A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure

Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual...

Full description

Saved in:
Bibliographic Details
Published inCell systems Vol. 3; no. 4; pp. 346 - 360.e4
Main Authors Baron, Maayan, Veres, Adrian, Wolock, Samuel L., Faust, Aubrey L., Gaujoux, Renaud, Vetere, Amedeo, Ryu, Jennifer Hyoje, Wagner, Bridget K., Shen-Orr, Shai S., Klein, Allon M., Melton, Douglas A., Yanai, Itai
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. [Display omitted] •We report over 12,000 individual pancreatic cell transcriptomes in human and mouse•We detect novel expression of TFs, signaling receptors, and medically relevant genes•We identify subpopulations and heterogeneity within pancreatic cell types•We deconvolve bulk gene expression samples using the single-cell data Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells.
AbstractList Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells.
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. [Display omitted] •We report over 12,000 individual pancreatic cell transcriptomes in human and mouse•We detect novel expression of TFs, signaling receptors, and medically relevant genes•We identify subpopulations and heterogeneity within pancreatic cell types•We deconvolve bulk gene expression samples using the single-cell data Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells.
Author Gaujoux, Renaud
Faust, Aubrey L.
Wagner, Bridget K.
Ryu, Jennifer Hyoje
Veres, Adrian
Vetere, Amedeo
Baron, Maayan
Melton, Douglas A.
Yanai, Itai
Shen-Orr, Shai S.
Klein, Allon M.
Wolock, Samuel L.
AuthorAffiliation 3 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
1 Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
2 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
5 Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
4 Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
AuthorAffiliation_xml – name: 1 Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
– name: 2 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– name: 4 Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
– name: 5 Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
– name: 3 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
Author_xml – sequence: 1
  givenname: Maayan
  surname: Baron
  fullname: Baron, Maayan
  organization: Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
– sequence: 2
  givenname: Adrian
  surname: Veres
  fullname: Veres, Adrian
  organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 3
  givenname: Samuel L.
  surname: Wolock
  fullname: Wolock, Samuel L.
  organization: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 4
  givenname: Aubrey L.
  surname: Faust
  fullname: Faust, Aubrey L.
  organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 5
  givenname: Renaud
  surname: Gaujoux
  fullname: Gaujoux, Renaud
  organization: Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
– sequence: 6
  givenname: Amedeo
  surname: Vetere
  fullname: Vetere, Amedeo
  organization: Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
– sequence: 7
  givenname: Jennifer Hyoje
  surname: Ryu
  fullname: Ryu, Jennifer Hyoje
  organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 8
  givenname: Bridget K.
  surname: Wagner
  fullname: Wagner, Bridget K.
  organization: Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
– sequence: 9
  givenname: Shai S.
  surname: Shen-Orr
  fullname: Shen-Orr, Shai S.
  organization: Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
– sequence: 10
  givenname: Allon M.
  surname: Klein
  fullname: Klein, Allon M.
  email: allon_klein@hms.harvard.edu
  organization: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 11
  givenname: Douglas A.
  surname: Melton
  fullname: Melton, Douglas A.
  email: dmelton@harvard.edu
  organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 12
  givenname: Itai
  surname: Yanai
  fullname: Yanai, Itai
  email: itai.yanai@nyumc.org
  organization: Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27667365$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVARLaV_gAPykUuC7Xw5EkKqVkArtaKi5WzN2rOtV4kdbGcl_j1Ot6yAQ08eed57M_Pea3LkvENC3nJWcsbbD9tS4xBLkeuSyZJx_oKciJo1Rd0JdnSouTgmZzFuGWO87vOneEWORde2XdU2JySe01vr7gcsVjgM9C6AizrYKfnRanoNE_Ubmh6QXswjOArO0Gs_R6Q34HRAiPQ77hCGSC9dwlA8InIZoNCL4I2f5gGS9Y7epjDrNAd8Q15uMgPPnt5T8uPL57vVRXH17evl6vyq0I3gqQBYSw695LIxolk30BoQspeGr3WHAozRuqs5ZygyrjZMmLaR2Fe8g870ujoln_a607we0Whc1hrUFOwI4ZfyYNW_HWcf1L3fqUYIWYkuC7x_Egj-54wxqdHG5SxwmE1QXFZNK1vO6wx99_esw5A_TmeA2AN08DEG3BwgnKklUbVVS6JqSVQxqXKimST_I2mbHt3M-9rheerHPTU3cGcxqKgtOo3GBtRJGW-fo_8GWnC9OA
CitedBy_id crossref_primary_10_1166_mex_2021_1974
crossref_primary_10_7554_eLife_26476
crossref_primary_10_1186_s12859_021_04489_7
crossref_primary_10_1093_bib_bbac585
crossref_primary_10_7554_eLife_43803
crossref_primary_10_1161_ATVBAHA_124_321781
crossref_primary_10_3389_fmmed_2022_839338
crossref_primary_10_1093_bfgp_elx027
crossref_primary_10_1093_bib_bbad426
crossref_primary_10_1093_bioinformatics_btac819
crossref_primary_10_1016_j_celrep_2024_114047
crossref_primary_10_1038_s41467_017_00461_3
crossref_primary_10_1093_bioinformatics_btac825
crossref_primary_10_1093_bib_bbae511
crossref_primary_10_1016_j_mce_2021_111459
crossref_primary_10_26508_lsa_201900443
crossref_primary_10_1038_s41467_024_53717_0
crossref_primary_10_1186_s13059_022_02659_1
crossref_primary_10_1038_s41467_024_55415_3
crossref_primary_10_2337_db20_0873
crossref_primary_10_1016_j_celrep_2022_110377
crossref_primary_10_1038_s41588_021_00823_0
crossref_primary_10_1016_j_pan_2019_11_005
crossref_primary_10_1038_s41467_021_25725_x
crossref_primary_10_1109_JBHI_2023_3311340
crossref_primary_10_2337_db21_1104
crossref_primary_10_1038_s41467_022_31770_x
crossref_primary_10_1093_bib_bbaa188
crossref_primary_10_1093_nargab_lqab011
crossref_primary_10_1016_j_ceb_2017_11_014
crossref_primary_10_3390_genes12111670
crossref_primary_10_1016_j_immuni_2020_01_003
crossref_primary_10_1038_s41593_017_0029_5
crossref_primary_10_1016_j_celrep_2022_111238
crossref_primary_10_1038_s42003_023_04928_6
crossref_primary_10_1093_bib_bbae538
crossref_primary_10_1021_acs_jcim_2c01277
crossref_primary_10_1038_s41467_020_17968_x
crossref_primary_10_1093_bioinformatics_btz704
crossref_primary_10_1007_s00018_020_03710_9
crossref_primary_10_1097_TP_0000000000002217
crossref_primary_10_3389_fendo_2023_1132194
crossref_primary_10_3390_ijms25115936
crossref_primary_10_3390_ijms20225773
crossref_primary_10_1126_sciadv_abd0855
crossref_primary_10_1242_bio_060113
crossref_primary_10_1016_j_neucom_2025_129708
crossref_primary_10_1038_s41587_022_01219_z
crossref_primary_10_1109_TCBB_2022_3203592
crossref_primary_10_2337_db19_0687
crossref_primary_10_1186_s13059_023_03007_7
crossref_primary_10_1186_s12859_023_05579_4
crossref_primary_10_1093_bioinformatics_btz726
crossref_primary_10_1007_s00125_022_05699_1
crossref_primary_10_1186_s13059_024_03251_5
crossref_primary_10_1016_j_cels_2016_10_009
crossref_primary_10_1371_journal_pcbi_1011261
crossref_primary_10_1016_j_mce_2016_11_008
crossref_primary_10_1093_bib_bbab433
crossref_primary_10_1016_j_canlet_2024_217131
crossref_primary_10_1038_s41592_024_02410_7
crossref_primary_10_1016_j_tcb_2020_11_010
crossref_primary_10_1109_TCBB_2024_3458170
crossref_primary_10_1161_ATVBAHA_123_319378
crossref_primary_10_1101_gr_277522_122
crossref_primary_10_1016_j_ebiom_2024_105006
crossref_primary_10_1080_19382014_2024_2339558
crossref_primary_10_1038_s41467_020_16550_9
crossref_primary_10_1016_j_molmet_2023_101678
crossref_primary_10_1093_gigascience_giz106
crossref_primary_10_1038_s41467_023_44206_x
crossref_primary_10_1038_s41467_023_37126_3
crossref_primary_10_1038_s12276_020_0422_0
crossref_primary_10_1093_bib_bbac317
crossref_primary_10_1016_j_molmet_2022_101595
crossref_primary_10_1038_s41467_023_36635_5
crossref_primary_10_2337_db20_0802
crossref_primary_10_1038_s41591_021_01645_7
crossref_primary_10_1109_ACCESS_2021_3072613
crossref_primary_10_1038_s42256_022_00534_z
crossref_primary_10_1210_endocr_bqab148
crossref_primary_10_1016_j_tig_2017_01_010
crossref_primary_10_1371_journal_pone_0292554
crossref_primary_10_1007_s00125_024_06329_8
crossref_primary_10_1016_j_compbiomed_2022_105999
crossref_primary_10_1093_bioinformatics_btad731
crossref_primary_10_1016_j_cmet_2020_04_005
crossref_primary_10_1038_s41587_021_00867_x
crossref_primary_10_1186_s12864_024_10013_x
crossref_primary_10_3390_cells12010113
crossref_primary_10_1186_s12859_024_05944_x
crossref_primary_10_3390_ijms23073900
crossref_primary_10_1016_j_jmb_2019_08_005
crossref_primary_10_1038_s41467_020_15523_2
crossref_primary_10_1038_s41467_021_21365_3
crossref_primary_10_1007_s00335_020_09834_4
crossref_primary_10_3390_ijms25094720
crossref_primary_10_1038_s41422_020_0353_2
crossref_primary_10_1016_j_cmet_2023_10_001
crossref_primary_10_1016_j_stem_2018_10_010
crossref_primary_10_1126_scitranslmed_aax9106
crossref_primary_10_1016_j_cell_2019_11_010
crossref_primary_10_1007_s10489_022_03440_4
crossref_primary_10_1093_bioinformatics_btaa231
crossref_primary_10_1186_s12859_021_04278_2
crossref_primary_10_3389_fgene_2023_1179859
crossref_primary_10_3389_fgene_2023_1029758
crossref_primary_10_1158_2159_8290_CD_19_0094
crossref_primary_10_1186_s12864_022_08715_1
crossref_primary_10_1038_srep45961
crossref_primary_10_1242_dev_201306
crossref_primary_10_1038_s42256_022_00518_z
crossref_primary_10_1002_gepi_22494
crossref_primary_10_1016_j_kint_2017_06_033
crossref_primary_10_1093_g3journal_jkab098
crossref_primary_10_1038_s41551_020_0524_y
crossref_primary_10_1186_s13059_019_1850_9
crossref_primary_10_1038_s42256_020_00233_7
crossref_primary_10_2337_dc23_0380
crossref_primary_10_3390_cells12151970
crossref_primary_10_1038_s41588_022_01141_9
crossref_primary_10_7554_eLife_85056
crossref_primary_10_1038_s41467_024_50963_0
crossref_primary_10_1038_s42256_020_00244_4
crossref_primary_10_1016_j_jcmgh_2021_07_014
crossref_primary_10_1186_s12859_024_05706_9
crossref_primary_10_1093_nargab_lqad032
crossref_primary_10_12688_f1000research_50858_1
crossref_primary_10_1186_s12864_023_09232_5
crossref_primary_10_1093_gigascience_giae011
crossref_primary_10_3389_fendo_2021_722250
crossref_primary_10_1038_s41598_020_71805_1
crossref_primary_10_1007_s00125_017_4326_z
crossref_primary_10_1093_bfgp_elaa003
crossref_primary_10_1038_s41467_022_29576_y
crossref_primary_10_1186_s13148_023_01491_z
crossref_primary_10_1016_j_celrep_2020_108552
crossref_primary_10_1016_j_compbiomed_2022_106409
crossref_primary_10_1016_j_cmet_2018_11_016
crossref_primary_10_1186_s13059_023_03062_0
crossref_primary_10_1172_JCI129833
crossref_primary_10_3390_genes12060898
crossref_primary_10_1038_s41587_023_01663_5
crossref_primary_10_1186_s12859_020_03679_z
crossref_primary_10_7554_eLife_90419
crossref_primary_10_1371_journal_pgen_1010251
crossref_primary_10_1016_j_cels_2021_05_006
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1186_s12859_023_05224_0
crossref_primary_10_1371_journal_pone_0292961
crossref_primary_10_1016_j_molmet_2021_101213
crossref_primary_10_1093_bioinformatics_btac692
crossref_primary_10_12688_wellcomeopenres_15447_2
crossref_primary_10_12688_wellcomeopenres_15447_1
crossref_primary_10_3390_ijms22041833
crossref_primary_10_1210_endocr_bqad181
crossref_primary_10_1093_bioinformatics_btad546
crossref_primary_10_3390_app13137936
crossref_primary_10_1016_j_celrep_2021_108803
crossref_primary_10_1128_mbio_01376_22
crossref_primary_10_1016_j_jbc_2022_102654
crossref_primary_10_1109_TCBB_2021_3098394
crossref_primary_10_3389_fgene_2022_1038919
crossref_primary_10_1016_j_cell_2024_03_009
crossref_primary_10_1101_gr_275430_121
crossref_primary_10_1038_s41574_018_0097_y
crossref_primary_10_1016_j_crmeth_2024_100905
crossref_primary_10_1016_j_biotechadv_2024_108454
crossref_primary_10_2337_db22_0949
crossref_primary_10_3390_ijms24097701
crossref_primary_10_3389_fgene_2023_1290447
crossref_primary_10_1038_s41467_021_24172_y
crossref_primary_10_1038_s41591_020_1133_8
crossref_primary_10_1038_s41586_019_1168_5
crossref_primary_10_1038_s41598_021_03613_0
crossref_primary_10_1371_journal_pgen_1009080
crossref_primary_10_1007_s43657_021_00024_z
crossref_primary_10_14348_molcells_2023_2178
crossref_primary_10_3389_fcvm_2022_841928
crossref_primary_10_1093_nargab_lqab056
crossref_primary_10_1038_s41598_020_66848_3
crossref_primary_10_1053_j_gastro_2018_08_033
crossref_primary_10_1016_j_stemcr_2023_02_001
crossref_primary_10_3389_fendo_2020_619150
crossref_primary_10_1002_advs_202412095
crossref_primary_10_1093_nar_gkab481
crossref_primary_10_12677_BIPHY_2023_112003
crossref_primary_10_7717_peerj_9746
crossref_primary_10_1016_j_ymeth_2023_06_004
crossref_primary_10_1093_bioinformatics_btac007
crossref_primary_10_1073_pnas_2005477117
crossref_primary_10_1016_j_compbiomed_2024_109066
crossref_primary_10_1093_nar_gkab004
crossref_primary_10_1038_s41598_022_16072_y
crossref_primary_10_1093_bioinformatics_btae421
crossref_primary_10_1109_TCBB_2022_3230098
crossref_primary_10_1038_s41556_023_01103_1
crossref_primary_10_1371_journal_pbio_3002162
crossref_primary_10_1016_j_gpb_2022_06_006
crossref_primary_10_3389_fgene_2021_708981
crossref_primary_10_1103_PRXLife_2_043009
crossref_primary_10_1002_advs_202205442
crossref_primary_10_1186_s12929_022_00866_3
crossref_primary_10_3389_fendo_2021_736286
crossref_primary_10_1093_bioinformatics_btab286
crossref_primary_10_1093_bioinformatics_btaa198
crossref_primary_10_1016_j_cels_2020_08_018
crossref_primary_10_1371_journal_pcbi_1009548
crossref_primary_10_1109_TCBB_2023_3337231
crossref_primary_10_1016_j_ymeth_2024_05_007
crossref_primary_10_1371_journal_pcbi_1010772
crossref_primary_10_1093_bioinformatics_btac140
crossref_primary_10_1016_j_stemcr_2018_11_008
crossref_primary_10_1038_s41587_021_00896_6
crossref_primary_10_1371_journal_pone_0208998
crossref_primary_10_1165_rcmb_2018_0416TR
crossref_primary_10_1016_j_stemcr_2017_08_009
crossref_primary_10_1073_pnas_1901075116
crossref_primary_10_1172_jci_insight_153877
crossref_primary_10_1093_bib_bbae072
crossref_primary_10_1038_s41467_024_51891_9
crossref_primary_10_1109_TCBB_2022_3161131
crossref_primary_10_1186_s12864_020_07223_4
crossref_primary_10_15252_msb_20209620
crossref_primary_10_3390_biology13090713
crossref_primary_10_1053_j_gastro_2021_10_027
crossref_primary_10_1093_nar_gkaa191
crossref_primary_10_1109_TCBB_2022_3173587
crossref_primary_10_1371_journal_pcbi_1011641
crossref_primary_10_1371_journal_pcbi_1011880
crossref_primary_10_1093_nar_gkae313
crossref_primary_10_1126_science_aba7721
crossref_primary_10_1038_s41467_022_33136_9
crossref_primary_10_1038_s41419_021_04067_y
crossref_primary_10_1109_JBHI_2024_3383921
crossref_primary_10_1016_j_stem_2024_09_011
crossref_primary_10_1126_science_adn0953
crossref_primary_10_1093_bioinformatics_btac168
crossref_primary_10_1109_TCBB_2020_2979717
crossref_primary_10_1016_j_path_2022_05_007
crossref_primary_10_1016_j_cels_2019_05_007
crossref_primary_10_1038_s42003_024_07154_w
crossref_primary_10_1093_bib_bbad195
crossref_primary_10_1093_bib_bbae047
crossref_primary_10_1093_bioinformatics_btz295
crossref_primary_10_1016_j_bspc_2025_107502
crossref_primary_10_1109_JBHI_2024_3400050
crossref_primary_10_1038_s42255_022_00531_x
crossref_primary_10_3390_cancers14215302
crossref_primary_10_7554_eLife_67776
crossref_primary_10_1016_j_cell_2019_12_015
crossref_primary_10_15252_msb_20209438
crossref_primary_10_1111_dom_13381
crossref_primary_10_1038_s42003_021_02739_1
crossref_primary_10_1038_s41573_021_00262_w
crossref_primary_10_1007_s11094_025_03283_6
crossref_primary_10_3390_ijms22010261
crossref_primary_10_1016_j_stemcr_2020_09_009
crossref_primary_10_1093_bioinformatics_btae127
crossref_primary_10_1038_s41592_023_01899_8
crossref_primary_10_3389_fgene_2020_00407
crossref_primary_10_1093_bib_bbae273
crossref_primary_10_1038_s41467_025_57786_7
crossref_primary_10_1093_bioinformatics_btae371
crossref_primary_10_1002_pmic_202100265
crossref_primary_10_1038_s41591_020_0868_6
crossref_primary_10_1093_bioinformatics_btad043
crossref_primary_10_1111_dom_13390
crossref_primary_10_3390_genes11070792
crossref_primary_10_1016_j_crmeth_2023_100580
crossref_primary_10_1186_s12915_023_01553_x
crossref_primary_10_1021_acs_jcim_3c00674
crossref_primary_10_1093_bioinformatics_btac199
crossref_primary_10_1186_s12859_024_05895_3
crossref_primary_10_1186_s12915_025_02128_8
crossref_primary_10_1016_j_bpj_2023_01_039
crossref_primary_10_1172_jci_insight_151621
crossref_primary_10_2174_1574888X13666180918092729
crossref_primary_10_1101_gad_342378_120
crossref_primary_10_1093_nar_gkab1147
crossref_primary_10_1146_annurev_cellbio_100616_060818
crossref_primary_10_1016_j_gde_2021_05_003
crossref_primary_10_1038_s41467_021_22651_w
crossref_primary_10_1093_nar_gkab089
crossref_primary_10_3389_fendo_2021_635405
crossref_primary_10_1016_j_jtos_2023_12_003
crossref_primary_10_1016_j_compbiomed_2022_106050
crossref_primary_10_1038_s41598_023_32966_x
crossref_primary_10_1038_s41592_020_0825_9
crossref_primary_10_3389_fgene_2019_00978
crossref_primary_10_1093_nargab_lqad068
crossref_primary_10_1038_s41598_021_87805_8
crossref_primary_10_1109_TCBB_2021_3126641
crossref_primary_10_1007_s11427_022_2224_4
crossref_primary_10_1214_19_STS7560
crossref_primary_10_1016_j_ccell_2020_01_003
crossref_primary_10_1016_j_stemcr_2018_12_012
crossref_primary_10_1038_s41388_024_03074_5
crossref_primary_10_3390_cells8101161
crossref_primary_10_1016_j_bbcan_2020_188367
crossref_primary_10_1093_bib_bbae486
crossref_primary_10_1093_bib_bbae004
crossref_primary_10_1016_j_isci_2024_109027
crossref_primary_10_1042_BST20210825
crossref_primary_10_1093_bib_bbac068
crossref_primary_10_1093_bib_bbad157
crossref_primary_10_1142_S021972002450015X
crossref_primary_10_3390_genes13071176
crossref_primary_10_3390_ijms24065502
crossref_primary_10_1093_bib_bbad149
crossref_primary_10_1073_pnas_1802973116
crossref_primary_10_3389_fendo_2022_916688
crossref_primary_10_1038_s41598_021_99003_7
crossref_primary_10_1109_TCBB_2023_3242260
crossref_primary_10_1016_j_devcel_2023_03_011
crossref_primary_10_1038_s41467_020_16049_3
crossref_primary_10_1126_sciadv_aba8415
crossref_primary_10_1016_j_csbj_2021_05_046
crossref_primary_10_1016_j_devcel_2018_11_001
crossref_primary_10_1038_s41591_020_0968_3
crossref_primary_10_26599_BDMA_2024_9020011
crossref_primary_10_3389_fgene_2023_1182579
crossref_primary_10_3389_fgene_2021_666771
crossref_primary_10_3389_fimmu_2021_773280
crossref_primary_10_3390_ijms24054636
crossref_primary_10_35366_103550
crossref_primary_10_1093_bib_bbad179
crossref_primary_10_1002_path_5224
crossref_primary_10_1016_j_stemcr_2018_01_028
crossref_primary_10_1038_s41467_021_25534_2
crossref_primary_10_1109_ACCESS_2021_3052923
crossref_primary_10_1172_JCI153876
crossref_primary_10_1101_gr_254557_119
crossref_primary_10_3389_fcell_2024_1424278
crossref_primary_10_3390_cells9112464
crossref_primary_10_1038_s42003_023_04791_5
crossref_primary_10_1016_j_tem_2021_04_009
crossref_primary_10_1038_s41467_023_40895_6
crossref_primary_10_1038_s41467_024_49537_x
crossref_primary_10_1093_bioinformatics_btaf044
crossref_primary_10_1088_2632_2153_acd7c3
crossref_primary_10_1093_bioinformatics_btae198
crossref_primary_10_1016_j_ccm_2022_06_013
crossref_primary_10_1038_s41380_021_01347_z
crossref_primary_10_1109_TVCG_2022_3209408
crossref_primary_10_1093_bib_bbae203
crossref_primary_10_1093_gigascience_giab002
crossref_primary_10_1093_nar_gkab931
crossref_primary_10_1038_s41598_021_04473_4
crossref_primary_10_15252_msb_20199389
crossref_primary_10_1016_j_ejca_2021_03_005
crossref_primary_10_1016_j_xcrm_2021_100287
crossref_primary_10_1038_s41467_021_21312_2
crossref_primary_10_1016_j_regen_2021_100043
crossref_primary_10_1038_s41592_019_0355_5
crossref_primary_10_1093_biomethods_bpz019
crossref_primary_10_1093_lifemeta_loae038
crossref_primary_10_1038_s41587_019_0114_2
crossref_primary_10_2337_db19_0058
crossref_primary_10_1186_s13024_021_00507_7
crossref_primary_10_1186_s12864_021_07812_x
crossref_primary_10_1038_s41592_019_0466_z
crossref_primary_10_3389_fimmu_2021_756548
crossref_primary_10_1016_j_jmb_2025_168936
crossref_primary_10_1093_bioinformatics_btab706
crossref_primary_10_1158_2159_8290_CD_20_1637
crossref_primary_10_1186_s12933_021_01303_9
crossref_primary_10_1038_s41598_017_12335_1
crossref_primary_10_1093_bib_bbae216
crossref_primary_10_1186_s12859_024_05788_5
crossref_primary_10_1038_s41598_021_95287_x
crossref_primary_10_1016_j_cels_2019_06_004
crossref_primary_10_1007_s00125_018_4803_z
crossref_primary_10_1038_s41592_022_01412_7
crossref_primary_10_1016_j_isci_2024_111393
crossref_primary_10_1186_s12864_024_10335_w
crossref_primary_10_1093_bib_bbad124
crossref_primary_10_1038_s41467_024_55213_x
crossref_primary_10_1038_s42003_024_06475_0
crossref_primary_10_1093_bib_bbac275
crossref_primary_10_1210_en_2018_00833
crossref_primary_10_1242_dev_169854
crossref_primary_10_1038_s43018_021_00258_w
crossref_primary_10_1016_j_isci_2022_105366
crossref_primary_10_1016_j_gendis_2024_101323
crossref_primary_10_1109_TCBB_2022_3203185
crossref_primary_10_1093_bib_bbae209
crossref_primary_10_1093_bioadv_vbad030
crossref_primary_10_1186_s13059_019_1900_3
crossref_primary_10_1038_s41598_020_57599_2
crossref_primary_10_1186_s12859_022_05054_6
crossref_primary_10_1093_nar_gkab978
crossref_primary_10_1158_0008_5472_CAN_18_0689
crossref_primary_10_3389_fgene_2019_01253
crossref_primary_10_1053_j_gastro_2020_11_010
crossref_primary_10_1080_01621459_2024_2342639
crossref_primary_10_1186_s13059_017_1300_5
crossref_primary_10_1038_s41467_023_41228_3
crossref_primary_10_1186_s13059_024_03385_6
crossref_primary_10_1093_bib_bbac223
crossref_primary_10_1007_s42514_021_00081_w
crossref_primary_10_1093_bioinformatics_btab840
crossref_primary_10_1016_j_tcb_2023_07_004
crossref_primary_10_1038_s41598_020_57903_0
crossref_primary_10_1186_s13059_021_02452_6
crossref_primary_10_1038_s41587_021_00859_x
crossref_primary_10_1093_bib_bbab368
crossref_primary_10_1109_TCBB_2023_3298334
crossref_primary_10_1007_s10489_024_05442_w
crossref_primary_10_1172_jci_insight_183959
crossref_primary_10_1093_bioinformatics_btz801
crossref_primary_10_1016_j_yexcr_2019_111613
crossref_primary_10_1111_cei_13349
crossref_primary_10_1186_s13059_020_02096_y
crossref_primary_10_1016_j_cam_2024_115842
crossref_primary_10_1016_j_isci_2022_104659
crossref_primary_10_1038_s42255_023_00806_x
crossref_primary_10_1093_nargab_lqab102
crossref_primary_10_1016_j_molmet_2019_12_008
crossref_primary_10_1172_jci_insight_166386
crossref_primary_10_1186_s13059_021_02561_2
crossref_primary_10_1109_TCBB_2021_3110850
crossref_primary_10_1126_sciadv_add5430
crossref_primary_10_1210_endocr_bqac156
crossref_primary_10_1093_bib_bbad332
crossref_primary_10_1038_s41587_023_01782_z
crossref_primary_10_1016_j_jmccpl_2023_100048
crossref_primary_10_1186_s12864_023_09577_x
crossref_primary_10_1242_dev_201004
crossref_primary_10_1007_s41060_024_00709_4
crossref_primary_10_1093_bib_bbab147
crossref_primary_10_1016_j_celrep_2025_115315
crossref_primary_10_1371_journal_pcbi_1007939
crossref_primary_10_1016_j_compbiomed_2024_108211
crossref_primary_10_1038_s42255_024_01140_6
crossref_primary_10_1093_bib_bbae411
crossref_primary_10_1016_j_celrep_2023_112913
crossref_primary_10_1038_s41467_023_44186_y
crossref_primary_10_1093_bib_bbab379
crossref_primary_10_1038_s41467_022_34271_z
crossref_primary_10_1016_j_tem_2018_10_002
crossref_primary_10_1038_s42003_020_01463_6
crossref_primary_10_1186_s13059_019_1639_x
crossref_primary_10_1056_NEJMcibr1616217
crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_1093_nar_gkab775
crossref_primary_10_1371_journal_pcbi_1012241
crossref_primary_10_1093_bib_bbab570
crossref_primary_10_1093_bib_bbad507
crossref_primary_10_1097_MED_0000000000000322
crossref_primary_10_1210_endrev_bnab010
crossref_primary_10_1038_s41467_023_41860_z
crossref_primary_10_1093_bib_bbab565
crossref_primary_10_3389_fcell_2018_00141
crossref_primary_10_1016_j_celrep_2024_115057
crossref_primary_10_1007_s12022_024_09826_z
crossref_primary_10_1016_j_molmet_2022_101467
crossref_primary_10_1177_0333102419877834
crossref_primary_10_3389_fbioe_2020_00786
crossref_primary_10_1186_s13073_022_01026_w
crossref_primary_10_1093_bioinformatics_btab410
crossref_primary_10_1172_jci_insight_156549
crossref_primary_10_1146_annurev_immunol_042617_053035
crossref_primary_10_1186_s13059_020_02006_2
crossref_primary_10_1371_journal_pcbi_1012224
crossref_primary_10_1038_s41598_018_27627_3
crossref_primary_10_3389_fimmu_2021_751701
crossref_primary_10_1002_bies_202200186
crossref_primary_10_1186_s13059_018_1449_6
crossref_primary_10_1016_j_jare_2024_10_035
crossref_primary_10_1016_j_metabol_2024_156042
crossref_primary_10_1186_s13059_021_02565_y
crossref_primary_10_3390_ijms23042082
crossref_primary_10_1007_s11033_021_06147_w
crossref_primary_10_1242_dev_173716
crossref_primary_10_1038_s41467_021_25957_x
crossref_primary_10_1093_nargab_lqaa002
crossref_primary_10_3390_math11173785
crossref_primary_10_1038_s42255_020_00314_2
crossref_primary_10_1093_bib_bbad525
crossref_primary_10_1371_journal_pcbi_1012014
crossref_primary_10_1038_s42003_024_07315_x
crossref_primary_10_7554_eLife_38519
crossref_primary_10_1093_bib_bbz166
crossref_primary_10_1093_bib_bby076
crossref_primary_10_1142_S0219720022500019
crossref_primary_10_1016_j_compbiomed_2024_108497
crossref_primary_10_1093_bioinformatics_btaa108
crossref_primary_10_1038_s41592_023_01814_1
crossref_primary_10_1038_s41467_023_43605_4
crossref_primary_10_1186_s12864_024_10728_x
crossref_primary_10_1093_bib_bbab584
crossref_primary_10_1093_bib_bbac430
crossref_primary_10_1016_j_ccell_2022_09_009
crossref_primary_10_1038_s41576_018_0088_9
crossref_primary_10_1016_j_molmet_2021_101188
crossref_primary_10_1093_bib_bbad512
crossref_primary_10_1016_j_xcrm_2021_100434
crossref_primary_10_1038_s41467_021_27729_z
crossref_primary_10_1073_pnas_1918314117
crossref_primary_10_2174_1574893618666230217085543
crossref_primary_10_1007_s00109_020_01887_x
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_1016_j_coph_2021_06_006
crossref_primary_10_1038_s42255_019_0075_2
crossref_primary_10_1186_s13059_019_1862_5
crossref_primary_10_12688_f1000research_22969_2
crossref_primary_10_3389_fendo_2021_642152
crossref_primary_10_1093_bioinformatics_btae711
crossref_primary_10_1002_stem_2719
crossref_primary_10_1016_j_molmet_2019_06_015
crossref_primary_10_1093_bib_bbac616
crossref_primary_10_1038_s41598_022_26434_1
crossref_primary_10_1016_j_cels_2023_12_005
crossref_primary_10_1186_s13059_019_1764_6
crossref_primary_10_1093_bib_bbaa433
crossref_primary_10_1007_s12015_024_10752_0
crossref_primary_10_1038_s41587_019_0392_8
crossref_primary_10_1155_2022_9639304
crossref_primary_10_1038_s41556_019_0439_6
crossref_primary_10_1093_jmcb_mjy064
crossref_primary_10_1111_pedi_13453
crossref_primary_10_3389_fcell_2021_732776
crossref_primary_10_1093_bioinformatics_btac300
crossref_primary_10_1038_s42003_023_04668_7
crossref_primary_10_1093_bioinformatics_bty793
crossref_primary_10_15252_embj_2020106785
crossref_primary_10_3389_fgene_2017_00022
crossref_primary_10_3390_genes11060645
crossref_primary_10_1016_j_molmet_2024_102070
crossref_primary_10_1038_nrg_2017_15
crossref_primary_10_1038_s41556_019_0428_9
crossref_primary_10_1155_2020_8624963
crossref_primary_10_1038_s41392_022_01034_7
crossref_primary_10_1038_s41467_020_15816_6
crossref_primary_10_1038_s41576_022_00449_w
crossref_primary_10_1093_nargab_lqae004
crossref_primary_10_1002_adfm_202309108
crossref_primary_10_1016_j_jbi_2022_104093
crossref_primary_10_1016_j_cmet_2019_12_009
crossref_primary_10_1038_s41467_023_35923_4
crossref_primary_10_1016_j_stem_2021_08_001
crossref_primary_10_1254_fpj_153_61
crossref_primary_10_3389_fendo_2023_1226615
crossref_primary_10_1186_s12864_020_07302_6
crossref_primary_10_1038_s41467_023_41306_6
crossref_primary_10_1038_s41576_019_0093_7
crossref_primary_10_1007_s11892_018_1085_2
crossref_primary_10_1016_j_isci_2020_100914
crossref_primary_10_1038_s41598_021_98806_y
crossref_primary_10_7554_eLife_48994
crossref_primary_10_1074_jbc_RA120_014368
crossref_primary_10_1161_CIRCRESAHA_119_315940
crossref_primary_10_1016_j_mam_2017_07_002
crossref_primary_10_1093_nargab_lqac056
crossref_primary_10_1093_bioinformatics_btac563
crossref_primary_10_1038_nmeth_4644
crossref_primary_10_1371_journal_pcbi_1010025
crossref_primary_10_1093_bib_bbac625
crossref_primary_10_1152_ajpendo_00649_2020
crossref_primary_10_1038_s41467_023_41855_w
crossref_primary_10_1038_s41551_021_00737_6
crossref_primary_10_3389_fonc_2022_1063477
crossref_primary_10_1186_s13073_021_00941_8
crossref_primary_10_3389_fimmu_2023_1288027
crossref_primary_10_1038_s41467_022_33758_z
crossref_primary_10_1007_s12022_020_09611_8
crossref_primary_10_1016_j_omtn_2019_12_035
crossref_primary_10_1242_dev_179051
crossref_primary_10_1038_s41551_021_00757_2
crossref_primary_10_1007_s12551_023_01174_2
crossref_primary_10_1038_nbt_4096
crossref_primary_10_1038_s41467_022_29588_8
crossref_primary_10_1016_j_immuni_2018_04_015
crossref_primary_10_1126_sciadv_aaw3851
crossref_primary_10_1038_nbt_4091
crossref_primary_10_1093_nargab_lqaa064
crossref_primary_10_3390_ijms22073306
crossref_primary_10_1093_nar_gkab380
crossref_primary_10_3389_fnins_2022_972201
crossref_primary_10_1016_j_molmet_2021_101330
crossref_primary_10_1016_j_celrep_2019_02_043
crossref_primary_10_1109_TCBB_2024_3405731
crossref_primary_10_1109_TCBB_2023_3328029
crossref_primary_10_1109_ACCESS_2020_3022718
crossref_primary_10_1186_s13059_022_02785_w
crossref_primary_10_1038_s41588_021_00806_1
crossref_primary_10_1007_s40472_017_0161_x
crossref_primary_10_1186_s13059_017_1257_4
crossref_primary_10_1093_gigascience_giad098
crossref_primary_10_1242_dev_201873
crossref_primary_10_1093_nar_gkac486
crossref_primary_10_1038_s41467_018_06498_2
crossref_primary_10_1016_j_jgg_2022_01_004
crossref_primary_10_1371_journal_pcbi_1007040
crossref_primary_10_2337_db21_0170
crossref_primary_10_1093_bioinformatics_btad449
crossref_primary_10_1038_s41596_018_0073_y
crossref_primary_10_1109_TPAMI_2022_3222104
crossref_primary_10_1093_nargab_lqac022
crossref_primary_10_1038_s41581_018_0021_7
crossref_primary_10_1007_s00521_024_09662_6
crossref_primary_10_1172_JCI169349
crossref_primary_10_2337_db21_1030
crossref_primary_10_1093_bib_bbab508
crossref_primary_10_1186_s13059_021_02280_8
crossref_primary_10_1186_s13578_023_01003_9
crossref_primary_10_3389_fcell_2025_1531903
crossref_primary_10_1093_bioinformatics_btab273
crossref_primary_10_1186_s13059_024_03339_y
crossref_primary_10_1007_s11892_020_01357_1
crossref_primary_10_1186_s12859_024_05814_6
crossref_primary_10_1186_s10020_024_00871_2
crossref_primary_10_1038_s12276_023_01043_8
crossref_primary_10_1016_j_jcmgh_2018_01_023
crossref_primary_10_1016_j_mce_2024_112272
crossref_primary_10_1016_j_celrep_2023_113237
crossref_primary_10_1016_j_jbi_2023_104510
crossref_primary_10_1002_qub2_85
crossref_primary_10_1016_j_eswa_2024_124702
crossref_primary_10_1093_gigascience_giaa075
crossref_primary_10_1093_bfgp_elad004
crossref_primary_10_1016_j_isci_2023_106439
crossref_primary_10_1016_j_molmet_2017_04_012
crossref_primary_10_3389_fgene_2022_1058057
crossref_primary_10_1016_j_molmet_2017_04_011
crossref_primary_10_1073_pnas_1817715116
crossref_primary_10_1080_10618600_2023_2256502
crossref_primary_10_1038_s41398_020_00994_0
crossref_primary_10_1038_s41575_020_0304_x
crossref_primary_10_2337_db23_0130
crossref_primary_10_1038_s42003_023_05634_z
crossref_primary_10_1002_qub2_91
crossref_primary_10_1016_j_stem_2021_03_005
crossref_primary_10_1038_s41591_021_01586_1
crossref_primary_10_7554_eLife_90419_2
crossref_primary_10_1093_bioinformatics_btab175
crossref_primary_10_1038_s41598_021_98534_3
crossref_primary_10_1007_s00424_017_2006_y
crossref_primary_10_1038_s41592_019_0372_4
crossref_primary_10_1186_s12915_017_0362_x
crossref_primary_10_1038_s41467_024_53068_w
crossref_primary_10_1016_j_coisb_2017_07_004
crossref_primary_10_1038_s41467_020_17281_7
crossref_primary_10_1186_s13059_019_1795_z
crossref_primary_10_1038_s41593_021_01005_1
crossref_primary_10_1016_j_cell_2019_05_031
crossref_primary_10_1021_acsomega_8b02171
crossref_primary_10_1002_jgm_3017
crossref_primary_10_1038_s41586_023_06139_9
crossref_primary_10_1038_s41467_017_02539_4
crossref_primary_10_1038_s42003_023_04820_3
crossref_primary_10_15252_embr_202256416
crossref_primary_10_1016_j_cell_2019_05_006
crossref_primary_10_1074_jbc_RA117_001102
crossref_primary_10_1126_sciadv_aba2619
crossref_primary_10_1016_j_mcpro_2022_100229
crossref_primary_10_1038_s41467_022_32097_3
crossref_primary_10_1093_bib_bbaf071
crossref_primary_10_1186_s13059_021_02548_z
crossref_primary_10_1016_j_csbj_2025_03_018
crossref_primary_10_1080_10543406_2023_2208671
crossref_primary_10_1371_journal_pone_0311791
crossref_primary_10_1007_s10994_021_06043_1
crossref_primary_10_1371_journal_pcbi_1008120
crossref_primary_10_1038_s41587_021_00895_7
crossref_primary_10_1088_1478_3975_ab2a9d
crossref_primary_10_2337_dbi18_0019
crossref_primary_10_1172_jci_insight_151551
crossref_primary_10_1093_bioinformatics_bty293
crossref_primary_10_1182_blood_2020007885
crossref_primary_10_1016_j_molmet_2017_04_003
crossref_primary_10_1038_s41467_021_23518_w
crossref_primary_10_1038_s41576_021_00370_8
crossref_primary_10_3389_fgene_2020_572242
crossref_primary_10_3389_fimmu_2022_853349
crossref_primary_10_1093_bioinformatics_btz392
crossref_primary_10_3390_cells10123585
crossref_primary_10_4252_wjsc_v13_i3_193
crossref_primary_10_1016_j_csbj_2024_08_028
crossref_primary_10_1186_s12859_021_04385_0
crossref_primary_10_1038_s41467_025_56424_6
crossref_primary_10_1016_j_cmet_2021_05_015
crossref_primary_10_1186_s12859_020_3401_5
crossref_primary_10_1016_j_cmet_2021_05_013
crossref_primary_10_1016_j_cmet_2020_11_005
crossref_primary_10_1016_j_cmet_2020_11_006
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1038_s41467_018_08023_x
crossref_primary_10_1038_s42003_024_07264_5
crossref_primary_10_1186_s12915_023_01728_6
crossref_primary_10_1093_bib_bbae160
crossref_primary_10_1038_s41596_024_00991_3
crossref_primary_10_1093_bioinformatics_btz177
crossref_primary_10_1007_s11428_021_00817_w
crossref_primary_10_1093_bioinformatics_btae480
crossref_primary_10_1101_gr_278439_123
crossref_primary_10_1038_s41467_017_02659_x
crossref_primary_10_2337_db20_1115
crossref_primary_10_1681_ASN_2020121742
crossref_primary_10_3390_ijms251810147
crossref_primary_10_1021_acs_jproteome_1c00463
crossref_primary_10_1016_j_apm_2020_08_065
crossref_primary_10_1038_s41598_024_54798_z
crossref_primary_10_1186_s13059_024_03357_w
crossref_primary_10_1093_bib_bbad061
crossref_primary_10_1016_j_csbj_2022_04_023
crossref_primary_10_1093_bib_bbae392
crossref_primary_10_1038_s41598_022_06500_4
crossref_primary_10_3389_fendo_2023_1196460
crossref_primary_10_1093_nar_gkab1275
crossref_primary_10_1016_j_jtos_2021_02_001
crossref_primary_10_1038_s43018_022_00356_3
crossref_primary_10_1186_s13059_023_03034_4
crossref_primary_10_1016_j_stemcr_2022_03_013
crossref_primary_10_1016_j_compbiomed_2024_108921
crossref_primary_10_1038_s42255_023_00876_x
crossref_primary_10_1038_s41598_023_42482_7
crossref_primary_10_1093_bib_bbaf031
crossref_primary_10_1016_j_molmet_2019_06_002
crossref_primary_10_1093_bioinformatics_btae020
crossref_primary_10_1186_s12864_024_10160_1
crossref_primary_10_1038_s41467_024_50281_5
crossref_primary_10_1186_s12859_021_04187_4
crossref_primary_10_1186_s12859_021_04165_w
crossref_primary_10_1186_s13293_024_00595_2
crossref_primary_10_3389_fgene_2022_831040
crossref_primary_10_3390_ijms23148038
crossref_primary_10_1016_j_cmet_2017_04_003
crossref_primary_10_1038_s41598_023_31915_y
crossref_primary_10_1093_bib_bbad081
crossref_primary_10_1136_gutjnl_2022_329313
crossref_primary_10_1109_JBHI_2023_3319551
crossref_primary_10_1152_physrev_00008_2021
crossref_primary_10_3390_genes13061015
crossref_primary_10_1016_j_ccell_2023_06_006
crossref_primary_10_1093_nar_gkae480
crossref_primary_10_1109_TCBB_2024_3362472
crossref_primary_10_3390_cancers15030936
crossref_primary_10_1093_bioinformatics_btaa908
crossref_primary_10_1186_s13073_023_01179_2
crossref_primary_10_2337_db22_0121
crossref_primary_10_1038_s41467_021_23295_6
crossref_primary_10_1016_j_inffus_2024_102754
crossref_primary_10_1038_s41598_020_66556_y
crossref_primary_10_1126_sciadv_abm1831
crossref_primary_10_1016_j_cobme_2020_06_003
crossref_primary_10_1016_j_cmet_2017_08_007
crossref_primary_10_1016_j_molmet_2017_06_021
crossref_primary_10_1016_j_isci_2020_101774
crossref_primary_10_1073_pnas_1820006116
crossref_primary_10_3390_cells10050973
crossref_primary_10_1038_s41467_020_14561_0
crossref_primary_10_1038_s41556_023_01150_8
crossref_primary_10_1093_bioinformatics_btaa919
crossref_primary_10_1016_j_xpro_2024_103067
crossref_primary_10_1016_j_csbj_2022_06_010
crossref_primary_10_1038_s41467_018_06318_7
crossref_primary_10_1093_bib_bbae112
crossref_primary_10_1096_fj_201801397R
crossref_primary_10_1038_s41467_024_50192_5
crossref_primary_10_1016_j_crmeth_2024_100799
crossref_primary_10_1038_s41467_020_15821_9
crossref_primary_10_1016_j_crmeth_2024_100797
crossref_primary_10_1093_bib_bbab085
crossref_primary_10_1186_s12859_022_04574_5
crossref_primary_10_1038_s41467_021_23656_1
crossref_primary_10_1016_j_xcrm_2022_100879
crossref_primary_10_1038_s42255_019_0135_7
crossref_primary_10_1002_advs_202306770
crossref_primary_10_3390_genes11040377
crossref_primary_10_1016_j_jhepr_2021_100278
crossref_primary_10_1038_s41467_018_03282_0
crossref_primary_10_2337_db23_0508
crossref_primary_10_1093_bioinformatics_btaa935
crossref_primary_10_1007_s00432_024_05855_7
crossref_primary_10_1016_j_semnephrol_2017_09_005
crossref_primary_10_1093_nar_gkz959
crossref_primary_10_15252_msb_20199005
crossref_primary_10_7554_eLife_66747
crossref_primary_10_1371_journal_pgen_1010825
crossref_primary_10_1093_bioinformatics_btae063
crossref_primary_10_1007_s13042_022_01635_2
crossref_primary_10_1136_jitc_2019_000363
crossref_primary_10_1038_s41586_020_2157_4
crossref_primary_10_1093_bioadv_vbae032
crossref_primary_10_1186_s13059_023_03049_x
crossref_primary_10_1186_s12915_024_01963_5
crossref_primary_10_1038_s41467_023_36383_6
crossref_primary_10_1038_s41592_018_0033_z
crossref_primary_10_1038_s41596_021_00575_5
crossref_primary_10_1093_bib_bbad045
crossref_primary_10_1016_j_ajt_2023_10_001
crossref_primary_10_1093_bib_bbae370
crossref_primary_10_1371_journal_pcbi_1009600
crossref_primary_10_1002_advs_202308934
crossref_primary_10_3389_fgene_2022_825896
crossref_primary_10_1097_PAS_0000000000001811
crossref_primary_10_1109_TCBB_2022_3170587
crossref_primary_10_1186_s12859_021_04381_4
crossref_primary_10_2139_ssrn_3387654
crossref_primary_10_1186_s12859_023_05339_4
crossref_primary_10_1016_j_scr_2018_04_010
crossref_primary_10_1016_j_cmet_2022_11_009
crossref_primary_10_3389_fgene_2022_855076
crossref_primary_10_3390_ijms23010501
crossref_primary_10_2337_db24_0215
crossref_primary_10_1093_bib_bbad475
crossref_primary_10_1002_path_6211
crossref_primary_10_1007_s12572_018_0239_4
crossref_primary_10_1038_s41467_023_40314_w
crossref_primary_10_1016_j_stem_2021_04_005
crossref_primary_10_1093_bib_bbae315
crossref_primary_10_1093_bib_bbae558
crossref_primary_10_1038_s41467_020_19015_1
crossref_primary_10_1186_s13059_022_02649_3
crossref_primary_10_3390_genes14030596
crossref_primary_10_1038_s41422_019_0195_y
crossref_primary_10_1126_science_aaw2619
crossref_primary_10_1016_j_cgh_2020_04_040
crossref_primary_10_3389_fcell_2021_655152
crossref_primary_10_1016_j_cell_2018_12_003
crossref_primary_10_1016_j_celrep_2020_01_083
crossref_primary_10_1371_journal_pone_0284527
crossref_primary_10_1093_nar_gkz543
crossref_primary_10_1186_s13059_020_02048_6
crossref_primary_10_1210_endocr_bqaa108
crossref_primary_10_1093_bib_bbae305
crossref_primary_10_1093_bioinformatics_btab821
crossref_primary_10_1093_bioinformatics_btaa976
crossref_primary_10_3892_mmr_2024_13283
crossref_primary_10_1093_bib_bbae586
crossref_primary_10_1093_bioadv_vbac049
crossref_primary_10_1016_j_celrep_2020_108067
crossref_primary_10_21105_joss_05024
crossref_primary_10_1038_s41596_018_0058_x
crossref_primary_10_1016_j_yexcr_2021_112966
crossref_primary_10_1016_j_celrep_2022_110508
crossref_primary_10_1038_s41467_019_10802_z
crossref_primary_10_1038_s41587_021_01001_7
crossref_primary_10_3390_cancers13194932
crossref_primary_10_3390_ijms22031000
crossref_primary_10_1093_bioinformatics_btab834
crossref_primary_10_1109_JBHI_2024_3468310
crossref_primary_10_1111_1753_0407_13236
crossref_primary_10_1053_j_gastro_2020_12_028
crossref_primary_10_1016_j_cell_2019_08_006
crossref_primary_10_1109_ACCESS_2020_3040943
crossref_primary_10_1007_s00018_021_03951_2
crossref_primary_10_1038_s41587_019_0113_3
crossref_primary_10_1007_s00109_024_02460_6
crossref_primary_10_1016_j_compbiomed_2023_107152
Cites_doi 10.1186/s13059-016-0938-8
10.1016/j.stem.2012.11.023
10.1210/jc.2002-020735
10.1016/j.tins.2011.11.006
10.1126/science.aaa6090
10.1172/JCI30910
10.1016/S0140-6736(75)92078-4
10.1002/glia.20761
10.2337/db06-0885
10.1016/j.cell.2014.09.040
10.1242/dev.02770
10.1016/j.cmet.2012.08.010
10.1038/nature07314
10.1369/jhc.5C6684.2005
10.3389/fendo.2011.00112
10.1073/pnas.0912589107
10.1038/nbt.3033
10.1186/gb-2004-5-10-r80
10.1126/science.aaa1934
10.15252/embr.201540946
10.1038/nmeth.2892
10.1016/j.coi.2013.09.015
10.1172/JCI79264
10.1038/nbt.2141
10.1073/pnas.1402665111
10.1007/s00125-011-2283-5
10.15252/embj.201591058
10.1016/j.celrep.2012.08.003
10.1016/B978-0-12-384892-5.00010-4
10.1016/S0002-9440(10)65211-X
10.1371/journal.pone.0052181
10.1016/j.stemcr.2015.02.017
10.1007/s10620-006-9589-z
10.1007/s00109-005-0680-2
10.1679/aohc.46.327
10.1093/bioinformatics/btu170
10.1016/0968-0004(93)90170-R
10.1387/ijdb.072444cb
10.1038/nmeth.1923
10.1101/gr.150706.112
10.1093/bioinformatics/btv483
10.1007/s00125-007-0816-8
10.1016/j.cell.2015.04.044
10.1073/pnas.1602306113
10.4158/EP12138.RA
10.1038/nmeth.3337
10.1126/science.1161431
10.1038/nmeth.1439
10.1038/ng.493
10.1002/wdev.44
10.1177/1087057111430253
10.1126/science.1250212
10.1172/JCI30076
10.1085/jgp.200810122
10.1146/annurev.physiol.67.031103.153247
10.1073/pnas.0510790103
10.1093/bioinformatics/btp616
10.1038/srep13383
10.2337/db15-0039
10.1186/1471-2164-15-620
10.1038/nature13173
10.1038/nbt.3082
10.1038/nm.3872
10.1007/s00125-014-3213-0
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cels.2016.08.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2405-4720
EndPage 360.e4
ExternalDocumentID PMC5228327
27667365
10_1016_j_cels_2016_08_011
S2405471216302666
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM080177
GroupedDBID 0R~
457
6I.
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFS
ADBBV
ADJPV
AFTJW
AHDRD
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
JIG
M41
NCXOZ
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-aab81a98185d25b5a6da2898d1bc7e2addcc74110e281a4d02d658e9317a7d9c3
ISSN 2405-4712
IngestDate Thu Aug 21 18:06:16 EDT 2025
Fri Jul 11 09:31:22 EDT 2025
Wed Feb 19 02:35:12 EST 2025
Tue Jul 01 04:22:55 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 23 02:22:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-aab81a98185d25b5a6da2898d1bc7e2addcc74110e281a4d02d658e9317a7d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Present address: Institute for Computational Medicine, New York University School of Medicine, New York, NY 10016, USA
Co-first author
OpenAccessLink https://dx.doi.org/10.1016/j.cels.2016.08.011
PMID 27667365
PQID 1835686114
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5228327
proquest_miscellaneous_1835686114
pubmed_primary_27667365
crossref_primary_10_1016_j_cels_2016_08_011
crossref_citationtrail_10_1016_j_cels_2016_08_011
elsevier_sciencedirect_doi_10_1016_j_cels_2016_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-26
PublicationDateYYYYMMDD 2016-10-26
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell systems
PublicationTitleAlternate Cell Syst
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Grube, Bohn (bib15) 1983; 46
Kimmel, Meyer (bib25) 2010; 100
Li, Cavelti-Weder, Zhang, Clement, Donovan, Gonzalez, Zhu, Stemann, Xu, Hashimoto (bib31) 2014; 32
Blum, Hrvatin, Schuetz, Bonal, Rezania, Melton (bib3) 2012; 30
van der Meulen, Xie, Kelly, Vale, Sander, Huising (bib56) 2012; 7
Drel, Mashtalir, Ilnytska, Shin, Li, Lyzogubov, Obrosova (bib11) 2006; 55
Nica, Ongen, Irminger, Bosco, Berney, Antonarakis, Halban, Dermitzakis (bib40) 2013; 23
Orci, Unger (bib42) 1975; 2
Zaret, Grompe (bib64) 2008; 322
Zhou, Brown, Kanarek, Rajagopal, Melton (bib66) 2008; 455
Drucker (bib12) 2007; 117
Lee, Daugharthy, Scheiman, Kalhor, Yang, Ferrante, Terry, Jeanty, Li, Amamoto (bib29) 2014; 343
Newman, Liu, Green, Gentles, Feng, Xu, Hoang, Diehn, Alizadeh (bib39) 2015; 12
Jessen, Mirsky (bib23) 2008; 56
Pereira, Lebrun-Julien, Suter (bib44) 2012; 35
Langmead, Salzberg (bib28) 2012; 9
Li, Klughammer, Farlik, Penz, Spittler, Barbieux, Berishvili, Bock, Kubicek (bib32) 2016; 17
Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (bib33) 2014; 11
Wallace, Smyth, Maisuria-Armer, Walker, Todd, Clayton (bib58) 2010; 42
Hashimshony, Wagner, Sher, Yanai (bib17) 2012; 2
Chen, Boettiger, Moffitt, Wang, Zhuang (bib9) 2015; 348
Sharma, O’Donnell, Stamateris, Ha, McCloskey, Reynolds, Arvan, Alonso (bib49) 2015; 125
Russ, Parent, Ringler, Hennings, Nair, Shveygert, Guo, Puri, Haataja, Cirulli (bib48) 2015; 34
Shen-Orr, Gaujoux (bib50) 2013; 25
Johnson, O’Brien, Hayden, Jordan, Ghobrial, Mahoney, Westermark (bib24) 1988; 130
Bolger, Lohse, Usadel (bib4) 2014; 30
Hashimshony, Senderovich, Avital, Klochendler, de Leeuw, Anavy, Gennert, Li, Livak, Rozenblatt-Rosen (bib18) 2016; 17
Steward, Ishiguro, Case (bib52) 2005; 67
Gentleman, Carey, Bates, Bolstad, Dettling, Dudoit, Ellis, Gautier, Ge, Gentry (bib14) 2004; 5
Shen-Orr, Tibshirani, Khatri, Bodian, Staedtler, Perry, Hastie, Sarwal, Davis, Butte (bib51) 2010; 7
Nostro, Sarangi, Yang, Holland, Elefanty, Stanley, Greiner, Keller (bib41) 2015; 4
Zeisel, Manchado, Codeluppi, Lonnerberg, La Manno, Jureus, Marques, Munguba, He, Betsholtz (bib65) 2015; 347
Mastracci, Sussel (bib35) 2012; 1
Whitcomb, Lowe (bib60) 2007; 52
Morán, Akerman, van de Bunt, Xie, Benazra, Nammo, Arnes, Nakić, García-Hurtado, Rodríguez-Seguí (bib36) 2012; 16
Xie, Everett, Lim, Patel, Schug, Kroon, Kelly, Wang, D’Amour, Robins (bib61) 2013; 12
Haber, Keogh, Apte, Moran, Stewart, Crawford, Pirola, McCaughan, Ramm, Wilson (bib16) 1999; 155
Brissova, Fowler, Nicholson, Chu, Hirshberg, Harlan, Powers (bib6) 2005; 53
Treutlein, Brownfield, Wu, Neff, Mantalas, Espinoza, Desai, Krasnow, Quake (bib54) 2014; 509
Fadista, Vikman, Laakso, Mollet, Esguerra, Taneera, Storm, Osmark, Ladenvall, Prasad (bib13) 2014; 111
Benner, van der Meulen, Cacéres, Tigyi, Donaldson, Huising (bib1) 2014; 15
Lang, Xing, Brown, Samuvel, Panganiban, Havens, Balasubramanian, Wegner, Krug, Barth (bib27) 2015; 5
Hensman, Papastamoulis, Glaus, Honkela, Rattray (bib19) 2015; 31
Hoffmann, Hauser (bib20) 1993; 18
Xin, Kim, Ni, Wei, Okamoto, Lee, Adler, Cavino, Murphy, Yancopoulos (bib62) 2016; 113
van der Maaten, Hinton (bib55) 2008; 9
Yoon, Ko, Cho, Lee, Ahn, Song, Yoo, Kang, Cha, Lee (bib63) 2003; 88
Walpita, Hasaka, Spoonamore, Vetere, Takane, Fomina-Yadlin, Fiaschi-Taesch, Shamji, Clemons, Stewart (bib59) 2012; 17
Bonal, Herrera (bib5) 2008; 52
Marchetti, Bugliani, Lupi, Marselli, Masini, Boggi, Filipponi, Weir, Eizirik, Cnop (bib34) 2007; 50
Murtaugh (bib38) 2007; 134
Rezania, Bruin, Arora, Rubin, Batushansky, Asadi, O’Dwyer, Quiskamp, Mojibian, Albrecht (bib45) 2014; 32
Cabrera, Berman, Kenyon, Ricordi, Berggren, Caicedo (bib8) 2006; 103
Rovira, Scott, Liss, Jensen, Thayer, Leach (bib47) 2010; 107
Buchholz, Kestler, Holzmann, Ellenrieder, Schneiderhan, Siech, Adler, Bachem, Gress (bib7) 2005; 83
Blodgett, Nowosielska, Afik, Pechhold, Cura, Kennedy, Kim, Kucukural, Davis, Kent (bib2) 2015; 64
Levetan, Pierce (bib30) 2013; 19
Stone, Dhayal, Brocklehurst, Lenaghan, Sörhede Winzell, Hammar, Xu, Smith, Morgan (bib53) 2014; 57
Robinson, McCarthy, Smyth (bib46) 2010; 26
Morioka, Asilmaz, Hu, Dishinger, Kurpad, Elias, Li, Elmquist, Kennedy, Kulkarni (bib37) 2007; 117
Pagliuca, Millman, Gürtler, Segel, Van Dervort, Ryu, Peterson, Greiner, Melton (bib43) 2014; 159
Dorrell, Schug, Lin, Canaday, Fox, Smirnova, Bonnah, Streeter, Stoeckert, Kaestner, Grompe (bib10) 2011; 54
Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib26) 2015; 161
Holliday, Watson, Brown (bib21) 2012; 2
Ishiguro, Steward, Naruse, Ko, Goto, Case, Kondo, Yamamoto (bib22) 2009; 133
van der Meulen, Donaldson, Cáceres, Hunter, Cowing-Zitron, Pound, Adams, Zembrzycki, Grove, Huising (bib57) 2015; 21
Ishiguro (10.1016/j.cels.2016.08.011_bib22) 2009; 133
Cabrera (10.1016/j.cels.2016.08.011_bib8) 2006; 103
Johnson (10.1016/j.cels.2016.08.011_bib24) 1988; 130
Yoon (10.1016/j.cels.2016.08.011_bib63) 2003; 88
Pagliuca (10.1016/j.cels.2016.08.011_bib43) 2014; 159
Treutlein (10.1016/j.cels.2016.08.011_bib54) 2014; 509
Langmead (10.1016/j.cels.2016.08.011_bib28) 2012; 9
Steward (10.1016/j.cels.2016.08.011_bib52) 2005; 67
Hensman (10.1016/j.cels.2016.08.011_bib19) 2015; 31
Nica (10.1016/j.cels.2016.08.011_bib40) 2013; 23
Levetan (10.1016/j.cels.2016.08.011_bib30) 2013; 19
Sharma (10.1016/j.cels.2016.08.011_bib49) 2015; 125
Rezania (10.1016/j.cels.2016.08.011_bib45) 2014; 32
Bonal (10.1016/j.cels.2016.08.011_bib5) 2008; 52
van der Maaten (10.1016/j.cels.2016.08.011_bib55) 2008; 9
Stone (10.1016/j.cels.2016.08.011_bib53) 2014; 57
Robinson (10.1016/j.cels.2016.08.011_bib46) 2010; 26
van der Meulen (10.1016/j.cels.2016.08.011_bib56) 2012; 7
Zeisel (10.1016/j.cels.2016.08.011_bib65) 2015; 347
Blodgett (10.1016/j.cels.2016.08.011_bib2) 2015; 64
Marchetti (10.1016/j.cels.2016.08.011_bib34) 2007; 50
Li (10.1016/j.cels.2016.08.011_bib31) 2014; 32
Chen (10.1016/j.cels.2016.08.011_bib9) 2015; 348
Shen-Orr (10.1016/j.cels.2016.08.011_bib50) 2013; 25
Fadista (10.1016/j.cels.2016.08.011_bib13) 2014; 111
Lubeck (10.1016/j.cels.2016.08.011_bib33) 2014; 11
Haber (10.1016/j.cels.2016.08.011_bib16) 1999; 155
Gentleman (10.1016/j.cels.2016.08.011_bib14) 2004; 5
Mastracci (10.1016/j.cels.2016.08.011_bib35) 2012; 1
Klein (10.1016/j.cels.2016.08.011_bib26) 2015; 161
Pereira (10.1016/j.cels.2016.08.011_bib44) 2012; 35
Li (10.1016/j.cels.2016.08.011_bib32) 2016; 17
Zhou (10.1016/j.cels.2016.08.011_bib66) 2008; 455
Holliday (10.1016/j.cels.2016.08.011_bib21) 2012; 2
Shen-Orr (10.1016/j.cels.2016.08.011_bib51) 2010; 7
Blum (10.1016/j.cels.2016.08.011_bib3) 2012; 30
Hashimshony (10.1016/j.cels.2016.08.011_bib18) 2016; 17
Lee (10.1016/j.cels.2016.08.011_bib29) 2014; 343
Rovira (10.1016/j.cels.2016.08.011_bib47) 2010; 107
Grube (10.1016/j.cels.2016.08.011_bib15) 1983; 46
Wallace (10.1016/j.cels.2016.08.011_bib58) 2010; 42
Zaret (10.1016/j.cels.2016.08.011_bib64) 2008; 322
Bolger (10.1016/j.cels.2016.08.011_bib4) 2014; 30
Brissova (10.1016/j.cels.2016.08.011_bib6) 2005; 53
Jessen (10.1016/j.cels.2016.08.011_bib23) 2008; 56
Lang (10.1016/j.cels.2016.08.011_bib27) 2015; 5
Benner (10.1016/j.cels.2016.08.011_bib1) 2014; 15
Drel (10.1016/j.cels.2016.08.011_bib11) 2006; 55
Morioka (10.1016/j.cels.2016.08.011_bib37) 2007; 117
Kimmel (10.1016/j.cels.2016.08.011_bib25) 2010; 100
Buchholz (10.1016/j.cels.2016.08.011_bib7) 2005; 83
Orci (10.1016/j.cels.2016.08.011_bib42) 1975; 2
Murtaugh (10.1016/j.cels.2016.08.011_bib38) 2007; 134
Xin (10.1016/j.cels.2016.08.011_bib62) 2016; 113
Newman (10.1016/j.cels.2016.08.011_bib39) 2015; 12
van der Meulen (10.1016/j.cels.2016.08.011_bib57) 2015; 21
Hoffmann (10.1016/j.cels.2016.08.011_bib20) 1993; 18
Xie (10.1016/j.cels.2016.08.011_bib61) 2013; 12
Morán (10.1016/j.cels.2016.08.011_bib36) 2012; 16
Hashimshony (10.1016/j.cels.2016.08.011_bib17) 2012; 2
Dorrell (10.1016/j.cels.2016.08.011_bib10) 2011; 54
Nostro (10.1016/j.cels.2016.08.011_bib41) 2015; 4
Walpita (10.1016/j.cels.2016.08.011_bib59) 2012; 17
Whitcomb (10.1016/j.cels.2016.08.011_bib60) 2007; 52
Russ (10.1016/j.cels.2016.08.011_bib48) 2015; 34
Drucker (10.1016/j.cels.2016.08.011_bib12) 2007; 117
27788358 - Cell Syst. 2016 Oct 26;3(4):330-332
References_xml – volume: 17
  start-page: 178
  year: 2016
  end-page: 187
  ident: bib32
  article-title: Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types
  publication-title: EMBO Rep.
– volume: 2
  start-page: 1243
  year: 1975
  end-page: 1244
  ident: bib42
  article-title: Functional subdivision of islets of Langerhans and possible role of D cells
  publication-title: Lancet
– volume: 16
  start-page: 435
  year: 2012
  end-page: 448
  ident: bib36
  article-title: Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
  publication-title: Cell Metab.
– volume: 103
  start-page: 2334
  year: 2006
  end-page: 2339
  ident: bib8
  article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 1121
  year: 2014
  end-page: 1133
  ident: bib45
  article-title: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells
  publication-title: Nat. Biotechnol.
– volume: 53
  start-page: 1087
  year: 2005
  end-page: 1097
  ident: bib6
  article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy
  publication-title: J. Histochem. Cytochem.
– volume: 100
  start-page: 261
  year: 2010
  end-page: 280
  ident: bib25
  article-title: Molecular regulation of pancreas development in zebrafish
  publication-title: Methods Cell Biol.
– volume: 130
  start-page: 1
  year: 1988
  end-page: 8
  ident: bib24
  article-title: Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques
  publication-title: Am. J. Pathol.
– volume: 11
  start-page: 360
  year: 2014
  end-page: 361
  ident: bib33
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat. Methods
– volume: 12
  start-page: 224
  year: 2013
  end-page: 237
  ident: bib61
  article-title: Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 117
  start-page: 2860
  year: 2007
  end-page: 2868
  ident: bib37
  article-title: Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice
  publication-title: J. Clin. Invest.
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  ident: bib65
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
– volume: 50
  start-page: 2486
  year: 2007
  end-page: 2494
  ident: bib34
  article-title: The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients
  publication-title: Diabetologia
– volume: 42
  start-page: 68
  year: 2010
  end-page: 71
  ident: bib58
  article-title: The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes
  publication-title: Nat. Genet.
– volume: 32
  start-page: 1223
  year: 2014
  end-page: 1230
  ident: bib31
  article-title: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells
  publication-title: Nat. Biotechnol.
– volume: 56
  start-page: 1552
  year: 2008
  end-page: 1565
  ident: bib23
  article-title: Negative regulation of myelination: relevance for development, injury, and demyelinating disease
  publication-title: Glia
– volume: 15
  start-page: 620
  year: 2014
  ident: bib1
  article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression
  publication-title: BMC Genomics
– volume: 322
  start-page: 1490
  year: 2008
  end-page: 1494
  ident: bib64
  article-title: Generation and regeneration of cells of the liver and pancreas
  publication-title: Science
– volume: 125
  start-page: 3831
  year: 2015
  end-page: 3846
  ident: bib49
  article-title: Insulin demand regulates β cell number via the unfolded protein response
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 509
  year: 2012
  end-page: 518
  ident: bib59
  article-title: A human islet cell culture system for high-throughput screening
  publication-title: J. Biomol. Screen.
– volume: 17
  start-page: 77
  year: 2016
  ident: bib18
  article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
  publication-title: Genome Biol.
– volume: 52
  start-page: 1
  year: 2007
  end-page: 17
  ident: bib60
  article-title: Human pancreatic digestive enzymes
  publication-title: Dig. Dis. Sci.
– volume: 55
  start-page: 3335
  year: 2006
  end-page: 3343
  ident: bib11
  article-title: The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity
  publication-title: Diabetes
– volume: 1
  start-page: 609
  year: 2012
  end-page: 628
  ident: bib35
  article-title: The endocrine pancreas: insights into development, differentiation, and diabetes
  publication-title: Wiley Interdiscip. Rev. Dev. Biol.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib55
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 155
  start-page: 1087
  year: 1999
  end-page: 1095
  ident: bib16
  article-title: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis
  publication-title: Am. J. Pathol.
– volume: 21
  start-page: 769
  year: 2015
  end-page: 776
  ident: bib57
  article-title: Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion
  publication-title: Nat. Med.
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: bib26
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 2
  start-page: 666
  year: 2012
  end-page: 673
  ident: bib17
  article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
  publication-title: Cell Rep.
– volume: 343
  start-page: 1360
  year: 2014
  end-page: 1363
  ident: bib29
  article-title: Highly multiplexed subcellular RNA sequencing in situ
  publication-title: Science
– volume: 2
  start-page: 112
  year: 2012
  ident: bib21
  article-title: Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 5
  start-page: R80
  year: 2004
  ident: bib14
  article-title: Bioconductor: open software development for computational biology and bioinformatics
  publication-title: Genome Biol.
– volume: 25
  start-page: 571
  year: 2013
  end-page: 578
  ident: bib50
  article-title: Computational deconvolution: extracting cell type-specific information from heterogeneous samples
  publication-title: Curr. Opin. Immunol.
– volume: 4
  start-page: 591
  year: 2015
  end-page: 604
  ident: bib41
  article-title: Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines
  publication-title: Stem Cell Reports
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib28
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 111
  start-page: 13924
  year: 2014
  end-page: 13929
  ident: bib13
  article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 133
  start-page: 315
  year: 2009
  end-page: 326
  ident: bib22
  article-title: CFTR functions as a bicarbonate channel in pancreatic duct cells
  publication-title: J. Gen. Physiol.
– volume: 107
  start-page: 75
  year: 2010
  end-page: 80
  ident: bib47
  article-title: Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 113
  start-page: 3293
  year: 2016
  end-page: 3298
  ident: bib62
  article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 2300
  year: 2003
  end-page: 2308
  ident: bib63
  article-title: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: bib4
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 455
  start-page: 627
  year: 2008
  end-page: 632
  ident: bib66
  article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells
  publication-title: Nature
– volume: 57
  start-page: 1182
  year: 2014
  end-page: 1191
  ident: bib53
  article-title: GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans
  publication-title: Diabetologia
– volume: 23
  start-page: 1554
  year: 2013
  end-page: 1562
  ident: bib40
  article-title: Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome
  publication-title: Genome Res.
– volume: 12
  start-page: 453
  year: 2015
  end-page: 457
  ident: bib39
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
– volume: 83
  start-page: 795
  year: 2005
  end-page: 805
  ident: bib7
  article-title: Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype
  publication-title: J. Mol. Med.
– volume: 159
  start-page: 428
  year: 2014
  end-page: 439
  ident: bib43
  article-title: Generation of functional human pancreatic β cells in vitro
  publication-title: Cell
– volume: 67
  start-page: 377
  year: 2005
  end-page: 409
  ident: bib52
  article-title: Mechanisms of bicarbonate secretion in the pancreatic duct
  publication-title: Annu. Rev. Physiol.
– volume: 34
  start-page: 1759
  year: 2015
  end-page: 1772
  ident: bib48
  article-title: Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro
  publication-title: EMBO J.
– volume: 117
  start-page: 24
  year: 2007
  end-page: 32
  ident: bib12
  article-title: The role of gut hormones in glucose homeostasis
  publication-title: J. Clin. Invest.
– volume: 134
  start-page: 427
  year: 2007
  end-page: 438
  ident: bib38
  article-title: Pancreas and beta-cell development: from the actual to the possible
  publication-title: Development
– volume: 52
  start-page: 823
  year: 2008
  end-page: 835
  ident: bib5
  article-title: Genes controlling pancreas ontogeny
  publication-title: Int. J. Dev. Biol.
– volume: 509
  start-page: 371
  year: 2014
  end-page: 375
  ident: bib54
  article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
  publication-title: Nature
– volume: 54
  start-page: 2832
  year: 2011
  end-page: 2844
  ident: bib10
  article-title: Transcriptomes of the major human pancreatic cell types
  publication-title: Diabetologia
– volume: 5
  start-page: 13383
  year: 2015
  ident: bib27
  article-title: Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve
  publication-title: Sci. Rep.
– volume: 18
  start-page: 239
  year: 1993
  end-page: 243
  ident: bib20
  article-title: The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia?
  publication-title: Trends Biochem. Sci.
– volume: 19
  start-page: 301
  year: 2013
  end-page: 312
  ident: bib30
  article-title: Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes
  publication-title: Endocr. Pract.
– volume: 64
  start-page: 3172
  year: 2015
  end-page: 3181
  ident: bib2
  article-title: Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets
  publication-title: Diabetes
– volume: 35
  start-page: 123
  year: 2012
  end-page: 134
  ident: bib44
  article-title: Molecular mechanisms regulating myelination in the peripheral nervous system
  publication-title: Trends Neurosci.
– volume: 7
  start-page: 287
  year: 2010
  end-page: 289
  ident: bib51
  article-title: Cell type-specific gene expression differences in complex tissues
  publication-title: Nat. Methods
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: bib9
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
– volume: 46
  start-page: 327
  year: 1983
  end-page: 353
  ident: bib15
  article-title: The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells
  publication-title: Arch. Histol. Jpn.
– volume: 30
  start-page: 261
  year: 2012
  end-page: 264
  ident: bib3
  article-title: Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3
  publication-title: Nat. Biotechnol.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib46
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 31
  start-page: 3881
  year: 2015
  end-page: 3889
  ident: bib19
  article-title: Fast and accurate approximate inference of transcript expression from RNA-seq data
  publication-title: Bioinformatics
– volume: 7
  start-page: e52181
  year: 2012
  ident: bib56
  article-title: Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells
  publication-title: PLoS ONE
– volume: 17
  start-page: 77
  year: 2016
  ident: 10.1016/j.cels.2016.08.011_bib18
  article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0938-8
– volume: 12
  start-page: 224
  year: 2013
  ident: 10.1016/j.cels.2016.08.011_bib61
  article-title: Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.11.023
– volume: 88
  start-page: 2300
  year: 2003
  ident: 10.1016/j.cels.2016.08.011_bib63
  article-title: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2002-020735
– volume: 35
  start-page: 123
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib44
  article-title: Molecular mechanisms regulating myelination in the peripheral nervous system
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.11.006
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib9
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 117
  start-page: 2860
  year: 2007
  ident: 10.1016/j.cels.2016.08.011_bib37
  article-title: Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI30910
– volume: 2
  start-page: 1243
  year: 1975
  ident: 10.1016/j.cels.2016.08.011_bib42
  article-title: Functional subdivision of islets of Langerhans and possible role of D cells
  publication-title: Lancet
  doi: 10.1016/S0140-6736(75)92078-4
– volume: 56
  start-page: 1552
  year: 2008
  ident: 10.1016/j.cels.2016.08.011_bib23
  article-title: Negative regulation of myelination: relevance for development, injury, and demyelinating disease
  publication-title: Glia
  doi: 10.1002/glia.20761
– volume: 55
  start-page: 3335
  year: 2006
  ident: 10.1016/j.cels.2016.08.011_bib11
  article-title: The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity
  publication-title: Diabetes
  doi: 10.2337/db06-0885
– volume: 159
  start-page: 428
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib43
  article-title: Generation of functional human pancreatic β cells in vitro
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.040
– volume: 134
  start-page: 427
  year: 2007
  ident: 10.1016/j.cels.2016.08.011_bib38
  article-title: Pancreas and beta-cell development: from the actual to the possible
  publication-title: Development
  doi: 10.1242/dev.02770
– volume: 16
  start-page: 435
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib36
  article-title: Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.08.010
– volume: 455
  start-page: 627
  year: 2008
  ident: 10.1016/j.cels.2016.08.011_bib66
  article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells
  publication-title: Nature
  doi: 10.1038/nature07314
– volume: 53
  start-page: 1087
  year: 2005
  ident: 10.1016/j.cels.2016.08.011_bib6
  article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/jhc.5C6684.2005
– volume: 2
  start-page: 112
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib21
  article-title: Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2011.00112
– volume: 107
  start-page: 75
  year: 2010
  ident: 10.1016/j.cels.2016.08.011_bib47
  article-title: Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0912589107
– volume: 32
  start-page: 1121
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib45
  article-title: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3033
– volume: 5
  start-page: R80
  year: 2004
  ident: 10.1016/j.cels.2016.08.011_bib14
  article-title: Bioconductor: open software development for computational biology and bioinformatics
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-10-r80
– volume: 347
  start-page: 1138
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib65
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 17
  start-page: 178
  year: 2016
  ident: 10.1016/j.cels.2016.08.011_bib32
  article-title: Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201540946
– volume: 11
  start-page: 360
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib33
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2892
– volume: 25
  start-page: 571
  year: 2013
  ident: 10.1016/j.cels.2016.08.011_bib50
  article-title: Computational deconvolution: extracting cell type-specific information from heterogeneous samples
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2013.09.015
– volume: 125
  start-page: 3831
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib49
  article-title: Insulin demand regulates β cell number via the unfolded protein response
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI79264
– volume: 30
  start-page: 261
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib3
  article-title: Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2141
– volume: 111
  start-page: 13924
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib13
  article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402665111
– volume: 54
  start-page: 2832
  year: 2011
  ident: 10.1016/j.cels.2016.08.011_bib10
  article-title: Transcriptomes of the major human pancreatic cell types
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2283-5
– volume: 34
  start-page: 1759
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib48
  article-title: Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro
  publication-title: EMBO J.
  doi: 10.15252/embj.201591058
– volume: 2
  start-page: 666
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib17
  article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.003
– volume: 100
  start-page: 261
  year: 2010
  ident: 10.1016/j.cels.2016.08.011_bib25
  article-title: Molecular regulation of pancreas development in zebrafish
  publication-title: Methods Cell Biol.
  doi: 10.1016/B978-0-12-384892-5.00010-4
– volume: 155
  start-page: 1087
  year: 1999
  ident: 10.1016/j.cels.2016.08.011_bib16
  article-title: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65211-X
– volume: 7
  start-page: e52181
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib56
  article-title: Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052181
– volume: 4
  start-page: 591
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib41
  article-title: Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.02.017
– volume: 52
  start-page: 1
  year: 2007
  ident: 10.1016/j.cels.2016.08.011_bib60
  article-title: Human pancreatic digestive enzymes
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-006-9589-z
– volume: 83
  start-page: 795
  year: 2005
  ident: 10.1016/j.cels.2016.08.011_bib7
  article-title: Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-005-0680-2
– volume: 46
  start-page: 327
  year: 1983
  ident: 10.1016/j.cels.2016.08.011_bib15
  article-title: The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells
  publication-title: Arch. Histol. Jpn.
  doi: 10.1679/aohc.46.327
– volume: 30
  start-page: 2114
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib4
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 18
  start-page: 239
  year: 1993
  ident: 10.1016/j.cels.2016.08.011_bib20
  article-title: The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(93)90170-R
– volume: 130
  start-page: 1
  year: 1988
  ident: 10.1016/j.cels.2016.08.011_bib24
  article-title: Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques
  publication-title: Am. J. Pathol.
– volume: 52
  start-page: 823
  year: 2008
  ident: 10.1016/j.cels.2016.08.011_bib5
  article-title: Genes controlling pancreas ontogeny
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.072444cb
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib28
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 23
  start-page: 1554
  year: 2013
  ident: 10.1016/j.cels.2016.08.011_bib40
  article-title: Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome
  publication-title: Genome Res.
  doi: 10.1101/gr.150706.112
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.cels.2016.08.011_bib55
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 3881
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib19
  article-title: Fast and accurate approximate inference of transcript expression from RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv483
– volume: 50
  start-page: 2486
  year: 2007
  ident: 10.1016/j.cels.2016.08.011_bib34
  article-title: The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0816-8
– volume: 161
  start-page: 1187
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib26
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 113
  start-page: 3293
  year: 2016
  ident: 10.1016/j.cels.2016.08.011_bib62
  article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602306113
– volume: 19
  start-page: 301
  year: 2013
  ident: 10.1016/j.cels.2016.08.011_bib30
  article-title: Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes
  publication-title: Endocr. Pract.
  doi: 10.4158/EP12138.RA
– volume: 12
  start-page: 453
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib39
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3337
– volume: 322
  start-page: 1490
  year: 2008
  ident: 10.1016/j.cels.2016.08.011_bib64
  article-title: Generation and regeneration of cells of the liver and pancreas
  publication-title: Science
  doi: 10.1126/science.1161431
– volume: 7
  start-page: 287
  year: 2010
  ident: 10.1016/j.cels.2016.08.011_bib51
  article-title: Cell type-specific gene expression differences in complex tissues
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1439
– volume: 42
  start-page: 68
  year: 2010
  ident: 10.1016/j.cels.2016.08.011_bib58
  article-title: The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng.493
– volume: 1
  start-page: 609
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib35
  article-title: The endocrine pancreas: insights into development, differentiation, and diabetes
  publication-title: Wiley Interdiscip. Rev. Dev. Biol.
  doi: 10.1002/wdev.44
– volume: 17
  start-page: 509
  year: 2012
  ident: 10.1016/j.cels.2016.08.011_bib59
  article-title: A human islet cell culture system for high-throughput screening
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057111430253
– volume: 343
  start-page: 1360
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib29
  article-title: Highly multiplexed subcellular RNA sequencing in situ
  publication-title: Science
  doi: 10.1126/science.1250212
– volume: 117
  start-page: 24
  year: 2007
  ident: 10.1016/j.cels.2016.08.011_bib12
  article-title: The role of gut hormones in glucose homeostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI30076
– volume: 133
  start-page: 315
  year: 2009
  ident: 10.1016/j.cels.2016.08.011_bib22
  article-title: CFTR functions as a bicarbonate channel in pancreatic duct cells
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200810122
– volume: 67
  start-page: 377
  year: 2005
  ident: 10.1016/j.cels.2016.08.011_bib52
  article-title: Mechanisms of bicarbonate secretion in the pancreatic duct
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.67.031103.153247
– volume: 103
  start-page: 2334
  year: 2006
  ident: 10.1016/j.cels.2016.08.011_bib8
  article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0510790103
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.cels.2016.08.011_bib46
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 5
  start-page: 13383
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib27
  article-title: Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve
  publication-title: Sci. Rep.
  doi: 10.1038/srep13383
– volume: 64
  start-page: 3172
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib2
  article-title: Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets
  publication-title: Diabetes
  doi: 10.2337/db15-0039
– volume: 15
  start-page: 620
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib1
  article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-620
– volume: 509
  start-page: 371
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib54
  article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
  publication-title: Nature
  doi: 10.1038/nature13173
– volume: 32
  start-page: 1223
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib31
  article-title: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3082
– volume: 21
  start-page: 769
  year: 2015
  ident: 10.1016/j.cels.2016.08.011_bib57
  article-title: Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion
  publication-title: Nat. Med.
  doi: 10.1038/nm.3872
– volume: 57
  start-page: 1182
  year: 2014
  ident: 10.1016/j.cels.2016.08.011_bib53
  article-title: GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3213-0
– reference: 27788358 - Cell Syst. 2016 Oct 26;3(4):330-332
SSID ssj0001492402
Score 2.5893252
Snippet Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described...
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 346
SubjectTerms Animals
Cell Differentiation
Gene Expression Profiling
Gene Expression Regulation, Developmental
Humans
Islets of Langerhans
Mice
Pancreas
Pancreas, Exocrine
Single-Cell Analysis
Transcription Factors
Transcriptome
Title A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
URI https://dx.doi.org/10.1016/j.cels.2016.08.011
https://www.ncbi.nlm.nih.gov/pubmed/27667365
https://www.proquest.com/docview/1835686114
https://pubmed.ncbi.nlm.nih.gov/PMC5228327
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZG98ILAnErNxkJnqpUsWs7yWM0gSYGPKwb21vk2K5gGtnUtUjj1_BTOcd20mSMCfYSVYnTuj5fzi3H3yHkTZqbRSaMS7SRIhG6ruGZm0HUKuWCg0XKpPYFsp_V7qH4cCyPt7Z-9aqW1qt6an5eu6_kNlKFcyBX3CX7H5LtvhROwGeQLxxBwnD8JxmXkzlYnlOX7GAGzpsdrwRwp_Hkkz5vCwBCpt6XVECg78BtbIwvRt93PxzyJ_u8YBJrg1dLnRif0uuae-HL67Vp2Uc6ZgMcdNGjPPcZ0WWsx9f6coO8L24Z9FFplz1AHoHqDfp4rr-vHTi6_G2Zfpx2qEJWIn_bGkL3y8HlmKpgCnV82A8f8mftHppBiSe4FDIBExl0suuf42lfT896cBQ9nTuLOcxgvmcqnTpxrXEIeYqTKSwhErUz5clbo64fkm7PcQY4KXBXIUpV6g7Z5hCI8BHZLvf2j_Y2eTxR4Asq7GHY_pG4NyuUEV79sb_5P3_GN1fLdHt-z8F9ci8GLLQM6HtAtlzzkFyUtIc8OkQeBeTRswUF5FGPPAq4oh55tEUejcijAXl-xAZ5dIM82iHvETl8_-5gZzeJ7TsSg10yEq3rnOkCPULLZS21shrC-9yy2mSOg2E1BvxZljoO44RNuQV32BXg0erMFmb2mIyas8Y9JTQ32aJYWKsLWwiLBENgLYwSOSiYnLFiTFi7qJWJ3PbYYuW0aosYTyoURIWCqLDvKmNjMunuOQ_MLjeOlq2squibBp-zAnTdeN_rVrAVKG5cQ904WPEKbKlUuWJMjMmTIOhuHjzDbrxKjkk2gEA3AEnhh1eab189ObxEPiuePbvlfJ-Tu5sn9wUZgYzdS3C7V_WriPzfdzfYNA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single-Cell+Transcriptomic+Map+of+the+Human+and+Mouse+Pancreas+Reveals+Inter-+and+Intra-cell+Population+Structure&rft.jtitle=Cell+systems&rft.au=Baron%2C+Maayan&rft.au=Veres%2C+Adrian&rft.au=Wolock%2C+Samuel%C2%A0L.&rft.au=Faust%2C+Aubrey%C2%A0L.&rft.date=2016-10-26&rft.pub=Elsevier+Inc&rft.issn=2405-4712&rft.eissn=2405-4720&rft.volume=3&rft.issue=4&rft.spage=346&rft.epage=360.e4&rft_id=info:doi/10.1016%2Fj.cels.2016.08.011&rft.externalDocID=S2405471216302666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-4712&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-4712&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-4712&client=summon