: 168 year: 2021 ident: bib48 article-title: Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform publication-title: JoVE : JoVE – volume: 12 start-page: 305 year: 2017 end-page: 315 ident: bib46 article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization publication-title: Int J Nanomed – volume: 9 start-page: 171 year: 2012 end-page: 182 ident: bib47 article-title: Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics publication-title: Expet Opin Drug Deliv – volume: 63 start-page: 12992 year: 2020 end-page: 13012 ident: bib9 article-title: Property-driven design and development of lipids for efficient delivery of siRNA publication-title: J Med Chem – volume: 9 year: 2021 ident: bib20 article-title: Nanomaterial delivery systems for mRNA vaccines publication-title: Vaccines – volume: 519 start-page: 34 year: 2017 end-page: 43 ident: bib53 article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates publication-title: Int J Pharm – volume: 159 start-page: 344 year: 2020 end-page: 363 ident: bib16 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv Drug Deliv Rev – year: 2021 ident: bib22 article-title: Interview form (ver.1), archived in PMDA – volume: 379 start-page: 11 year: 2018 end-page: 21 ident: bib24 article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis publication-title: N Engl J Med – volume: 26 start-page: 1509 year: 2018 end-page: 1519 ident: bib10 article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates publication-title: Mol Ther – volume: 52 start-page: 76 year: 2021 end-page: 84 ident: bib1 article-title: Drug metabolism & pharmacokinetics of oligonucleotide therapeutics : profiles and evaluation approaches publication-title: Pharmaceutical and Medical Device Regulatory Science – volume: 154–155 start-page: 64 year: 2020 end-page: 78 ident: bib13 article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles publication-title: Adv Drug Deliv Rev – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib28 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N Engl J Med – volume: 15 start-page: 1 year: 2019 end-page: 11 ident: bib11 article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines publication-title: Mol Ther Nucleic Acids – volume: 9 start-page: 1423 year: 2021 end-page: 1437 ident: bib59 article-title: mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach publication-title: J allergy Clin Immunol In Pract – volume: 1 start-page: 834 year: 2015 end-page: 844 ident: bib5 article-title: Molecular tuning of a vitamin E-scaffold pH-sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA delivery publication-title: ACS Biomater Sci Eng – volume: 2 start-page: e139 year: 2013 ident: bib43 article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles publication-title: Mol Ther Nucleic Acids – volume: 13 start-page: 494 year: 2006 end-page: 505 ident: bib29 article-title: Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo publication-title: Mol Ther – year: 2021 ident: bib23 article-title: COVID-19 Vaccine Moderna, interview form (ver.1), archived in PMDA – volume: 6 start-page: 57 year: 2021 ident: bib63 article-title: mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents publication-title: NPJ vaccine – volume: 594 start-page: 483 year: 2021 ident: bib64 article-title: CureVac COVID vaccine let-down spotlights mRNA design challenges publication-title: Nature – volume: 3 start-page: 282 year: 2019 end-page: 293 ident: bib56 article-title: Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties publication-title: Immuno Horizon – volume: 19 start-page: 2186 year: 2011 end-page: 2200 ident: bib42 article-title: Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells publication-title: Mol Ther – volume: 154–155 start-page: 37 year: 2020 end-page: 63 ident: bib15 article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives publication-title: Adv Drug Deliv Rev – volume: 29(6) start-page: 1970 year: 2021 end-page: 1983 ident: bib65 article-title: A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice publication-title: Mol Ther – volume: 154–155 start-page: 163 year: 2020 end-page: 175 ident: bib54 article-title: Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals publication-title: Adv Drug Deliv Rev – year: 2017 ident: bib44 publication-title: Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids – volume: 182 start-page: 1271 year: 2020 end-page: 1283 ident: bib66 article-title: A thermostable mRNA vaccine against COVID-19 publication-title: Cell – volume: 25 start-page: 2635 year: 2017 end-page: 2647 ident: bib51 article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques publication-title: Mol Ther – volume: 111 start-page: 3955 year: 2014 end-page: 3960 ident: bib4 article-title: Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates publication-title: Proc Natl Acad Sci USA – volume: 50 start-page: 143 year: 2001 end-page: 156 ident: bib50 article-title: Liposomes to target the lymphatics by subcutaneous administration publication-title: Adv Drug Deliv Rev – volume: 325 start-page: 1101 year: 2021 end-page: 1102 ident: bib58 article-title: Reports of anaphylaxis After receipt of mRNA COVID-19 vaccines in the US-december 14, 2020-january 18, 2021 publication-title: Jama – volume: 5 start-page: 11 year: 2020 ident: bib19 article-title: The promise of mRNA vaccines: a biotech and industrial perspective publication-title: NPJ vaccine – volume: 60 start-page: 37 year: 2020 end-page: 49 ident: bib57 article-title: Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis publication-title: J Clin Pharmacol – start-page: 2021 year: 2021 ident: bib68 article-title: Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain publication-title: bioRxiv – volume: 9 start-page: 1731 year: 2021 end-page: 1733 ident: bib60 article-title: Anti-PEG IgE in anaphylaxis associated with polyethylene glycol publication-title: J allergy Clin Immunol In Pract – volume: 13 start-page: 1100 year: 2018 end-page: 1108 ident: bib25 article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines publication-title: Nat Nanotechnol – volume: 510 start-page: 350 year: 2016 end-page: 358 ident: bib39 article-title: Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid publication-title: Int J Pharm – volume: 18 start-page: 1357 year: 2010 end-page: 1364 ident: bib38 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol Ther – volume: 37 start-page: 1120 year: 2021 end-page: 1128 ident: bib49 article-title: Characterization of lipid nanoparticles containing ionizable cationic lipids using design-of-experiments approach publication-title: Langmuir : ACS J Surfaces Colloids – volume: 17 start-page: 181 year: 2017 ident: bib26 article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy publication-title: BMC Neurol – volume: 53 start-page: 724 year: 2020 end-page: 732 ident: bib62 article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice publication-title: Immunity – year: 2021 ident: bib21 article-title: Interview form (ver.4), archived in PMDA – volume: 42(6) start-page: 448 year: 2021 end-page: 460 ident: bib17 article-title: The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA publication-title: Trends Pharmacol Sci – volume: 15 year: 2019 ident: bib7 article-title: Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH publication-title: Small – year: 2020 ident: bib37 – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib27 article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine publication-title: N Engl J Med – volume: 288 start-page: 1420 year: 2013 end-page: 1427 ident: bib34 article-title: The chemical synthesis of DNA/RNA: our gift to science publication-title: J Biol Chem – volume: 16 start-page: 1833 year: 2008 end-page: 1840 ident: bib33 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol Ther – volume: 601 start-page: 120586 year: 2021 ident: bib45 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int J Pharm – volume: 11 start-page: 3523 year: 2020 ident: bib67 article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice publication-title: Nat Commun – volume: 9 start-page: 1319 year: 2012 end-page: 1330 ident: bib35 article-title: Developing mRNA-vaccine technologies publication-title: RNA Biol – volume: 33 start-page: 870 year: 2015 end-page: 876 ident: bib40 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat Biotechnol – volume: 588 start-page: 119792 year: 2020 ident: bib55 article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production publication-title: Int J Pharm – volume: 9 start-page: 171 issue: 2 year: 2012 ident: 10.1016/j.dmpk.2021.100424_bib47 article-title: Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics publication-title: Expet Opin Drug Deliv doi: 10.1517/17425247.2012.642363 – volume: 13 start-page: 1100 issue: 12 year: 2018 ident: 10.1016/j.dmpk.2021.100424_bib25 article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines publication-title: Nat Nanotechnol doi: 10.1038/s41565-018-0273-1 – volume: 33 start-page: 870 issue: 8 year: 2015 ident: 10.1016/j.dmpk.2021.100424_bib40 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat Biotechnol doi: 10.1038/nbt.3298 – volume: 154–155 start-page: 64 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib13 article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2020.07.022 – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib11 article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.01.013 – volume: 3 start-page: 282 issue: 7 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib56 article-title: Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties publication-title: Immuno Horizon – ident: 10.1016/j.dmpk.2021.100424_bib21 – volume: 9 start-page: 1423 issue: 4 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib59 article-title: mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach publication-title: J allergy Clin Immunol In Pract doi: 10.1016/j.jaip.2020.12.047 – volume: 586 start-page: 567 issue: 7830 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib61 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 42(6) start-page: 448 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib17 article-title: The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2021.03.002 – volume: 52 start-page: 76 issue: 2 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib1 article-title: Drug metabolism & pharmacokinetics of oligonucleotide therapeutics : profiles and evaluation approaches publication-title: Pharmaceutical and Medical Device Regulatory Science – start-page: 2021 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib68 article-title: Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain publication-title: bioRxiv – volume: 154–155 start-page: 37 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib15 article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2020.06.002 – volume: 6 start-page: 57 issue: 1 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib63 article-title: mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents publication-title: NPJ vaccine doi: 10.1038/s41541-021-00311-w – volume: 107 start-page: 1864 issue: 5 year: 2010 ident: 10.1016/j.dmpk.2021.100424_bib2 article-title: Lipid-like materials for low-dose, in vivo gene silencing publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0910603106 – volume: 159 start-page: 344 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib16 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2020.06.026 – year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib44 – volume: 21 start-page: 1570 issue: 8 year: 2013 ident: 10.1016/j.dmpk.2021.100424_bib52 article-title: Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics publication-title: Mol Ther doi: 10.1038/mt.2013.124 – volume: 11 start-page: 3523 issue: 1 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib67 article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice publication-title: Nat Commun doi: 10.1038/s41467-020-17409-9 – volume: 89 start-page: 799 issue: 6–7 year: 2007 ident: 10.1016/j.dmpk.2021.100424_bib32 article-title: The dsRNA protein kinase PKR: virus and cell control publication-title: Biochimie doi: 10.1016/j.biochi.2007.03.001 – volume: 10 start-page: 4333 issue: 1 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib41 article-title: Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells publication-title: Nat Commun doi: 10.1038/s41467-019-12275-6 – volume: 220 start-page: 44 year: 2015 ident: 10.1016/j.dmpk.2021.100424_bib6 article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo publication-title: J Contr Release doi: 10.1016/j.jconrel.2015.10.024 – volume: 588 start-page: 119792 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib55 article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119792 – volume: 18 start-page: 1357 issue: 7 year: 2010 ident: 10.1016/j.dmpk.2021.100424_bib38 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol Ther doi: 10.1038/mt.2010.85 – volume: 13 start-page: 494 issue: 3 year: 2006 ident: 10.1016/j.dmpk.2021.100424_bib29 article-title: Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo publication-title: Mol Ther doi: 10.1016/j.ymthe.2005.11.002 – volume: 50 start-page: 143 issue: 1–2 year: 2001 ident: 10.1016/j.dmpk.2021.100424_bib50 article-title: Liposomes to target the lymphatics by subcutaneous administration publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(01)00154-5 – volume: 379 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.dmpk.2021.100424_bib24 article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis publication-title: N Engl J Med doi: 10.1056/NEJMoa1716153 – volume: 510 start-page: 350 issue: 1 year: 2016 ident: 10.1016/j.dmpk.2021.100424_bib39 article-title: Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.06.124 – volume: 1 start-page: 834 issue: 9 year: 2015 ident: 10.1016/j.dmpk.2021.100424_bib5 article-title: Molecular tuning of a vitamin E-scaffold pH-sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA delivery publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.5b00203 – volume: 9 start-page: 1319 issue: 11 year: 2012 ident: 10.1016/j.dmpk.2021.100424_bib35 article-title: Developing mRNA-vaccine technologies publication-title: RNA Biol doi: 10.4161/rna.22269 – volume: 384 start-page: 403 issue: 5 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib28 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2035389 – volume: 25 start-page: 2635 issue: 12 year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib51 article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques publication-title: Mol Ther doi: 10.1016/j.ymthe.2017.08.006 – volume: 519 start-page: 34 issue: 1 year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib53 article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2017.01.016 – ident: 10.1016/j.dmpk.2021.100424_bib37 – volume: 182 start-page: 1271 issue: 5 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib66 article-title: A thermostable mRNA vaccine against COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.07.024 – volume: 23 start-page: 165 issue: 2 year: 2005 ident: 10.1016/j.dmpk.2021.100424_bib30 article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 15 issue: 6 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib7 article-title: Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH publication-title: Small doi: 10.1002/smll.201805097 – volume: 325 start-page: 1101 issue: 11 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib58 article-title: Reports of anaphylaxis After receipt of mRNA COVID-19 vaccines in the US-december 14, 2020-january 18, 2021 publication-title: Jama doi: 10.1001/jama.2021.1967 – volume: 17 start-page: 181 issue: 1 year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib26 article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy publication-title: BMC Neurol doi: 10.1186/s12883-017-0948-5 – volume: 12 start-page: 305 year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib46 article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization publication-title: Int J Nanomed doi: 10.2147/IJN.S123062 – volume: 60 start-page: 37 issue: 1 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib57 article-title: Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis publication-title: J Clin Pharmacol doi: 10.1002/jcph.1480 – volume: 19 start-page: 2186 issue: 12 year: 2011 ident: 10.1016/j.dmpk.2021.100424_bib42 article-title: Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells publication-title: Mol Ther doi: 10.1038/mt.2011.190 – volume: 111 start-page: 3955 issue: 11 year: 2014 ident: 10.1016/j.dmpk.2021.100424_bib4 article-title: Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1322937111 – volume: 10 start-page: 749 issue: 5 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib8 article-title: Simplifying the chemical structure of cationic lipids for siRNA-lipid nanoparticles publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.8b00652 – volume: 17 start-page: 261 issue: 4 year: 2018 ident: 10.1016/j.dmpk.2021.100424_bib18 article-title: mRNA vaccines - a new era in vaccinology publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.243 – volume: 29(6) start-page: 1970 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib65 article-title: A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice publication-title: Mol Ther doi: 10.1016/j.ymthe.2021.04.001 – volume: 154–155 start-page: 163 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib54 article-title: Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2020.07.024 – volume: 594 start-page: 483 issue: 7864 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib64 article-title: CureVac COVID vaccine let-down spotlights mRNA design challenges publication-title: Nature doi: 10.1038/d41586-021-01661-0 – volume: 9 start-page: 1731 issue: 4 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib60 article-title: Anti-PEG IgE in anaphylaxis associated with polyethylene glycol publication-title: J allergy Clin Immunol In Pract doi: 10.1016/j.jaip.2020.11.011 – volume: 383 start-page: 2603 issue: 27 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib27 article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2034577 – volume: 14 start-page: 1084 issue: 12 year: 2019 ident: 10.1016/j.dmpk.2021.100424_bib14 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0591-y – ident: 10.1016/j.dmpk.2021.100424_bib22 – volume: 53 start-page: 724 issue: 4 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib62 article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice publication-title: Immunity doi: 10.1016/j.immuni.2020.07.019 – volume: 45 start-page: 6023 issue: 10 year: 2017 ident: 10.1016/j.dmpk.2021.100424_bib31 article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx135 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib20 article-title: Nanomaterial delivery systems for mRNA vaccines publication-title: Vaccines doi: 10.3390/vaccines9010065 – volume: 37 start-page: 1120 issue: 3 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib49 article-title: Characterization of lipid nanoparticles containing ionizable cationic lipids using design-of-experiments approach publication-title: Langmuir : ACS J Surfaces Colloids doi: 10.1021/acs.langmuir.0c03039 – volume: 5 start-page: 11 issue: 1 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib19 article-title: The promise of mRNA vaccines: a biotech and industrial perspective publication-title: NPJ vaccine doi: 10.1038/s41541-020-0159-8 – volume: 16 start-page: 1833 issue: 11 year: 2008 ident: 10.1016/j.dmpk.2021.100424_bib33 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol Ther doi: 10.1038/mt.2008.200 – volume: 168 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib48 article-title: Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform publication-title: JoVE : JoVE – volume: 63 start-page: 12992 issue: 21 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib9 article-title: Property-driven design and development of lipids for efficient delivery of siRNA publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c01407 – volume: 288 start-page: 1420 issue: 2 year: 2013 ident: 10.1016/j.dmpk.2021.100424_bib34 article-title: The chemical synthesis of DNA/RNA: our gift to science publication-title: J Biol Chem doi: 10.1074/jbc.X112.442855 – volume: 163 start-page: 267 issue: 3 year: 2012 ident: 10.1016/j.dmpk.2021.100424_bib3 article-title: A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo publication-title: J Contr Release doi: 10.1016/j.jconrel.2012.09.009 – volume: 601 start-page: 120586 year: 2021 ident: 10.1016/j.dmpk.2021.100424_bib45 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.120586 – volume: 6 issue: 26 year: 2020 ident: 10.1016/j.dmpk.2021.100424_bib36 article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation publication-title: Sci Adv doi: 10.1126/sciadv.aaz6893 – volume: 26 start-page: 1509 issue: 6 year: 2018 ident: 10.1016/j.dmpk.2021.100424_bib10 article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates publication-title: Mol Ther doi: 10.1016/j.ymthe.2018.03.010 – volume: 51 start-page: 8529 issue: 34 year: 2012 ident: 10.1016/j.dmpk.2021.100424_bib12 article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing InVivo publication-title: Angew Chem Int Ed doi: 10.1002/anie.201203263 – volume: 2 start-page: e139 issue: 12 year: 2013 ident: 10.1016/j.dmpk.2021.100424_bib43 article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles publication-title: Mol Ther Nucleic Acids doi: 10.1038/mtna.2013.66 |
SSID | ssj0033542 |
Score | 2.6310408 |
SecondaryResourceType | review_article |
Snippet | Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100424 |
SubjectTerms | Animals COVID-19 COVID-19 - immunology COVID-19 vaccine moderna COVID-19 Vaccines - immunology Elasomeran Humans Ionizable lipid Lipid nanoparticles Liposomes - immunology LNP mRNA vaccine mRNA Vaccines - immunology Nanoparticles Patisiran Review RNA, Small Interfering - immunology SARS-CoV-2 Technology - methods Tozinameran Vaccines, Synthetic - immunology |
Title | Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs |
URI | https://dx.doi.org/10.1016/j.dmpk.2021.100424 https://www.ncbi.nlm.nih.gov/pubmed/34757287 https://www.proquest.com/docview/2596022524 https://pubmed.ncbi.nlm.nih.gov/PMC8502116 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7YUL4s3yqIyEKipq7TqJ8ziutpQtiGUFLdqbNfEDAq272kelXvjtjONky4LogWOccWJ5JjPfxPMg5KWxmeAx10yICFiic2CIqi1LY2PiTKfAjc8d_jBOR6fJu6mYbpFhmwvjwyob3R90eq2tm5Fes5u9WVX1PvskyCRO0YWpgUm-TXYitK79DtkZHL8fjVuFHMei7qHj6Zmf0OTOhDAvfT77gW5ixH28QBIl_7JPf-PPP8Mof7NLR3fI7QZQ0kFY812yZdw9sjcJFamvDujJdYLV4oDu0cl1reqr--TnYdMgRRlaOYpokJ5Vs0pTBw7d6fBQulz_f6cmdAjWgXpuDK2rkl_iyKL6NB7QVxOfL1GhCdyn4DQ9rweHH78cHzJe0EtQ_ih_n-r56uviATk9enMyHLGmJQNTvvMBg9LgXvnjWAVpyZMstiov-1rzQidp1FdKl2WpigKgKISNhdVKiDzTEOUgOMQPScddOPOYUGFNlPECMgFlYnMLChCrAGpum0KibJfwlhFSNfXKfduMM9kGpn2XnnnSM08G5nXJ6_WcWajWcSO1aPkrN2ROojm5cd6LVhgkfoz-hAWcuVgtJPqSKYIi4WkeBeFYrwOlT2Ton3ZJtiE2awJf6Hvzjqu-1QW_c4Ev5-mT_1zvU3LLX4UgnGeks5yvzHOEUstyt_lUdsn22yn_BZ4FH28 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAXxJvwXCSoqKiVru3148AhaqgS0oYIUtSbGe8DDK0bxUlRLvwp_iCz3nVKQPSA1Ou-vNqZ2ZnxznxDyHOlY84CJj3OffBCmYCHVrX2okCpIJYRMGVyhw-GUe8wfHvEj9bIzyYXxoRVurvf3un1be1a2u4025OiaH8wSZBhEKELUxsmiYusHKjFd_Tbqtf9LhL5he_vvRnv9jxXWsATBsHfg1yh12-eFQVEOQvjQIsk35GSpTKM_B0hZJ7nIk0B0pTrgGspOE9iCX4CnEGA614hGwYNC8Vqo9Mf9IaNAggCXtfsMfvzzAZdro4NK5Mnk2_olvrMxCeEfvgvffi3vftn2OZvenDvBrnuDFjasWd0k6yp8hbZHFkE7MU2HZ8ndFXbdJOOzrGxF7fJj64ryCIULUqK1ic9LiaFpCWU6L7bRels-b-fKluRWNrRU6VojYJ-hi1V8X7YoS9HJj-jQJW7RaGU9KRu3H33sd_1WErPQJjQgS0qp_PP1R1yeCl0ukvWy9NS3SeUa-XHLIWYQx7qRIMAtI0ANYWOIBS6RVhDiEw4fHRTpuM4awLhvmaGeJkhXmaJ1yKvlnMmFh3kwtG8oW-2wuMZqq8L5z1rmCFD4TcvOlCq03mVoe8aoRHGzZh7ljmW-0Du4zH6wy0Sr7DNcoABFl_tKYsvNcB4wvHjLHrwn_t9Sq72xgf72X5_OHhIrpkeGwD0iKzPpnP1GM24Wf7EiQ0lny5bUn8BKwhc8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+in+the+lipid+nanoparticle+technology+employed+in+three+approved+siRNA+%28Patisiran%29+and+mRNA+%28COVID-19+vaccine%29+drugs&rft.jtitle=Drug+metabolism+and+pharmacokinetics&rft.au=Suzuki%2C+Yuta&rft.au=Ishihara%2C+Hiroshi&rft.date=2021-12-01&rft.issn=1880-0920&rft.eissn=1880-0920&rft.volume=41&rft.spage=100424&rft_id=info:doi/10.1016%2Fj.dmpk.2021.100424&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-4367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-4367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-4367&client=summon |