Engineering living building materials for enhanced bacterial viability and mechanical properties
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors...
Saved in:
Published in | iScience Vol. 24; no. 2; p. 102083 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2021.102083 |
Cover
Loading…
Abstract | Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.
[Display omitted]
•Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible•LBM failure mode varies with the honeycombed gel structure and its biomineralization•Exogenous addition of desiccation protectant trehalose in LBM increases cell viability
Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials |
---|---|
AbstractList | Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic
demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO
-concentrating mechanisms from
. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO 2 -concentrating mechanisms from Synechococcus . The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. • Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible • LBM failure mode varies with the honeycombed gel structure and its biomineralization • Exogenous addition of desiccation protectant trehalose in LBM increases cell viability Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. [Display omitted] •Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible•LBM failure mode varies with the honeycombed gel structure and its biomineralization•Exogenous addition of desiccation protectant trehalose in LBM increases cell viability Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. |
ArticleNumber | 102083 |
Author | Hubler, Mija H. Artier, Juliana Cameron, Jeffrey C. Srubar, Wil V. Cook, Sherri Qiu, Jishen |
Author_xml | – sequence: 1 givenname: Jishen surname: Qiu fullname: Qiu, Jishen organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA – sequence: 2 givenname: Juliana orcidid: 0000-0001-5519-6627 surname: Artier fullname: Artier, Juliana organization: Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80303, USA – sequence: 3 givenname: Sherri orcidid: 0000-0002-7648-4596 surname: Cook fullname: Cook, Sherri organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA – sequence: 4 givenname: Wil V. surname: Srubar fullname: Srubar, Wil V. organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA – sequence: 5 givenname: Jeffrey C. orcidid: 0000-0002-6630-8345 surname: Cameron fullname: Cameron, Jeffrey C. email: jeffrey.c.cameron@colorado.edu organization: Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80303, USA – sequence: 6 givenname: Mija H. surname: Hubler fullname: Hubler, Mija H. email: hubler@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33598643$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtapWtJT-gR5Qjlx28VccW0JIqCpQqVIvcDaOPdnOKrEXJ7tS_z0OaVHLoSePZt57M-M3b8lxTBEIuWR0zShTH7drHD2uOeWsJDjV4oic8VqbFaWSHz-LT8nFOG4pLSDKpVFvyKkQtdFKijPy6zpuMAJkjJuqx8P8tHvswxwMbioF149Vl3IF8d5FD6FqnV_y1QFdiz1OD5WLoRrAFwT6UtjltIM8IYzvyElXFODi8T0nP79e_7j6vrq9-3Zz9eV25WvOppUzOmjZCqrrMilrQNVCdp5KJVrlQugY45JSIYVUtSzryoY68KxxoYVQc3FObhbdkNzW7jIOLj_Y5ND-TaS8sa4M5HuwvjPAg-eNV0aCN9q3qpVKN0zXnfGhaH1etHb7doDgIU7Z9S9EX1Yi3ttNOthGK23MPMyHR4Gcfu9hnOxQ3IK-dxHSfrTFBkbLHnqGvn_e61-TJ4sKQC8An9M4Zuisx8lNmObW2FtG7XwQdmvng7DzQdjlIAqV_0d9Un-V9GkhQXHrgJBtQcBsPGbwU_lOfI3-B83qz7U |
CitedBy_id | crossref_primary_10_1016_j_cbpa_2022_102188 crossref_primary_10_3389_fmicb_2023_1116970 crossref_primary_10_1093_lambio_ovaf022 crossref_primary_10_1002_adma_202201326 crossref_primary_10_1021_acssynbio_4c00259 crossref_primary_10_1016_j_conbuildmat_2023_132218 crossref_primary_10_1016_j_jenvman_2024_122926 crossref_primary_10_1016_j_rser_2023_114169 crossref_primary_10_11728_cjss2024_03_2023_0137 crossref_primary_10_1007_s12274_023_6313_7 crossref_primary_10_1016_j_bbadva_2023_100111 crossref_primary_10_1016_j_matt_2024_07_011 crossref_primary_10_1016_j_biotechadv_2022_107930 crossref_primary_10_1016_j_eml_2022_101864 crossref_primary_10_1016_j_conbuildmat_2025_140756 crossref_primary_10_1016_j_jclepro_2023_138178 crossref_primary_10_1016_j_biortech_2024_131646 crossref_primary_10_1088_1748_3190_acd82e crossref_primary_10_1017_btd_2023_5 crossref_primary_10_1111_1751_7915_14298 crossref_primary_10_1016_j_ibiod_2023_105618 crossref_primary_10_3390_su16020673 crossref_primary_10_1016_j_compositesb_2023_110997 crossref_primary_10_1146_annurev_matsci_080921_083655 crossref_primary_10_1016_j_matt_2023_07_023 crossref_primary_10_1016_j_xcrp_2024_102098 crossref_primary_10_1038_s41526_023_00285_0 crossref_primary_10_1093_ijlct_ctad119 crossref_primary_10_1146_annurev_matsci_081720_105303 crossref_primary_10_1021_acs_chemrev_2c00512 crossref_primary_10_1016_j_mechrescom_2021_103788 crossref_primary_10_1016_j_mtbio_2021_100115 crossref_primary_10_1021_cbe_4c00024 |
Cites_doi | 10.1016/j.jclepro.2008.11.015 10.1016/j.conbuildmat.2012.02.066 10.1039/c2sm07233e 10.1002/jps.22458 10.1016/j.matt.2019.11.016 10.1016/j.cemconcomp.2010.05.003 10.1016/j.ecoleng.2009.02.006 10.1016/0008-8846(92)90132-F 10.1263/jbb.103.22 10.1016/j.copbio.2010.03.017 10.1016/j.actbio.2012.10.032 10.1111/j.1574-6968.1999.tb13549.x 10.1016/S0008-8846(01)00588-9 10.1016/j.conbuildmat.2011.07.052 10.1038/s43017-020-0093-3 10.1021/acssynbio.8b00194 10.1128/AEM.64.7.2361-2366.1998 10.1016/j.cemconres.2005.09.004 10.1016/S0958-9465(02)00141-5 10.1038/s41598-019-51133-9 10.1016/j.jclepro.2015.08.057 10.1016/j.ecoleng.2012.01.008 10.4014/jmb.1701.01041 10.1016/j.ecoleng.2009.03.026 10.1016/0013-7944(90)90188-M 10.1023/A:1015135629155 10.1016/j.jclepro.2012.10.049 10.1016/j.cemconcomp.2009.01.001 10.1016/S0038-0717(99)00082-6 10.1016/j.conbuildmat.2014.01.085 10.1016/j.rser.2015.05.031 10.1016/j.proeng.2015.11.097 10.1080/01490451.2011.592929 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2021.102083 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_cf9e2dc27c694ec98cb6b4687185f9cd PMC7868992 33598643 10_1016_j_isci_2021_102083 S2589004221000511 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-a98d84b308500017e6534fc0463b6addf1124003434654208470aec17adbed523 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 00:49:02 EDT 2025 Thu Aug 21 14:13:47 EDT 2025 Fri Jul 11 08:53:07 EDT 2025 Thu Jan 02 22:58:39 EST 2025 Tue Jul 01 01:03:37 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 25 20:58:09 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Materials Synthesis Composite Materials Civil Engineering Biomaterials |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-a98d84b308500017e6534fc0463b6addf1124003434654208470aec17adbed523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR These authors contributed equally Lead contact |
ORCID | 0000-0001-5519-6627 0000-0002-6630-8345 0000-0002-7648-4596 |
OpenAccessLink | https://doaj.org/article/cf9e2dc27c694ec98cb6b4687185f9cd |
PMID | 33598643 |
PQID | 2491065482 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf9e2dc27c694ec98cb6b4687185f9cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868992 proquest_miscellaneous_2491065482 pubmed_primary_33598643 crossref_citationtrail_10_1016_j_isci_2021_102083 crossref_primary_10_1016_j_isci_2021_102083 elsevier_sciencedirect_doi_10_1016_j_isci_2021_102083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-19 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cuthbert, Riley, Handley-Sidhu, Renshaw, Tobler, Phoenix, Mackay (bib4) 2012; 41 Ping, Beaudoin (bib22) 1992; 22 Saikia, De Brito (bib25) 2012; 34 Shen, Cao, Li, Zhang, Wang, Li (bib28) 2015; 50 Sakamoto, Delgaizo, Bryant (bib27) 1998; 64 Shi, Li, Zhang, Li, Chong, Xie (bib29) 2016; 112 Ghosh, Biswas, Chattopadhyay, Mandal (bib8) 2009; 31 Welsh, Herbert (bib35) 1999; 174 Arnaud, Gourlay (bib1) 2012; 28 Neville (bib20) 1996 Sakai, Hashimoto, Kawakami (bib26) 2007; 103 Stocks-Fischer, Galinat, Bang (bib30) 1999; 31 Ward, Yamanobe, Li, Backer (bib34) 1990; 118 Ohtake, Wang (bib21) 2011; 100 Qiu, Tng, Yang (bib24) 2014; 57 Benhelal, Zahedi, Shamsaei, Bahadori (bib2) 2013; 51 Heveran, Liang, Nagarajan, Hubler, Gill, Cameron, Srubar (bib12) 2019; 9 Chu, Stabnikov, Ivanov (bib3) 2012; 29 Ivanov, Chu (bib14) 2008; 7 Kou, Poon (bib17) 2010; 32 Wang, Hou, Cheng, Fu (bib33) 2012; 8 Heveran, Williams, Qiu, Artier, Hubler, Cook, Srubar (bib13) 2020; 2 Jansson, Northen (bib15) 2010; 21 Einsfeld, Velasco (bib6) 2006; 36 De Muynck, De Belie, Verstraete (bib5) 2010; 36 Wittmann, Mihashi, Nomura (bib36) 1990; 35 Jeong, Jo, Park, Kang, So (bib16) 2017; 27 Liang, Heveran, Liu, Gill, Nagarajan, Cameron, Cook (bib18) 2018; 7 Van Paassen, Daza, Staal, Sorokin, van der Zon, van Loosdrecht (bib32) 2010; 36 Wu, Chen, Yao, Zhang (bib37) 2001; 31 Haque, Al-Khaiat, Kayali (bib11) 2004; 26 Tam (bib31) 2009; 17 Habert, Miller, John, Provis, Favier, Horvath, Scrivener (bib9) 2020; 1 Luyckx, Baudouin (bib19) 2011; 5 Gaus, Tjaronge, Ali, Djamaluddin (bib7) 2015; 125 Pok, Myers, Madihally, Jacot (bib23) 2013; 9 Hammes, Verstraete (bib10) 2002; 1 De Muynck (10.1016/j.isci.2021.102083_bib5) 2010; 36 Gaus (10.1016/j.isci.2021.102083_bib7) 2015; 125 Hammes (10.1016/j.isci.2021.102083_bib10) 2002; 1 Heveran (10.1016/j.isci.2021.102083_bib12) 2019; 9 Shi (10.1016/j.isci.2021.102083_bib29) 2016; 112 Einsfeld (10.1016/j.isci.2021.102083_bib6) 2006; 36 Benhelal (10.1016/j.isci.2021.102083_bib2) 2013; 51 Qiu (10.1016/j.isci.2021.102083_bib24) 2014; 57 Jansson (10.1016/j.isci.2021.102083_bib15) 2010; 21 Sakamoto (10.1016/j.isci.2021.102083_bib27) 1998; 64 Arnaud (10.1016/j.isci.2021.102083_bib1) 2012; 28 Ping (10.1016/j.isci.2021.102083_bib22) 1992; 22 Pok (10.1016/j.isci.2021.102083_bib23) 2013; 9 Cuthbert (10.1016/j.isci.2021.102083_bib4) 2012; 41 Jeong (10.1016/j.isci.2021.102083_bib16) 2017; 27 Liang (10.1016/j.isci.2021.102083_bib18) 2018; 7 Wang (10.1016/j.isci.2021.102083_bib33) 2012; 8 Ivanov (10.1016/j.isci.2021.102083_bib14) 2008; 7 Saikia (10.1016/j.isci.2021.102083_bib25) 2012; 34 Stocks-Fischer (10.1016/j.isci.2021.102083_bib30) 1999; 31 Tam (10.1016/j.isci.2021.102083_bib31) 2009; 17 Habert (10.1016/j.isci.2021.102083_bib9) 2020; 1 Neville (10.1016/j.isci.2021.102083_bib20) 1996 Van Paassen (10.1016/j.isci.2021.102083_bib32) 2010; 36 Kou (10.1016/j.isci.2021.102083_bib17) 2010; 32 Ohtake (10.1016/j.isci.2021.102083_bib21) 2011; 100 Welsh (10.1016/j.isci.2021.102083_bib35) 1999; 174 Ward (10.1016/j.isci.2021.102083_bib34) 1990; 118 Sakai (10.1016/j.isci.2021.102083_bib26) 2007; 103 Ghosh (10.1016/j.isci.2021.102083_bib8) 2009; 31 Wu (10.1016/j.isci.2021.102083_bib37) 2001; 31 Wittmann (10.1016/j.isci.2021.102083_bib36) 1990; 35 Luyckx (10.1016/j.isci.2021.102083_bib19) 2011; 5 Chu (10.1016/j.isci.2021.102083_bib3) 2012; 29 Haque (10.1016/j.isci.2021.102083_bib11) 2004; 26 Heveran (10.1016/j.isci.2021.102083_bib13) 2020; 2 Shen (10.1016/j.isci.2021.102083_bib28) 2015; 50 |
References_xml | – volume: 1 start-page: 559 year: 2020 end-page: 573 ident: bib9 article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries publication-title: Nat. Rev. Earth Environ. – volume: 31 start-page: 93 year: 2009 end-page: 98 ident: bib8 article-title: Microbial activity on the microstructure of bacteria modified mortar publication-title: Cement Concrete Compos. – volume: 50 start-page: 1004 year: 2015 end-page: 1012 ident: bib28 article-title: Quantifying CO2 emissions from China’s cement industry publication-title: Renew. Sustain. Energy Rev. – volume: 22 start-page: 23 year: 1992 end-page: 26 ident: bib22 article-title: Effects of transition zone microstructure on bond strength of aggregate-portland cement paste interfaces publication-title: Cement Concrete Res. – volume: 26 start-page: 307 year: 2004 end-page: 314 ident: bib11 article-title: Strength and durability of lightweight concrete publication-title: Cement Concrete Compos. – volume: 17 start-page: 688 year: 2009 end-page: 702 ident: bib31 article-title: Comparing the implementation of concrete recycling in the Australian and Japanese construction industries publication-title: J. Clean. Prod. – volume: 36 start-page: 168 year: 2010 end-page: 175 ident: bib32 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. – volume: 1 start-page: 3 year: 2002 end-page: 7 ident: bib10 article-title: Key roles of pH and calcium metabolism in microbial carbonate precipitation publication-title: Rev. Environ. Sci. Biotechnol. – volume: 21 start-page: 365 year: 2010 end-page: 371 ident: bib15 article-title: Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage publication-title: Curr. Opin. Biotechnol. – volume: 103 start-page: 22 year: 2007 end-page: 26 ident: bib26 article-title: Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold publication-title: J. Biosci. Bioeng. – volume: 29 start-page: 544 year: 2012 end-page: 549 ident: bib3 article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil publication-title: Geomicrobiol. J. – volume: 41 start-page: 32 year: 2012 end-page: 40 ident: bib4 article-title: Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation publication-title: Ecol. Eng. – year: 1996 ident: bib20 article-title: Properties of Concrete – volume: 100 start-page: 2020 year: 2011 end-page: 2053 ident: bib21 article-title: Trehalose: current use and future applications publication-title: J. Pharm. Sci. – volume: 57 start-page: 144 year: 2014 end-page: 150 ident: bib24 article-title: Surface treatment of recycled concrete aggregates through microbial carbonate precipitation publication-title: Construct. Building Mater. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib12 article-title: Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate publication-title: Sci. Rep. – volume: 31 start-page: 1563 year: 1999 end-page: 1571 ident: bib30 article-title: Microbiological precipitation of CaCO3 publication-title: Soil Biol. Biochem. – volume: 174 start-page: 57 year: 1999 end-page: 63 ident: bib35 article-title: Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli publication-title: FEMS Microbiol. Lett. – volume: 35 start-page: 107 year: 1990 end-page: 115 ident: bib36 article-title: Size effect on fracture energy of concrete publication-title: Eng. Fracture Mech. – volume: 2 start-page: 481 year: 2020 end-page: 494 ident: bib13 article-title: Biomineralization and successive regeneration of engineered living building materials publication-title: Matter – volume: 34 start-page: 385 year: 2012 end-page: 401 ident: bib25 article-title: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review publication-title: Construct. Building Mater. – volume: 5 start-page: 577 year: 2011 ident: bib19 article-title: Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology publication-title: Clin. Ophthalmol. (Auckland, NZ) – volume: 7 start-page: 2497 year: 2018 end-page: 2506 ident: bib18 article-title: Rational control of calcium carbonate precipitation by engineered Escherichia coli publication-title: ACS Synth. Biol. – volume: 36 start-page: 118 year: 2010 end-page: 136 ident: bib5 article-title: Microbial carbonate precipitation in construction materials: a review publication-title: Ecol. Eng. – volume: 32 start-page: 649 year: 2010 end-page: 654 ident: bib17 article-title: Properties of concrete prepared with PVA-impregnated recycled concrete aggregates publication-title: Cement Concrete Compos. – volume: 51 start-page: 142 year: 2013 end-page: 161 ident: bib2 article-title: Global strategies and potentials to curb CO2 emissions in cement industry publication-title: J. Clean. Prod. – volume: 118 start-page: 17 year: 1990 end-page: 68 ident: bib34 article-title: Fracture resistance of acrylic fiber reinforced mortar in shear and flexure publication-title: Spec. Publ. – volume: 31 start-page: 1421 year: 2001 end-page: 1425 ident: bib37 article-title: Effect of coarse aggregate type on mechanical properties of high-performance concrete publication-title: Cement Concrete Res. – volume: 28 start-page: 50 year: 2012 end-page: 56 ident: bib1 article-title: Experimental study of parameters influencing mechanical properties of hemp concretes publication-title: Construction Building Mater. – volume: 7 start-page: 139 year: 2008 end-page: 153 ident: bib14 article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ publication-title: Rev. Environ. Sci. Biol. Technol. – volume: 125 start-page: 657 year: 2015 end-page: 662 ident: bib7 article-title: Compressive strength of asphalt concrete binder course (AC-BC) mixture using buton granular asphalt (BGA) publication-title: Proced. Eng. – volume: 112 start-page: 466 year: 2016 end-page: 472 ident: bib29 article-title: Performance enhancement of recycled concrete aggregate–a review publication-title: J. Clean. Prod. – volume: 9 start-page: 5630 year: 2013 end-page: 5642 ident: bib23 article-title: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering publication-title: Acta Biomater. – volume: 8 start-page: 6048 year: 2012 end-page: 6056 ident: bib33 article-title: Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles publication-title: Soft Matter – volume: 27 start-page: 1331 year: 2017 end-page: 1335 ident: bib16 article-title: Biocementation of concrete pavements using microbially induced calcite precipitation publication-title: J. Microbiol. Biotechnol. – volume: 36 start-page: 576 year: 2006 end-page: 583 ident: bib6 article-title: Fracture parameters for high-performance concrete publication-title: Cement Concrete Res. – volume: 64 start-page: 2361 year: 1998 end-page: 2366 ident: bib27 article-title: Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002 publication-title: Appl. Environ. Microbiol. – volume: 17 start-page: 688 year: 2009 ident: 10.1016/j.isci.2021.102083_bib31 article-title: Comparing the implementation of concrete recycling in the Australian and Japanese construction industries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2008.11.015 – volume: 5 start-page: 577 year: 2011 ident: 10.1016/j.isci.2021.102083_bib19 article-title: Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology publication-title: Clin. Ophthalmol. (Auckland, NZ) – volume: 34 start-page: 385 year: 2012 ident: 10.1016/j.isci.2021.102083_bib25 article-title: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review publication-title: Construct. Building Mater. doi: 10.1016/j.conbuildmat.2012.02.066 – volume: 8 start-page: 6048 year: 2012 ident: 10.1016/j.isci.2021.102083_bib33 article-title: Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles publication-title: Soft Matter doi: 10.1039/c2sm07233e – volume: 100 start-page: 2020 year: 2011 ident: 10.1016/j.isci.2021.102083_bib21 article-title: Trehalose: current use and future applications publication-title: J. Pharm. Sci. doi: 10.1002/jps.22458 – volume: 2 start-page: 481 year: 2020 ident: 10.1016/j.isci.2021.102083_bib13 article-title: Biomineralization and successive regeneration of engineered living building materials publication-title: Matter doi: 10.1016/j.matt.2019.11.016 – volume: 32 start-page: 649 year: 2010 ident: 10.1016/j.isci.2021.102083_bib17 article-title: Properties of concrete prepared with PVA-impregnated recycled concrete aggregates publication-title: Cement Concrete Compos. doi: 10.1016/j.cemconcomp.2010.05.003 – volume: 36 start-page: 118 year: 2010 ident: 10.1016/j.isci.2021.102083_bib5 article-title: Microbial carbonate precipitation in construction materials: a review publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.02.006 – volume: 22 start-page: 23 year: 1992 ident: 10.1016/j.isci.2021.102083_bib22 article-title: Effects of transition zone microstructure on bond strength of aggregate-portland cement paste interfaces publication-title: Cement Concrete Res. doi: 10.1016/0008-8846(92)90132-F – volume: 103 start-page: 22 year: 2007 ident: 10.1016/j.isci.2021.102083_bib26 article-title: Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.103.22 – volume: 21 start-page: 365 year: 2010 ident: 10.1016/j.isci.2021.102083_bib15 article-title: Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.03.017 – volume: 9 start-page: 5630 year: 2013 ident: 10.1016/j.isci.2021.102083_bib23 article-title: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.10.032 – volume: 174 start-page: 57 year: 1999 ident: 10.1016/j.isci.2021.102083_bib35 article-title: Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1999.tb13549.x – volume: 31 start-page: 1421 year: 2001 ident: 10.1016/j.isci.2021.102083_bib37 article-title: Effect of coarse aggregate type on mechanical properties of high-performance concrete publication-title: Cement Concrete Res. doi: 10.1016/S0008-8846(01)00588-9 – volume: 28 start-page: 50 year: 2012 ident: 10.1016/j.isci.2021.102083_bib1 article-title: Experimental study of parameters influencing mechanical properties of hemp concretes publication-title: Construction Building Mater. doi: 10.1016/j.conbuildmat.2011.07.052 – volume: 1 start-page: 559 year: 2020 ident: 10.1016/j.isci.2021.102083_bib9 article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-020-0093-3 – volume: 7 start-page: 2497 year: 2018 ident: 10.1016/j.isci.2021.102083_bib18 article-title: Rational control of calcium carbonate precipitation by engineered Escherichia coli publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00194 – volume: 64 start-page: 2361 year: 1998 ident: 10.1016/j.isci.2021.102083_bib27 article-title: Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.7.2361-2366.1998 – volume: 36 start-page: 576 year: 2006 ident: 10.1016/j.isci.2021.102083_bib6 article-title: Fracture parameters for high-performance concrete publication-title: Cement Concrete Res. doi: 10.1016/j.cemconres.2005.09.004 – volume: 26 start-page: 307 year: 2004 ident: 10.1016/j.isci.2021.102083_bib11 article-title: Strength and durability of lightweight concrete publication-title: Cement Concrete Compos. doi: 10.1016/S0958-9465(02)00141-5 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.isci.2021.102083_bib12 article-title: Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate publication-title: Sci. Rep. doi: 10.1038/s41598-019-51133-9 – volume: 118 start-page: 17 year: 1990 ident: 10.1016/j.isci.2021.102083_bib34 article-title: Fracture resistance of acrylic fiber reinforced mortar in shear and flexure publication-title: Spec. Publ. – volume: 7 start-page: 139 year: 2008 ident: 10.1016/j.isci.2021.102083_bib14 article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ publication-title: Rev. Environ. Sci. Biol. Technol. – volume: 112 start-page: 466 year: 2016 ident: 10.1016/j.isci.2021.102083_bib29 article-title: Performance enhancement of recycled concrete aggregate–a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.08.057 – volume: 41 start-page: 32 year: 2012 ident: 10.1016/j.isci.2021.102083_bib4 article-title: Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2012.01.008 – volume: 27 start-page: 1331 year: 2017 ident: 10.1016/j.isci.2021.102083_bib16 article-title: Biocementation of concrete pavements using microbially induced calcite precipitation publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1701.01041 – volume: 36 start-page: 168 year: 2010 ident: 10.1016/j.isci.2021.102083_bib32 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.03.026 – volume: 35 start-page: 107 year: 1990 ident: 10.1016/j.isci.2021.102083_bib36 article-title: Size effect on fracture energy of concrete publication-title: Eng. Fracture Mech. doi: 10.1016/0013-7944(90)90188-M – volume: 1 start-page: 3 year: 2002 ident: 10.1016/j.isci.2021.102083_bib10 article-title: Key roles of pH and calcium metabolism in microbial carbonate precipitation publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1023/A:1015135629155 – year: 1996 ident: 10.1016/j.isci.2021.102083_bib20 – volume: 51 start-page: 142 year: 2013 ident: 10.1016/j.isci.2021.102083_bib2 article-title: Global strategies and potentials to curb CO2 emissions in cement industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.10.049 – volume: 31 start-page: 93 year: 2009 ident: 10.1016/j.isci.2021.102083_bib8 article-title: Microbial activity on the microstructure of bacteria modified mortar publication-title: Cement Concrete Compos. doi: 10.1016/j.cemconcomp.2009.01.001 – volume: 31 start-page: 1563 year: 1999 ident: 10.1016/j.isci.2021.102083_bib30 article-title: Microbiological precipitation of CaCO3 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00082-6 – volume: 57 start-page: 144 year: 2014 ident: 10.1016/j.isci.2021.102083_bib24 article-title: Surface treatment of recycled concrete aggregates through microbial carbonate precipitation publication-title: Construct. Building Mater. doi: 10.1016/j.conbuildmat.2014.01.085 – volume: 50 start-page: 1004 year: 2015 ident: 10.1016/j.isci.2021.102083_bib28 article-title: Quantifying CO2 emissions from China’s cement industry publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.031 – volume: 125 start-page: 657 year: 2015 ident: 10.1016/j.isci.2021.102083_bib7 article-title: Compressive strength of asphalt concrete binder course (AC-BC) mixture using buton granular asphalt (BGA) publication-title: Proced. Eng. doi: 10.1016/j.proeng.2015.11.097 – volume: 29 start-page: 544 year: 2012 ident: 10.1016/j.isci.2021.102083_bib3 article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2011.592929 |
SSID | ssj0002002496 |
Score | 2.3418863 |
Snippet | Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102083 |
SubjectTerms | Biomaterials Civil Engineering Composite Materials Materials Synthesis |
Title | Engineering living building materials for enhanced bacterial viability and mechanical properties |
URI | https://dx.doi.org/10.1016/j.isci.2021.102083 https://www.ncbi.nlm.nih.gov/pubmed/33598643 https://www.proquest.com/docview/2491065482 https://pubmed.ncbi.nlm.nih.gov/PMC7868992 https://doaj.org/article/cf9e2dc27c694ec98cb6b4687185f9cd |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovtYXEbxJsW3SNDmqKCLoyYW9xeaFK1pFV8F_70zSXbYKevHadyZfM98kk28IObReWWEqleUmrzMuypApZussBMtKFsDjRZ2C6xtxOeRXo2o0V-oLc8KSPHAy3LENypfOlrUVinurpDXCcAE8X1ZBWYejL_i8uWDqIS6voRRerCxXYU4QQLPbMZOSu3DHKwSHZYHSBblkPa8Uxft7zukn-fyeQznnlC5WyHLHJulJasUqWfDtGrmb0xikj2OcMaCmq35NgaAmzFFgq9S39zEDgJok2gzP-hgn5e5P2rSOPnncGYwdSV9w2v4V9VfXyfDi_PbsMusKKWQW6xVkjZJOcsNQng7dkhcV48GiWJgRMMAFIF0clWoYqquBPXidN94WdeOMdxCqbpDF9rn1W4Q65nPnPYwCUvDCMQUBLk775qoOlZR2QIqpIbXtVMax2MWjnqaTPWg0vkbj62T8ATma3fOSNDZ-vfoU-2d2JepjxwOAGt2hRv-FmgGppr2rO6qRKAQ8avzryw-mUNDwH-LiStP65_c3DXArcKOuLAdkM0Fj9omMRRV8uLvugabXhv6Zdnwftb5rKSAiLrf_o9E7ZAmbgjnnhdoli5PXd78HlGpi9uPf8wXdGB7V |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+living+building+materials+for+enhanced+bacterial+viability+and+mechanical+properties&rft.jtitle=iScience&rft.au=Qiu%2C+Jishen&rft.au=Cook%2C+Sherri&rft.au=Srubar%2C+Wil+V&rft.au=Hubler%2C+Mija+H&rft.date=2021-02-19&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=2&rft.spage=102083&rft_id=info:doi/10.1016%2Fj.isci.2021.102083&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |