Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs

Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure m...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and pharmacokinetics Vol. 41; p. 100424
Main Authors Suzuki, Yuta, Ishihara, Hiroshi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2021
The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.
AbstractList Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.
Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.
ArticleNumber 100424
Author Ishihara, Hiroshi
Suzuki, Yuta
Author_xml – sequence: 1
  givenname: Yuta
  surname: Suzuki
  fullname: Suzuki, Yuta
  email: y14-suzuki@hhc.eisai.co.jp
  organization: hhc Data Creation Center, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
– sequence: 2
  givenname: Hiroshi
  surname: Ishihara
  fullname: Ishihara, Hiroshi
  organization: hhc Data Creation Center, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34757287$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcAPsEBetosMthPnISGkasqjUkURArbWjX0z4yGxUzsz0mz4dhymRcCiK1vH5yGfc0qOnHdIyEvOFpzx8vVmYYbxx0IwwRPAClE8ISe8rlnGGsGO0j0vqqzIy-qYnMa4YSzPZSGekeOEy0rU1Qn5eWW7DgM6jdQ6Oq2R9na0hjpwfoQwWd0jnVCvne_9ak9xGHu_R3NgB0QK4xj8LiHRfvl0Sc8_w2SjDeAuKDhDh9_g8vb79VXGG7oDra3DC2rCdhWfk6cd9BFf3J9n5Nv7d1-XH7Ob2w_Xy8ubTEvBpwxaTL9komYaypYXVd7pumXG8MYUpWBam7ZtddMANI3sctkZLWVdGRA1SA75GXl78B237YBGo5sC9GoMdoCwVx6s-vfF2bVa-Z2qZWqXl8ng_N4g-LstxkkNNmrse3Dot1EJ2ZRMCCmKRH31d9afkIfSE6E-EHTwMQbslLZTKs3P0bZXnKl5X7VR875q3lcd9k1S8Z_0wf1R0ZuDCFPDO4tBRW3nxY0NqCdlvH1M_guh0L-w
CitedBy_id crossref_primary_10_1002_bit_28269
crossref_primary_10_3390_ph16081088
crossref_primary_10_1002_adtp_202200265
crossref_primary_10_1186_s12943_023_01807_w
crossref_primary_10_3390_pharmaceutics15041184
crossref_primary_10_1016_j_colsurfb_2024_113807
crossref_primary_10_1016_j_ijpx_2024_100283
crossref_primary_10_1021_acs_molpharmaceut_3c00479
crossref_primary_10_1021_jacs_3c08729
crossref_primary_10_1016_j_ijpharm_2024_124867
crossref_primary_10_1021_acs_molpharmaceut_3c00477
crossref_primary_10_1007_s11033_024_09576_5
crossref_primary_10_1021_acsami_3c15424
crossref_primary_10_1038_s41596_024_01134_4
crossref_primary_10_1038_s41467_024_50568_7
crossref_primary_10_3389_fphar_2024_1454785
crossref_primary_10_1016_j_omtn_2024_102292
crossref_primary_10_1016_j_ijbiomac_2022_09_065
crossref_primary_10_3390_app12031373
crossref_primary_10_1248_cpb_c24_00089
crossref_primary_10_1186_s11671_023_03824_6
crossref_primary_10_3389_fimmu_2023_1294929
crossref_primary_10_1016_j_biotechadv_2025_108546
crossref_primary_10_1007_s00432_022_04298_2
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_3390_pharmaceutics14122682
crossref_primary_10_1016_j_matt_2022_03_006
crossref_primary_10_1038_s41565_024_01833_9
crossref_primary_10_3390_vaccines12030237
crossref_primary_10_35825_2587_5728_2024_8_3_205_231
crossref_primary_10_1002_anie_202304977
crossref_primary_10_1016_j_ejps_2024_106973
crossref_primary_10_1038_s41375_023_01854_8
crossref_primary_10_3390_pharmaceutics15020597
crossref_primary_10_25259_AJBPS_3_2022
crossref_primary_10_1016_j_chroma_2025_465663
crossref_primary_10_1080_17425247_2022_2144827
crossref_primary_10_3390_pharmaceutics14112520
crossref_primary_10_1016_j_ymthe_2024_04_035
crossref_primary_10_1039_D3NA00198A
crossref_primary_10_1039_D4NR00019F
crossref_primary_10_1007_s00194_022_00587_9
crossref_primary_10_3390_pharmaceutics15071972
crossref_primary_10_7717_peerj_18048
crossref_primary_10_1089_nat_2022_0054
crossref_primary_10_1002_advs_202309917
crossref_primary_10_1080_01616412_2024_2345024
crossref_primary_10_1021_acs_molpharmaceut_1c00879
crossref_primary_10_1007_s13346_024_01773_w
crossref_primary_10_1007_s13346_023_01433_5
crossref_primary_10_1016_j_addr_2023_115175
crossref_primary_10_3389_fmolb_2023_1270101
crossref_primary_10_3389_fbioe_2023_1112755
crossref_primary_10_1016_j_jconrel_2024_07_055
crossref_primary_10_1039_D2BM01846B
crossref_primary_10_1002_agt2_369
crossref_primary_10_5501_wjv_v12_i5_242
crossref_primary_10_1021_acsanm_4c00466
crossref_primary_10_1039_D4NR00278D
crossref_primary_10_1002_adma_202419538
crossref_primary_10_1016_j_biomaterials_2023_122243
crossref_primary_10_1016_j_jddst_2024_106282
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_1002_smll_202206968
crossref_primary_10_1016_j_ijpharm_2024_125109
crossref_primary_10_1021_acschembio_3c00612
crossref_primary_10_1186_s12645_023_00194_7
crossref_primary_10_1016_j_biotechadv_2024_108395
crossref_primary_10_3389_fimmu_2023_1129296
crossref_primary_10_1007_s11095_023_03471_7
crossref_primary_10_3390_pharmaceutics14040736
crossref_primary_10_1016_j_omtm_2024_101258
crossref_primary_10_1016_j_onano_2023_100174
crossref_primary_10_1080_21645515_2022_2079344
crossref_primary_10_3390_biomedicines11020511
crossref_primary_10_1038_s41598_022_22509_1
crossref_primary_10_1039_D2SM00618A
crossref_primary_10_3390_biomedicines11071783
crossref_primary_10_1109_RBME_2024_3494715
crossref_primary_10_3390_cells13010084
crossref_primary_10_3390_pharmaceutics14081586
crossref_primary_10_1016_j_apsb_2023_10_012
crossref_primary_10_1021_acs_molpharmaceut_3c01084
crossref_primary_10_1038_s41573_023_00859_3
crossref_primary_10_1002_cbic_202400481
crossref_primary_10_1002_ange_202304977
crossref_primary_10_1016_j_ejpb_2024_114242
crossref_primary_10_1016_j_ijpharm_2024_125114
crossref_primary_10_1088_2399_1984_ad70e6
crossref_primary_10_1016_j_cej_2024_155438
crossref_primary_10_1063_5_0257548
crossref_primary_10_1021_acsnano_3c05853
crossref_primary_10_3390_pharmaceutics14040881
crossref_primary_10_1016_j_jconrel_2022_10_061
crossref_primary_10_1016_j_apmt_2023_101754
crossref_primary_10_1038_s41417_023_00589_z
crossref_primary_10_1111_eci_14039
crossref_primary_10_1021_acs_molpharmaceut_3c00547
crossref_primary_10_3390_pharmaceutics14122808
crossref_primary_10_1016_j_chemphyslip_2023_105294
crossref_primary_10_1007_s12274_024_6575_8
crossref_primary_10_1039_D3SM00351E
crossref_primary_10_3390_pharmaceutics14102129
crossref_primary_10_3389_fphar_2022_995481
crossref_primary_10_1016_j_ijpharm_2023_123688
crossref_primary_10_3389_fbioe_2024_1349077
crossref_primary_10_1016_j_ijpharm_2023_122874
crossref_primary_10_3390_ijms23052408
crossref_primary_10_1007_s12668_024_01589_5
crossref_primary_10_1016_j_jconrel_2023_07_047
crossref_primary_10_1002_jgm_3733
crossref_primary_10_1016_j_susmat_2023_e00642
crossref_primary_10_1016_j_addr_2023_114990
crossref_primary_10_1158_1078_0432_CCR_21_3304
crossref_primary_10_2147_TCRM_S361706
crossref_primary_10_3390_ijms25137333
crossref_primary_10_3390_pharmaceutics15041158
crossref_primary_10_1021_acsnano_3c07461
crossref_primary_10_1016_j_jconrel_2024_11_004
crossref_primary_10_3390_vaccines11050937
crossref_primary_10_1002_pi_6474
crossref_primary_10_3390_ijms24021553
crossref_primary_10_53941_rmd_2024_100003
crossref_primary_10_1016_j_jconrel_2025_113624
crossref_primary_10_1080_17425247_2025_2452295
crossref_primary_10_1002_adma_202314354
crossref_primary_10_2174_0122106812284202231228095045
crossref_primary_10_3390_ijms23084359
crossref_primary_10_1038_s41565_023_01371_w
crossref_primary_10_1016_j_addr_2023_114962
crossref_primary_10_1016_j_apsb_2024_06_011
crossref_primary_10_1007_s11095_024_03679_1
crossref_primary_10_3389_fimmu_2024_1509322
crossref_primary_10_1016_j_ymthe_2024_01_020
crossref_primary_10_3762_bjnano_14_95
crossref_primary_10_1021_acsomega_3c01703
crossref_primary_10_1111_aji_13934
crossref_primary_10_1007_s12668_024_01538_2
crossref_primary_10_3390_jpm14111092
crossref_primary_10_1016_j_omtn_2022_09_017
crossref_primary_10_1002_smll_202309200
crossref_primary_10_1002_adfm_202406878
crossref_primary_10_1021_acs_molpharmaceut_3c00767
crossref_primary_10_1016_j_jconrel_2024_11_010
crossref_primary_10_1080_15257770_2024_2347499
crossref_primary_10_3390_biom13060926
crossref_primary_10_1016_j_jconrel_2023_12_017
crossref_primary_10_1016_j_ejps_2024_106708
crossref_primary_10_3390_vaccines12020186
crossref_primary_10_1016_j_biomaterials_2024_122859
crossref_primary_10_1002_adma_202209624
crossref_primary_10_1016_j_jchromb_2024_124005
crossref_primary_10_1016_j_addr_2024_115446
crossref_primary_10_1016_j_jconrel_2023_10_034
crossref_primary_10_1039_D4PM00128A
crossref_primary_10_3390_v14071553
crossref_primary_10_3390_vaccines10060866
crossref_primary_10_3389_fimmu_2022_974433
crossref_primary_10_1016_j_cclet_2024_110225
crossref_primary_10_3390_pharmaceutics17030387
crossref_primary_10_1016_j_omtn_2024_102263
crossref_primary_10_1002_cpt_3000
Cites_doi 10.1517/17425247.2012.642363
10.1038/s41565-018-0273-1
10.1038/nbt.3298
10.1016/j.addr.2020.07.022
10.1016/j.omtn.2019.01.013
10.1016/j.jaip.2020.12.047
10.1038/s41586-020-2622-0
10.1016/j.tips.2021.03.002
10.1016/j.addr.2020.06.002
10.1038/s41541-021-00311-w
10.1073/pnas.0910603106
10.1016/j.addr.2020.06.026
10.1038/mt.2013.124
10.1038/s41467-020-17409-9
10.1016/j.biochi.2007.03.001
10.1038/s41467-019-12275-6
10.1016/j.jconrel.2015.10.024
10.1016/j.ijpharm.2020.119792
10.1038/mt.2010.85
10.1016/j.ymthe.2005.11.002
10.1016/S0169-409X(01)00154-5
10.1056/NEJMoa1716153
10.1016/j.ijpharm.2016.06.124
10.1021/acsbiomaterials.5b00203
10.4161/rna.22269
10.1056/NEJMoa2035389
10.1016/j.ymthe.2017.08.006
10.1016/j.ijpharm.2017.01.016
10.1016/j.cell.2020.07.024
10.1016/j.immuni.2005.06.008
10.1002/smll.201805097
10.1001/jama.2021.1967
10.1186/s12883-017-0948-5
10.2147/IJN.S123062
10.1002/jcph.1480
10.1038/mt.2011.190
10.1073/pnas.1322937111
10.1021/acsmedchemlett.8b00652
10.1038/nrd.2017.243
10.1016/j.ymthe.2021.04.001
10.1016/j.addr.2020.07.024
10.1038/d41586-021-01661-0
10.1016/j.jaip.2020.11.011
10.1056/NEJMoa2034577
10.1038/s41565-019-0591-y
10.1016/j.immuni.2020.07.019
10.1093/nar/gkx135
10.3390/vaccines9010065
10.1021/acs.langmuir.0c03039
10.1038/s41541-020-0159-8
10.1038/mt.2008.200
10.1021/acs.jmedchem.0c01407
10.1074/jbc.X112.442855
10.1016/j.jconrel.2012.09.009
10.1016/j.ijpharm.2021.120586
10.1126/sciadv.aaz6893
10.1016/j.ymthe.2018.03.010
10.1002/anie.201203263
10.1038/mtna.2013.66
ContentType Journal Article
Copyright 2021 The Japanese Society for the Study of Xenobiotics
Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. 2021 The Japanese Society for the Study of Xenobiotics
Copyright_xml – notice: 2021 The Japanese Society for the Study of Xenobiotics
– notice: Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
– notice: 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. 2021 The Japanese Society for the Study of Xenobiotics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.dmpk.2021.100424
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1880-0920
EndPage 100424
ExternalDocumentID PMC8502116
34757287
10_1016_j_dmpk_2021_100424
S1347436721000458
Genre Journal Article
Review
GroupedDBID ---
--M
0R~
29G
2WC
4.4
457
53G
5GY
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BKOMP
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
F5P
FDB
FEDTE
FIRID
FYGXN
GBLVA
GX1
HH5
HVGLF
HZ~
JMI
JSF
JSH
KOM
KQ8
M41
MOJWN
M~E
O9-
OAUVE
RJT
RNS
ROL
RZJ
SPCBC
SSP
SSZ
T5K
TKC
TR2
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
OVT
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-abe2020280ca6b1473fc8b0dd19d4620ccdbbbc99aa995f35fdc5587da28a51a3
IEDL.DBID AIKHN
ISSN 1347-4367
1880-0920
IngestDate Thu Aug 21 13:39:35 EDT 2025
Fri Jul 11 15:03:00 EDT 2025
Mon Jul 21 06:02:28 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 03:08:32 EDT 2025
Fri Feb 23 02:41:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
SARS-CoV-2
Elasomeran
Tozinameran
Patisiran
Ionizable lipid
COVID-19 vaccine moderna
Lipid nanoparticles
LNP
mRNA vaccine
Language English
License Copyright © 2021 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-abe2020280ca6b1473fc8b0dd19d4620ccdbbbc99aa995f35fdc5587da28a51a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8502116
PMID 34757287
PQID 2596022524
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8502116
proquest_miscellaneous_2596022524
pubmed_primary_34757287
crossref_citationtrail_10_1016_j_dmpk_2021_100424
crossref_primary_10_1016_j_dmpk_2021_100424
elsevier_sciencedirect_doi_10_1016_j_dmpk_2021_100424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Drug metabolism and pharmacokinetics
PublicationTitleAlternate Drug Metab Pharmacokinet
PublicationYear 2021
Publisher Elsevier Ltd
The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd
References Takakusa, Iwazaki, Nishikawa, Yoshida, Obika, Inoue (bib1) 2021; 52
Svitkin, Cheng, Chakraborty, Presnyak, John, Sonenberg (bib31) 2017; 45
García, Meurs, Esteban (bib32) 2007; 89
Ball, Bajaj, Whitehead (bib46) 2017; 12
Zhou, Stone, Jakubovic, Phillips, Sussman, Park (bib60) 2021; 9
Zhang, Li, Deng, Zhao, Huang, Yang (bib66) 2020; 182
Witzigmann, Kulkarni, Leung, Chen, Cullis, van der Meel (bib16) 2020; 159
Suzuki, Ishihara (bib39) 2016; 510
Corbett, Edwards, Leist, Abiona, Boyoglu-Barnum, Gillespie (bib61) 2020; 586
Nelson, Sorensen, Mintri, Rabideau, Zheng, Besin (bib36) 2020; 6
Shimabukuro, Cole, Su (bib58) 2021; 325
de Alwis, Gan, Chen, Leong, Tan, Zhang (bib65) 2021; 29(6)
Terada, Kulkarni, Huynh, Chen, van der Meel, Tam (bib49) 2021; 37
Akita, Noguchi, Hatakeyama, Sato, Tange, Nakai (bib5) 2015; 1
Patel, Ibrahim, Cheng (bib17) 2021; 42(6)
Comirnaty (bib22) 2021
Karikó, Muramatsu, Welsh, Ludwig, Kato, Akira (bib33) 2008; 16
(bib23) 2021
Karikó, Buckstein, Ni, Weissman (bib30) 2005; 23
Buschmann, Carrasco, Alishetty, Paige, Alameh, Weissman (bib20) 2021; 9
Hajj, Ball, Deluty, Singh, Strelkova, Knapp (bib7) 2019; 15
Adams, Gonzalez-Duarte, O'Riordan, Yang, Ueda, Kristen (bib24) 2018; 379
Bailey-Hytholt, Ghosh, Dugas, Zarraga, Bandekar (bib48) 2021; 168
Adams, Suhr, Dyck, Litchy, Leahy, Chen (bib26) 2017; 17
Rajappan, Tanis, Mukthavaram, Roberts, Nguyen, Tachikawa (bib9) 2020; 63
Maier, Jayaraman, Matsuda, Liu, Barros, Querbes (bib52) 2013; 21
Dolgin (bib64) 2021; 594
Hassett, Benenato, Jacquinet, Lee, Woods, Yuzhakov (bib11) 2019; 15
Dong, Love, Dorkin, Sirirungruang, Zhang, Chen (bib4) 2014; 111
Sabnis, Kumarasinghe, Salerno, Mihai, Ketova, Senn (bib10) 2018; 26
Pardi, Hogan, Porter, Weissman (bib18) 2018; 17
EMA (bib37) 2020
Love, Mahon, Levins, Whitehead, Querbes, Dorkin (bib2) 2010; 107
Caruthers (bib34) 2013; 288
Gindy, Leone, Cunningham (bib47) 2012; 9
(bib44) 2017
Kuboyama, Yagi, Naoi, Era, Yagi, Nakasato (bib8) 2019; 10
Akinc, Querbes, De, Qin, Frank-Kamenetsky, Jayaprakash (bib38) 2010; 18
Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot (bib45) 2021; 601
Banerji, Wickner, Saff, Stone, Robinson, Long (bib59) 2021; 9
Schlake, Thess, Fotin-Mleczek, Kallen (bib35) 2012; 9
McKay, Hu, Blakney, Samnuan, Brown, Penn (bib67) 2020; 11
Jayaraman, Ansell, Mui, Tam, Chen, Du (bib12) 2012; 5
Suzuki, Suzuki, Hihara, Kubara, Kondo, Hyodo (bib55) 2020; 588
Suzuki, Hyodo, Suzuki, Tanaka, Kikuchi, Ishihara (bib53) 2017; 519
Baden, El Sahly, Essink, Kotloff, Frey, Novak (bib28) 2021; 384
Szebeni, Simberg, González-Fernández, Barenholz, Dobrovolskaia (bib25) 2018; 13
Sato, Hatakeyama, Sakurai, Hyodo, Akita, Harashima (bib3) 2012; 163
Wittrup, Ai, Liu, Hamar, Trifonova, Charisse (bib40) 2015; 33
Liang, Lindgren, Lin, Thompson, Ols, Röhss (bib51) 2017; 25
Basha, Novobrantseva, Rosin, Tam, Hafez, Wong (bib42) 2011; 19
Onpattro (bib21) 2021
Suzuki, Hyodo, Tanaka, Ishihara (bib6) 2015; 220
Maugeri, Nawaz, Papadimitriou, Angerfors, Camponeschi, Na (bib41) 2019; 10
Besin, Milton, Sabnis, Howell, Mihai, Burke (bib56) 2019; 3
Jackson, Kester, Casimiro, Gurunathan, DeRosa (bib19) 2020; 5
Kobiyama, Imai, Jounai, Nakayama, Hioki, Iwatsuki-Horimoto (bib68) 2021
Samaridou, Heyes, Lutwyche (bib15) 2020; 154–155
Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros (bib14) 2019; 14
Kozma, Shimizu, Ishida, Szebeni (bib54) 2020; 154–155
Yonezawa, Koide, Asai (bib13) 2020; 154–155
Zhang, Goel, Attarwala, Sweetser, Clausen, Robbie (bib57) 2020; 60
Rauch, Roth, Schwendt, Fotin-Mleczek, Mueller, Petsch (bib63) 2021; 6
Oussoren, Storm (bib50) 2001; 50
Mui, Tam, Jayaraman, Ansell, Du, Tam (bib43) 2013; 2
Laczkó, Hogan, Toulmin, Hicks, Lederer, Gaudette (bib62) 2020; 53
Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart (bib27) 2020; 383
Judge, Bola, Lee, MacLachlan (bib29) 2006; 13
Zhang (10.1016/j.dmpk.2021.100424_bib66) 2020; 182
Kobiyama (10.1016/j.dmpk.2021.100424_bib68) 2021
Yonezawa (10.1016/j.dmpk.2021.100424_bib13) 2020; 154–155
Adams (10.1016/j.dmpk.2021.100424_bib26) 2017; 17
Takakusa (10.1016/j.dmpk.2021.100424_bib1) 2021; 52
Kuboyama (10.1016/j.dmpk.2021.100424_bib8) 2019; 10
Liang (10.1016/j.dmpk.2021.100424_bib51) 2017; 25
Ball (10.1016/j.dmpk.2021.100424_bib46) 2017; 12
Akinc (10.1016/j.dmpk.2021.100424_bib14) 2019; 14
Sabnis (10.1016/j.dmpk.2021.100424_bib10) 2018; 26
Comirnaty (10.1016/j.dmpk.2021.100424_bib22)
Jackson (10.1016/j.dmpk.2021.100424_bib19) 2020; 5
Zhou (10.1016/j.dmpk.2021.100424_bib60) 2021; 9
Caruthers (10.1016/j.dmpk.2021.100424_bib34) 2013; 288
Hajj (10.1016/j.dmpk.2021.100424_bib7) 2019; 15
Buschmann (10.1016/j.dmpk.2021.100424_bib20) 2021; 9
Jayaraman (10.1016/j.dmpk.2021.100424_bib12) 2012; 51
Svitkin (10.1016/j.dmpk.2021.100424_bib31) 2017; 45
Kozma (10.1016/j.dmpk.2021.100424_bib54) 2020; 154–155
Suzuki (10.1016/j.dmpk.2021.100424_bib53) 2017; 519
Corbett (10.1016/j.dmpk.2021.100424_bib61) 2020; 586
Rajappan (10.1016/j.dmpk.2021.100424_bib9) 2020; 63
Bailey-Hytholt (10.1016/j.dmpk.2021.100424_bib48) 2021; 168
Suzuki (10.1016/j.dmpk.2021.100424_bib6) 2015; 220
Pardi (10.1016/j.dmpk.2021.100424_bib18) 2018; 17
de Alwis (10.1016/j.dmpk.2021.100424_bib65) 2021; 29(6)
Dong (10.1016/j.dmpk.2021.100424_bib4) 2014; 111
Nelson (10.1016/j.dmpk.2021.100424_bib36) 2020; 6
Dolgin (10.1016/j.dmpk.2021.100424_bib64) 2021; 594
McKay (10.1016/j.dmpk.2021.100424_bib67) 2020; 11
Onpattro (10.1016/j.dmpk.2021.100424_bib21)
EMA (10.1016/j.dmpk.2021.100424_bib37)
(10.1016/j.dmpk.2021.100424_bib44) 2017
Witzigmann (10.1016/j.dmpk.2021.100424_bib16) 2020; 159
Schoenmaker (10.1016/j.dmpk.2021.100424_bib45) 2021; 601
Patel (10.1016/j.dmpk.2021.100424_bib17) 2021; 42(6)
Shimabukuro (10.1016/j.dmpk.2021.100424_bib58) 2021; 325
Laczkó (10.1016/j.dmpk.2021.100424_bib62) 2020; 53
Banerji (10.1016/j.dmpk.2021.100424_bib59) 2021; 9
Karikó (10.1016/j.dmpk.2021.100424_bib30) 2005; 23
Karikó (10.1016/j.dmpk.2021.100424_bib33) 2008; 16
Rauch (10.1016/j.dmpk.2021.100424_bib63) 2021; 6
Maugeri (10.1016/j.dmpk.2021.100424_bib41) 2019; 10
Adams (10.1016/j.dmpk.2021.100424_bib24) 2018; 379
Terada (10.1016/j.dmpk.2021.100424_bib49) 2021; 37
García (10.1016/j.dmpk.2021.100424_bib32) 2007; 89
Hassett (10.1016/j.dmpk.2021.100424_bib11) 2019; 15
Akinc (10.1016/j.dmpk.2021.100424_bib38) 2010; 18
Suzuki (10.1016/j.dmpk.2021.100424_bib39) 2016; 510
Schlake (10.1016/j.dmpk.2021.100424_bib35) 2012; 9
Polack (10.1016/j.dmpk.2021.100424_bib27) 2020; 383
Baden (10.1016/j.dmpk.2021.100424_bib28) 2021; 384
Wittrup (10.1016/j.dmpk.2021.100424_bib40) 2015; 33
Oussoren (10.1016/j.dmpk.2021.100424_bib50) 2001; 50
Maier (10.1016/j.dmpk.2021.100424_bib52) 2013; 21
Besin (10.1016/j.dmpk.2021.100424_bib56) 2019; 3
Suzuki (10.1016/j.dmpk.2021.100424_bib55) 2020; 588
Samaridou (10.1016/j.dmpk.2021.100424_bib15) 2020; 154–155
Judge (10.1016/j.dmpk.2021.100424_bib29) 2006; 13
Basha (10.1016/j.dmpk.2021.100424_bib42) 2011; 19
Love (10.1016/j.dmpk.2021.100424_bib2) 2010; 107
Akita (10.1016/j.dmpk.2021.100424_bib5) 2015; 1
Mui (10.1016/j.dmpk.2021.100424_bib43) 2013; 2
Gindy (10.1016/j.dmpk.2021.100424_bib47) 2012; 9
Zhang (10.1016/j.dmpk.2021.100424_bib57) 2020; 60
Szebeni (10.1016/j.dmpk.2021.100424_bib25) 2018; 13
Sato (10.1016/j.dmpk.2021.100424_bib3) 2012; 163
References_xml – volume: 107
  start-page: 1864
  year: 2010
  end-page: 1869
  ident: bib2
  article-title: Lipid-like materials for low-dose, in vivo gene silencing
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 749
  year: 2019
  end-page: 753
  ident: bib8
  article-title: Simplifying the chemical structure of cationic lipids for siRNA-lipid nanoparticles
  publication-title: ACS Med Chem Lett
– volume: 586
  start-page: 567
  year: 2020
  end-page: 571
  ident: bib61
  article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness
  publication-title: Nature
– volume: 45
  start-page: 6023
  year: 2017
  end-page: 6036
  ident: bib31
  article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density
  publication-title: Nucleic Acids Res
– volume: 163
  start-page: 267
  year: 2012
  end-page: 276
  ident: bib3
  article-title: A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo
  publication-title: J Contr Release
– volume: 23
  start-page: 165
  year: 2005
  end-page: 175
  ident: bib30
  article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA
  publication-title: Immunity
– volume: 5
  start-page: 8529
  year: 2012
  end-page: 8533
  ident: bib12
  article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing InVivo
  publication-title: Angew Chem Int Ed
– volume: 17
  start-page: 261
  year: 2018
  end-page: 279
  ident: bib18
  article-title: mRNA vaccines - a new era in vaccinology
  publication-title: Nat Rev Drug Discov
– volume: 220
  start-page: 44
  year: 2015
  end-page: 50
  ident: bib6
  article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo
  publication-title: J Contr Release
– volume: 89
  start-page: 799
  year: 2007
  end-page: 811
  ident: bib32
  article-title: The dsRNA protein kinase PKR: virus and cell control
  publication-title: Biochimie
– volume: 10
  start-page: 4333
  year: 2019
  ident: bib41
  article-title: Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells
  publication-title: Nat Commun
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: bib14
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat Nanotechnol
– volume: 6
  year: 2020
  ident: bib36
  article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation
  publication-title: Sci Adv
– volume: 21
  start-page: 1570
  year: 2013
  end-page: 1578
  ident: bib52
  article-title: Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics
  publication-title: Mol Ther
– volume: 168
  year: 2021
  ident: bib48
  article-title: Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform
  publication-title: JoVE : JoVE
– volume: 12
  start-page: 305
  year: 2017
  end-page: 315
  ident: bib46
  article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization
  publication-title: Int J Nanomed
– volume: 9
  start-page: 171
  year: 2012
  end-page: 182
  ident: bib47
  article-title: Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics
  publication-title: Expet Opin Drug Deliv
– volume: 63
  start-page: 12992
  year: 2020
  end-page: 13012
  ident: bib9
  article-title: Property-driven design and development of lipids for efficient delivery of siRNA
  publication-title: J Med Chem
– volume: 9
  year: 2021
  ident: bib20
  article-title: Nanomaterial delivery systems for mRNA vaccines
  publication-title: Vaccines
– volume: 519
  start-page: 34
  year: 2017
  end-page: 43
  ident: bib53
  article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates
  publication-title: Int J Pharm
– volume: 159
  start-page: 344
  year: 2020
  end-page: 363
  ident: bib16
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv Drug Deliv Rev
– year: 2021
  ident: bib22
  article-title: Interview form (ver.1), archived in PMDA
– volume: 379
  start-page: 11
  year: 2018
  end-page: 21
  ident: bib24
  article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
  publication-title: N Engl J Med
– volume: 26
  start-page: 1509
  year: 2018
  end-page: 1519
  ident: bib10
  article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates
  publication-title: Mol Ther
– volume: 52
  start-page: 76
  year: 2021
  end-page: 84
  ident: bib1
  article-title: Drug metabolism & pharmacokinetics of oligonucleotide therapeutics : profiles and evaluation approaches
  publication-title: Pharmaceutical and Medical Device Regulatory Science
– volume: 154–155
  start-page: 64
  year: 2020
  end-page: 78
  ident: bib13
  article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles
  publication-title: Adv Drug Deliv Rev
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib28
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N Engl J Med
– volume: 15
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib11
  article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines
  publication-title: Mol Ther Nucleic Acids
– volume: 9
  start-page: 1423
  year: 2021
  end-page: 1437
  ident: bib59
  article-title: mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach
  publication-title: J allergy Clin Immunol In Pract
– volume: 1
  start-page: 834
  year: 2015
  end-page: 844
  ident: bib5
  article-title: Molecular tuning of a vitamin E-scaffold pH-sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA delivery
  publication-title: ACS Biomater Sci Eng
– volume: 2
  start-page: e139
  year: 2013
  ident: bib43
  article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles
  publication-title: Mol Ther Nucleic Acids
– volume: 13
  start-page: 494
  year: 2006
  end-page: 505
  ident: bib29
  article-title: Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo
  publication-title: Mol Ther
– year: 2021
  ident: bib23
  article-title: COVID-19 Vaccine Moderna, interview form (ver.1), archived in PMDA
– volume: 6
  start-page: 57
  year: 2021
  ident: bib63
  article-title: mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents
  publication-title: NPJ vaccine
– volume: 594
  start-page: 483
  year: 2021
  ident: bib64
  article-title: CureVac COVID vaccine let-down spotlights mRNA design challenges
  publication-title: Nature
– volume: 3
  start-page: 282
  year: 2019
  end-page: 293
  ident: bib56
  article-title: Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties
  publication-title: Immuno Horizon
– volume: 19
  start-page: 2186
  year: 2011
  end-page: 2200
  ident: bib42
  article-title: Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells
  publication-title: Mol Ther
– volume: 154–155
  start-page: 37
  year: 2020
  end-page: 63
  ident: bib15
  article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives
  publication-title: Adv Drug Deliv Rev
– volume: 29(6)
  start-page: 1970
  year: 2021
  end-page: 1983
  ident: bib65
  article-title: A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice
  publication-title: Mol Ther
– volume: 154–155
  start-page: 163
  year: 2020
  end-page: 175
  ident: bib54
  article-title: Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals
  publication-title: Adv Drug Deliv Rev
– year: 2017
  ident: bib44
  publication-title: Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
– volume: 182
  start-page: 1271
  year: 2020
  end-page: 1283
  ident: bib66
  article-title: A thermostable mRNA vaccine against COVID-19
  publication-title: Cell
– volume: 25
  start-page: 2635
  year: 2017
  end-page: 2647
  ident: bib51
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol Ther
– volume: 111
  start-page: 3955
  year: 2014
  end-page: 3960
  ident: bib4
  article-title: Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates
  publication-title: Proc Natl Acad Sci USA
– volume: 50
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib50
  article-title: Liposomes to target the lymphatics by subcutaneous administration
  publication-title: Adv Drug Deliv Rev
– volume: 325
  start-page: 1101
  year: 2021
  end-page: 1102
  ident: bib58
  article-title: Reports of anaphylaxis After receipt of mRNA COVID-19 vaccines in the US-december 14, 2020-january 18, 2021
  publication-title: Jama
– volume: 5
  start-page: 11
  year: 2020
  ident: bib19
  article-title: The promise of mRNA vaccines: a biotech and industrial perspective
  publication-title: NPJ vaccine
– volume: 60
  start-page: 37
  year: 2020
  end-page: 49
  ident: bib57
  article-title: Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis
  publication-title: J Clin Pharmacol
– start-page: 2021
  year: 2021
  ident: bib68
  article-title: Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain
  publication-title: bioRxiv
– volume: 9
  start-page: 1731
  year: 2021
  end-page: 1733
  ident: bib60
  article-title: Anti-PEG IgE in anaphylaxis associated with polyethylene glycol
  publication-title: J allergy Clin Immunol In Pract
– volume: 13
  start-page: 1100
  year: 2018
  end-page: 1108
  ident: bib25
  article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines
  publication-title: Nat Nanotechnol
– volume: 510
  start-page: 350
  year: 2016
  end-page: 358
  ident: bib39
  article-title: Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid
  publication-title: Int J Pharm
– volume: 18
  start-page: 1357
  year: 2010
  end-page: 1364
  ident: bib38
  article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms
  publication-title: Mol Ther
– volume: 37
  start-page: 1120
  year: 2021
  end-page: 1128
  ident: bib49
  article-title: Characterization of lipid nanoparticles containing ionizable cationic lipids using design-of-experiments approach
  publication-title: Langmuir : ACS J Surfaces Colloids
– volume: 17
  start-page: 181
  year: 2017
  ident: bib26
  article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy
  publication-title: BMC Neurol
– volume: 53
  start-page: 724
  year: 2020
  end-page: 732
  ident: bib62
  article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice
  publication-title: Immunity
– year: 2021
  ident: bib21
  article-title: Interview form (ver.4), archived in PMDA
– volume: 42(6)
  start-page: 448
  year: 2021
  end-page: 460
  ident: bib17
  article-title: The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA
  publication-title: Trends Pharmacol Sci
– volume: 15
  year: 2019
  ident: bib7
  article-title: Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH
  publication-title: Small
– year: 2020
  ident: bib37
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib27
  article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine
  publication-title: N Engl J Med
– volume: 288
  start-page: 1420
  year: 2013
  end-page: 1427
  ident: bib34
  article-title: The chemical synthesis of DNA/RNA: our gift to science
  publication-title: J Biol Chem
– volume: 16
  start-page: 1833
  year: 2008
  end-page: 1840
  ident: bib33
  article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
  publication-title: Mol Ther
– volume: 601
  start-page: 120586
  year: 2021
  ident: bib45
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int J Pharm
– volume: 11
  start-page: 3523
  year: 2020
  ident: bib67
  article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice
  publication-title: Nat Commun
– volume: 9
  start-page: 1319
  year: 2012
  end-page: 1330
  ident: bib35
  article-title: Developing mRNA-vaccine technologies
  publication-title: RNA Biol
– volume: 33
  start-page: 870
  year: 2015
  end-page: 876
  ident: bib40
  article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown
  publication-title: Nat Biotechnol
– volume: 588
  start-page: 119792
  year: 2020
  ident: bib55
  article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production
  publication-title: Int J Pharm
– volume: 9
  start-page: 171
  issue: 2
  year: 2012
  ident: 10.1016/j.dmpk.2021.100424_bib47
  article-title: Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics
  publication-title: Expet Opin Drug Deliv
  doi: 10.1517/17425247.2012.642363
– volume: 13
  start-page: 1100
  issue: 12
  year: 2018
  ident: 10.1016/j.dmpk.2021.100424_bib25
  article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-018-0273-1
– volume: 33
  start-page: 870
  issue: 8
  year: 2015
  ident: 10.1016/j.dmpk.2021.100424_bib40
  article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3298
– volume: 154–155
  start-page: 64
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib13
  article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2020.07.022
– volume: 15
  start-page: 1
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib11
  article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.01.013
– volume: 3
  start-page: 282
  issue: 7
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib56
  article-title: Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties
  publication-title: Immuno Horizon
– ident: 10.1016/j.dmpk.2021.100424_bib21
– volume: 9
  start-page: 1423
  issue: 4
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib59
  article-title: mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach
  publication-title: J allergy Clin Immunol In Pract
  doi: 10.1016/j.jaip.2020.12.047
– volume: 586
  start-page: 567
  issue: 7830
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib61
  article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness
  publication-title: Nature
  doi: 10.1038/s41586-020-2622-0
– volume: 42(6)
  start-page: 448
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib17
  article-title: The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2021.03.002
– volume: 52
  start-page: 76
  issue: 2
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib1
  article-title: Drug metabolism & pharmacokinetics of oligonucleotide therapeutics : profiles and evaluation approaches
  publication-title: Pharmaceutical and Medical Device Regulatory Science
– start-page: 2021
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib68
  article-title: Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain
  publication-title: bioRxiv
– volume: 154–155
  start-page: 37
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib15
  article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2020.06.002
– volume: 6
  start-page: 57
  issue: 1
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib63
  article-title: mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents
  publication-title: NPJ vaccine
  doi: 10.1038/s41541-021-00311-w
– volume: 107
  start-page: 1864
  issue: 5
  year: 2010
  ident: 10.1016/j.dmpk.2021.100424_bib2
  article-title: Lipid-like materials for low-dose, in vivo gene silencing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0910603106
– volume: 159
  start-page: 344
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib16
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2020.06.026
– year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib44
– volume: 21
  start-page: 1570
  issue: 8
  year: 2013
  ident: 10.1016/j.dmpk.2021.100424_bib52
  article-title: Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.124
– volume: 11
  start-page: 3523
  issue: 1
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib67
  article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17409-9
– volume: 89
  start-page: 799
  issue: 6–7
  year: 2007
  ident: 10.1016/j.dmpk.2021.100424_bib32
  article-title: The dsRNA protein kinase PKR: virus and cell control
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.03.001
– volume: 10
  start-page: 4333
  issue: 1
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib41
  article-title: Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12275-6
– volume: 220
  start-page: 44
  year: 2015
  ident: 10.1016/j.dmpk.2021.100424_bib6
  article-title: siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo
  publication-title: J Contr Release
  doi: 10.1016/j.jconrel.2015.10.024
– volume: 588
  start-page: 119792
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib55
  article-title: PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119792
– volume: 18
  start-page: 1357
  issue: 7
  year: 2010
  ident: 10.1016/j.dmpk.2021.100424_bib38
  article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms
  publication-title: Mol Ther
  doi: 10.1038/mt.2010.85
– volume: 13
  start-page: 494
  issue: 3
  year: 2006
  ident: 10.1016/j.dmpk.2021.100424_bib29
  article-title: Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2005.11.002
– volume: 50
  start-page: 143
  issue: 1–2
  year: 2001
  ident: 10.1016/j.dmpk.2021.100424_bib50
  article-title: Liposomes to target the lymphatics by subcutaneous administration
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(01)00154-5
– volume: 379
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.dmpk.2021.100424_bib24
  article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1716153
– volume: 510
  start-page: 350
  issue: 1
  year: 2016
  ident: 10.1016/j.dmpk.2021.100424_bib39
  article-title: Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.06.124
– volume: 1
  start-page: 834
  issue: 9
  year: 2015
  ident: 10.1016/j.dmpk.2021.100424_bib5
  article-title: Molecular tuning of a vitamin E-scaffold pH-sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA delivery
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.5b00203
– volume: 9
  start-page: 1319
  issue: 11
  year: 2012
  ident: 10.1016/j.dmpk.2021.100424_bib35
  article-title: Developing mRNA-vaccine technologies
  publication-title: RNA Biol
  doi: 10.4161/rna.22269
– volume: 384
  start-page: 403
  issue: 5
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib28
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2035389
– volume: 25
  start-page: 2635
  issue: 12
  year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib51
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2017.08.006
– volume: 519
  start-page: 34
  issue: 1
  year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib53
  article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2017.01.016
– ident: 10.1016/j.dmpk.2021.100424_bib37
– volume: 182
  start-page: 1271
  issue: 5
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib66
  article-title: A thermostable mRNA vaccine against COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.024
– volume: 23
  start-page: 165
  issue: 2
  year: 2005
  ident: 10.1016/j.dmpk.2021.100424_bib30
  article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.06.008
– volume: 15
  issue: 6
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib7
  article-title: Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH
  publication-title: Small
  doi: 10.1002/smll.201805097
– volume: 325
  start-page: 1101
  issue: 11
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib58
  article-title: Reports of anaphylaxis After receipt of mRNA COVID-19 vaccines in the US-december 14, 2020-january 18, 2021
  publication-title: Jama
  doi: 10.1001/jama.2021.1967
– volume: 17
  start-page: 181
  issue: 1
  year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib26
  article-title: Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy
  publication-title: BMC Neurol
  doi: 10.1186/s12883-017-0948-5
– volume: 12
  start-page: 305
  year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib46
  article-title: Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S123062
– volume: 60
  start-page: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib57
  article-title: Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.1480
– volume: 19
  start-page: 2186
  issue: 12
  year: 2011
  ident: 10.1016/j.dmpk.2021.100424_bib42
  article-title: Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.190
– volume: 111
  start-page: 3955
  issue: 11
  year: 2014
  ident: 10.1016/j.dmpk.2021.100424_bib4
  article-title: Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1322937111
– volume: 10
  start-page: 749
  issue: 5
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib8
  article-title: Simplifying the chemical structure of cationic lipids for siRNA-lipid nanoparticles
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.8b00652
– volume: 17
  start-page: 261
  issue: 4
  year: 2018
  ident: 10.1016/j.dmpk.2021.100424_bib18
  article-title: mRNA vaccines - a new era in vaccinology
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.243
– volume: 29(6)
  start-page: 1970
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib65
  article-title: A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2021.04.001
– volume: 154–155
  start-page: 163
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib54
  article-title: Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2020.07.024
– volume: 594
  start-page: 483
  issue: 7864
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib64
  article-title: CureVac COVID vaccine let-down spotlights mRNA design challenges
  publication-title: Nature
  doi: 10.1038/d41586-021-01661-0
– volume: 9
  start-page: 1731
  issue: 4
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib60
  article-title: Anti-PEG IgE in anaphylaxis associated with polyethylene glycol
  publication-title: J allergy Clin Immunol In Pract
  doi: 10.1016/j.jaip.2020.11.011
– volume: 383
  start-page: 2603
  issue: 27
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib27
  article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2034577
– volume: 14
  start-page: 1084
  issue: 12
  year: 2019
  ident: 10.1016/j.dmpk.2021.100424_bib14
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0591-y
– ident: 10.1016/j.dmpk.2021.100424_bib22
– volume: 53
  start-page: 724
  issue: 4
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib62
  article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.019
– volume: 45
  start-page: 6023
  issue: 10
  year: 2017
  ident: 10.1016/j.dmpk.2021.100424_bib31
  article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx135
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib20
  article-title: Nanomaterial delivery systems for mRNA vaccines
  publication-title: Vaccines
  doi: 10.3390/vaccines9010065
– volume: 37
  start-page: 1120
  issue: 3
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib49
  article-title: Characterization of lipid nanoparticles containing ionizable cationic lipids using design-of-experiments approach
  publication-title: Langmuir : ACS J Surfaces Colloids
  doi: 10.1021/acs.langmuir.0c03039
– volume: 5
  start-page: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib19
  article-title: The promise of mRNA vaccines: a biotech and industrial perspective
  publication-title: NPJ vaccine
  doi: 10.1038/s41541-020-0159-8
– volume: 16
  start-page: 1833
  issue: 11
  year: 2008
  ident: 10.1016/j.dmpk.2021.100424_bib33
  article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.200
– volume: 168
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib48
  article-title: Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform
  publication-title: JoVE : JoVE
– volume: 63
  start-page: 12992
  issue: 21
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib9
  article-title: Property-driven design and development of lipids for efficient delivery of siRNA
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.0c01407
– volume: 288
  start-page: 1420
  issue: 2
  year: 2013
  ident: 10.1016/j.dmpk.2021.100424_bib34
  article-title: The chemical synthesis of DNA/RNA: our gift to science
  publication-title: J Biol Chem
  doi: 10.1074/jbc.X112.442855
– volume: 163
  start-page: 267
  issue: 3
  year: 2012
  ident: 10.1016/j.dmpk.2021.100424_bib3
  article-title: A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo
  publication-title: J Contr Release
  doi: 10.1016/j.jconrel.2012.09.009
– volume: 601
  start-page: 120586
  year: 2021
  ident: 10.1016/j.dmpk.2021.100424_bib45
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2021.120586
– volume: 6
  issue: 26
  year: 2020
  ident: 10.1016/j.dmpk.2021.100424_bib36
  article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz6893
– volume: 26
  start-page: 1509
  issue: 6
  year: 2018
  ident: 10.1016/j.dmpk.2021.100424_bib10
  article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2018.03.010
– volume: 51
  start-page: 8529
  issue: 34
  year: 2012
  ident: 10.1016/j.dmpk.2021.100424_bib12
  article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing InVivo
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201203263
– volume: 2
  start-page: e139
  issue: 12
  year: 2013
  ident: 10.1016/j.dmpk.2021.100424_bib43
  article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1038/mtna.2013.66
SSID ssj0033542
Score 2.6310408
SecondaryResourceType review_article
Snippet Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100424
SubjectTerms Animals
COVID-19
COVID-19 - immunology
COVID-19 vaccine moderna
COVID-19 Vaccines - immunology
Elasomeran
Humans
Ionizable lipid
Lipid nanoparticles
Liposomes - immunology
LNP
mRNA vaccine
mRNA Vaccines - immunology
Nanoparticles
Patisiran
Review
RNA, Small Interfering - immunology
SARS-CoV-2
Technology - methods
Tozinameran
Vaccines, Synthetic - immunology
Title Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs
URI https://dx.doi.org/10.1016/j.dmpk.2021.100424
https://www.ncbi.nlm.nih.gov/pubmed/34757287
https://www.proquest.com/docview/2596022524
https://pubmed.ncbi.nlm.nih.gov/PMC8502116
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7YUL4s3yqIyEKipq7TqJ8ziutpQtiGUFLdqbNfEDAq272kelXvjtjONky4LogWOccWJ5JjPfxPMg5KWxmeAx10yICFiic2CIqi1LY2PiTKfAjc8d_jBOR6fJu6mYbpFhmwvjwyob3R90eq2tm5Fes5u9WVX1PvskyCRO0YWpgUm-TXYitK79DtkZHL8fjVuFHMei7qHj6Zmf0OTOhDAvfT77gW5ixH28QBIl_7JPf-PPP8Mof7NLR3fI7QZQ0kFY812yZdw9sjcJFamvDujJdYLV4oDu0cl1reqr--TnYdMgRRlaOYpokJ5Vs0pTBw7d6fBQulz_f6cmdAjWgXpuDK2rkl_iyKL6NB7QVxOfL1GhCdyn4DQ9rweHH78cHzJe0EtQ_ih_n-r56uviATk9enMyHLGmJQNTvvMBg9LgXvnjWAVpyZMstiov-1rzQidp1FdKl2WpigKgKISNhdVKiDzTEOUgOMQPScddOPOYUGFNlPECMgFlYnMLChCrAGpum0KibJfwlhFSNfXKfduMM9kGpn2XnnnSM08G5nXJ6_WcWajWcSO1aPkrN2ROojm5cd6LVhgkfoz-hAWcuVgtJPqSKYIi4WkeBeFYrwOlT2Ton3ZJtiE2awJf6Hvzjqu-1QW_c4Ev5-mT_1zvU3LLX4UgnGeks5yvzHOEUstyt_lUdsn22yn_BZ4FH28
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAXxJvwXCSoqKiVru3148AhaqgS0oYIUtSbGe8DDK0bxUlRLvwp_iCz3nVKQPSA1Ou-vNqZ2ZnxznxDyHOlY84CJj3OffBCmYCHVrX2okCpIJYRMGVyhw-GUe8wfHvEj9bIzyYXxoRVurvf3un1be1a2u4025OiaH8wSZBhEKELUxsmiYusHKjFd_Tbqtf9LhL5he_vvRnv9jxXWsATBsHfg1yh12-eFQVEOQvjQIsk35GSpTKM_B0hZJ7nIk0B0pTrgGspOE9iCX4CnEGA614hGwYNC8Vqo9Mf9IaNAggCXtfsMfvzzAZdro4NK5Mnk2_olvrMxCeEfvgvffi3vftn2OZvenDvBrnuDFjasWd0k6yp8hbZHFkE7MU2HZ8ndFXbdJOOzrGxF7fJj64ryCIULUqK1ic9LiaFpCWU6L7bRels-b-fKluRWNrRU6VojYJ-hi1V8X7YoS9HJj-jQJW7RaGU9KRu3H33sd_1WErPQJjQgS0qp_PP1R1yeCl0ukvWy9NS3SeUa-XHLIWYQx7qRIMAtI0ANYWOIBS6RVhDiEw4fHRTpuM4awLhvmaGeJkhXmaJ1yKvlnMmFh3kwtG8oW-2wuMZqq8L5z1rmCFD4TcvOlCq03mVoe8aoRHGzZh7ljmW-0Du4zH6wy0Sr7DNcoABFl_tKYsvNcB4wvHjLHrwn_t9Sq72xgf72X5_OHhIrpkeGwD0iKzPpnP1GM24Wf7EiQ0lny5bUn8BKwhc8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+in+the+lipid+nanoparticle+technology+employed+in+three+approved+siRNA+%28Patisiran%29+and+mRNA+%28COVID-19+vaccine%29+drugs&rft.jtitle=Drug+metabolism+and+pharmacokinetics&rft.au=Suzuki%2C+Yuta&rft.au=Ishihara%2C+Hiroshi&rft.date=2021-12-01&rft.issn=1880-0920&rft.eissn=1880-0920&rft.volume=41&rft.spage=100424&rft_id=info:doi/10.1016%2Fj.dmpk.2021.100424&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-4367&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-4367&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-4367&client=summon