A synthetic synaptic organizer protein restores glutamatergic neuronal circuits
Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to rest...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 369; no. 6507 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
28.08.2020
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits. |
---|---|
AbstractList | Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory/inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer’s disease and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits. The human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to ensure the efficient reception and integration of external stimuli and to store and retrieve information. Building and remodeling of synapses occurs throughout life under the control of synaptic organizer proteins. Errors in this process can lead to neuropsychiatric or neurological disorders. Suzuki et al. combined structural elements of natural synaptic organizers to develop an artificial version called CPTX, which has different binding properties (see the Perspective by Salinas). CPTX could act as a molecular bridge to reconnect neurons and restore excitatory synaptic function in animal models of cerebellar ataxia, familial Alzheimer's disease, and spinal cord injury. The findings illustrate how structure-guided approaches can help to repair neuronal circuits. Science , this issue p. eabb4853 ; see also p. 1052 A synthetic protein can induce functional synapses and restore normal behaviors in mouse models of neurological disease. Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory–inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer’s disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits. Synthetic excitatory synaptic organizerThe human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to ensure the efficient reception and integration of external stimuli and to store and retrieve information. Building and remodeling of synapses occurs throughout life under the control of synaptic organizer proteins. Errors in this process can lead to neuropsychiatric or neurological disorders. Suzuki et al. combined structural elements of natural synaptic organizers to develop an artificial version called CPTX, which has different binding properties (see the Perspective by Salinas). CPTX could act as a molecular bridge to reconnect neurons and restore excitatory synaptic function in animal models of cerebellar ataxia, familial Alzheimer's disease, and spinal cord injury. The findings illustrate how structure-guided approaches can help to repair neuronal circuits.Science, this issue p. eabb4853; see also p. 1052INTRODUCTIONSynapses are fundamental structural and functional units within neural circuits, where they define the connectivity between neurons and provide avenues for communication. At a molecular level, synapses are highly dynamic and their remodeling is essential for all aspects of brain physiology. However, errors in this process can happen and often lead to an imbalance of excitatory and inhibitory signaling. This is thought to be a major cause of neuropsychiatric or neurological disorders, including autism spectrum disorders, epilepsy, schizophrenia, and Alzheimer’s disease. Thus, molecular tools to control the number and/or function of synapses would be highly desirable. Physiologically, synapse formation is driven by synaptic organizer proteins. Among these, extracellular scaffolding proteins (ESPs) such as cerebellin-1 (Cbln1) and neuronal pentraxin-1 (NP1) are distinctive in that they could rapidly induce synapse differentiation by binding pre- and/or postsynaptic cell surface proteins at the synaptic cleft. We hypothesized that synthetic molecules that would combine structural features of Cbln1 and NP1 could be used to efficiently reverse the loss of excitatory synapses and promote the structural and functional recovery of damaged neuronal circuits in animal models of neurological disease.RATIONALENP1 recruits postsynaptic AMPA-subtype ionotropic glutamate receptors (AMPARs), responsible for excitatory neurotransmission, through its pentraxin domain. However, NP1 does not seem to induce presynaptic specializations in vivo. By contrast, Cbln1 promotes presynaptic differentiation by interacting with the cell adhesion molecule neurexin (Nrx) through its N-terminal multimerization domain, but cannot bind AMPARs. Guided by structural information, we developed a hexameric synthetic soluble ESP, termed CPTX, which includes the multimerization domain of Cbln1 and the pentraxin domain of NP1. We hypothesized that CPTX should induce Nrx–CPTX–AMPAR transsynaptic molecular bridges, and thus accumulate and align presynaptic vesicle release machinery and postsynaptic neurotransmitter receptors.RESULTSRecombinant CPTX selectively bound presynaptic Nrx containing the spliced sequence 4 [Nrx(+4)] with nanomolar affinity and most AMPAR subtypes with micromolar affinity. When administered to cerebellar granule cells and hippocampal neurons in vitro, CPTX acted as a bidirectional synapse organizer and induced excitatory pre- and postsynaptic sites. In vivo, CPTX increased the number of functional excitatory synapses and improved gait performance upon injection into the cerebellum of the ataxic Cbln1-null and GluD2-null mice. Furthermore, when injected into the hippocampus of 5xFAD mice, a model of familial Alzheimer’s disease, CPTX restored dendritic spine numbers, excitatory synaptic transmission, and long-term potentiation and improved hippocampus-dependent learning. Finally, in mouse models of spinal cord injury, single injections of CPTX into the damaged tissue were sufficient to reorganize excitatory circuits and restore locomotion for more than 7 to 8 weeks.CONCLUSIONWe developed a synthetic, structure-guided, synaptic organizer termed CPTX, which induced functional and structural excitatory synapses in the cerebellar, hippocampal, and spinal cord neuronal circuits in vivo. Molecular components involved in excitatory synapses are considerably different among neuronal circuits. Rationally designed ESPs targeting distinct pre- and postsynaptic molecules may be useful to modulate neural circuit connectivity. This approach may inspire the development of a variety of innovative molecular tools for basic neuroscience as well as the treatment of neurological disorders.Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory–inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer’s disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits. |
Author | Miura, Eriko Shimada, Tatsuya Takeuchi, Yuka Ferrer-Ferrer, Maura Chang, Veronica T Watanabe, Masahiko Aricescu, A Radu Stoyanov, Stoyan Takeuchi, Kosei Yuzaki, Michisuke Senkov, Oleg Matsuda, Keiko Song, Inseon Morioka, Yuki Elegheert, Jonathan Kakegawa, Wataru Kaushik, Rahul Otsuka, Shintaro Sasakura, Hiroyuki Clayton, Amber J Ikeno, Masashi Dityatev, Alexander Suzuki, Kunimichi |
AuthorAffiliation | 3 Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany 7 Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany 1 Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan 6 Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany 8 Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan 5 Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK 4 Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan 2 Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK |
AuthorAffiliation_xml | – name: 8 Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan – name: 2 Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK – name: 6 Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany – name: 4 Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – name: 5 Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK – name: 1 Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – name: 3 Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany – name: 7 Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany |
Author_xml | – sequence: 1 givenname: Kunimichi orcidid: 0000-0001-7699-2163 surname: Suzuki fullname: Suzuki, Kunimichi organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 2 givenname: Jonathan surname: Elegheert fullname: Elegheert, Jonathan organization: Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK – sequence: 3 givenname: Inseon orcidid: 0000-0003-1739-5566 surname: Song fullname: Song, Inseon organization: Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany – sequence: 4 givenname: Hiroyuki orcidid: 0000-0001-5368-7705 surname: Sasakura fullname: Sasakura, Hiroyuki organization: Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – sequence: 5 givenname: Oleg orcidid: 0000-0003-4396-8719 surname: Senkov fullname: Senkov, Oleg organization: Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany – sequence: 6 givenname: Keiko orcidid: 0000-0003-3985-5471 surname: Matsuda fullname: Matsuda, Keiko organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 7 givenname: Wataru orcidid: 0000-0003-2092-5775 surname: Kakegawa fullname: Kakegawa, Wataru organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 8 givenname: Amber J orcidid: 0000-0002-2124-3015 surname: Clayton fullname: Clayton, Amber J organization: Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK – sequence: 9 givenname: Veronica T orcidid: 0000-0001-7047-9019 surname: Chang fullname: Chang, Veronica T organization: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK – sequence: 10 givenname: Maura surname: Ferrer-Ferrer fullname: Ferrer-Ferrer, Maura organization: Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany – sequence: 11 givenname: Eriko surname: Miura fullname: Miura, Eriko organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 12 givenname: Rahul orcidid: 0000-0002-4944-8549 surname: Kaushik fullname: Kaushik, Rahul organization: Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany – sequence: 13 givenname: Masashi orcidid: 0000-0001-8647-4917 surname: Ikeno fullname: Ikeno, Masashi organization: Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – sequence: 14 givenname: Yuki surname: Morioka fullname: Morioka, Yuki organization: Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – sequence: 15 givenname: Yuka orcidid: 0000-0002-2432-0370 surname: Takeuchi fullname: Takeuchi, Yuka organization: Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – sequence: 16 givenname: Tatsuya orcidid: 0000-0001-6757-7590 surname: Shimada fullname: Shimada, Tatsuya organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 17 givenname: Shintaro surname: Otsuka fullname: Otsuka, Shintaro organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan – sequence: 18 givenname: Stoyan orcidid: 0000-0002-2872-7709 surname: Stoyanov fullname: Stoyanov, Stoyan organization: Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany – sequence: 19 givenname: Masahiko orcidid: 0000-0001-5037-7138 surname: Watanabe fullname: Watanabe, Masahiko organization: Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan – sequence: 20 givenname: Kosei orcidid: 0000-0001-6397-2243 surname: Takeuchi fullname: Takeuchi, Kosei organization: Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan – sequence: 21 givenname: Alexander orcidid: 0000-0002-0472-0553 surname: Dityatev fullname: Dityatev, Alexander email: alexander.dityatev@dzne.de, radu@mrc-lmb.cam.ac.uk, myuzaki@keio.jp organization: Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany – sequence: 22 givenname: A Radu orcidid: 0000-0003-3783-1388 surname: Aricescu fullname: Aricescu, A Radu email: alexander.dityatev@dzne.de, radu@mrc-lmb.cam.ac.uk, myuzaki@keio.jp organization: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK – sequence: 23 givenname: Michisuke orcidid: 0000-0002-5750-3544 surname: Yuzaki fullname: Yuzaki, Michisuke email: alexander.dityatev@dzne.de, radu@mrc-lmb.cam.ac.uk, myuzaki@keio.jp organization: Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan. alexander.dityatev@dzne.de radu@mrc-lmb.cam.ac.uk myuzaki@keio.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32855309$$D View this record in MEDLINE/PubMed https://hal.science/hal-03396266$$DView record in HAL |
BookMark | eNpdkU1vEzEQhi1URNPCmRtaiQsctvV37AtSVAFFitQLnK2x401cbexgeyu1vx6vEiroxR55nnlnPO8FOospeoTeE3xFCJXXxQUfnb8Ca7kS7BVaEKxFrylmZ2iBMZO9wktxji5Kuce45TR7g84ZVUIwrBfobtWVx1h3vgY3R3CYg5S3EMOTz90hp-pD7LIvNbWj245ThT1Un7cNjH7KKcLYuZDdFGp5i14PMBb_7nRfol_fvv68ue3Xd99_3KzWvROU1B4s5poT5TQfFABYyQTecG0FI1ZJSxx3FDYDVeAt8wNsFAxLqakQQoLU7BJ9OeoeJrv3G-djzTCaQw57yI8mQTD_Z2LYmW16MEtCJOGiCXw-CuxelN2u1mZ-w4xpSaV8II39dGqW0--pbcLsQ3F-HCH6NBVDOVNSMcZ5Qz--QO_TlNuGjhQmnIt5-usj5XIqJfvheQKCzWysORlrTsa2ig___veZ_-sk-wPcHKSU |
CitedBy_id | crossref_primary_10_3390_cells10113162 crossref_primary_10_1371_journal_pbio_3001853 crossref_primary_10_14814_phy2_15673 crossref_primary_10_1098_rstb_2023_0220 crossref_primary_10_1016_j_bcp_2024_116302 crossref_primary_10_1016_j_neuropharm_2021_108542 crossref_primary_10_1515_bmc_2022_0018 crossref_primary_10_26508_lsa_202201681 crossref_primary_10_3389_fnins_2021_749465 crossref_primary_10_1124_pharmrev_120_000131 crossref_primary_10_1126_science_aaz3893 crossref_primary_10_1016_j_pneurobio_2021_102209 crossref_primary_10_3390_cells10061426 crossref_primary_10_1016_j_molmed_2022_09_009 crossref_primary_10_7554_eLife_59026 crossref_primary_10_1016_j_isci_2023_108703 crossref_primary_10_14336_AD_2023_0512 crossref_primary_10_1016_j_neures_2023_03_004 crossref_primary_10_3389_fncir_2021_703300 crossref_primary_10_1038_s41467_024_48925_7 crossref_primary_10_4103_1673_5374_382230 crossref_primary_10_1016_j_molliq_2024_125077 crossref_primary_10_2174_1386207326666230426151114 crossref_primary_10_7554_eLife_78649 crossref_primary_10_1016_j_bioactmat_2021_03_001 crossref_primary_10_1016_j_heliyon_2023_e19933 crossref_primary_10_1080_14728222_2023_2194532 crossref_primary_10_3389_fimmu_2021_757633 crossref_primary_10_1016_j_celrep_2024_114427 crossref_primary_10_3390_cells10081862 crossref_primary_10_1016_j_neuron_2022_07_027 crossref_primary_10_1073_pnas_2208144119 crossref_primary_10_1146_annurev_immunol_101921_035639 crossref_primary_10_1016_j_copbio_2021_10_006 crossref_primary_10_1016_j_stemcr_2024_01_007 crossref_primary_10_1016_j_neuropharm_2021_108710 crossref_primary_10_34133_research_0180 crossref_primary_10_1016_j_neuropharm_2021_108711 crossref_primary_10_1016_j_jtbi_2022_111121 crossref_primary_10_1093_brain_awab407 crossref_primary_10_1111_febs_15666 crossref_primary_10_1523_JNEUROSCI_2104_23_2024 crossref_primary_10_1073_pnas_2206429119 crossref_primary_10_1080_21655979_2021_1974811 crossref_primary_10_2147_ITT_S305420 crossref_primary_10_1007_s00018_021_03865_z crossref_primary_10_1038_s41589_024_01596_3 crossref_primary_10_1002_alz_13682 crossref_primary_10_3389_fnsyn_2023_1130198 crossref_primary_10_1016_j_neuropharm_2021_108709 crossref_primary_10_1007_s00702_021_02411_2 crossref_primary_10_1186_s12974_020_02024_8 crossref_primary_10_1083_jcb_202109111 crossref_primary_10_1126_science_abd4762 crossref_primary_10_1016_j_neures_2021_07_001 crossref_primary_10_3917_cerpsy_126_0006 crossref_primary_10_1016_j_neuron_2023_07_013 crossref_primary_10_3389_fnsyn_2023_1291163 crossref_primary_10_3390_ijms24087049 crossref_primary_10_1016_j_cca_2023_117592 crossref_primary_10_1126_sciadv_abk2200 crossref_primary_10_3390_pharmaceutics16010049 crossref_primary_10_1002_adma_202308393 crossref_primary_10_1016_j_cej_2022_135256 crossref_primary_10_1038_s42003_022_03736_8 crossref_primary_10_1016_j_jbc_2023_105356 |
Cites_doi | 10.3389/fnana.2018.00040 10.1523/JNEUROSCI.0360-18.2018 10.1523/JNEUROSCI.2553-07.2008 10.1016/j.neuron.2012.03.034 10.1083/jcb.201310136 10.1038/nprot.2008.91 10.1016/j.neuron.2019.09.027 10.1107/S0021889804005874 10.1523/JNEUROSCI.2768-16.2016 10.3389/fpsyt.2017.00069 10.1073/pnas.1802737115 10.1016/j.cell.2018.06.005 10.1016/j.cell.2013.05.060 10.1107/S0907444905007808 10.1107/S0907444909042073 10.3389/fnins.2015.00425 10.1523/JNEUROSCI.1202-06.2006 10.1016/j.celrep.2018.02.003 10.1016/j.celrep.2015.01.034 10.1016/j.cell.2017.10.024 10.1016/j.neuron.2017.09.053 10.1038/s41593-018-0093-5 10.1107/S0021889807021206 10.1016/j.conb.2017.03.005 10.1126/science.aau8977 10.1107/S090744491003982X 10.1038/ncomms3740 10.1523/JNEUROSCI.0878-06.2006 10.1126/science.1185152 10.1111/ejn.13595 10.1038/nrn.2016.141 10.1126/science.8248779 10.1371/journal.pone.0138705 10.1038/s41596-018-0075-9 10.1523/JNEUROSCI.1030-08.2008 10.1016/j.neuron.2015.07.033 10.1016/j.tins.2013.06.002 10.1038/416636a 10.1038/nn.2621 10.1093/cercor/bhx003 10.1107/S0907444911001314 10.1107/S0907444909047374 10.1016/j.neuron.2018.09.040 10.1016/j.cell.2010.04.035 10.1523/JNEUROSCI.2861-06.2007 10.1107/S0907444905036693 10.1016/j.neuron.2016.07.002 10.1038/nmeth.2019 10.1107/S0907444906029799 10.1038/nrn.2018.16 10.1002/cne.24278 10.1097/NEN.0b013e3181654386 10.1146/annurev-physiol-021317-121322 10.1016/j.jneumeth.2008.03.013 10.1016/j.cell.2016.07.041 10.1016/S0896-6273(03)00463-X 10.1016/j.conb.2010.08.016 10.1016/j.celrep.2016.05.093 10.1038/s41583-018-0054-8 10.1126/science.1129947 10.1073/pnas.1308388110 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3 10.1038/nprot.2006.276 10.1073/pnas.1511910112 10.1107/S0907444909052925 10.1016/j.neuron.2016.04.001 10.1016/j.neuron.2015.02.020 10.1371/journal.pone.0074667 10.1016/S0896-6273(00)80782-5 10.1038/s41586-018-0833-4 10.1107/S0907444913015308 10.1523/JNEUROSCI.0075-15.2015 10.1016/j.tins.2016.12.004 10.1016/j.biopsych.2017.03.005 10.1016/j.neuron.2018.10.018 10.1016/j.neuron.2017.10.006 10.1126/science.aae0104 10.1016/S0969-2126(94)00105-7 10.1073/pnas.1811086115 10.1016/j.neuron.2014.12.020 10.1016/j.neuron.2007.06.020 10.1107/S0907444910007493 10.1111/j.1460-9568.2010.07338.x 10.1111/j.1460-9568.2006.04710.x 10.1089/neu.2006.23.635 10.1083/jcb.201812076 10.1111/j.1460-9568.2006.04950.x 10.1038/nature21678 10.1038/nmeth.1206 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1126/science.abb4853 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | oai_HAL_hal_03396266v1 10_1126_science_abb4853 32855309 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 850820 – fundername: Medical Research Council grantid: MC_EX_MR/L009609/2 – fundername: Medical Research Council grantid: MC_UP_1201/15 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADDRP ADUKH AEGBM AENEX AEUPB AFFNX AFHKK AFQFN AFRAH AFRQD AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF B-7 BKF BLC C45 CGR CS3 CUY CVF DB2 DU5 EBS ECM EIF EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ RHF RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD ACUHS C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC 5PM AETEA |
ID | FETCH-LOGICAL-c521t-ab049418c94f8aaab6350d49b531b86b1c4c2adf28aeb3efad8af76925556a693 |
ISSN | 0036-8075 |
IngestDate | Tue Sep 17 20:55:24 EDT 2024 Thu Oct 31 07:15:02 EDT 2024 Wed Dec 04 09:41:25 EST 2024 Mon Dec 16 21:25:15 EST 2024 Fri Dec 06 02:55:14 EST 2024 Sat Sep 28 08:17:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6507 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c521t-ab049418c94f8aaab6350d49b531b86b1c4c2adf28aeb3efad8af76925556a693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Interdisciplinary Institute for Neuroscience (IINS), UMR5297 CNRS/UB, 33076 Bordeaux, France. Present address: Adaptimmune, 60 Jubilee Avenue, Milton Park, Abingdon OX14 4RX, UK. Present address: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK Co-first authors. |
ORCID | 0000-0001-5368-7705 0000-0003-3985-5471 0000-0003-1739-5566 0000-0002-2124-3015 0000-0003-2092-5775 0000-0001-8647-4917 0000-0002-2432-0370 0000-0002-5750-3544 0000-0002-2872-7709 0000-0001-7047-9019 0000-0001-6397-2243 0000-0001-5037-7138 0000-0003-3783-1388 0000-0003-4396-8719 0000-0002-4944-8549 0000-0002-0472-0553 0000-0001-7699-2163 0000-0001-6757-7590 0000-0002-4196-4813 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116145 |
PMID | 32855309 |
PQID | 2438014459 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7116145 hal_primary_oai_HAL_hal_03396266v1 proquest_miscellaneous_2438683344 proquest_journals_2438014459 crossref_primary_10_1126_science_abb4853 pubmed_primary_32855309 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-28 20200828 |
PublicationDateYYYYMMDD | 2020-08-28 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – sequence: 0 name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | 36262561 - Fac Rev. 2022 Sep 21;11:25 32855323 - Science. 2020 Aug 28;369(6507):1052-1053 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_91_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_56_2 doi: 10.3389/fnana.2018.00040 – ident: e_1_3_2_22_2 doi: 10.1523/JNEUROSCI.0360-18.2018 – ident: e_1_3_2_85_2 doi: 10.1523/JNEUROSCI.2553-07.2008 – ident: e_1_3_2_32_2 doi: 10.1016/j.neuron.2012.03.034 – ident: e_1_3_2_44_2 doi: 10.1083/jcb.201310136 – ident: e_1_3_2_75_2 doi: 10.1038/nprot.2008.91 – ident: e_1_3_2_25_2 doi: 10.1016/j.neuron.2019.09.027 – ident: e_1_3_2_68_2 doi: 10.1107/S0021889804005874 – ident: e_1_3_2_37_2 doi: 10.1523/JNEUROSCI.2768-16.2016 – ident: e_1_3_2_61_2 doi: 10.3389/fpsyt.2017.00069 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.1802737115 – ident: e_1_3_2_50_2 doi: 10.1016/j.cell.2018.06.005 – ident: e_1_3_2_52_2 doi: 10.1016/j.cell.2013.05.060 – ident: e_1_3_2_66_2 doi: 10.1107/S0907444905007808 – ident: e_1_3_2_77_2 doi: 10.1107/S0907444909042073 – ident: e_1_3_2_88_2 doi: 10.3389/fnins.2015.00425 – ident: e_1_3_2_46_2 doi: 10.1523/JNEUROSCI.1202-06.2006 – ident: e_1_3_2_51_2 doi: 10.1016/j.celrep.2018.02.003 – ident: e_1_3_2_28_2 doi: 10.1016/j.celrep.2015.01.034 – ident: e_1_3_2_10_2 doi: 10.1016/j.cell.2017.10.024 – ident: e_1_3_2_38_2 doi: 10.1016/j.neuron.2017.09.053 – ident: e_1_3_2_49_2 doi: 10.1038/s41593-018-0093-5 – ident: e_1_3_2_72_2 doi: 10.1107/S0021889807021206 – ident: e_1_3_2_9_2 doi: 10.1016/j.conb.2017.03.005 – ident: e_1_3_2_24_2 doi: 10.1126/science.aau8977 – ident: e_1_3_2_70_2 doi: 10.1107/S090744491003982X – ident: e_1_3_2_91_2 doi: 10.1038/ncomms3740 – ident: e_1_3_2_87_2 doi: 10.1523/JNEUROSCI.0878-06.2006 – ident: e_1_3_2_14_2 doi: 10.1126/science.1185152 – ident: e_1_3_2_4_2 doi: 10.1111/ejn.13595 – ident: e_1_3_2_3_2 doi: 10.1038/nrn.2016.141 – ident: e_1_3_2_63_2 doi: 10.1126/science.8248779 – ident: e_1_3_2_55_2 doi: 10.1371/journal.pone.0138705 – ident: e_1_3_2_65_2 doi: 10.1038/s41596-018-0075-9 – ident: e_1_3_2_17_2 doi: 10.1523/JNEUROSCI.1030-08.2008 – ident: e_1_3_2_2_2 doi: 10.1016/j.neuron.2015.07.033 – ident: e_1_3_2_11_2 doi: 10.1016/j.tins.2013.06.002 – ident: e_1_3_2_53_2 doi: 10.1038/416636a – ident: e_1_3_2_39_2 doi: 10.1038/nn.2621 – ident: e_1_3_2_89_2 doi: 10.1093/cercor/bhx003 – ident: e_1_3_2_73_2 doi: 10.1107/S0907444911001314 – ident: e_1_3_2_71_2 doi: 10.1107/S0907444909047374 – ident: e_1_3_2_7_2 doi: 10.1016/j.neuron.2018.09.040 – ident: e_1_3_2_15_2 doi: 10.1016/j.cell.2010.04.035 – ident: e_1_3_2_45_2 doi: 10.1523/JNEUROSCI.2861-06.2007 – ident: e_1_3_2_69_2 doi: 10.1107/S0907444905036693 – ident: e_1_3_2_29_2 doi: 10.1016/j.neuron.2016.07.002 – ident: e_1_3_2_82_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_2_62_2 doi: 10.1107/S0907444906029799 – ident: e_1_3_2_6_2 doi: 10.1038/nrn.2018.16 – ident: e_1_3_2_19_2 doi: 10.1002/cne.24278 – ident: e_1_3_2_86_2 doi: 10.1097/NEN.0b013e3181654386 – ident: e_1_3_2_8_2 doi: 10.1146/annurev-physiol-021317-121322 – ident: e_1_3_2_81_2 doi: 10.1016/j.jneumeth.2008.03.013 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2016.07.041 – ident: e_1_3_2_34_2 doi: 10.1016/S0896-6273(03)00463-X – ident: e_1_3_2_13_2 doi: 10.1016/j.conb.2010.08.016 – ident: e_1_3_2_31_2 doi: 10.1016/j.celrep.2016.05.093 – ident: e_1_3_2_47_2 doi: 10.1038/s41583-018-0054-8 – ident: e_1_3_2_58_2 doi: 10.1126/science.1129947 – ident: e_1_3_2_83_2 doi: 10.1073/pnas.1308388110 – ident: e_1_3_2_80_2 doi: 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3 – ident: e_1_3_2_90_2 doi: 10.1038/nprot.2006.276 – ident: e_1_3_2_59_2 doi: 10.1073/pnas.1511910112 – ident: e_1_3_2_74_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_30_2 doi: 10.1016/j.neuron.2016.04.001 – ident: e_1_3_2_78_2 – ident: e_1_3_2_40_2 doi: 10.1016/j.neuron.2015.02.020 – ident: e_1_3_2_48_2 doi: 10.1371/journal.pone.0074667 – ident: e_1_3_2_35_2 doi: 10.1016/S0896-6273(00)80782-5 – ident: e_1_3_2_60_2 doi: 10.1038/s41586-018-0833-4 – ident: e_1_3_2_67_2 doi: 10.1107/S0907444913015308 – ident: e_1_3_2_64_2 doi: 10.1523/JNEUROSCI.0075-15.2015 – ident: e_1_3_2_26_2 doi: 10.1016/j.tins.2016.12.004 – ident: e_1_3_2_5_2 doi: 10.1016/j.biopsych.2017.03.005 – ident: e_1_3_2_57_2 doi: 10.1016/j.neuron.2018.10.018 – ident: e_1_3_2_42_2 doi: 10.1016/j.neuron.2017.10.006 – ident: e_1_3_2_16_2 doi: 10.1126/science.aae0104 – ident: e_1_3_2_43_2 doi: 10.1016/S0969-2126(94)00105-7 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.1811086115 – ident: e_1_3_2_27_2 doi: 10.1016/j.neuron.2014.12.020 – ident: e_1_3_2_36_2 doi: 10.1016/j.neuron.2007.06.020 – ident: e_1_3_2_76_2 doi: 10.1107/S0907444910007493 – ident: e_1_3_2_12_2 doi: 10.1111/j.1460-9568.2010.07338.x – ident: e_1_3_2_84_2 doi: 10.1111/j.1460-9568.2006.04710.x – ident: e_1_3_2_54_2 doi: 10.1089/neu.2006.23.635 – ident: e_1_3_2_41_2 doi: 10.1083/jcb.201812076 – ident: e_1_3_2_18_2 doi: 10.1111/j.1460-9568.2006.04950.x – ident: e_1_3_2_20_2 doi: 10.1038/nature21678 – ident: e_1_3_2_79_2 doi: 10.1038/nmeth.1206 |
SSID | ssj0009593 |
Score | 2.6189017 |
Snippet | Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also... The human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to ensure the efficient reception and... Synthetic excitatory synaptic organizerThe human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to... |
SourceID | pubmedcentral hal proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Affinity Alzheimer Disease - therapy Alzheimer's disease Anatomy Animal diseases Animal models Animals Ataxia Autism Autism Spectrum Disorders Balance Binding Biochemistry, Molecular Biology Brain C-Reactive Protein - chemistry C-Reactive Protein - pharmacology C-Reactive Protein - therapeutic use Cell adhesion Cell adhesion & migration Cell adhesion molecules Cell differentiation Cell surface Cerebellar ataxia Cerebellar Ataxia - therapy Cerebellum Circuit design Circuits Differentiation Disease Models, Animal Domains Epilepsy Gait Granule cells HEK293 Cells Hippocampus Humans Individualized Instruction Information retrieval Injuries Life Sciences Locomotion Long-term potentiation Mental disorders Mice Mice, Inbred C57BL Mice, Mutant Strains Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - pharmacology Nerve Tissue Proteins - therapeutic use Nervous system Neural networks Neural Pathways - drug effects Neurodegenerative diseases Neurological disorders Neurons Neurotransmitters Physiology Protein Domains Protein Precursors - chemistry Protein Precursors - pharmacology Protein Precursors - therapeutic use Proteins Receptors, AMPA - metabolism Receptors, Glutamate - genetics Recombinant Proteins - chemistry Recombinant Proteins - pharmacology Recombinant Proteins - therapeutic use Recovery of function Schizophrenia Spinal cord Spinal cord injuries Spine Spine - drug effects Spine - physiology Structural Elements (Construction) Structural members Synapses Synapses - drug effects Synaptogenesis α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
Title | A synthetic synaptic organizer protein restores glutamatergic neuronal circuits |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32855309 https://www.proquest.com/docview/2438014459 https://search.proquest.com/docview/2438683344 https://hal.science/hal-03396266 https://pubmed.ncbi.nlm.nih.gov/PMC7116145 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYEBIviI1fhYEM4mGoytTErhM_VmijQNke1kp7i86Ju0ZI6dQ2SOtfzzm20wT2MHiJrCR2It_5dGfffR8hH4XByQcWBxEXLOAgIAAw8HgJz2OI8qHIzIb-j3MxnvFvV8PWQXtdXbJRJ9n2zrqS_5Eq3kO5mirZf5BsMyjewDbKF68oYbzeS8YjAziAHpwBXcUW3JiG5Wna6lW_xmCo61VMCqRe96_xZwBdVL1Ce9evoSyNM5oVq6wqLKSTd1T9mkcHtDnUaYmyyU4c2RwCn1LgurX2Fy6rbWWpsb9XZWG2Notdvoi-XmhXNOS38Zt-Llf4a7nWu1SBS1jDz6rmRuqPi9XyFsdub1xEddqcKwTX1tgODE9kNGBta8wsc4tTO_Qf47sNfYuaUp-AUjyxoMNdSO3zi_RsNpmk09Or6R55aNASDcHCl6uwg8zsMJ9a1VR-yI67srcwybJ_RyJ_JtS2PJTpU_LEhRZ0ZPXkgDzQ5SF5ZMlGbw_JgZPNmh47rPFPz8jFiDYqRL0K0UaFqFMh6lWIdlSIehWiXoWek9nZ6fTzOHAcG0FmqCwCUAYgKEwyyecJACh0QAc5lwpts0qECjOeRZDPowS0YnoOeQLzWEiMRIcChGQvyH65LPUrQrmAHIMJKbjMDa-BVDIfyERJBoCtqEeO_VSmNxZKJa1D0EikbtZTN-s98gGnunnLQKCPR5PU3BswJjEIF7_CHjnykkjdolynkWFQCDkfyh553zxGk2nOwaDUy8q-IxLGOO-Rl1ZwzadYlBgiLewdd0Ta-Zfuk7JY1LDscYjREx--vsd335DHuxVxRPY3q0q_Red2o97VyvkbCTOwRw |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synthetic+synaptic+organizer+protein+restores+glutamatergic+neuronal+circuits&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Suzuki%2C+Kunimichi&rft.au=Elegheert%2C+Jonathan&rft.au=Song%2C+Inseon&rft.au=Sasakura%2C+Hiroyuki&rft.date=2020-08-28&rft.eissn=1095-9203&rft.volume=369&rft.issue=6507&rft_id=info:doi/10.1126%2Fscience.abb4853&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |