Engineering living building materials for enhanced bacterial viability and mechanical properties

Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 24; no. 2; p. 102083
Main Authors Qiu, Jishen, Artier, Juliana, Cook, Sherri, Srubar, Wil V., Cameron, Jeffrey C., Hubler, Mija H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.02.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2021.102083

Cover

Loading…
Abstract Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. [Display omitted] •Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible•LBM failure mode varies with the honeycombed gel structure and its biomineralization•Exogenous addition of desiccation protectant trehalose in LBM increases cell viability Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials
AbstractList Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO -concentrating mechanisms from . The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO 2 -concentrating mechanisms from Synechococcus . The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. • Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible • LBM failure mode varies with the honeycombed gel structure and its biomineralization • Exogenous addition of desiccation protectant trehalose in LBM increases cell viability Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways. [Display omitted] •Tailoring LBM mechanical properties via gel/sand ratio and MICP pathway is feasible•LBM failure mode varies with the honeycombed gel structure and its biomineralization•Exogenous addition of desiccation protectant trehalose in LBM increases cell viability Civil Engineering; Materials Synthesis; Biomaterials; Composite Materials
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic Escherichia coli demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO2-concentrating mechanisms from Synechococcus. The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.
ArticleNumber 102083
Author Hubler, Mija H.
Artier, Juliana
Cameron, Jeffrey C.
Srubar, Wil V.
Cook, Sherri
Qiu, Jishen
Author_xml – sequence: 1
  givenname: Jishen
  surname: Qiu
  fullname: Qiu, Jishen
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA
– sequence: 2
  givenname: Juliana
  orcidid: 0000-0001-5519-6627
  surname: Artier
  fullname: Artier, Juliana
  organization: Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80303, USA
– sequence: 3
  givenname: Sherri
  orcidid: 0000-0002-7648-4596
  surname: Cook
  fullname: Cook, Sherri
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA
– sequence: 4
  givenname: Wil V.
  surname: Srubar
  fullname: Srubar, Wil V.
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA
– sequence: 5
  givenname: Jeffrey C.
  orcidid: 0000-0002-6630-8345
  surname: Cameron
  fullname: Cameron, Jeffrey C.
  email: jeffrey.c.cameron@colorado.edu
  organization: Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80303, USA
– sequence: 6
  givenname: Mija H.
  surname: Hubler
  fullname: Hubler, Mija H.
  email: hubler@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33598643$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtapWtJT-gR5Qjlx28VccW0JIqCpQqVIvcDaOPdnOKrEXJ7tS_z0OaVHLoSePZt57M-M3b8lxTBEIuWR0zShTH7drHD2uOeWsJDjV4oic8VqbFaWSHz-LT8nFOG4pLSDKpVFvyKkQtdFKijPy6zpuMAJkjJuqx8P8tHvswxwMbioF149Vl3IF8d5FD6FqnV_y1QFdiz1OD5WLoRrAFwT6UtjltIM8IYzvyElXFODi8T0nP79e_7j6vrq9-3Zz9eV25WvOppUzOmjZCqrrMilrQNVCdp5KJVrlQugY45JSIYVUtSzryoY68KxxoYVQc3FObhbdkNzW7jIOLj_Y5ND-TaS8sa4M5HuwvjPAg-eNV0aCN9q3qpVKN0zXnfGhaH1etHb7doDgIU7Z9S9EX1Yi3ttNOthGK23MPMyHR4Gcfu9hnOxQ3IK-dxHSfrTFBkbLHnqGvn_e61-TJ4sKQC8An9M4Zuisx8lNmObW2FtG7XwQdmvng7DzQdjlIAqV_0d9Un-V9GkhQXHrgJBtQcBsPGbwU_lOfI3-B83qz7U
CitedBy_id crossref_primary_10_1016_j_cbpa_2022_102188
crossref_primary_10_3389_fmicb_2023_1116970
crossref_primary_10_1093_lambio_ovaf022
crossref_primary_10_1002_adma_202201326
crossref_primary_10_1021_acssynbio_4c00259
crossref_primary_10_1016_j_conbuildmat_2023_132218
crossref_primary_10_1016_j_jenvman_2024_122926
crossref_primary_10_1016_j_rser_2023_114169
crossref_primary_10_11728_cjss2024_03_2023_0137
crossref_primary_10_1007_s12274_023_6313_7
crossref_primary_10_1016_j_bbadva_2023_100111
crossref_primary_10_1016_j_matt_2024_07_011
crossref_primary_10_1016_j_biotechadv_2022_107930
crossref_primary_10_1016_j_eml_2022_101864
crossref_primary_10_1016_j_conbuildmat_2025_140756
crossref_primary_10_1016_j_jclepro_2023_138178
crossref_primary_10_1016_j_biortech_2024_131646
crossref_primary_10_1088_1748_3190_acd82e
crossref_primary_10_1017_btd_2023_5
crossref_primary_10_1111_1751_7915_14298
crossref_primary_10_1016_j_ibiod_2023_105618
crossref_primary_10_3390_su16020673
crossref_primary_10_1016_j_compositesb_2023_110997
crossref_primary_10_1146_annurev_matsci_080921_083655
crossref_primary_10_1016_j_matt_2023_07_023
crossref_primary_10_1016_j_xcrp_2024_102098
crossref_primary_10_1038_s41526_023_00285_0
crossref_primary_10_1093_ijlct_ctad119
crossref_primary_10_1146_annurev_matsci_081720_105303
crossref_primary_10_1021_acs_chemrev_2c00512
crossref_primary_10_1016_j_mechrescom_2021_103788
crossref_primary_10_1016_j_mtbio_2021_100115
crossref_primary_10_1021_cbe_4c00024
Cites_doi 10.1016/j.jclepro.2008.11.015
10.1016/j.conbuildmat.2012.02.066
10.1039/c2sm07233e
10.1002/jps.22458
10.1016/j.matt.2019.11.016
10.1016/j.cemconcomp.2010.05.003
10.1016/j.ecoleng.2009.02.006
10.1016/0008-8846(92)90132-F
10.1263/jbb.103.22
10.1016/j.copbio.2010.03.017
10.1016/j.actbio.2012.10.032
10.1111/j.1574-6968.1999.tb13549.x
10.1016/S0008-8846(01)00588-9
10.1016/j.conbuildmat.2011.07.052
10.1038/s43017-020-0093-3
10.1021/acssynbio.8b00194
10.1128/AEM.64.7.2361-2366.1998
10.1016/j.cemconres.2005.09.004
10.1016/S0958-9465(02)00141-5
10.1038/s41598-019-51133-9
10.1016/j.jclepro.2015.08.057
10.1016/j.ecoleng.2012.01.008
10.4014/jmb.1701.01041
10.1016/j.ecoleng.2009.03.026
10.1016/0013-7944(90)90188-M
10.1023/A:1015135629155
10.1016/j.jclepro.2012.10.049
10.1016/j.cemconcomp.2009.01.001
10.1016/S0038-0717(99)00082-6
10.1016/j.conbuildmat.2014.01.085
10.1016/j.rser.2015.05.031
10.1016/j.proeng.2015.11.097
10.1080/01490451.2011.592929
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.102083
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_cf9e2dc27c694ec98cb6b4687185f9cd
PMC7868992
33598643
10_1016_j_isci_2021_102083
S2589004221000511
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-a98d84b308500017e6534fc0463b6addf1124003434654208470aec17adbed523
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 00:49:02 EDT 2025
Thu Aug 21 14:13:47 EDT 2025
Fri Jul 11 08:53:07 EDT 2025
Thu Jan 02 22:58:39 EST 2025
Tue Jul 01 01:03:37 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 25 20:58:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Materials Synthesis
Composite Materials
Civil Engineering
Biomaterials
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-a98d84b308500017e6534fc0463b6addf1124003434654208470aec17adbed523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR
These authors contributed equally
Lead contact
ORCID 0000-0001-5519-6627
0000-0002-6630-8345
0000-0002-7648-4596
OpenAccessLink https://doaj.org/article/cf9e2dc27c694ec98cb6b4687185f9cd
PMID 33598643
PQID 2491065482
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cf9e2dc27c694ec98cb6b4687185f9cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868992
proquest_miscellaneous_2491065482
pubmed_primary_33598643
crossref_citationtrail_10_1016_j_isci_2021_102083
crossref_primary_10_1016_j_isci_2021_102083
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cuthbert, Riley, Handley-Sidhu, Renshaw, Tobler, Phoenix, Mackay (bib4) 2012; 41
Ping, Beaudoin (bib22) 1992; 22
Saikia, De Brito (bib25) 2012; 34
Shen, Cao, Li, Zhang, Wang, Li (bib28) 2015; 50
Sakamoto, Delgaizo, Bryant (bib27) 1998; 64
Shi, Li, Zhang, Li, Chong, Xie (bib29) 2016; 112
Ghosh, Biswas, Chattopadhyay, Mandal (bib8) 2009; 31
Welsh, Herbert (bib35) 1999; 174
Arnaud, Gourlay (bib1) 2012; 28
Neville (bib20) 1996
Sakai, Hashimoto, Kawakami (bib26) 2007; 103
Stocks-Fischer, Galinat, Bang (bib30) 1999; 31
Ward, Yamanobe, Li, Backer (bib34) 1990; 118
Ohtake, Wang (bib21) 2011; 100
Qiu, Tng, Yang (bib24) 2014; 57
Benhelal, Zahedi, Shamsaei, Bahadori (bib2) 2013; 51
Heveran, Liang, Nagarajan, Hubler, Gill, Cameron, Srubar (bib12) 2019; 9
Chu, Stabnikov, Ivanov (bib3) 2012; 29
Ivanov, Chu (bib14) 2008; 7
Kou, Poon (bib17) 2010; 32
Wang, Hou, Cheng, Fu (bib33) 2012; 8
Heveran, Williams, Qiu, Artier, Hubler, Cook, Srubar (bib13) 2020; 2
Jansson, Northen (bib15) 2010; 21
Einsfeld, Velasco (bib6) 2006; 36
De Muynck, De Belie, Verstraete (bib5) 2010; 36
Wittmann, Mihashi, Nomura (bib36) 1990; 35
Jeong, Jo, Park, Kang, So (bib16) 2017; 27
Liang, Heveran, Liu, Gill, Nagarajan, Cameron, Cook (bib18) 2018; 7
Van Paassen, Daza, Staal, Sorokin, van der Zon, van Loosdrecht (bib32) 2010; 36
Wu, Chen, Yao, Zhang (bib37) 2001; 31
Haque, Al-Khaiat, Kayali (bib11) 2004; 26
Tam (bib31) 2009; 17
Habert, Miller, John, Provis, Favier, Horvath, Scrivener (bib9) 2020; 1
Luyckx, Baudouin (bib19) 2011; 5
Gaus, Tjaronge, Ali, Djamaluddin (bib7) 2015; 125
Pok, Myers, Madihally, Jacot (bib23) 2013; 9
Hammes, Verstraete (bib10) 2002; 1
De Muynck (10.1016/j.isci.2021.102083_bib5) 2010; 36
Gaus (10.1016/j.isci.2021.102083_bib7) 2015; 125
Hammes (10.1016/j.isci.2021.102083_bib10) 2002; 1
Heveran (10.1016/j.isci.2021.102083_bib12) 2019; 9
Shi (10.1016/j.isci.2021.102083_bib29) 2016; 112
Einsfeld (10.1016/j.isci.2021.102083_bib6) 2006; 36
Benhelal (10.1016/j.isci.2021.102083_bib2) 2013; 51
Qiu (10.1016/j.isci.2021.102083_bib24) 2014; 57
Jansson (10.1016/j.isci.2021.102083_bib15) 2010; 21
Sakamoto (10.1016/j.isci.2021.102083_bib27) 1998; 64
Arnaud (10.1016/j.isci.2021.102083_bib1) 2012; 28
Ping (10.1016/j.isci.2021.102083_bib22) 1992; 22
Pok (10.1016/j.isci.2021.102083_bib23) 2013; 9
Cuthbert (10.1016/j.isci.2021.102083_bib4) 2012; 41
Jeong (10.1016/j.isci.2021.102083_bib16) 2017; 27
Liang (10.1016/j.isci.2021.102083_bib18) 2018; 7
Wang (10.1016/j.isci.2021.102083_bib33) 2012; 8
Ivanov (10.1016/j.isci.2021.102083_bib14) 2008; 7
Saikia (10.1016/j.isci.2021.102083_bib25) 2012; 34
Stocks-Fischer (10.1016/j.isci.2021.102083_bib30) 1999; 31
Tam (10.1016/j.isci.2021.102083_bib31) 2009; 17
Habert (10.1016/j.isci.2021.102083_bib9) 2020; 1
Neville (10.1016/j.isci.2021.102083_bib20) 1996
Van Paassen (10.1016/j.isci.2021.102083_bib32) 2010; 36
Kou (10.1016/j.isci.2021.102083_bib17) 2010; 32
Ohtake (10.1016/j.isci.2021.102083_bib21) 2011; 100
Welsh (10.1016/j.isci.2021.102083_bib35) 1999; 174
Ward (10.1016/j.isci.2021.102083_bib34) 1990; 118
Sakai (10.1016/j.isci.2021.102083_bib26) 2007; 103
Ghosh (10.1016/j.isci.2021.102083_bib8) 2009; 31
Wu (10.1016/j.isci.2021.102083_bib37) 2001; 31
Wittmann (10.1016/j.isci.2021.102083_bib36) 1990; 35
Luyckx (10.1016/j.isci.2021.102083_bib19) 2011; 5
Chu (10.1016/j.isci.2021.102083_bib3) 2012; 29
Haque (10.1016/j.isci.2021.102083_bib11) 2004; 26
Heveran (10.1016/j.isci.2021.102083_bib13) 2020; 2
Shen (10.1016/j.isci.2021.102083_bib28) 2015; 50
References_xml – volume: 1
  start-page: 559
  year: 2020
  end-page: 573
  ident: bib9
  article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries
  publication-title: Nat. Rev. Earth Environ.
– volume: 31
  start-page: 93
  year: 2009
  end-page: 98
  ident: bib8
  article-title: Microbial activity on the microstructure of bacteria modified mortar
  publication-title: Cement Concrete Compos.
– volume: 50
  start-page: 1004
  year: 2015
  end-page: 1012
  ident: bib28
  article-title: Quantifying CO2 emissions from China’s cement industry
  publication-title: Renew. Sustain. Energy Rev.
– volume: 22
  start-page: 23
  year: 1992
  end-page: 26
  ident: bib22
  article-title: Effects of transition zone microstructure on bond strength of aggregate-portland cement paste interfaces
  publication-title: Cement Concrete Res.
– volume: 26
  start-page: 307
  year: 2004
  end-page: 314
  ident: bib11
  article-title: Strength and durability of lightweight concrete
  publication-title: Cement Concrete Compos.
– volume: 17
  start-page: 688
  year: 2009
  end-page: 702
  ident: bib31
  article-title: Comparing the implementation of concrete recycling in the Australian and Japanese construction industries
  publication-title: J. Clean. Prod.
– volume: 36
  start-page: 168
  year: 2010
  end-page: 175
  ident: bib32
  article-title: Potential soil reinforcement by biological denitrification
  publication-title: Ecol. Eng.
– volume: 1
  start-page: 3
  year: 2002
  end-page: 7
  ident: bib10
  article-title: Key roles of pH and calcium metabolism in microbial carbonate precipitation
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 21
  start-page: 365
  year: 2010
  end-page: 371
  ident: bib15
  article-title: Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage
  publication-title: Curr. Opin. Biotechnol.
– volume: 103
  start-page: 22
  year: 2007
  end-page: 26
  ident: bib26
  article-title: Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold
  publication-title: J. Biosci. Bioeng.
– volume: 29
  start-page: 544
  year: 2012
  end-page: 549
  ident: bib3
  article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil
  publication-title: Geomicrobiol. J.
– volume: 41
  start-page: 32
  year: 2012
  end-page: 40
  ident: bib4
  article-title: Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation
  publication-title: Ecol. Eng.
– year: 1996
  ident: bib20
  article-title: Properties of Concrete
– volume: 100
  start-page: 2020
  year: 2011
  end-page: 2053
  ident: bib21
  article-title: Trehalose: current use and future applications
  publication-title: J. Pharm. Sci.
– volume: 57
  start-page: 144
  year: 2014
  end-page: 150
  ident: bib24
  article-title: Surface treatment of recycled concrete aggregates through microbial carbonate precipitation
  publication-title: Construct. Building Mater.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib12
  article-title: Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate
  publication-title: Sci. Rep.
– volume: 31
  start-page: 1563
  year: 1999
  end-page: 1571
  ident: bib30
  article-title: Microbiological precipitation of CaCO3
  publication-title: Soil Biol. Biochem.
– volume: 174
  start-page: 57
  year: 1999
  end-page: 63
  ident: bib35
  article-title: Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli
  publication-title: FEMS Microbiol. Lett.
– volume: 35
  start-page: 107
  year: 1990
  end-page: 115
  ident: bib36
  article-title: Size effect on fracture energy of concrete
  publication-title: Eng. Fracture Mech.
– volume: 2
  start-page: 481
  year: 2020
  end-page: 494
  ident: bib13
  article-title: Biomineralization and successive regeneration of engineered living building materials
  publication-title: Matter
– volume: 34
  start-page: 385
  year: 2012
  end-page: 401
  ident: bib25
  article-title: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review
  publication-title: Construct. Building Mater.
– volume: 5
  start-page: 577
  year: 2011
  ident: bib19
  article-title: Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology
  publication-title: Clin. Ophthalmol. (Auckland, NZ)
– volume: 7
  start-page: 2497
  year: 2018
  end-page: 2506
  ident: bib18
  article-title: Rational control of calcium carbonate precipitation by engineered Escherichia coli
  publication-title: ACS Synth. Biol.
– volume: 36
  start-page: 118
  year: 2010
  end-page: 136
  ident: bib5
  article-title: Microbial carbonate precipitation in construction materials: a review
  publication-title: Ecol. Eng.
– volume: 32
  start-page: 649
  year: 2010
  end-page: 654
  ident: bib17
  article-title: Properties of concrete prepared with PVA-impregnated recycled concrete aggregates
  publication-title: Cement Concrete Compos.
– volume: 51
  start-page: 142
  year: 2013
  end-page: 161
  ident: bib2
  article-title: Global strategies and potentials to curb CO2 emissions in cement industry
  publication-title: J. Clean. Prod.
– volume: 118
  start-page: 17
  year: 1990
  end-page: 68
  ident: bib34
  article-title: Fracture resistance of acrylic fiber reinforced mortar in shear and flexure
  publication-title: Spec. Publ.
– volume: 31
  start-page: 1421
  year: 2001
  end-page: 1425
  ident: bib37
  article-title: Effect of coarse aggregate type on mechanical properties of high-performance concrete
  publication-title: Cement Concrete Res.
– volume: 28
  start-page: 50
  year: 2012
  end-page: 56
  ident: bib1
  article-title: Experimental study of parameters influencing mechanical properties of hemp concretes
  publication-title: Construction Building Mater.
– volume: 7
  start-page: 139
  year: 2008
  end-page: 153
  ident: bib14
  article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
  publication-title: Rev. Environ. Sci. Biol. Technol.
– volume: 125
  start-page: 657
  year: 2015
  end-page: 662
  ident: bib7
  article-title: Compressive strength of asphalt concrete binder course (AC-BC) mixture using buton granular asphalt (BGA)
  publication-title: Proced. Eng.
– volume: 112
  start-page: 466
  year: 2016
  end-page: 472
  ident: bib29
  article-title: Performance enhancement of recycled concrete aggregate–a review
  publication-title: J. Clean. Prod.
– volume: 9
  start-page: 5630
  year: 2013
  end-page: 5642
  ident: bib23
  article-title: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering
  publication-title: Acta Biomater.
– volume: 8
  start-page: 6048
  year: 2012
  end-page: 6056
  ident: bib33
  article-title: Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles
  publication-title: Soft Matter
– volume: 27
  start-page: 1331
  year: 2017
  end-page: 1335
  ident: bib16
  article-title: Biocementation of concrete pavements using microbially induced calcite precipitation
  publication-title: J. Microbiol. Biotechnol.
– volume: 36
  start-page: 576
  year: 2006
  end-page: 583
  ident: bib6
  article-title: Fracture parameters for high-performance concrete
  publication-title: Cement Concrete Res.
– volume: 64
  start-page: 2361
  year: 1998
  end-page: 2366
  ident: bib27
  article-title: Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002
  publication-title: Appl. Environ. Microbiol.
– volume: 17
  start-page: 688
  year: 2009
  ident: 10.1016/j.isci.2021.102083_bib31
  article-title: Comparing the implementation of concrete recycling in the Australian and Japanese construction industries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2008.11.015
– volume: 5
  start-page: 577
  year: 2011
  ident: 10.1016/j.isci.2021.102083_bib19
  article-title: Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology
  publication-title: Clin. Ophthalmol. (Auckland, NZ)
– volume: 34
  start-page: 385
  year: 2012
  ident: 10.1016/j.isci.2021.102083_bib25
  article-title: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review
  publication-title: Construct. Building Mater.
  doi: 10.1016/j.conbuildmat.2012.02.066
– volume: 8
  start-page: 6048
  year: 2012
  ident: 10.1016/j.isci.2021.102083_bib33
  article-title: Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles
  publication-title: Soft Matter
  doi: 10.1039/c2sm07233e
– volume: 100
  start-page: 2020
  year: 2011
  ident: 10.1016/j.isci.2021.102083_bib21
  article-title: Trehalose: current use and future applications
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.22458
– volume: 2
  start-page: 481
  year: 2020
  ident: 10.1016/j.isci.2021.102083_bib13
  article-title: Biomineralization and successive regeneration of engineered living building materials
  publication-title: Matter
  doi: 10.1016/j.matt.2019.11.016
– volume: 32
  start-page: 649
  year: 2010
  ident: 10.1016/j.isci.2021.102083_bib17
  article-title: Properties of concrete prepared with PVA-impregnated recycled concrete aggregates
  publication-title: Cement Concrete Compos.
  doi: 10.1016/j.cemconcomp.2010.05.003
– volume: 36
  start-page: 118
  year: 2010
  ident: 10.1016/j.isci.2021.102083_bib5
  article-title: Microbial carbonate precipitation in construction materials: a review
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2009.02.006
– volume: 22
  start-page: 23
  year: 1992
  ident: 10.1016/j.isci.2021.102083_bib22
  article-title: Effects of transition zone microstructure on bond strength of aggregate-portland cement paste interfaces
  publication-title: Cement Concrete Res.
  doi: 10.1016/0008-8846(92)90132-F
– volume: 103
  start-page: 22
  year: 2007
  ident: 10.1016/j.isci.2021.102083_bib26
  article-title: Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.103.22
– volume: 21
  start-page: 365
  year: 2010
  ident: 10.1016/j.isci.2021.102083_bib15
  article-title: Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.03.017
– volume: 9
  start-page: 5630
  year: 2013
  ident: 10.1016/j.isci.2021.102083_bib23
  article-title: A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.10.032
– volume: 174
  start-page: 57
  year: 1999
  ident: 10.1016/j.isci.2021.102083_bib35
  article-title: Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1999.tb13549.x
– volume: 31
  start-page: 1421
  year: 2001
  ident: 10.1016/j.isci.2021.102083_bib37
  article-title: Effect of coarse aggregate type on mechanical properties of high-performance concrete
  publication-title: Cement Concrete Res.
  doi: 10.1016/S0008-8846(01)00588-9
– volume: 28
  start-page: 50
  year: 2012
  ident: 10.1016/j.isci.2021.102083_bib1
  article-title: Experimental study of parameters influencing mechanical properties of hemp concretes
  publication-title: Construction Building Mater.
  doi: 10.1016/j.conbuildmat.2011.07.052
– volume: 1
  start-page: 559
  year: 2020
  ident: 10.1016/j.isci.2021.102083_bib9
  article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-020-0093-3
– volume: 7
  start-page: 2497
  year: 2018
  ident: 10.1016/j.isci.2021.102083_bib18
  article-title: Rational control of calcium carbonate precipitation by engineered Escherichia coli
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00194
– volume: 64
  start-page: 2361
  year: 1998
  ident: 10.1016/j.isci.2021.102083_bib27
  article-title: Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.7.2361-2366.1998
– volume: 36
  start-page: 576
  year: 2006
  ident: 10.1016/j.isci.2021.102083_bib6
  article-title: Fracture parameters for high-performance concrete
  publication-title: Cement Concrete Res.
  doi: 10.1016/j.cemconres.2005.09.004
– volume: 26
  start-page: 307
  year: 2004
  ident: 10.1016/j.isci.2021.102083_bib11
  article-title: Strength and durability of lightweight concrete
  publication-title: Cement Concrete Compos.
  doi: 10.1016/S0958-9465(02)00141-5
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102083_bib12
  article-title: Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51133-9
– volume: 118
  start-page: 17
  year: 1990
  ident: 10.1016/j.isci.2021.102083_bib34
  article-title: Fracture resistance of acrylic fiber reinforced mortar in shear and flexure
  publication-title: Spec. Publ.
– volume: 7
  start-page: 139
  year: 2008
  ident: 10.1016/j.isci.2021.102083_bib14
  article-title: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
  publication-title: Rev. Environ. Sci. Biol. Technol.
– volume: 112
  start-page: 466
  year: 2016
  ident: 10.1016/j.isci.2021.102083_bib29
  article-title: Performance enhancement of recycled concrete aggregate–a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.08.057
– volume: 41
  start-page: 32
  year: 2012
  ident: 10.1016/j.isci.2021.102083_bib4
  article-title: Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2012.01.008
– volume: 27
  start-page: 1331
  year: 2017
  ident: 10.1016/j.isci.2021.102083_bib16
  article-title: Biocementation of concrete pavements using microbially induced calcite precipitation
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1701.01041
– volume: 36
  start-page: 168
  year: 2010
  ident: 10.1016/j.isci.2021.102083_bib32
  article-title: Potential soil reinforcement by biological denitrification
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2009.03.026
– volume: 35
  start-page: 107
  year: 1990
  ident: 10.1016/j.isci.2021.102083_bib36
  article-title: Size effect on fracture energy of concrete
  publication-title: Eng. Fracture Mech.
  doi: 10.1016/0013-7944(90)90188-M
– volume: 1
  start-page: 3
  year: 2002
  ident: 10.1016/j.isci.2021.102083_bib10
  article-title: Key roles of pH and calcium metabolism in microbial carbonate precipitation
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1023/A:1015135629155
– year: 1996
  ident: 10.1016/j.isci.2021.102083_bib20
– volume: 51
  start-page: 142
  year: 2013
  ident: 10.1016/j.isci.2021.102083_bib2
  article-title: Global strategies and potentials to curb CO2 emissions in cement industry
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.10.049
– volume: 31
  start-page: 93
  year: 2009
  ident: 10.1016/j.isci.2021.102083_bib8
  article-title: Microbial activity on the microstructure of bacteria modified mortar
  publication-title: Cement Concrete Compos.
  doi: 10.1016/j.cemconcomp.2009.01.001
– volume: 31
  start-page: 1563
  year: 1999
  ident: 10.1016/j.isci.2021.102083_bib30
  article-title: Microbiological precipitation of CaCO3
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00082-6
– volume: 57
  start-page: 144
  year: 2014
  ident: 10.1016/j.isci.2021.102083_bib24
  article-title: Surface treatment of recycled concrete aggregates through microbial carbonate precipitation
  publication-title: Construct. Building Mater.
  doi: 10.1016/j.conbuildmat.2014.01.085
– volume: 50
  start-page: 1004
  year: 2015
  ident: 10.1016/j.isci.2021.102083_bib28
  article-title: Quantifying CO2 emissions from China’s cement industry
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.05.031
– volume: 125
  start-page: 657
  year: 2015
  ident: 10.1016/j.isci.2021.102083_bib7
  article-title: Compressive strength of asphalt concrete binder course (AC-BC) mixture using buton granular asphalt (BGA)
  publication-title: Proced. Eng.
  doi: 10.1016/j.proeng.2015.11.097
– volume: 29
  start-page: 544
  year: 2012
  ident: 10.1016/j.isci.2021.102083_bib3
  article-title: Microbially induced calcium carbonate precipitation on surface or in the bulk of soil
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2011.592929
SSID ssj0002002496
Score 2.3418863
Snippet Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102083
SubjectTerms Biomaterials
Civil Engineering
Composite Materials
Materials Synthesis
Title Engineering living building materials for enhanced bacterial viability and mechanical properties
URI https://dx.doi.org/10.1016/j.isci.2021.102083
https://www.ncbi.nlm.nih.gov/pubmed/33598643
https://www.proquest.com/docview/2491065482
https://pubmed.ncbi.nlm.nih.gov/PMC7868992
https://doaj.org/article/cf9e2dc27c694ec98cb6b4687185f9cd
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovtYXEbxJsW3SNDmqKCLoyYW9xeaFK1pFV8F_70zSXbYKevHadyZfM98kk28IObReWWEqleUmrzMuypApZussBMtKFsDjRZ2C6xtxOeRXo2o0V-oLc8KSPHAy3LENypfOlrUVinurpDXCcAE8X1ZBWYejL_i8uWDqIS6voRRerCxXYU4QQLPbMZOSu3DHKwSHZYHSBblkPa8Uxft7zukn-fyeQznnlC5WyHLHJulJasUqWfDtGrmb0xikj2OcMaCmq35NgaAmzFFgq9S39zEDgJok2gzP-hgn5e5P2rSOPnncGYwdSV9w2v4V9VfXyfDi_PbsMusKKWQW6xVkjZJOcsNQng7dkhcV48GiWJgRMMAFIF0clWoYqquBPXidN94WdeOMdxCqbpDF9rn1W4Q65nPnPYwCUvDCMQUBLk775qoOlZR2QIqpIbXtVMax2MWjnqaTPWg0vkbj62T8ATma3fOSNDZ-vfoU-2d2JepjxwOAGt2hRv-FmgGppr2rO6qRKAQ8avzryw-mUNDwH-LiStP65_c3DXArcKOuLAdkM0Fj9omMRRV8uLvugabXhv6Zdnwftb5rKSAiLrf_o9E7ZAmbgjnnhdoli5PXd78HlGpi9uPf8wXdGB7V
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+living+building+materials+for+enhanced+bacterial+viability+and+mechanical+properties&rft.jtitle=iScience&rft.au=Qiu%2C+Jishen&rft.au=Cook%2C+Sherri&rft.au=Srubar%2C+Wil+V&rft.au=Hubler%2C+Mija+H&rft.date=2021-02-19&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=2&rft.spage=102083&rft_id=info:doi/10.1016%2Fj.isci.2021.102083&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon