A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual...
Saved in:
Published in | Cell systems Vol. 3; no. 4; pp. 346 - 360.e4 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
[Display omitted]
•We report over 12,000 individual pancreatic cell transcriptomes in human and mouse•We detect novel expression of TFs, signaling receptors, and medically relevant genes•We identify subpopulations and heterogeneity within pancreatic cell types•We deconvolve bulk gene expression samples using the single-cell data
Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells. |
---|---|
AbstractList | Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells. Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes. [Display omitted] •We report over 12,000 individual pancreatic cell transcriptomes in human and mouse•We detect novel expression of TFs, signaling receptors, and medically relevant genes•We identify subpopulations and heterogeneity within pancreatic cell types•We deconvolve bulk gene expression samples using the single-cell data Single-cell transcriptomics of over 12,000 cells from four human donors and two mouse strains was determined using inDrop. Cells were divided into 15 clusters that matched previously characterized cell types. Detailed analysis of each population separately revealed subpopulations within the ductal population, modes of activation of stellate cells, and heterogeneity in the stress among beta cells. |
Author | Gaujoux, Renaud Faust, Aubrey L. Wagner, Bridget K. Ryu, Jennifer Hyoje Veres, Adrian Vetere, Amedeo Baron, Maayan Melton, Douglas A. Yanai, Itai Shen-Orr, Shai S. Klein, Allon M. Wolock, Samuel L. |
AuthorAffiliation | 3 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA 1 Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel 2 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA 5 Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA 4 Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel |
AuthorAffiliation_xml | – name: 1 Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel – name: 2 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – name: 4 Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel – name: 5 Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA – name: 3 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA |
Author_xml | – sequence: 1 givenname: Maayan surname: Baron fullname: Baron, Maayan organization: Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel – sequence: 2 givenname: Adrian surname: Veres fullname: Veres, Adrian organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 3 givenname: Samuel L. surname: Wolock fullname: Wolock, Samuel L. organization: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA – sequence: 4 givenname: Aubrey L. surname: Faust fullname: Faust, Aubrey L. organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 5 givenname: Renaud surname: Gaujoux fullname: Gaujoux, Renaud organization: Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel – sequence: 6 givenname: Amedeo surname: Vetere fullname: Vetere, Amedeo organization: Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA – sequence: 7 givenname: Jennifer Hyoje surname: Ryu fullname: Ryu, Jennifer Hyoje organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 8 givenname: Bridget K. surname: Wagner fullname: Wagner, Bridget K. organization: Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA – sequence: 9 givenname: Shai S. surname: Shen-Orr fullname: Shen-Orr, Shai S. organization: Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel – sequence: 10 givenname: Allon M. surname: Klein fullname: Klein, Allon M. email: allon_klein@hms.harvard.edu organization: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA – sequence: 11 givenname: Douglas A. surname: Melton fullname: Melton, Douglas A. email: dmelton@harvard.edu organization: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 12 givenname: Itai surname: Yanai fullname: Yanai, Itai email: itai.yanai@nyumc.org organization: Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27667365$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVARLaV_gAPykUuC7Xw5EkKqVkArtaKi5WzN2rOtV4kdbGcl_j1Ot6yAQ08eed57M_Pea3LkvENC3nJWcsbbD9tS4xBLkeuSyZJx_oKciJo1Rd0JdnSouTgmZzFuGWO87vOneEWORde2XdU2JySe01vr7gcsVjgM9C6AizrYKfnRanoNE_Ubmh6QXswjOArO0Gs_R6Q34HRAiPQ77hCGSC9dwlA8InIZoNCL4I2f5gGS9Y7epjDrNAd8Q15uMgPPnt5T8uPL57vVRXH17evl6vyq0I3gqQBYSw695LIxolk30BoQspeGr3WHAozRuqs5ZygyrjZMmLaR2Fe8g870ujoln_a607we0Whc1hrUFOwI4ZfyYNW_HWcf1L3fqUYIWYkuC7x_Egj-54wxqdHG5SxwmE1QXFZNK1vO6wx99_esw5A_TmeA2AN08DEG3BwgnKklUbVVS6JqSVQxqXKimST_I2mbHt3M-9rheerHPTU3cGcxqKgtOo3GBtRJGW-fo_8GWnC9OA |
CitedBy_id | crossref_primary_10_1166_mex_2021_1974 crossref_primary_10_7554_eLife_26476 crossref_primary_10_1186_s12859_021_04489_7 crossref_primary_10_1093_bib_bbac585 crossref_primary_10_7554_eLife_43803 crossref_primary_10_1161_ATVBAHA_124_321781 crossref_primary_10_3389_fmmed_2022_839338 crossref_primary_10_1093_bfgp_elx027 crossref_primary_10_1093_bib_bbad426 crossref_primary_10_1093_bioinformatics_btac819 crossref_primary_10_1016_j_celrep_2024_114047 crossref_primary_10_1038_s41467_017_00461_3 crossref_primary_10_1093_bioinformatics_btac825 crossref_primary_10_1093_bib_bbae511 crossref_primary_10_1016_j_mce_2021_111459 crossref_primary_10_26508_lsa_201900443 crossref_primary_10_1038_s41467_024_53717_0 crossref_primary_10_1186_s13059_022_02659_1 crossref_primary_10_1038_s41467_024_55415_3 crossref_primary_10_2337_db20_0873 crossref_primary_10_1016_j_celrep_2022_110377 crossref_primary_10_1038_s41588_021_00823_0 crossref_primary_10_1016_j_pan_2019_11_005 crossref_primary_10_1038_s41467_021_25725_x crossref_primary_10_1109_JBHI_2023_3311340 crossref_primary_10_2337_db21_1104 crossref_primary_10_1038_s41467_022_31770_x crossref_primary_10_1093_bib_bbaa188 crossref_primary_10_1093_nargab_lqab011 crossref_primary_10_1016_j_ceb_2017_11_014 crossref_primary_10_3390_genes12111670 crossref_primary_10_1016_j_immuni_2020_01_003 crossref_primary_10_1038_s41593_017_0029_5 crossref_primary_10_1016_j_celrep_2022_111238 crossref_primary_10_1038_s42003_023_04928_6 crossref_primary_10_1093_bib_bbae538 crossref_primary_10_1021_acs_jcim_2c01277 crossref_primary_10_1038_s41467_020_17968_x crossref_primary_10_1093_bioinformatics_btz704 crossref_primary_10_1007_s00018_020_03710_9 crossref_primary_10_1097_TP_0000000000002217 crossref_primary_10_3389_fendo_2023_1132194 crossref_primary_10_3390_ijms25115936 crossref_primary_10_3390_ijms20225773 crossref_primary_10_1126_sciadv_abd0855 crossref_primary_10_1242_bio_060113 crossref_primary_10_1016_j_neucom_2025_129708 crossref_primary_10_1038_s41587_022_01219_z crossref_primary_10_1109_TCBB_2022_3203592 crossref_primary_10_2337_db19_0687 crossref_primary_10_1186_s13059_023_03007_7 crossref_primary_10_1186_s12859_023_05579_4 crossref_primary_10_1093_bioinformatics_btz726 crossref_primary_10_1007_s00125_022_05699_1 crossref_primary_10_1186_s13059_024_03251_5 crossref_primary_10_1016_j_cels_2016_10_009 crossref_primary_10_1371_journal_pcbi_1011261 crossref_primary_10_1016_j_mce_2016_11_008 crossref_primary_10_1093_bib_bbab433 crossref_primary_10_1016_j_canlet_2024_217131 crossref_primary_10_1038_s41592_024_02410_7 crossref_primary_10_1016_j_tcb_2020_11_010 crossref_primary_10_1109_TCBB_2024_3458170 crossref_primary_10_1161_ATVBAHA_123_319378 crossref_primary_10_1101_gr_277522_122 crossref_primary_10_1016_j_ebiom_2024_105006 crossref_primary_10_1080_19382014_2024_2339558 crossref_primary_10_1038_s41467_020_16550_9 crossref_primary_10_1016_j_molmet_2023_101678 crossref_primary_10_1093_gigascience_giz106 crossref_primary_10_1038_s41467_023_44206_x crossref_primary_10_1038_s41467_023_37126_3 crossref_primary_10_1038_s12276_020_0422_0 crossref_primary_10_1093_bib_bbac317 crossref_primary_10_1016_j_molmet_2022_101595 crossref_primary_10_1038_s41467_023_36635_5 crossref_primary_10_2337_db20_0802 crossref_primary_10_1038_s41591_021_01645_7 crossref_primary_10_1109_ACCESS_2021_3072613 crossref_primary_10_1038_s42256_022_00534_z crossref_primary_10_1210_endocr_bqab148 crossref_primary_10_1016_j_tig_2017_01_010 crossref_primary_10_1371_journal_pone_0292554 crossref_primary_10_1007_s00125_024_06329_8 crossref_primary_10_1016_j_compbiomed_2022_105999 crossref_primary_10_1093_bioinformatics_btad731 crossref_primary_10_1016_j_cmet_2020_04_005 crossref_primary_10_1038_s41587_021_00867_x crossref_primary_10_1186_s12864_024_10013_x crossref_primary_10_3390_cells12010113 crossref_primary_10_1186_s12859_024_05944_x crossref_primary_10_3390_ijms23073900 crossref_primary_10_1016_j_jmb_2019_08_005 crossref_primary_10_1038_s41467_020_15523_2 crossref_primary_10_1038_s41467_021_21365_3 crossref_primary_10_1007_s00335_020_09834_4 crossref_primary_10_3390_ijms25094720 crossref_primary_10_1038_s41422_020_0353_2 crossref_primary_10_1016_j_cmet_2023_10_001 crossref_primary_10_1016_j_stem_2018_10_010 crossref_primary_10_1126_scitranslmed_aax9106 crossref_primary_10_1016_j_cell_2019_11_010 crossref_primary_10_1007_s10489_022_03440_4 crossref_primary_10_1093_bioinformatics_btaa231 crossref_primary_10_1186_s12859_021_04278_2 crossref_primary_10_3389_fgene_2023_1179859 crossref_primary_10_3389_fgene_2023_1029758 crossref_primary_10_1158_2159_8290_CD_19_0094 crossref_primary_10_1186_s12864_022_08715_1 crossref_primary_10_1038_srep45961 crossref_primary_10_1242_dev_201306 crossref_primary_10_1038_s42256_022_00518_z crossref_primary_10_1002_gepi_22494 crossref_primary_10_1016_j_kint_2017_06_033 crossref_primary_10_1093_g3journal_jkab098 crossref_primary_10_1038_s41551_020_0524_y crossref_primary_10_1186_s13059_019_1850_9 crossref_primary_10_1038_s42256_020_00233_7 crossref_primary_10_2337_dc23_0380 crossref_primary_10_3390_cells12151970 crossref_primary_10_1038_s41588_022_01141_9 crossref_primary_10_7554_eLife_85056 crossref_primary_10_1038_s41467_024_50963_0 crossref_primary_10_1038_s42256_020_00244_4 crossref_primary_10_1016_j_jcmgh_2021_07_014 crossref_primary_10_1186_s12859_024_05706_9 crossref_primary_10_1093_nargab_lqad032 crossref_primary_10_12688_f1000research_50858_1 crossref_primary_10_1186_s12864_023_09232_5 crossref_primary_10_1093_gigascience_giae011 crossref_primary_10_3389_fendo_2021_722250 crossref_primary_10_1038_s41598_020_71805_1 crossref_primary_10_1007_s00125_017_4326_z crossref_primary_10_1093_bfgp_elaa003 crossref_primary_10_1038_s41467_022_29576_y crossref_primary_10_1186_s13148_023_01491_z crossref_primary_10_1016_j_celrep_2020_108552 crossref_primary_10_1016_j_compbiomed_2022_106409 crossref_primary_10_1016_j_cmet_2018_11_016 crossref_primary_10_1186_s13059_023_03062_0 crossref_primary_10_1172_JCI129833 crossref_primary_10_3390_genes12060898 crossref_primary_10_1038_s41587_023_01663_5 crossref_primary_10_1186_s12859_020_03679_z crossref_primary_10_7554_eLife_90419 crossref_primary_10_1371_journal_pgen_1010251 crossref_primary_10_1016_j_cels_2021_05_006 crossref_primary_10_1042_BSR20221680 crossref_primary_10_1186_s12859_023_05224_0 crossref_primary_10_1371_journal_pone_0292961 crossref_primary_10_1016_j_molmet_2021_101213 crossref_primary_10_1093_bioinformatics_btac692 crossref_primary_10_12688_wellcomeopenres_15447_2 crossref_primary_10_12688_wellcomeopenres_15447_1 crossref_primary_10_3390_ijms22041833 crossref_primary_10_1210_endocr_bqad181 crossref_primary_10_1093_bioinformatics_btad546 crossref_primary_10_3390_app13137936 crossref_primary_10_1016_j_celrep_2021_108803 crossref_primary_10_1128_mbio_01376_22 crossref_primary_10_1016_j_jbc_2022_102654 crossref_primary_10_1109_TCBB_2021_3098394 crossref_primary_10_3389_fgene_2022_1038919 crossref_primary_10_1016_j_cell_2024_03_009 crossref_primary_10_1101_gr_275430_121 crossref_primary_10_1038_s41574_018_0097_y crossref_primary_10_1016_j_crmeth_2024_100905 crossref_primary_10_1016_j_biotechadv_2024_108454 crossref_primary_10_2337_db22_0949 crossref_primary_10_3390_ijms24097701 crossref_primary_10_3389_fgene_2023_1290447 crossref_primary_10_1038_s41467_021_24172_y crossref_primary_10_1038_s41591_020_1133_8 crossref_primary_10_1038_s41586_019_1168_5 crossref_primary_10_1038_s41598_021_03613_0 crossref_primary_10_1371_journal_pgen_1009080 crossref_primary_10_1007_s43657_021_00024_z crossref_primary_10_14348_molcells_2023_2178 crossref_primary_10_3389_fcvm_2022_841928 crossref_primary_10_1093_nargab_lqab056 crossref_primary_10_1038_s41598_020_66848_3 crossref_primary_10_1053_j_gastro_2018_08_033 crossref_primary_10_1016_j_stemcr_2023_02_001 crossref_primary_10_3389_fendo_2020_619150 crossref_primary_10_1002_advs_202412095 crossref_primary_10_1093_nar_gkab481 crossref_primary_10_12677_BIPHY_2023_112003 crossref_primary_10_7717_peerj_9746 crossref_primary_10_1016_j_ymeth_2023_06_004 crossref_primary_10_1093_bioinformatics_btac007 crossref_primary_10_1073_pnas_2005477117 crossref_primary_10_1016_j_compbiomed_2024_109066 crossref_primary_10_1093_nar_gkab004 crossref_primary_10_1038_s41598_022_16072_y crossref_primary_10_1093_bioinformatics_btae421 crossref_primary_10_1109_TCBB_2022_3230098 crossref_primary_10_1038_s41556_023_01103_1 crossref_primary_10_1371_journal_pbio_3002162 crossref_primary_10_1016_j_gpb_2022_06_006 crossref_primary_10_3389_fgene_2021_708981 crossref_primary_10_1103_PRXLife_2_043009 crossref_primary_10_1002_advs_202205442 crossref_primary_10_1186_s12929_022_00866_3 crossref_primary_10_3389_fendo_2021_736286 crossref_primary_10_1093_bioinformatics_btab286 crossref_primary_10_1093_bioinformatics_btaa198 crossref_primary_10_1016_j_cels_2020_08_018 crossref_primary_10_1371_journal_pcbi_1009548 crossref_primary_10_1109_TCBB_2023_3337231 crossref_primary_10_1016_j_ymeth_2024_05_007 crossref_primary_10_1371_journal_pcbi_1010772 crossref_primary_10_1093_bioinformatics_btac140 crossref_primary_10_1016_j_stemcr_2018_11_008 crossref_primary_10_1038_s41587_021_00896_6 crossref_primary_10_1371_journal_pone_0208998 crossref_primary_10_1165_rcmb_2018_0416TR crossref_primary_10_1016_j_stemcr_2017_08_009 crossref_primary_10_1073_pnas_1901075116 crossref_primary_10_1172_jci_insight_153877 crossref_primary_10_1093_bib_bbae072 crossref_primary_10_1038_s41467_024_51891_9 crossref_primary_10_1109_TCBB_2022_3161131 crossref_primary_10_1186_s12864_020_07223_4 crossref_primary_10_15252_msb_20209620 crossref_primary_10_3390_biology13090713 crossref_primary_10_1053_j_gastro_2021_10_027 crossref_primary_10_1093_nar_gkaa191 crossref_primary_10_1109_TCBB_2022_3173587 crossref_primary_10_1371_journal_pcbi_1011641 crossref_primary_10_1371_journal_pcbi_1011880 crossref_primary_10_1093_nar_gkae313 crossref_primary_10_1126_science_aba7721 crossref_primary_10_1038_s41467_022_33136_9 crossref_primary_10_1038_s41419_021_04067_y crossref_primary_10_1109_JBHI_2024_3383921 crossref_primary_10_1016_j_stem_2024_09_011 crossref_primary_10_1126_science_adn0953 crossref_primary_10_1093_bioinformatics_btac168 crossref_primary_10_1109_TCBB_2020_2979717 crossref_primary_10_1016_j_path_2022_05_007 crossref_primary_10_1016_j_cels_2019_05_007 crossref_primary_10_1038_s42003_024_07154_w crossref_primary_10_1093_bib_bbad195 crossref_primary_10_1093_bib_bbae047 crossref_primary_10_1093_bioinformatics_btz295 crossref_primary_10_1016_j_bspc_2025_107502 crossref_primary_10_1109_JBHI_2024_3400050 crossref_primary_10_1038_s42255_022_00531_x crossref_primary_10_3390_cancers14215302 crossref_primary_10_7554_eLife_67776 crossref_primary_10_1016_j_cell_2019_12_015 crossref_primary_10_15252_msb_20209438 crossref_primary_10_1111_dom_13381 crossref_primary_10_1038_s42003_021_02739_1 crossref_primary_10_1038_s41573_021_00262_w crossref_primary_10_1007_s11094_025_03283_6 crossref_primary_10_3390_ijms22010261 crossref_primary_10_1016_j_stemcr_2020_09_009 crossref_primary_10_1093_bioinformatics_btae127 crossref_primary_10_1038_s41592_023_01899_8 crossref_primary_10_3389_fgene_2020_00407 crossref_primary_10_1093_bib_bbae273 crossref_primary_10_1038_s41467_025_57786_7 crossref_primary_10_1093_bioinformatics_btae371 crossref_primary_10_1002_pmic_202100265 crossref_primary_10_1038_s41591_020_0868_6 crossref_primary_10_1093_bioinformatics_btad043 crossref_primary_10_1111_dom_13390 crossref_primary_10_3390_genes11070792 crossref_primary_10_1016_j_crmeth_2023_100580 crossref_primary_10_1186_s12915_023_01553_x crossref_primary_10_1021_acs_jcim_3c00674 crossref_primary_10_1093_bioinformatics_btac199 crossref_primary_10_1186_s12859_024_05895_3 crossref_primary_10_1186_s12915_025_02128_8 crossref_primary_10_1016_j_bpj_2023_01_039 crossref_primary_10_1172_jci_insight_151621 crossref_primary_10_2174_1574888X13666180918092729 crossref_primary_10_1101_gad_342378_120 crossref_primary_10_1093_nar_gkab1147 crossref_primary_10_1146_annurev_cellbio_100616_060818 crossref_primary_10_1016_j_gde_2021_05_003 crossref_primary_10_1038_s41467_021_22651_w crossref_primary_10_1093_nar_gkab089 crossref_primary_10_3389_fendo_2021_635405 crossref_primary_10_1016_j_jtos_2023_12_003 crossref_primary_10_1016_j_compbiomed_2022_106050 crossref_primary_10_1038_s41598_023_32966_x crossref_primary_10_1038_s41592_020_0825_9 crossref_primary_10_3389_fgene_2019_00978 crossref_primary_10_1093_nargab_lqad068 crossref_primary_10_1038_s41598_021_87805_8 crossref_primary_10_1109_TCBB_2021_3126641 crossref_primary_10_1007_s11427_022_2224_4 crossref_primary_10_1214_19_STS7560 crossref_primary_10_1016_j_ccell_2020_01_003 crossref_primary_10_1016_j_stemcr_2018_12_012 crossref_primary_10_1038_s41388_024_03074_5 crossref_primary_10_3390_cells8101161 crossref_primary_10_1016_j_bbcan_2020_188367 crossref_primary_10_1093_bib_bbae486 crossref_primary_10_1093_bib_bbae004 crossref_primary_10_1016_j_isci_2024_109027 crossref_primary_10_1042_BST20210825 crossref_primary_10_1093_bib_bbac068 crossref_primary_10_1093_bib_bbad157 crossref_primary_10_1142_S021972002450015X crossref_primary_10_3390_genes13071176 crossref_primary_10_3390_ijms24065502 crossref_primary_10_1093_bib_bbad149 crossref_primary_10_1073_pnas_1802973116 crossref_primary_10_3389_fendo_2022_916688 crossref_primary_10_1038_s41598_021_99003_7 crossref_primary_10_1109_TCBB_2023_3242260 crossref_primary_10_1016_j_devcel_2023_03_011 crossref_primary_10_1038_s41467_020_16049_3 crossref_primary_10_1126_sciadv_aba8415 crossref_primary_10_1016_j_csbj_2021_05_046 crossref_primary_10_1016_j_devcel_2018_11_001 crossref_primary_10_1038_s41591_020_0968_3 crossref_primary_10_26599_BDMA_2024_9020011 crossref_primary_10_3389_fgene_2023_1182579 crossref_primary_10_3389_fgene_2021_666771 crossref_primary_10_3389_fimmu_2021_773280 crossref_primary_10_3390_ijms24054636 crossref_primary_10_35366_103550 crossref_primary_10_1093_bib_bbad179 crossref_primary_10_1002_path_5224 crossref_primary_10_1016_j_stemcr_2018_01_028 crossref_primary_10_1038_s41467_021_25534_2 crossref_primary_10_1109_ACCESS_2021_3052923 crossref_primary_10_1172_JCI153876 crossref_primary_10_1101_gr_254557_119 crossref_primary_10_3389_fcell_2024_1424278 crossref_primary_10_3390_cells9112464 crossref_primary_10_1038_s42003_023_04791_5 crossref_primary_10_1016_j_tem_2021_04_009 crossref_primary_10_1038_s41467_023_40895_6 crossref_primary_10_1038_s41467_024_49537_x crossref_primary_10_1093_bioinformatics_btaf044 crossref_primary_10_1088_2632_2153_acd7c3 crossref_primary_10_1093_bioinformatics_btae198 crossref_primary_10_1016_j_ccm_2022_06_013 crossref_primary_10_1038_s41380_021_01347_z crossref_primary_10_1109_TVCG_2022_3209408 crossref_primary_10_1093_bib_bbae203 crossref_primary_10_1093_gigascience_giab002 crossref_primary_10_1093_nar_gkab931 crossref_primary_10_1038_s41598_021_04473_4 crossref_primary_10_15252_msb_20199389 crossref_primary_10_1016_j_ejca_2021_03_005 crossref_primary_10_1016_j_xcrm_2021_100287 crossref_primary_10_1038_s41467_021_21312_2 crossref_primary_10_1016_j_regen_2021_100043 crossref_primary_10_1038_s41592_019_0355_5 crossref_primary_10_1093_biomethods_bpz019 crossref_primary_10_1093_lifemeta_loae038 crossref_primary_10_1038_s41587_019_0114_2 crossref_primary_10_2337_db19_0058 crossref_primary_10_1186_s13024_021_00507_7 crossref_primary_10_1186_s12864_021_07812_x crossref_primary_10_1038_s41592_019_0466_z crossref_primary_10_3389_fimmu_2021_756548 crossref_primary_10_1016_j_jmb_2025_168936 crossref_primary_10_1093_bioinformatics_btab706 crossref_primary_10_1158_2159_8290_CD_20_1637 crossref_primary_10_1186_s12933_021_01303_9 crossref_primary_10_1038_s41598_017_12335_1 crossref_primary_10_1093_bib_bbae216 crossref_primary_10_1186_s12859_024_05788_5 crossref_primary_10_1038_s41598_021_95287_x crossref_primary_10_1016_j_cels_2019_06_004 crossref_primary_10_1007_s00125_018_4803_z crossref_primary_10_1038_s41592_022_01412_7 crossref_primary_10_1016_j_isci_2024_111393 crossref_primary_10_1186_s12864_024_10335_w crossref_primary_10_1093_bib_bbad124 crossref_primary_10_1038_s41467_024_55213_x crossref_primary_10_1038_s42003_024_06475_0 crossref_primary_10_1093_bib_bbac275 crossref_primary_10_1210_en_2018_00833 crossref_primary_10_1242_dev_169854 crossref_primary_10_1038_s43018_021_00258_w crossref_primary_10_1016_j_isci_2022_105366 crossref_primary_10_1016_j_gendis_2024_101323 crossref_primary_10_1109_TCBB_2022_3203185 crossref_primary_10_1093_bib_bbae209 crossref_primary_10_1093_bioadv_vbad030 crossref_primary_10_1186_s13059_019_1900_3 crossref_primary_10_1038_s41598_020_57599_2 crossref_primary_10_1186_s12859_022_05054_6 crossref_primary_10_1093_nar_gkab978 crossref_primary_10_1158_0008_5472_CAN_18_0689 crossref_primary_10_3389_fgene_2019_01253 crossref_primary_10_1053_j_gastro_2020_11_010 crossref_primary_10_1080_01621459_2024_2342639 crossref_primary_10_1186_s13059_017_1300_5 crossref_primary_10_1038_s41467_023_41228_3 crossref_primary_10_1186_s13059_024_03385_6 crossref_primary_10_1093_bib_bbac223 crossref_primary_10_1007_s42514_021_00081_w crossref_primary_10_1093_bioinformatics_btab840 crossref_primary_10_1016_j_tcb_2023_07_004 crossref_primary_10_1038_s41598_020_57903_0 crossref_primary_10_1186_s13059_021_02452_6 crossref_primary_10_1038_s41587_021_00859_x crossref_primary_10_1093_bib_bbab368 crossref_primary_10_1109_TCBB_2023_3298334 crossref_primary_10_1007_s10489_024_05442_w crossref_primary_10_1172_jci_insight_183959 crossref_primary_10_1093_bioinformatics_btz801 crossref_primary_10_1016_j_yexcr_2019_111613 crossref_primary_10_1111_cei_13349 crossref_primary_10_1186_s13059_020_02096_y crossref_primary_10_1016_j_cam_2024_115842 crossref_primary_10_1016_j_isci_2022_104659 crossref_primary_10_1038_s42255_023_00806_x crossref_primary_10_1093_nargab_lqab102 crossref_primary_10_1016_j_molmet_2019_12_008 crossref_primary_10_1172_jci_insight_166386 crossref_primary_10_1186_s13059_021_02561_2 crossref_primary_10_1109_TCBB_2021_3110850 crossref_primary_10_1126_sciadv_add5430 crossref_primary_10_1210_endocr_bqac156 crossref_primary_10_1093_bib_bbad332 crossref_primary_10_1038_s41587_023_01782_z crossref_primary_10_1016_j_jmccpl_2023_100048 crossref_primary_10_1186_s12864_023_09577_x crossref_primary_10_1242_dev_201004 crossref_primary_10_1007_s41060_024_00709_4 crossref_primary_10_1093_bib_bbab147 crossref_primary_10_1016_j_celrep_2025_115315 crossref_primary_10_1371_journal_pcbi_1007939 crossref_primary_10_1016_j_compbiomed_2024_108211 crossref_primary_10_1038_s42255_024_01140_6 crossref_primary_10_1093_bib_bbae411 crossref_primary_10_1016_j_celrep_2023_112913 crossref_primary_10_1038_s41467_023_44186_y crossref_primary_10_1093_bib_bbab379 crossref_primary_10_1038_s41467_022_34271_z crossref_primary_10_1016_j_tem_2018_10_002 crossref_primary_10_1038_s42003_020_01463_6 crossref_primary_10_1186_s13059_019_1639_x crossref_primary_10_1056_NEJMcibr1616217 crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_1093_nar_gkab775 crossref_primary_10_1371_journal_pcbi_1012241 crossref_primary_10_1093_bib_bbab570 crossref_primary_10_1093_bib_bbad507 crossref_primary_10_1097_MED_0000000000000322 crossref_primary_10_1210_endrev_bnab010 crossref_primary_10_1038_s41467_023_41860_z crossref_primary_10_1093_bib_bbab565 crossref_primary_10_3389_fcell_2018_00141 crossref_primary_10_1016_j_celrep_2024_115057 crossref_primary_10_1007_s12022_024_09826_z crossref_primary_10_1016_j_molmet_2022_101467 crossref_primary_10_1177_0333102419877834 crossref_primary_10_3389_fbioe_2020_00786 crossref_primary_10_1186_s13073_022_01026_w crossref_primary_10_1093_bioinformatics_btab410 crossref_primary_10_1172_jci_insight_156549 crossref_primary_10_1146_annurev_immunol_042617_053035 crossref_primary_10_1186_s13059_020_02006_2 crossref_primary_10_1371_journal_pcbi_1012224 crossref_primary_10_1038_s41598_018_27627_3 crossref_primary_10_3389_fimmu_2021_751701 crossref_primary_10_1002_bies_202200186 crossref_primary_10_1186_s13059_018_1449_6 crossref_primary_10_1016_j_jare_2024_10_035 crossref_primary_10_1016_j_metabol_2024_156042 crossref_primary_10_1186_s13059_021_02565_y crossref_primary_10_3390_ijms23042082 crossref_primary_10_1007_s11033_021_06147_w crossref_primary_10_1242_dev_173716 crossref_primary_10_1038_s41467_021_25957_x crossref_primary_10_1093_nargab_lqaa002 crossref_primary_10_3390_math11173785 crossref_primary_10_1038_s42255_020_00314_2 crossref_primary_10_1093_bib_bbad525 crossref_primary_10_1371_journal_pcbi_1012014 crossref_primary_10_1038_s42003_024_07315_x crossref_primary_10_7554_eLife_38519 crossref_primary_10_1093_bib_bbz166 crossref_primary_10_1093_bib_bby076 crossref_primary_10_1142_S0219720022500019 crossref_primary_10_1016_j_compbiomed_2024_108497 crossref_primary_10_1093_bioinformatics_btaa108 crossref_primary_10_1038_s41592_023_01814_1 crossref_primary_10_1038_s41467_023_43605_4 crossref_primary_10_1186_s12864_024_10728_x crossref_primary_10_1093_bib_bbab584 crossref_primary_10_1093_bib_bbac430 crossref_primary_10_1016_j_ccell_2022_09_009 crossref_primary_10_1038_s41576_018_0088_9 crossref_primary_10_1016_j_molmet_2021_101188 crossref_primary_10_1093_bib_bbad512 crossref_primary_10_1016_j_xcrm_2021_100434 crossref_primary_10_1038_s41467_021_27729_z crossref_primary_10_1073_pnas_1918314117 crossref_primary_10_2174_1574893618666230217085543 crossref_primary_10_1007_s00109_020_01887_x crossref_primary_10_1093_bib_bbab531 crossref_primary_10_1016_j_coph_2021_06_006 crossref_primary_10_1038_s42255_019_0075_2 crossref_primary_10_1186_s13059_019_1862_5 crossref_primary_10_12688_f1000research_22969_2 crossref_primary_10_3389_fendo_2021_642152 crossref_primary_10_1093_bioinformatics_btae711 crossref_primary_10_1002_stem_2719 crossref_primary_10_1016_j_molmet_2019_06_015 crossref_primary_10_1093_bib_bbac616 crossref_primary_10_1038_s41598_022_26434_1 crossref_primary_10_1016_j_cels_2023_12_005 crossref_primary_10_1186_s13059_019_1764_6 crossref_primary_10_1093_bib_bbaa433 crossref_primary_10_1007_s12015_024_10752_0 crossref_primary_10_1038_s41587_019_0392_8 crossref_primary_10_1155_2022_9639304 crossref_primary_10_1038_s41556_019_0439_6 crossref_primary_10_1093_jmcb_mjy064 crossref_primary_10_1111_pedi_13453 crossref_primary_10_3389_fcell_2021_732776 crossref_primary_10_1093_bioinformatics_btac300 crossref_primary_10_1038_s42003_023_04668_7 crossref_primary_10_1093_bioinformatics_bty793 crossref_primary_10_15252_embj_2020106785 crossref_primary_10_3389_fgene_2017_00022 crossref_primary_10_3390_genes11060645 crossref_primary_10_1016_j_molmet_2024_102070 crossref_primary_10_1038_nrg_2017_15 crossref_primary_10_1038_s41556_019_0428_9 crossref_primary_10_1155_2020_8624963 crossref_primary_10_1038_s41392_022_01034_7 crossref_primary_10_1038_s41467_020_15816_6 crossref_primary_10_1038_s41576_022_00449_w crossref_primary_10_1093_nargab_lqae004 crossref_primary_10_1002_adfm_202309108 crossref_primary_10_1016_j_jbi_2022_104093 crossref_primary_10_1016_j_cmet_2019_12_009 crossref_primary_10_1038_s41467_023_35923_4 crossref_primary_10_1016_j_stem_2021_08_001 crossref_primary_10_1254_fpj_153_61 crossref_primary_10_3389_fendo_2023_1226615 crossref_primary_10_1186_s12864_020_07302_6 crossref_primary_10_1038_s41467_023_41306_6 crossref_primary_10_1038_s41576_019_0093_7 crossref_primary_10_1007_s11892_018_1085_2 crossref_primary_10_1016_j_isci_2020_100914 crossref_primary_10_1038_s41598_021_98806_y crossref_primary_10_7554_eLife_48994 crossref_primary_10_1074_jbc_RA120_014368 crossref_primary_10_1161_CIRCRESAHA_119_315940 crossref_primary_10_1016_j_mam_2017_07_002 crossref_primary_10_1093_nargab_lqac056 crossref_primary_10_1093_bioinformatics_btac563 crossref_primary_10_1038_nmeth_4644 crossref_primary_10_1371_journal_pcbi_1010025 crossref_primary_10_1093_bib_bbac625 crossref_primary_10_1152_ajpendo_00649_2020 crossref_primary_10_1038_s41467_023_41855_w crossref_primary_10_1038_s41551_021_00737_6 crossref_primary_10_3389_fonc_2022_1063477 crossref_primary_10_1186_s13073_021_00941_8 crossref_primary_10_3389_fimmu_2023_1288027 crossref_primary_10_1038_s41467_022_33758_z crossref_primary_10_1007_s12022_020_09611_8 crossref_primary_10_1016_j_omtn_2019_12_035 crossref_primary_10_1242_dev_179051 crossref_primary_10_1038_s41551_021_00757_2 crossref_primary_10_1007_s12551_023_01174_2 crossref_primary_10_1038_nbt_4096 crossref_primary_10_1038_s41467_022_29588_8 crossref_primary_10_1016_j_immuni_2018_04_015 crossref_primary_10_1126_sciadv_aaw3851 crossref_primary_10_1038_nbt_4091 crossref_primary_10_1093_nargab_lqaa064 crossref_primary_10_3390_ijms22073306 crossref_primary_10_1093_nar_gkab380 crossref_primary_10_3389_fnins_2022_972201 crossref_primary_10_1016_j_molmet_2021_101330 crossref_primary_10_1016_j_celrep_2019_02_043 crossref_primary_10_1109_TCBB_2024_3405731 crossref_primary_10_1109_TCBB_2023_3328029 crossref_primary_10_1109_ACCESS_2020_3022718 crossref_primary_10_1186_s13059_022_02785_w crossref_primary_10_1038_s41588_021_00806_1 crossref_primary_10_1007_s40472_017_0161_x crossref_primary_10_1186_s13059_017_1257_4 crossref_primary_10_1093_gigascience_giad098 crossref_primary_10_1242_dev_201873 crossref_primary_10_1093_nar_gkac486 crossref_primary_10_1038_s41467_018_06498_2 crossref_primary_10_1016_j_jgg_2022_01_004 crossref_primary_10_1371_journal_pcbi_1007040 crossref_primary_10_2337_db21_0170 crossref_primary_10_1093_bioinformatics_btad449 crossref_primary_10_1038_s41596_018_0073_y crossref_primary_10_1109_TPAMI_2022_3222104 crossref_primary_10_1093_nargab_lqac022 crossref_primary_10_1038_s41581_018_0021_7 crossref_primary_10_1007_s00521_024_09662_6 crossref_primary_10_1172_JCI169349 crossref_primary_10_2337_db21_1030 crossref_primary_10_1093_bib_bbab508 crossref_primary_10_1186_s13059_021_02280_8 crossref_primary_10_1186_s13578_023_01003_9 crossref_primary_10_3389_fcell_2025_1531903 crossref_primary_10_1093_bioinformatics_btab273 crossref_primary_10_1186_s13059_024_03339_y crossref_primary_10_1007_s11892_020_01357_1 crossref_primary_10_1186_s12859_024_05814_6 crossref_primary_10_1186_s10020_024_00871_2 crossref_primary_10_1038_s12276_023_01043_8 crossref_primary_10_1016_j_jcmgh_2018_01_023 crossref_primary_10_1016_j_mce_2024_112272 crossref_primary_10_1016_j_celrep_2023_113237 crossref_primary_10_1016_j_jbi_2023_104510 crossref_primary_10_1002_qub2_85 crossref_primary_10_1016_j_eswa_2024_124702 crossref_primary_10_1093_gigascience_giaa075 crossref_primary_10_1093_bfgp_elad004 crossref_primary_10_1016_j_isci_2023_106439 crossref_primary_10_1016_j_molmet_2017_04_012 crossref_primary_10_3389_fgene_2022_1058057 crossref_primary_10_1016_j_molmet_2017_04_011 crossref_primary_10_1073_pnas_1817715116 crossref_primary_10_1080_10618600_2023_2256502 crossref_primary_10_1038_s41398_020_00994_0 crossref_primary_10_1038_s41575_020_0304_x crossref_primary_10_2337_db23_0130 crossref_primary_10_1038_s42003_023_05634_z crossref_primary_10_1002_qub2_91 crossref_primary_10_1016_j_stem_2021_03_005 crossref_primary_10_1038_s41591_021_01586_1 crossref_primary_10_7554_eLife_90419_2 crossref_primary_10_1093_bioinformatics_btab175 crossref_primary_10_1038_s41598_021_98534_3 crossref_primary_10_1007_s00424_017_2006_y crossref_primary_10_1038_s41592_019_0372_4 crossref_primary_10_1186_s12915_017_0362_x crossref_primary_10_1038_s41467_024_53068_w crossref_primary_10_1016_j_coisb_2017_07_004 crossref_primary_10_1038_s41467_020_17281_7 crossref_primary_10_1186_s13059_019_1795_z crossref_primary_10_1038_s41593_021_01005_1 crossref_primary_10_1016_j_cell_2019_05_031 crossref_primary_10_1021_acsomega_8b02171 crossref_primary_10_1002_jgm_3017 crossref_primary_10_1038_s41586_023_06139_9 crossref_primary_10_1038_s41467_017_02539_4 crossref_primary_10_1038_s42003_023_04820_3 crossref_primary_10_15252_embr_202256416 crossref_primary_10_1016_j_cell_2019_05_006 crossref_primary_10_1074_jbc_RA117_001102 crossref_primary_10_1126_sciadv_aba2619 crossref_primary_10_1016_j_mcpro_2022_100229 crossref_primary_10_1038_s41467_022_32097_3 crossref_primary_10_1093_bib_bbaf071 crossref_primary_10_1186_s13059_021_02548_z crossref_primary_10_1016_j_csbj_2025_03_018 crossref_primary_10_1080_10543406_2023_2208671 crossref_primary_10_1371_journal_pone_0311791 crossref_primary_10_1007_s10994_021_06043_1 crossref_primary_10_1371_journal_pcbi_1008120 crossref_primary_10_1038_s41587_021_00895_7 crossref_primary_10_1088_1478_3975_ab2a9d crossref_primary_10_2337_dbi18_0019 crossref_primary_10_1172_jci_insight_151551 crossref_primary_10_1093_bioinformatics_bty293 crossref_primary_10_1182_blood_2020007885 crossref_primary_10_1016_j_molmet_2017_04_003 crossref_primary_10_1038_s41467_021_23518_w crossref_primary_10_1038_s41576_021_00370_8 crossref_primary_10_3389_fgene_2020_572242 crossref_primary_10_3389_fimmu_2022_853349 crossref_primary_10_1093_bioinformatics_btz392 crossref_primary_10_3390_cells10123585 crossref_primary_10_4252_wjsc_v13_i3_193 crossref_primary_10_1016_j_csbj_2024_08_028 crossref_primary_10_1186_s12859_021_04385_0 crossref_primary_10_1038_s41467_025_56424_6 crossref_primary_10_1016_j_cmet_2021_05_015 crossref_primary_10_1186_s12859_020_3401_5 crossref_primary_10_1016_j_cmet_2021_05_013 crossref_primary_10_1016_j_cmet_2020_11_005 crossref_primary_10_1016_j_cmet_2020_11_006 crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1038_s41467_018_08023_x crossref_primary_10_1038_s42003_024_07264_5 crossref_primary_10_1186_s12915_023_01728_6 crossref_primary_10_1093_bib_bbae160 crossref_primary_10_1038_s41596_024_00991_3 crossref_primary_10_1093_bioinformatics_btz177 crossref_primary_10_1007_s11428_021_00817_w crossref_primary_10_1093_bioinformatics_btae480 crossref_primary_10_1101_gr_278439_123 crossref_primary_10_1038_s41467_017_02659_x crossref_primary_10_2337_db20_1115 crossref_primary_10_1681_ASN_2020121742 crossref_primary_10_3390_ijms251810147 crossref_primary_10_1021_acs_jproteome_1c00463 crossref_primary_10_1016_j_apm_2020_08_065 crossref_primary_10_1038_s41598_024_54798_z crossref_primary_10_1186_s13059_024_03357_w crossref_primary_10_1093_bib_bbad061 crossref_primary_10_1016_j_csbj_2022_04_023 crossref_primary_10_1093_bib_bbae392 crossref_primary_10_1038_s41598_022_06500_4 crossref_primary_10_3389_fendo_2023_1196460 crossref_primary_10_1093_nar_gkab1275 crossref_primary_10_1016_j_jtos_2021_02_001 crossref_primary_10_1038_s43018_022_00356_3 crossref_primary_10_1186_s13059_023_03034_4 crossref_primary_10_1016_j_stemcr_2022_03_013 crossref_primary_10_1016_j_compbiomed_2024_108921 crossref_primary_10_1038_s42255_023_00876_x crossref_primary_10_1038_s41598_023_42482_7 crossref_primary_10_1093_bib_bbaf031 crossref_primary_10_1016_j_molmet_2019_06_002 crossref_primary_10_1093_bioinformatics_btae020 crossref_primary_10_1186_s12864_024_10160_1 crossref_primary_10_1038_s41467_024_50281_5 crossref_primary_10_1186_s12859_021_04187_4 crossref_primary_10_1186_s12859_021_04165_w crossref_primary_10_1186_s13293_024_00595_2 crossref_primary_10_3389_fgene_2022_831040 crossref_primary_10_3390_ijms23148038 crossref_primary_10_1016_j_cmet_2017_04_003 crossref_primary_10_1038_s41598_023_31915_y crossref_primary_10_1093_bib_bbad081 crossref_primary_10_1136_gutjnl_2022_329313 crossref_primary_10_1109_JBHI_2023_3319551 crossref_primary_10_1152_physrev_00008_2021 crossref_primary_10_3390_genes13061015 crossref_primary_10_1016_j_ccell_2023_06_006 crossref_primary_10_1093_nar_gkae480 crossref_primary_10_1109_TCBB_2024_3362472 crossref_primary_10_3390_cancers15030936 crossref_primary_10_1093_bioinformatics_btaa908 crossref_primary_10_1186_s13073_023_01179_2 crossref_primary_10_2337_db22_0121 crossref_primary_10_1038_s41467_021_23295_6 crossref_primary_10_1016_j_inffus_2024_102754 crossref_primary_10_1038_s41598_020_66556_y crossref_primary_10_1126_sciadv_abm1831 crossref_primary_10_1016_j_cobme_2020_06_003 crossref_primary_10_1016_j_cmet_2017_08_007 crossref_primary_10_1016_j_molmet_2017_06_021 crossref_primary_10_1016_j_isci_2020_101774 crossref_primary_10_1073_pnas_1820006116 crossref_primary_10_3390_cells10050973 crossref_primary_10_1038_s41467_020_14561_0 crossref_primary_10_1038_s41556_023_01150_8 crossref_primary_10_1093_bioinformatics_btaa919 crossref_primary_10_1016_j_xpro_2024_103067 crossref_primary_10_1016_j_csbj_2022_06_010 crossref_primary_10_1038_s41467_018_06318_7 crossref_primary_10_1093_bib_bbae112 crossref_primary_10_1096_fj_201801397R crossref_primary_10_1038_s41467_024_50192_5 crossref_primary_10_1016_j_crmeth_2024_100799 crossref_primary_10_1038_s41467_020_15821_9 crossref_primary_10_1016_j_crmeth_2024_100797 crossref_primary_10_1093_bib_bbab085 crossref_primary_10_1186_s12859_022_04574_5 crossref_primary_10_1038_s41467_021_23656_1 crossref_primary_10_1016_j_xcrm_2022_100879 crossref_primary_10_1038_s42255_019_0135_7 crossref_primary_10_1002_advs_202306770 crossref_primary_10_3390_genes11040377 crossref_primary_10_1016_j_jhepr_2021_100278 crossref_primary_10_1038_s41467_018_03282_0 crossref_primary_10_2337_db23_0508 crossref_primary_10_1093_bioinformatics_btaa935 crossref_primary_10_1007_s00432_024_05855_7 crossref_primary_10_1016_j_semnephrol_2017_09_005 crossref_primary_10_1093_nar_gkz959 crossref_primary_10_15252_msb_20199005 crossref_primary_10_7554_eLife_66747 crossref_primary_10_1371_journal_pgen_1010825 crossref_primary_10_1093_bioinformatics_btae063 crossref_primary_10_1007_s13042_022_01635_2 crossref_primary_10_1136_jitc_2019_000363 crossref_primary_10_1038_s41586_020_2157_4 crossref_primary_10_1093_bioadv_vbae032 crossref_primary_10_1186_s13059_023_03049_x crossref_primary_10_1186_s12915_024_01963_5 crossref_primary_10_1038_s41467_023_36383_6 crossref_primary_10_1038_s41592_018_0033_z crossref_primary_10_1038_s41596_021_00575_5 crossref_primary_10_1093_bib_bbad045 crossref_primary_10_1016_j_ajt_2023_10_001 crossref_primary_10_1093_bib_bbae370 crossref_primary_10_1371_journal_pcbi_1009600 crossref_primary_10_1002_advs_202308934 crossref_primary_10_3389_fgene_2022_825896 crossref_primary_10_1097_PAS_0000000000001811 crossref_primary_10_1109_TCBB_2022_3170587 crossref_primary_10_1186_s12859_021_04381_4 crossref_primary_10_2139_ssrn_3387654 crossref_primary_10_1186_s12859_023_05339_4 crossref_primary_10_1016_j_scr_2018_04_010 crossref_primary_10_1016_j_cmet_2022_11_009 crossref_primary_10_3389_fgene_2022_855076 crossref_primary_10_3390_ijms23010501 crossref_primary_10_2337_db24_0215 crossref_primary_10_1093_bib_bbad475 crossref_primary_10_1002_path_6211 crossref_primary_10_1007_s12572_018_0239_4 crossref_primary_10_1038_s41467_023_40314_w crossref_primary_10_1016_j_stem_2021_04_005 crossref_primary_10_1093_bib_bbae315 crossref_primary_10_1093_bib_bbae558 crossref_primary_10_1038_s41467_020_19015_1 crossref_primary_10_1186_s13059_022_02649_3 crossref_primary_10_3390_genes14030596 crossref_primary_10_1038_s41422_019_0195_y crossref_primary_10_1126_science_aaw2619 crossref_primary_10_1016_j_cgh_2020_04_040 crossref_primary_10_3389_fcell_2021_655152 crossref_primary_10_1016_j_cell_2018_12_003 crossref_primary_10_1016_j_celrep_2020_01_083 crossref_primary_10_1371_journal_pone_0284527 crossref_primary_10_1093_nar_gkz543 crossref_primary_10_1186_s13059_020_02048_6 crossref_primary_10_1210_endocr_bqaa108 crossref_primary_10_1093_bib_bbae305 crossref_primary_10_1093_bioinformatics_btab821 crossref_primary_10_1093_bioinformatics_btaa976 crossref_primary_10_3892_mmr_2024_13283 crossref_primary_10_1093_bib_bbae586 crossref_primary_10_1093_bioadv_vbac049 crossref_primary_10_1016_j_celrep_2020_108067 crossref_primary_10_21105_joss_05024 crossref_primary_10_1038_s41596_018_0058_x crossref_primary_10_1016_j_yexcr_2021_112966 crossref_primary_10_1016_j_celrep_2022_110508 crossref_primary_10_1038_s41467_019_10802_z crossref_primary_10_1038_s41587_021_01001_7 crossref_primary_10_3390_cancers13194932 crossref_primary_10_3390_ijms22031000 crossref_primary_10_1093_bioinformatics_btab834 crossref_primary_10_1109_JBHI_2024_3468310 crossref_primary_10_1111_1753_0407_13236 crossref_primary_10_1053_j_gastro_2020_12_028 crossref_primary_10_1016_j_cell_2019_08_006 crossref_primary_10_1109_ACCESS_2020_3040943 crossref_primary_10_1007_s00018_021_03951_2 crossref_primary_10_1038_s41587_019_0113_3 crossref_primary_10_1007_s00109_024_02460_6 crossref_primary_10_1016_j_compbiomed_2023_107152 |
Cites_doi | 10.1186/s13059-016-0938-8 10.1016/j.stem.2012.11.023 10.1210/jc.2002-020735 10.1016/j.tins.2011.11.006 10.1126/science.aaa6090 10.1172/JCI30910 10.1016/S0140-6736(75)92078-4 10.1002/glia.20761 10.2337/db06-0885 10.1016/j.cell.2014.09.040 10.1242/dev.02770 10.1016/j.cmet.2012.08.010 10.1038/nature07314 10.1369/jhc.5C6684.2005 10.3389/fendo.2011.00112 10.1073/pnas.0912589107 10.1038/nbt.3033 10.1186/gb-2004-5-10-r80 10.1126/science.aaa1934 10.15252/embr.201540946 10.1038/nmeth.2892 10.1016/j.coi.2013.09.015 10.1172/JCI79264 10.1038/nbt.2141 10.1073/pnas.1402665111 10.1007/s00125-011-2283-5 10.15252/embj.201591058 10.1016/j.celrep.2012.08.003 10.1016/B978-0-12-384892-5.00010-4 10.1016/S0002-9440(10)65211-X 10.1371/journal.pone.0052181 10.1016/j.stemcr.2015.02.017 10.1007/s10620-006-9589-z 10.1007/s00109-005-0680-2 10.1679/aohc.46.327 10.1093/bioinformatics/btu170 10.1016/0968-0004(93)90170-R 10.1387/ijdb.072444cb 10.1038/nmeth.1923 10.1101/gr.150706.112 10.1093/bioinformatics/btv483 10.1007/s00125-007-0816-8 10.1016/j.cell.2015.04.044 10.1073/pnas.1602306113 10.4158/EP12138.RA 10.1038/nmeth.3337 10.1126/science.1161431 10.1038/nmeth.1439 10.1038/ng.493 10.1002/wdev.44 10.1177/1087057111430253 10.1126/science.1250212 10.1172/JCI30076 10.1085/jgp.200810122 10.1146/annurev.physiol.67.031103.153247 10.1073/pnas.0510790103 10.1093/bioinformatics/btp616 10.1038/srep13383 10.2337/db15-0039 10.1186/1471-2164-15-620 10.1038/nature13173 10.1038/nbt.3082 10.1038/nm.3872 10.1007/s00125-014-3213-0 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cels.2016.08.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-4720 |
EndPage | 360.e4 |
ExternalDocumentID | PMC5228327 27667365 10_1016_j_cels_2016_08_011 S2405471216302666 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM080177 |
GroupedDBID | 0R~ 457 6I. AACTN AAEDW AAFTH AAIAV AAIKJ AALRI AAVLU AAXUO ABJNI ABMAC ABVKL ACGFS ADBBV ADJPV AFTJW AHDRD AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB JIG M41 NCXOZ O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-aab81a98185d25b5a6da2898d1bc7e2addcc74110e281a4d02d658e9317a7d9c3 |
ISSN | 2405-4712 |
IngestDate | Thu Aug 21 18:06:16 EDT 2025 Fri Jul 11 09:31:22 EDT 2025 Wed Feb 19 02:35:12 EST 2025 Tue Jul 01 04:22:55 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 23 02:22:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c521t-aab81a98185d25b5a6da2898d1bc7e2addcc74110e281a4d02d658e9317a7d9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Present address: Institute for Computational Medicine, New York University School of Medicine, New York, NY 10016, USA Co-first author |
OpenAccessLink | https://dx.doi.org/10.1016/j.cels.2016.08.011 |
PMID | 27667365 |
PQID | 1835686114 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5228327 proquest_miscellaneous_1835686114 pubmed_primary_27667365 crossref_primary_10_1016_j_cels_2016_08_011 crossref_citationtrail_10_1016_j_cels_2016_08_011 elsevier_sciencedirect_doi_10_1016_j_cels_2016_08_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-26 |
PublicationDateYYYYMMDD | 2016-10-26 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell systems |
PublicationTitleAlternate | Cell Syst |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Grube, Bohn (bib15) 1983; 46 Kimmel, Meyer (bib25) 2010; 100 Li, Cavelti-Weder, Zhang, Clement, Donovan, Gonzalez, Zhu, Stemann, Xu, Hashimoto (bib31) 2014; 32 Blum, Hrvatin, Schuetz, Bonal, Rezania, Melton (bib3) 2012; 30 van der Meulen, Xie, Kelly, Vale, Sander, Huising (bib56) 2012; 7 Drel, Mashtalir, Ilnytska, Shin, Li, Lyzogubov, Obrosova (bib11) 2006; 55 Nica, Ongen, Irminger, Bosco, Berney, Antonarakis, Halban, Dermitzakis (bib40) 2013; 23 Orci, Unger (bib42) 1975; 2 Zaret, Grompe (bib64) 2008; 322 Zhou, Brown, Kanarek, Rajagopal, Melton (bib66) 2008; 455 Drucker (bib12) 2007; 117 Lee, Daugharthy, Scheiman, Kalhor, Yang, Ferrante, Terry, Jeanty, Li, Amamoto (bib29) 2014; 343 Newman, Liu, Green, Gentles, Feng, Xu, Hoang, Diehn, Alizadeh (bib39) 2015; 12 Jessen, Mirsky (bib23) 2008; 56 Pereira, Lebrun-Julien, Suter (bib44) 2012; 35 Langmead, Salzberg (bib28) 2012; 9 Li, Klughammer, Farlik, Penz, Spittler, Barbieux, Berishvili, Bock, Kubicek (bib32) 2016; 17 Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (bib33) 2014; 11 Wallace, Smyth, Maisuria-Armer, Walker, Todd, Clayton (bib58) 2010; 42 Hashimshony, Wagner, Sher, Yanai (bib17) 2012; 2 Chen, Boettiger, Moffitt, Wang, Zhuang (bib9) 2015; 348 Sharma, O’Donnell, Stamateris, Ha, McCloskey, Reynolds, Arvan, Alonso (bib49) 2015; 125 Russ, Parent, Ringler, Hennings, Nair, Shveygert, Guo, Puri, Haataja, Cirulli (bib48) 2015; 34 Shen-Orr, Gaujoux (bib50) 2013; 25 Johnson, O’Brien, Hayden, Jordan, Ghobrial, Mahoney, Westermark (bib24) 1988; 130 Bolger, Lohse, Usadel (bib4) 2014; 30 Hashimshony, Senderovich, Avital, Klochendler, de Leeuw, Anavy, Gennert, Li, Livak, Rozenblatt-Rosen (bib18) 2016; 17 Steward, Ishiguro, Case (bib52) 2005; 67 Gentleman, Carey, Bates, Bolstad, Dettling, Dudoit, Ellis, Gautier, Ge, Gentry (bib14) 2004; 5 Shen-Orr, Tibshirani, Khatri, Bodian, Staedtler, Perry, Hastie, Sarwal, Davis, Butte (bib51) 2010; 7 Nostro, Sarangi, Yang, Holland, Elefanty, Stanley, Greiner, Keller (bib41) 2015; 4 Zeisel, Manchado, Codeluppi, Lonnerberg, La Manno, Jureus, Marques, Munguba, He, Betsholtz (bib65) 2015; 347 Mastracci, Sussel (bib35) 2012; 1 Whitcomb, Lowe (bib60) 2007; 52 Morán, Akerman, van de Bunt, Xie, Benazra, Nammo, Arnes, Nakić, García-Hurtado, Rodríguez-Seguí (bib36) 2012; 16 Xie, Everett, Lim, Patel, Schug, Kroon, Kelly, Wang, D’Amour, Robins (bib61) 2013; 12 Haber, Keogh, Apte, Moran, Stewart, Crawford, Pirola, McCaughan, Ramm, Wilson (bib16) 1999; 155 Brissova, Fowler, Nicholson, Chu, Hirshberg, Harlan, Powers (bib6) 2005; 53 Treutlein, Brownfield, Wu, Neff, Mantalas, Espinoza, Desai, Krasnow, Quake (bib54) 2014; 509 Fadista, Vikman, Laakso, Mollet, Esguerra, Taneera, Storm, Osmark, Ladenvall, Prasad (bib13) 2014; 111 Benner, van der Meulen, Cacéres, Tigyi, Donaldson, Huising (bib1) 2014; 15 Lang, Xing, Brown, Samuvel, Panganiban, Havens, Balasubramanian, Wegner, Krug, Barth (bib27) 2015; 5 Hensman, Papastamoulis, Glaus, Honkela, Rattray (bib19) 2015; 31 Hoffmann, Hauser (bib20) 1993; 18 Xin, Kim, Ni, Wei, Okamoto, Lee, Adler, Cavino, Murphy, Yancopoulos (bib62) 2016; 113 van der Maaten, Hinton (bib55) 2008; 9 Yoon, Ko, Cho, Lee, Ahn, Song, Yoo, Kang, Cha, Lee (bib63) 2003; 88 Walpita, Hasaka, Spoonamore, Vetere, Takane, Fomina-Yadlin, Fiaschi-Taesch, Shamji, Clemons, Stewart (bib59) 2012; 17 Bonal, Herrera (bib5) 2008; 52 Marchetti, Bugliani, Lupi, Marselli, Masini, Boggi, Filipponi, Weir, Eizirik, Cnop (bib34) 2007; 50 Murtaugh (bib38) 2007; 134 Rezania, Bruin, Arora, Rubin, Batushansky, Asadi, O’Dwyer, Quiskamp, Mojibian, Albrecht (bib45) 2014; 32 Cabrera, Berman, Kenyon, Ricordi, Berggren, Caicedo (bib8) 2006; 103 Rovira, Scott, Liss, Jensen, Thayer, Leach (bib47) 2010; 107 Buchholz, Kestler, Holzmann, Ellenrieder, Schneiderhan, Siech, Adler, Bachem, Gress (bib7) 2005; 83 Blodgett, Nowosielska, Afik, Pechhold, Cura, Kennedy, Kim, Kucukural, Davis, Kent (bib2) 2015; 64 Levetan, Pierce (bib30) 2013; 19 Stone, Dhayal, Brocklehurst, Lenaghan, Sörhede Winzell, Hammar, Xu, Smith, Morgan (bib53) 2014; 57 Robinson, McCarthy, Smyth (bib46) 2010; 26 Morioka, Asilmaz, Hu, Dishinger, Kurpad, Elias, Li, Elmquist, Kennedy, Kulkarni (bib37) 2007; 117 Pagliuca, Millman, Gürtler, Segel, Van Dervort, Ryu, Peterson, Greiner, Melton (bib43) 2014; 159 Dorrell, Schug, Lin, Canaday, Fox, Smirnova, Bonnah, Streeter, Stoeckert, Kaestner, Grompe (bib10) 2011; 54 Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib26) 2015; 161 Holliday, Watson, Brown (bib21) 2012; 2 Ishiguro, Steward, Naruse, Ko, Goto, Case, Kondo, Yamamoto (bib22) 2009; 133 van der Meulen, Donaldson, Cáceres, Hunter, Cowing-Zitron, Pound, Adams, Zembrzycki, Grove, Huising (bib57) 2015; 21 Ishiguro (10.1016/j.cels.2016.08.011_bib22) 2009; 133 Cabrera (10.1016/j.cels.2016.08.011_bib8) 2006; 103 Johnson (10.1016/j.cels.2016.08.011_bib24) 1988; 130 Yoon (10.1016/j.cels.2016.08.011_bib63) 2003; 88 Pagliuca (10.1016/j.cels.2016.08.011_bib43) 2014; 159 Treutlein (10.1016/j.cels.2016.08.011_bib54) 2014; 509 Langmead (10.1016/j.cels.2016.08.011_bib28) 2012; 9 Steward (10.1016/j.cels.2016.08.011_bib52) 2005; 67 Hensman (10.1016/j.cels.2016.08.011_bib19) 2015; 31 Nica (10.1016/j.cels.2016.08.011_bib40) 2013; 23 Levetan (10.1016/j.cels.2016.08.011_bib30) 2013; 19 Sharma (10.1016/j.cels.2016.08.011_bib49) 2015; 125 Rezania (10.1016/j.cels.2016.08.011_bib45) 2014; 32 Bonal (10.1016/j.cels.2016.08.011_bib5) 2008; 52 van der Maaten (10.1016/j.cels.2016.08.011_bib55) 2008; 9 Stone (10.1016/j.cels.2016.08.011_bib53) 2014; 57 Robinson (10.1016/j.cels.2016.08.011_bib46) 2010; 26 van der Meulen (10.1016/j.cels.2016.08.011_bib56) 2012; 7 Zeisel (10.1016/j.cels.2016.08.011_bib65) 2015; 347 Blodgett (10.1016/j.cels.2016.08.011_bib2) 2015; 64 Marchetti (10.1016/j.cels.2016.08.011_bib34) 2007; 50 Li (10.1016/j.cels.2016.08.011_bib31) 2014; 32 Chen (10.1016/j.cels.2016.08.011_bib9) 2015; 348 Shen-Orr (10.1016/j.cels.2016.08.011_bib50) 2013; 25 Fadista (10.1016/j.cels.2016.08.011_bib13) 2014; 111 Lubeck (10.1016/j.cels.2016.08.011_bib33) 2014; 11 Haber (10.1016/j.cels.2016.08.011_bib16) 1999; 155 Gentleman (10.1016/j.cels.2016.08.011_bib14) 2004; 5 Mastracci (10.1016/j.cels.2016.08.011_bib35) 2012; 1 Klein (10.1016/j.cels.2016.08.011_bib26) 2015; 161 Pereira (10.1016/j.cels.2016.08.011_bib44) 2012; 35 Li (10.1016/j.cels.2016.08.011_bib32) 2016; 17 Zhou (10.1016/j.cels.2016.08.011_bib66) 2008; 455 Holliday (10.1016/j.cels.2016.08.011_bib21) 2012; 2 Shen-Orr (10.1016/j.cels.2016.08.011_bib51) 2010; 7 Blum (10.1016/j.cels.2016.08.011_bib3) 2012; 30 Hashimshony (10.1016/j.cels.2016.08.011_bib18) 2016; 17 Lee (10.1016/j.cels.2016.08.011_bib29) 2014; 343 Rovira (10.1016/j.cels.2016.08.011_bib47) 2010; 107 Grube (10.1016/j.cels.2016.08.011_bib15) 1983; 46 Wallace (10.1016/j.cels.2016.08.011_bib58) 2010; 42 Zaret (10.1016/j.cels.2016.08.011_bib64) 2008; 322 Bolger (10.1016/j.cels.2016.08.011_bib4) 2014; 30 Brissova (10.1016/j.cels.2016.08.011_bib6) 2005; 53 Jessen (10.1016/j.cels.2016.08.011_bib23) 2008; 56 Lang (10.1016/j.cels.2016.08.011_bib27) 2015; 5 Benner (10.1016/j.cels.2016.08.011_bib1) 2014; 15 Drel (10.1016/j.cels.2016.08.011_bib11) 2006; 55 Morioka (10.1016/j.cels.2016.08.011_bib37) 2007; 117 Kimmel (10.1016/j.cels.2016.08.011_bib25) 2010; 100 Buchholz (10.1016/j.cels.2016.08.011_bib7) 2005; 83 Orci (10.1016/j.cels.2016.08.011_bib42) 1975; 2 Murtaugh (10.1016/j.cels.2016.08.011_bib38) 2007; 134 Xin (10.1016/j.cels.2016.08.011_bib62) 2016; 113 Newman (10.1016/j.cels.2016.08.011_bib39) 2015; 12 van der Meulen (10.1016/j.cels.2016.08.011_bib57) 2015; 21 Hoffmann (10.1016/j.cels.2016.08.011_bib20) 1993; 18 Xie (10.1016/j.cels.2016.08.011_bib61) 2013; 12 Morán (10.1016/j.cels.2016.08.011_bib36) 2012; 16 Hashimshony (10.1016/j.cels.2016.08.011_bib17) 2012; 2 Dorrell (10.1016/j.cels.2016.08.011_bib10) 2011; 54 Nostro (10.1016/j.cels.2016.08.011_bib41) 2015; 4 Walpita (10.1016/j.cels.2016.08.011_bib59) 2012; 17 Whitcomb (10.1016/j.cels.2016.08.011_bib60) 2007; 52 Russ (10.1016/j.cels.2016.08.011_bib48) 2015; 34 Drucker (10.1016/j.cels.2016.08.011_bib12) 2007; 117 27788358 - Cell Syst. 2016 Oct 26;3(4):330-332 |
References_xml | – volume: 17 start-page: 178 year: 2016 end-page: 187 ident: bib32 article-title: Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types publication-title: EMBO Rep. – volume: 2 start-page: 1243 year: 1975 end-page: 1244 ident: bib42 article-title: Functional subdivision of islets of Langerhans and possible role of D cells publication-title: Lancet – volume: 16 start-page: 435 year: 2012 end-page: 448 ident: bib36 article-title: Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes publication-title: Cell Metab. – volume: 103 start-page: 2334 year: 2006 end-page: 2339 ident: bib8 article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 1121 year: 2014 end-page: 1133 ident: bib45 article-title: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells publication-title: Nat. Biotechnol. – volume: 53 start-page: 1087 year: 2005 end-page: 1097 ident: bib6 article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy publication-title: J. Histochem. Cytochem. – volume: 100 start-page: 261 year: 2010 end-page: 280 ident: bib25 article-title: Molecular regulation of pancreas development in zebrafish publication-title: Methods Cell Biol. – volume: 130 start-page: 1 year: 1988 end-page: 8 ident: bib24 article-title: Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques publication-title: Am. J. Pathol. – volume: 11 start-page: 360 year: 2014 end-page: 361 ident: bib33 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat. Methods – volume: 12 start-page: 224 year: 2013 end-page: 237 ident: bib61 article-title: Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells publication-title: Cell Stem Cell – volume: 117 start-page: 2860 year: 2007 end-page: 2868 ident: bib37 article-title: Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice publication-title: J. Clin. Invest. – volume: 347 start-page: 1138 year: 2015 end-page: 1142 ident: bib65 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science – volume: 50 start-page: 2486 year: 2007 end-page: 2494 ident: bib34 article-title: The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients publication-title: Diabetologia – volume: 42 start-page: 68 year: 2010 end-page: 71 ident: bib58 article-title: The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes publication-title: Nat. Genet. – volume: 32 start-page: 1223 year: 2014 end-page: 1230 ident: bib31 article-title: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells publication-title: Nat. Biotechnol. – volume: 56 start-page: 1552 year: 2008 end-page: 1565 ident: bib23 article-title: Negative regulation of myelination: relevance for development, injury, and demyelinating disease publication-title: Glia – volume: 15 start-page: 620 year: 2014 ident: bib1 article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression publication-title: BMC Genomics – volume: 322 start-page: 1490 year: 2008 end-page: 1494 ident: bib64 article-title: Generation and regeneration of cells of the liver and pancreas publication-title: Science – volume: 125 start-page: 3831 year: 2015 end-page: 3846 ident: bib49 article-title: Insulin demand regulates β cell number via the unfolded protein response publication-title: J. Clin. Invest. – volume: 17 start-page: 509 year: 2012 end-page: 518 ident: bib59 article-title: A human islet cell culture system for high-throughput screening publication-title: J. Biomol. Screen. – volume: 17 start-page: 77 year: 2016 ident: bib18 article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq publication-title: Genome Biol. – volume: 52 start-page: 1 year: 2007 end-page: 17 ident: bib60 article-title: Human pancreatic digestive enzymes publication-title: Dig. Dis. Sci. – volume: 55 start-page: 3335 year: 2006 end-page: 3343 ident: bib11 article-title: The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity publication-title: Diabetes – volume: 1 start-page: 609 year: 2012 end-page: 628 ident: bib35 article-title: The endocrine pancreas: insights into development, differentiation, and diabetes publication-title: Wiley Interdiscip. Rev. Dev. Biol. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib55 article-title: Visualizing high-dimensional data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 155 start-page: 1087 year: 1999 end-page: 1095 ident: bib16 article-title: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis publication-title: Am. J. Pathol. – volume: 21 start-page: 769 year: 2015 end-page: 776 ident: bib57 article-title: Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion publication-title: Nat. Med. – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: bib26 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 2 start-page: 666 year: 2012 end-page: 673 ident: bib17 article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification publication-title: Cell Rep. – volume: 343 start-page: 1360 year: 2014 end-page: 1363 ident: bib29 article-title: Highly multiplexed subcellular RNA sequencing in situ publication-title: Science – volume: 2 start-page: 112 year: 2012 ident: bib21 article-title: Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids publication-title: Front. Endocrinol. (Lausanne) – volume: 5 start-page: R80 year: 2004 ident: bib14 article-title: Bioconductor: open software development for computational biology and bioinformatics publication-title: Genome Biol. – volume: 25 start-page: 571 year: 2013 end-page: 578 ident: bib50 article-title: Computational deconvolution: extracting cell type-specific information from heterogeneous samples publication-title: Curr. Opin. Immunol. – volume: 4 start-page: 591 year: 2015 end-page: 604 ident: bib41 article-title: Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines publication-title: Stem Cell Reports – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib28 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 111 start-page: 13924 year: 2014 end-page: 13929 ident: bib13 article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism publication-title: Proc. Natl. Acad. Sci. USA – volume: 133 start-page: 315 year: 2009 end-page: 326 ident: bib22 article-title: CFTR functions as a bicarbonate channel in pancreatic duct cells publication-title: J. Gen. Physiol. – volume: 107 start-page: 75 year: 2010 end-page: 80 ident: bib47 article-title: Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 113 start-page: 3293 year: 2016 end-page: 3298 ident: bib62 article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 2300 year: 2003 end-page: 2308 ident: bib63 article-title: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea publication-title: J. Clin. Endocrinol. Metab. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: bib4 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 455 start-page: 627 year: 2008 end-page: 632 ident: bib66 article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells publication-title: Nature – volume: 57 start-page: 1182 year: 2014 end-page: 1191 ident: bib53 article-title: GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans publication-title: Diabetologia – volume: 23 start-page: 1554 year: 2013 end-page: 1562 ident: bib40 article-title: Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome publication-title: Genome Res. – volume: 12 start-page: 453 year: 2015 end-page: 457 ident: bib39 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods – volume: 83 start-page: 795 year: 2005 end-page: 805 ident: bib7 article-title: Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype publication-title: J. Mol. Med. – volume: 159 start-page: 428 year: 2014 end-page: 439 ident: bib43 article-title: Generation of functional human pancreatic β cells in vitro publication-title: Cell – volume: 67 start-page: 377 year: 2005 end-page: 409 ident: bib52 article-title: Mechanisms of bicarbonate secretion in the pancreatic duct publication-title: Annu. Rev. Physiol. – volume: 34 start-page: 1759 year: 2015 end-page: 1772 ident: bib48 article-title: Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro publication-title: EMBO J. – volume: 117 start-page: 24 year: 2007 end-page: 32 ident: bib12 article-title: The role of gut hormones in glucose homeostasis publication-title: J. Clin. Invest. – volume: 134 start-page: 427 year: 2007 end-page: 438 ident: bib38 article-title: Pancreas and beta-cell development: from the actual to the possible publication-title: Development – volume: 52 start-page: 823 year: 2008 end-page: 835 ident: bib5 article-title: Genes controlling pancreas ontogeny publication-title: Int. J. Dev. Biol. – volume: 509 start-page: 371 year: 2014 end-page: 375 ident: bib54 article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq publication-title: Nature – volume: 54 start-page: 2832 year: 2011 end-page: 2844 ident: bib10 article-title: Transcriptomes of the major human pancreatic cell types publication-title: Diabetologia – volume: 5 start-page: 13383 year: 2015 ident: bib27 article-title: Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve publication-title: Sci. Rep. – volume: 18 start-page: 239 year: 1993 end-page: 243 ident: bib20 article-title: The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? publication-title: Trends Biochem. Sci. – volume: 19 start-page: 301 year: 2013 end-page: 312 ident: bib30 article-title: Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes publication-title: Endocr. Pract. – volume: 64 start-page: 3172 year: 2015 end-page: 3181 ident: bib2 article-title: Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets publication-title: Diabetes – volume: 35 start-page: 123 year: 2012 end-page: 134 ident: bib44 article-title: Molecular mechanisms regulating myelination in the peripheral nervous system publication-title: Trends Neurosci. – volume: 7 start-page: 287 year: 2010 end-page: 289 ident: bib51 article-title: Cell type-specific gene expression differences in complex tissues publication-title: Nat. Methods – volume: 348 start-page: aaa6090 year: 2015 ident: bib9 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science – volume: 46 start-page: 327 year: 1983 end-page: 353 ident: bib15 article-title: The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells publication-title: Arch. Histol. Jpn. – volume: 30 start-page: 261 year: 2012 end-page: 264 ident: bib3 article-title: Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3 publication-title: Nat. Biotechnol. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib46 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 31 start-page: 3881 year: 2015 end-page: 3889 ident: bib19 article-title: Fast and accurate approximate inference of transcript expression from RNA-seq data publication-title: Bioinformatics – volume: 7 start-page: e52181 year: 2012 ident: bib56 article-title: Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells publication-title: PLoS ONE – volume: 17 start-page: 77 year: 2016 ident: 10.1016/j.cels.2016.08.011_bib18 article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq publication-title: Genome Biol. doi: 10.1186/s13059-016-0938-8 – volume: 12 start-page: 224 year: 2013 ident: 10.1016/j.cels.2016.08.011_bib61 article-title: Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.11.023 – volume: 88 start-page: 2300 year: 2003 ident: 10.1016/j.cels.2016.08.011_bib63 article-title: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2002-020735 – volume: 35 start-page: 123 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib44 article-title: Molecular mechanisms regulating myelination in the peripheral nervous system publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.11.006 – volume: 348 start-page: aaa6090 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib9 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 117 start-page: 2860 year: 2007 ident: 10.1016/j.cels.2016.08.011_bib37 article-title: Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI30910 – volume: 2 start-page: 1243 year: 1975 ident: 10.1016/j.cels.2016.08.011_bib42 article-title: Functional subdivision of islets of Langerhans and possible role of D cells publication-title: Lancet doi: 10.1016/S0140-6736(75)92078-4 – volume: 56 start-page: 1552 year: 2008 ident: 10.1016/j.cels.2016.08.011_bib23 article-title: Negative regulation of myelination: relevance for development, injury, and demyelinating disease publication-title: Glia doi: 10.1002/glia.20761 – volume: 55 start-page: 3335 year: 2006 ident: 10.1016/j.cels.2016.08.011_bib11 article-title: The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity publication-title: Diabetes doi: 10.2337/db06-0885 – volume: 159 start-page: 428 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib43 article-title: Generation of functional human pancreatic β cells in vitro publication-title: Cell doi: 10.1016/j.cell.2014.09.040 – volume: 134 start-page: 427 year: 2007 ident: 10.1016/j.cels.2016.08.011_bib38 article-title: Pancreas and beta-cell development: from the actual to the possible publication-title: Development doi: 10.1242/dev.02770 – volume: 16 start-page: 435 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib36 article-title: Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.08.010 – volume: 455 start-page: 627 year: 2008 ident: 10.1016/j.cels.2016.08.011_bib66 article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells publication-title: Nature doi: 10.1038/nature07314 – volume: 53 start-page: 1087 year: 2005 ident: 10.1016/j.cels.2016.08.011_bib6 article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.5C6684.2005 – volume: 2 start-page: 112 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib21 article-title: Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2011.00112 – volume: 107 start-page: 75 year: 2010 ident: 10.1016/j.cels.2016.08.011_bib47 article-title: Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0912589107 – volume: 32 start-page: 1121 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib45 article-title: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3033 – volume: 5 start-page: R80 year: 2004 ident: 10.1016/j.cels.2016.08.011_bib14 article-title: Bioconductor: open software development for computational biology and bioinformatics publication-title: Genome Biol. doi: 10.1186/gb-2004-5-10-r80 – volume: 347 start-page: 1138 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib65 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 17 start-page: 178 year: 2016 ident: 10.1016/j.cels.2016.08.011_bib32 article-title: Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types publication-title: EMBO Rep. doi: 10.15252/embr.201540946 – volume: 11 start-page: 360 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib33 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat. Methods doi: 10.1038/nmeth.2892 – volume: 25 start-page: 571 year: 2013 ident: 10.1016/j.cels.2016.08.011_bib50 article-title: Computational deconvolution: extracting cell type-specific information from heterogeneous samples publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.09.015 – volume: 125 start-page: 3831 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib49 article-title: Insulin demand regulates β cell number via the unfolded protein response publication-title: J. Clin. Invest. doi: 10.1172/JCI79264 – volume: 30 start-page: 261 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib3 article-title: Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2141 – volume: 111 start-page: 13924 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib13 article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402665111 – volume: 54 start-page: 2832 year: 2011 ident: 10.1016/j.cels.2016.08.011_bib10 article-title: Transcriptomes of the major human pancreatic cell types publication-title: Diabetologia doi: 10.1007/s00125-011-2283-5 – volume: 34 start-page: 1759 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib48 article-title: Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro publication-title: EMBO J. doi: 10.15252/embj.201591058 – volume: 2 start-page: 666 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib17 article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.003 – volume: 100 start-page: 261 year: 2010 ident: 10.1016/j.cels.2016.08.011_bib25 article-title: Molecular regulation of pancreas development in zebrafish publication-title: Methods Cell Biol. doi: 10.1016/B978-0-12-384892-5.00010-4 – volume: 155 start-page: 1087 year: 1999 ident: 10.1016/j.cels.2016.08.011_bib16 article-title: Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65211-X – volume: 7 start-page: e52181 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib56 article-title: Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0052181 – volume: 4 start-page: 591 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib41 article-title: Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.02.017 – volume: 52 start-page: 1 year: 2007 ident: 10.1016/j.cels.2016.08.011_bib60 article-title: Human pancreatic digestive enzymes publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-006-9589-z – volume: 83 start-page: 795 year: 2005 ident: 10.1016/j.cels.2016.08.011_bib7 article-title: Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype publication-title: J. Mol. Med. doi: 10.1007/s00109-005-0680-2 – volume: 46 start-page: 327 year: 1983 ident: 10.1016/j.cels.2016.08.011_bib15 article-title: The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells publication-title: Arch. Histol. Jpn. doi: 10.1679/aohc.46.327 – volume: 30 start-page: 2114 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib4 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 18 start-page: 239 year: 1993 ident: 10.1016/j.cels.2016.08.011_bib20 article-title: The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(93)90170-R – volume: 130 start-page: 1 year: 1988 ident: 10.1016/j.cels.2016.08.011_bib24 article-title: Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques publication-title: Am. J. Pathol. – volume: 52 start-page: 823 year: 2008 ident: 10.1016/j.cels.2016.08.011_bib5 article-title: Genes controlling pancreas ontogeny publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.072444cb – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib28 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 23 start-page: 1554 year: 2013 ident: 10.1016/j.cels.2016.08.011_bib40 article-title: Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome publication-title: Genome Res. doi: 10.1101/gr.150706.112 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.cels.2016.08.011_bib55 article-title: Visualizing high-dimensional data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 3881 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib19 article-title: Fast and accurate approximate inference of transcript expression from RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv483 – volume: 50 start-page: 2486 year: 2007 ident: 10.1016/j.cels.2016.08.011_bib34 article-title: The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients publication-title: Diabetologia doi: 10.1007/s00125-007-0816-8 – volume: 161 start-page: 1187 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib26 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 113 start-page: 3293 year: 2016 ident: 10.1016/j.cels.2016.08.011_bib62 article-title: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602306113 – volume: 19 start-page: 301 year: 2013 ident: 10.1016/j.cels.2016.08.011_bib30 article-title: Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes publication-title: Endocr. Pract. doi: 10.4158/EP12138.RA – volume: 12 start-page: 453 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib39 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods doi: 10.1038/nmeth.3337 – volume: 322 start-page: 1490 year: 2008 ident: 10.1016/j.cels.2016.08.011_bib64 article-title: Generation and regeneration of cells of the liver and pancreas publication-title: Science doi: 10.1126/science.1161431 – volume: 7 start-page: 287 year: 2010 ident: 10.1016/j.cels.2016.08.011_bib51 article-title: Cell type-specific gene expression differences in complex tissues publication-title: Nat. Methods doi: 10.1038/nmeth.1439 – volume: 42 start-page: 68 year: 2010 ident: 10.1016/j.cels.2016.08.011_bib58 article-title: The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes publication-title: Nat. Genet. doi: 10.1038/ng.493 – volume: 1 start-page: 609 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib35 article-title: The endocrine pancreas: insights into development, differentiation, and diabetes publication-title: Wiley Interdiscip. Rev. Dev. Biol. doi: 10.1002/wdev.44 – volume: 17 start-page: 509 year: 2012 ident: 10.1016/j.cels.2016.08.011_bib59 article-title: A human islet cell culture system for high-throughput screening publication-title: J. Biomol. Screen. doi: 10.1177/1087057111430253 – volume: 343 start-page: 1360 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib29 article-title: Highly multiplexed subcellular RNA sequencing in situ publication-title: Science doi: 10.1126/science.1250212 – volume: 117 start-page: 24 year: 2007 ident: 10.1016/j.cels.2016.08.011_bib12 article-title: The role of gut hormones in glucose homeostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI30076 – volume: 133 start-page: 315 year: 2009 ident: 10.1016/j.cels.2016.08.011_bib22 article-title: CFTR functions as a bicarbonate channel in pancreatic duct cells publication-title: J. Gen. Physiol. doi: 10.1085/jgp.200810122 – volume: 67 start-page: 377 year: 2005 ident: 10.1016/j.cels.2016.08.011_bib52 article-title: Mechanisms of bicarbonate secretion in the pancreatic duct publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.67.031103.153247 – volume: 103 start-page: 2334 year: 2006 ident: 10.1016/j.cels.2016.08.011_bib8 article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510790103 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.cels.2016.08.011_bib46 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 5 start-page: 13383 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib27 article-title: Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve publication-title: Sci. Rep. doi: 10.1038/srep13383 – volume: 64 start-page: 3172 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib2 article-title: Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets publication-title: Diabetes doi: 10.2337/db15-0039 – volume: 15 start-page: 620 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib1 article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression publication-title: BMC Genomics doi: 10.1186/1471-2164-15-620 – volume: 509 start-page: 371 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib54 article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq publication-title: Nature doi: 10.1038/nature13173 – volume: 32 start-page: 1223 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib31 article-title: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3082 – volume: 21 start-page: 769 year: 2015 ident: 10.1016/j.cels.2016.08.011_bib57 article-title: Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion publication-title: Nat. Med. doi: 10.1038/nm.3872 – volume: 57 start-page: 1182 year: 2014 ident: 10.1016/j.cels.2016.08.011_bib53 article-title: GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans publication-title: Diabetologia doi: 10.1007/s00125-014-3213-0 – reference: 27788358 - Cell Syst. 2016 Oct 26;3(4):330-332 |
SSID | ssj0001492402 |
Score | 2.5893252 |
Snippet | Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described... Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 346 |
SubjectTerms | Animals Cell Differentiation Gene Expression Profiling Gene Expression Regulation, Developmental Humans Islets of Langerhans Mice Pancreas Pancreas, Exocrine Single-Cell Analysis Transcription Factors Transcriptome |
Title | A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure |
URI | https://dx.doi.org/10.1016/j.cels.2016.08.011 https://www.ncbi.nlm.nih.gov/pubmed/27667365 https://www.proquest.com/docview/1835686114 https://pubmed.ncbi.nlm.nih.gov/PMC5228327 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZG98ILAnErNxkJnqpUsWs7yWM0gSYGPKwb21vk2K5gGtnUtUjj1_BTOcd20mSMCfYSVYnTuj5fzi3H3yHkTZqbRSaMS7SRIhG6ruGZm0HUKuWCg0XKpPYFsp_V7qH4cCyPt7Z-9aqW1qt6an5eu6_kNlKFcyBX3CX7H5LtvhROwGeQLxxBwnD8JxmXkzlYnlOX7GAGzpsdrwRwp_Hkkz5vCwBCpt6XVECg78BtbIwvRt93PxzyJ_u8YBJrg1dLnRif0uuae-HL67Vp2Uc6ZgMcdNGjPPcZ0WWsx9f6coO8L24Z9FFplz1AHoHqDfp4rr-vHTi6_G2Zfpx2qEJWIn_bGkL3y8HlmKpgCnV82A8f8mftHppBiSe4FDIBExl0suuf42lfT896cBQ9nTuLOcxgvmcqnTpxrXEIeYqTKSwhErUz5clbo64fkm7PcQY4KXBXIUpV6g7Z5hCI8BHZLvf2j_Y2eTxR4Asq7GHY_pG4NyuUEV79sb_5P3_GN1fLdHt-z8F9ci8GLLQM6HtAtlzzkFyUtIc8OkQeBeTRswUF5FGPPAq4oh55tEUejcijAXl-xAZ5dIM82iHvETl8_-5gZzeJ7TsSg10yEq3rnOkCPULLZS21shrC-9yy2mSOg2E1BvxZljoO44RNuQV32BXg0erMFmb2mIyas8Y9JTQ32aJYWKsLWwiLBENgLYwSOSiYnLFiTFi7qJWJ3PbYYuW0aosYTyoURIWCqLDvKmNjMunuOQ_MLjeOlq2squibBp-zAnTdeN_rVrAVKG5cQ904WPEKbKlUuWJMjMmTIOhuHjzDbrxKjkk2gEA3AEnhh1eab189ObxEPiuePbvlfJ-Tu5sn9wUZgYzdS3C7V_WriPzfdzfYNA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single-Cell+Transcriptomic+Map+of+the+Human+and+Mouse+Pancreas+Reveals+Inter-+and+Intra-cell+Population+Structure&rft.jtitle=Cell+systems&rft.au=Baron%2C+Maayan&rft.au=Veres%2C+Adrian&rft.au=Wolock%2C+Samuel%C2%A0L.&rft.au=Faust%2C+Aubrey%C2%A0L.&rft.date=2016-10-26&rft.pub=Elsevier+Inc&rft.issn=2405-4712&rft.eissn=2405-4720&rft.volume=3&rft.issue=4&rft.spage=346&rft.epage=360.e4&rft_id=info:doi/10.1016%2Fj.cels.2016.08.011&rft.externalDocID=S2405471216302666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-4712&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-4712&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-4712&client=summon |