In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genet...
Saved in:
Published in | Cell stem cell Vol. 26; no. 1; pp. 34 - 47.e3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
[Display omitted]
•A genetic system to trace polyploid cells in any organ in vivo was developed•Polyploid hepatocytes regenerate injured livers and frequently reduce their ploidy•Ploidy-reduced progeny proliferates and re-polyploidizes in subsequent mitoses•Chromosome segregation during ploidy reduction is not random but faithful
Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes proliferate continuously and dynamically decrease and increase their ploidy while remaining proliferative. |
---|---|
AbstractList | The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
[Display omitted]
•A genetic system to trace polyploid cells in any organ in vivo was developed•Polyploid hepatocytes regenerate injured livers and frequently reduce their ploidy•Ploidy-reduced progeny proliferates and re-polyploidizes in subsequent mitoses•Chromosome segregation during ploidy reduction is not random but faithful
Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes proliferate continuously and dynamically decrease and increase their ploidy while remaining proliferative. The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence for the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes continuously proliferate, and dynamically decrease and increase their ploidy while remaining proliferative. The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. |
Author | Wakefield, Leslie Tarlow, Branden David Grompe, Markus Matsumoto, Tomonori |
AuthorAffiliation | 3. Gastroenterology and Hepatology, Stanford University, Stanford, California, 94305, USA 4. Lead Contact 1. Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 97239, USA 2. JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan |
AuthorAffiliation_xml | – name: 4. Lead Contact – name: 2. JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan – name: 3. Gastroenterology and Hepatology, Stanford University, Stanford, California, 94305, USA – name: 1. Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 97239, USA |
Author_xml | – sequence: 1 givenname: Tomonori orcidid: 0000-0003-4483-2178 surname: Matsumoto fullname: Matsumoto, Tomonori organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA – sequence: 2 givenname: Leslie surname: Wakefield fullname: Wakefield, Leslie organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA – sequence: 3 givenname: Branden David surname: Tarlow fullname: Tarlow, Branden David organization: Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Markus orcidid: 0000-0002-6616-4345 surname: Grompe fullname: Grompe, Markus email: grompem@ohsu.edu organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31866222$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uGyEUhVGVqvlpXiCLimU3MwEGzCBFlaoobSJZSlSl2SLC3HFwxuACHtVv02fpkxXHTtR2kRVI53z3wjmHaM8HDwidUFJTQien8zplWNSMUFVTWhPK36AD2kpRKSnlXrmrhldCEbWPDlOaEyIkJfId2m9oO5kwxg7Q45X__evOjQFPnQczA3wbjXV-hkOPb8KwXg7BdfgSliYHu86Q8DcYwQwJX_zM4JMbAd_EMLgeoskueNyt4oafFiUW8wz8TnmP3vYFhOPdeYS-f7m4Pb-sptdfr84_TysrGM2VYdaYe9mCZAwYZ1z1wKxVrRGCtk3TK6MYs5xzQUGotkjlO22nLDFWMtscoU_bucvV_QI6Cz5HM-hldAsT1zoYp_9VvHvQszBqyQjnhJcBH3cDYvixgpT1wiULw2A8hFXSrGlKlkopUawf_t71suQ54WJgW4ONIaUI_YuFEr2pUc_1pka9qVFTqkuNBWr_g6zLTxmW97rhdfRsi0JJeHQQdbIOvIXORbBZd8G9hv8Bs1a78A |
CitedBy_id | crossref_primary_10_1016_j_jhep_2020_03_038 crossref_primary_10_1165_rcmb_2021_0356OC crossref_primary_10_3390_genes11101163 crossref_primary_10_18632_aging_102957 crossref_primary_10_1038_s41467_022_33110_5 crossref_primary_10_1038_s41467_021_24543_5 crossref_primary_10_1101_gad_349727_122 crossref_primary_10_1146_annurev_genet_111523_102124 crossref_primary_10_1038_s41467_022_35167_8 crossref_primary_10_1136_gutjnl_2021_324321 crossref_primary_10_1016_j_kint_2023_10_036 crossref_primary_10_1111_nyas_14719 crossref_primary_10_1016_j_jcmgh_2020_09_016 crossref_primary_10_1042_BST20200219 crossref_primary_10_1038_s41467_020_20572_8 crossref_primary_10_1007_s11427_021_2007_8 crossref_primary_10_1016_j_jhep_2024_03_043 crossref_primary_10_1021_acsami_2c02523 crossref_primary_10_3389_fmed_2020_00479 crossref_primary_10_1142_S1793545823300069 crossref_primary_10_1002_advs_202308711 crossref_primary_10_1016_j_jhepr_2021_100315 crossref_primary_10_1038_s41416_023_02408_6 crossref_primary_10_1002_hep_32408 crossref_primary_10_1186_s13619_022_00152_5 crossref_primary_10_1186_s13619_020_00063_3 crossref_primary_10_2147_OTT_S340435 crossref_primary_10_7554_eLife_89912_3 crossref_primary_10_1101_cshperspect_a040832 crossref_primary_10_3389_fonc_2024_1367364 crossref_primary_10_3390_ijms23169409 crossref_primary_10_1017_S0954422423000124 crossref_primary_10_1111_cpr_13446 crossref_primary_10_1016_j_semcdb_2023_05_009 crossref_primary_10_1038_s41576_020_0239_7 crossref_primary_10_1055_s_0040_1719175 crossref_primary_10_1016_j_stem_2023_09_002 crossref_primary_10_29169_1927_5951_2021_11_01 crossref_primary_10_1146_annurev_physiol_032822_094134 crossref_primary_10_1186_s13287_020_01941_y crossref_primary_10_3389_fcell_2021_698661 crossref_primary_10_3390_ijms222011093 crossref_primary_10_1126_science_abc4346 crossref_primary_10_1038_s41536_024_00370_2 crossref_primary_10_1016_j_stem_2019_12_002 crossref_primary_10_1016_j_stem_2021_02_010 crossref_primary_10_1002_ar_24560 crossref_primary_10_1016_j_jhep_2021_06_030 crossref_primary_10_1146_annurev_physiol_021119_034520 crossref_primary_10_1002_bies_202000105 crossref_primary_10_3389_fcell_2021_809668 crossref_primary_10_1053_j_gastro_2024_02_001 crossref_primary_10_1016_j_tig_2022_05_007 crossref_primary_10_1038_s44318_024_00099_0 crossref_primary_10_1002_hep4_1925 crossref_primary_10_1111_febs_16629 crossref_primary_10_1016_j_trecan_2020_08_005 crossref_primary_10_1038_s41467_021_21897_8 crossref_primary_10_1055_a_2211_2144 crossref_primary_10_23868_202104005 crossref_primary_10_1016_j_jhepr_2023_100779 crossref_primary_10_1016_j_cels_2022_05_001 crossref_primary_10_1083_jcb_202403020 crossref_primary_10_1186_s12964_024_01526_9 crossref_primary_10_1016_j_ceb_2023_102292 crossref_primary_10_2174_1574888X17666220614160957 crossref_primary_10_1186_s13619_021_00101_8 crossref_primary_10_1016_j_bbcan_2020_188408 crossref_primary_10_1038_s41586_024_07376_2 crossref_primary_10_1007_s11684_023_1002_1 crossref_primary_10_1242_dev_202392 crossref_primary_10_7554_eLife_46206 crossref_primary_10_1007_s13770_023_00576_3 crossref_primary_10_1242_dev_201581 crossref_primary_10_1038_s41467_021_20916_y crossref_primary_10_3390_v13020210 crossref_primary_10_1038_s41575_020_0284_x crossref_primary_10_1016_j_isci_2021_102142 crossref_primary_10_1002_2211_5463_13803 crossref_primary_10_1242_dev_193193 crossref_primary_10_1038_s41467_024_45439_0 crossref_primary_10_1038_s41575_020_0342_4 crossref_primary_10_1016_j_trecan_2022_10_005 crossref_primary_10_3390_cancers13174496 crossref_primary_10_1093_function_zqac059 crossref_primary_10_3390_ijms21051811 crossref_primary_10_1016_j_semcdb_2021_09_011 crossref_primary_10_1038_s41421_022_00474_3 crossref_primary_10_1111_jgh_15587 crossref_primary_10_1186_s12967_023_03897_y crossref_primary_10_3389_fcell_2021_643055 crossref_primary_10_3390_cancers13205151 crossref_primary_10_1038_s41598_025_90004_4 crossref_primary_10_3390_ijms24076546 crossref_primary_10_1101_gr_267013_120 crossref_primary_10_1083_jcb_202212088 crossref_primary_10_1371_journal_pbio_3001597 crossref_primary_10_1093_carcin_bgac028 crossref_primary_10_1038_s12276_021_00579_x crossref_primary_10_20935_AcadMed6233 crossref_primary_10_1016_j_gendis_2023_01_003 crossref_primary_10_1016_j_tcb_2020_01_007 crossref_primary_10_1016_j_bbcan_2023_188870 crossref_primary_10_1002_hep_32299 crossref_primary_10_1016_j_gde_2022_101921 crossref_primary_10_1016_j_jcmgh_2020_12_011 crossref_primary_10_3389_fcell_2022_854998 crossref_primary_10_1371_journal_pbio_3002315 crossref_primary_10_1007_s10577_021_09664_3 crossref_primary_10_3389_fcell_2023_1210983 crossref_primary_10_7554_eLife_89912 crossref_primary_10_1016_j_antiviral_2023_105642 crossref_primary_10_1016_j_jhepr_2021_100416 crossref_primary_10_1038_s41392_023_01383_x crossref_primary_10_14336_AD_2020_1227 crossref_primary_10_1002_advs_202306318 crossref_primary_10_1093_lifemedi_lnac040 crossref_primary_10_3390_cells12232718 crossref_primary_10_1016_j_jceh_2022_09_006 crossref_primary_10_1242_dev_199401 crossref_primary_10_1016_j_jhepr_2020_100198 crossref_primary_10_1186_s13287_023_03400_w crossref_primary_10_1002_hep_31772 crossref_primary_10_1038_s41420_024_02206_w |
Cites_doi | 10.1038/s41586-018-0004-7 10.1016/j.cell.2015.07.026 10.1242/dev.156034 10.1016/j.tig.2018.10.005 10.1038/nature14187 10.1101/gad.7.12a.2298 10.1007/s00441-016-2427-5 10.1016/j.clinre.2011.05.011 10.1172/JCI59261 10.1172/JCI64026 10.3389/fonc.2013.00198 10.1126/science.166.3906.761 10.1016/S0959-8049(99)00224-5 10.1111/cas.13717 10.1016/j.semcdb.2013.01.003 10.1002/hep.30286 10.1172/JCI73957 10.1016/S0002-9440(10)65531-9 10.1038/nature14863 10.1016/j.stem.2007.03.002 10.1016/j.cub.2012.05.016 10.1016/j.cell.2010.09.016 10.1073/pnas.1708981114 10.1074/jbc.M114.633891 10.1038/nrg.2017.26 10.1083/jcb.201502016 10.3892/or.2015.3751 10.1136/gut.2004.043893 10.1038/nature09414 10.1016/j.ajpath.2013.06.035 10.1038/ng0396-266 10.1016/j.stemcr.2013.08.003 10.1016/j.stem.2017.02.012 10.1038/nrm1276 10.1053/j.gastro.2011.10.029 10.1128/MCB.20.2.648-655.2000 10.1074/jbc.M300982200 10.1038/nrm4025 10.1152/ajpgi.00199.2012 10.1007/BF00326331 10.1371/journal.pone.0002493 10.1016/j.tig.2015.03.011 10.1016/j.tcb.2013.06.002 10.1038/nrclinonc.2017.198 10.1038/emboj.2010.11 10.1016/j.cell.2018.07.042 10.1038/nature08136 10.1016/j.cell.2007.10.024 10.1016/j.neuron.2016.08.021 10.1016/j.acthis.2014.11.009 10.7150/ijbs.7.1122 10.1371/journal.pgen.1000385 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.stem.2019.11.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 47.e3 |
ExternalDocumentID | PMC7204404 31866222 10_1016_j_stem_2019_11_014 S1934590919304692 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA190144 – fundername: NIDDK NIH HHS grantid: R01 DK051592 – fundername: NIDDK NIH HHS grantid: F30 DK095514 – fundername: NIDDK NIH HHS grantid: R01 DK083355 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAKRW AAMRU AAVLU AAXUO ABJNI ABMAC ABOCM ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 O-L O9- OK1 P2P ROL RPZ SES SSZ TR2 ZBA 53G 5VS AAIKJ AALRI AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION EJD HZ~ OZT RIG 0SF AAFTH ABVKL CGR CUY CVF ECM EIF NPM RCE 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-a2caab78e722e24249fe2cc98a551833f9a922c44451e598cc91868d9c0ac72c3 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Thu Aug 21 18:45:33 EDT 2025 Fri Jul 11 07:02:39 EDT 2025 Wed Feb 19 02:28:40 EST 2025 Thu Apr 24 23:07:56 EDT 2025 Tue Jul 01 01:08:32 EDT 2025 Sun Apr 06 06:54:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ploidy conveyor ploidy reduction hepatocyte lineage tracing polyploidy |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-a2caab78e722e24249fe2cc98a551833f9a922c44451e598cc91868d9c0ac72c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 T.M. and M.G. conceived the project, designed the experiments and wrote the manuscript. T.M. performed and analyzed most of the experiments. L.W. assisted with experiments and provided technical help. B.D.T. provided comments and assisted with manuscript preparation. Author Contributions |
ORCID | 0000-0003-4483-2178 0000-0002-6616-4345 |
OpenAccessLink | http://www.cell.com/article/S1934590919304692/pdf |
PMID | 31866222 |
PQID | 2330059995 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7204404 proquest_miscellaneous_2330059995 pubmed_primary_31866222 crossref_primary_10_1016_j_stem_2019_11_014 crossref_citationtrail_10_1016_j_stem_2019_11_014 elsevier_sciencedirect_doi_10_1016_j_stem_2019_11_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Pera, Rainer (bib35) 1973; 42 Orr-Weaver (bib29) 2015; 31 Preisegger, Factor, Fuchsbichler, Stumptner, Denk, Thorgeirsson (bib36) 1999; 79 Vitale, Senovilla, Jemaà, Michaud, Galluzzi, Kepp, Nanty, Criollo, Rello-Varona, Manic (bib53) 2010; 29 Li, Germain, Gerner (bib21) 2017; 114 Toyoda, Bregerie, Vallet, Nalpas, Pivert, Brechot, Desdouets (bib51) 2005; 54 Miyaoka, Ebato, Kato, Arakawa, Shimizu, Miyajima (bib27) 2012; 22 Selmecki, Maruvka, Richmond, Guillet, Shoresh, Sorenson, De, Kishony, Michor, Dowell, Pellman (bib42) 2015; 519 Malato, Naqvi, Schürmann, Ng, Wang, Zape, Kay, Grimm, Willenbring (bib25) 2011; 121 Wang, Zhao, Fish, Logan, Nusse (bib54) 2015; 524 Sigal, Rajvanshi, Gorla, Sokhi, Saxena, Gebhard, Reid, Gupta (bib43) 1999; 276 Gjelsvik, Besen-McNally, Losick (bib15) 2019; 35 Martin, Sprague (bib26) 1969; 166 Wilkinson, Delgado, Alencastro, Leek, Roy, Weirich, Stahl, Otero, Chen, Brown, Duncan (bib55) 2019; 69 Taghizadeh, Sherley (bib46) 2008; 2008 Gentric, Maillet, Paradis, Couton, L’Hermitte, Panasyuk, Fromenty, Celton-Morizur, Desdouets (bib14) 2015; 125 D’Hulst, Parvanova, Tomoiaga, Sapar, Feinstein (bib3) 2013; 1 Chan (bib2) 2011; 7 Grompe, al-Dhalimy, Finegold, Ou, Burlingame, Kennaway, Soriano (bib16) 1993; 7 Overturf, Al-Dhalimy, Tanguay, Brantly, Ou, Finegold, Grompe (bib30) 1996; 12 Tanaka, Goto, Inoko, Makihara, Enomoto, Horimoto, Matsuyama, Kurita, Izawa, Inagaki (bib47) 2015; 290 Duncan, Hanlon Newell, Smith, Wilson, Olson, Thayer, Strom, Grompe (bib8) 2012; 142 Lucchetta, Ohlstein (bib24) 2017; 20 Pandit, Westendorp, de Bruin (bib34) 2013; 23 Ruzankina, Pinzon-Guzman, Asare, Ong, Pontano, Cotsarelis, Zediak, Velez, Bhandoola, Brown (bib37) 2007; 1 Duncan, Hanlon Newell, Bi, Finegold, Olson, Beaudet, Grompe (bib7) 2012; 122 He, Tucciarone, Lee, Nigro, Kim, Levine, Kelly, Krugikov, Wu, Chen (bib18) 2016; 91 Schoenfelder, Fox (bib41) 2015; 209 Van de Peer, Mizrachi, Marchal (bib52) 2017; 18 Duncan, Taylor, Hickey, Hanlon Newell, Lenzi, Olson, Finegold, Grompe (bib6) 2010; 467 Ganem, Godinho, Pellman (bib11) 2009; 460 Telentschak, Soliwoda, Nohroudi, Addicks, Klinz (bib50) 2015; 33 Lin, Nascimento, Gajera, Chen, Neuhöfer, Garbuzov, Wang, Artandi (bib22) 2018; 556 Gentric, Celton-Morizur, Desdouets (bib13) 2012; 36 Gentric, Desdouets (bib12) 2014; 184 Liu, Meyer, Xu, Weng, Hellerbrand, ten Dijke, Dooley (bib23) 2013; 304 Schnur, Nagy, Sebestyén, Schaff, Thorgeirsson (bib40) 1999; 35 Overturf, al-Dhalimy, Ou, Finegold, Grompe (bib31) 1997; 151 Duncan (bib4) 2013; 24 Font-Burgada, Shalapour, Ramaswamy, Hsueh, Rossell, Umemura, Taniguchi, Nakagawa, Valasek, Ye (bib9) 2015; 162 Øvrebø, Edgar (bib33) 2018; 145 Beer, Komatsubara, Bellovin, Kurobe, Sylvester, Felsher (bib1) 2008; 3 Snippert, van der Flier, Sato, van Es, van den Born, Kroon-Veenboer, Barker, Klein, van Rheenen, Simons, Clevers (bib44) 2010; 143 Storchova, Pellman (bib45) 2004; 5 Duncan, Hickey, Paulk, Culberson, Olson, Finegold, Grompe (bib5) 2009; 5 Kalatova, Jesenska, Hlinka, Dudas (bib19) 2015; 117 Knouse, Lopez, Bachofner, Amon (bib20) 2018; 175 Ganem, Pellman (bib10) 2007; 131 Guidotti, Brégerie, Robert, Debey, Brechot, Desdouets (bib17) 2003; 278 Tanami, Ben-Moshe, Elkayam, Mayo, Bahar Halpern, Itzkovitz (bib49) 2017; 368 Santaguida, Amon (bib39) 2015; 16 Ohshima, Seyama (bib28) 2013; 3 Sansregret, Vanhaesebroeck, Swanton (bib38) 2018; 15 Zheng, Sage, Sheppeard, Jurecic, Bradley (bib56) 2000; 20 Overturf, Al-Dhalimy, Finegold, Grompe (bib32) 1999; 155 Tanaka, Goto, Nishimura, Kasahara, Mizoguchi, Inagaki (bib48) 2018; 109 Knouse (10.1016/j.stem.2019.11.014_bib20) 2018; 175 Tanaka (10.1016/j.stem.2019.11.014_bib47) 2015; 290 Lucchetta (10.1016/j.stem.2019.11.014_bib24) 2017; 20 Schoenfelder (10.1016/j.stem.2019.11.014_bib41) 2015; 209 Selmecki (10.1016/j.stem.2019.11.014_bib42) 2015; 519 Overturf (10.1016/j.stem.2019.11.014_bib30) 1996; 12 Orr-Weaver (10.1016/j.stem.2019.11.014_bib29) 2015; 31 Miyaoka (10.1016/j.stem.2019.11.014_bib27) 2012; 22 Font-Burgada (10.1016/j.stem.2019.11.014_bib9) 2015; 162 Ganem (10.1016/j.stem.2019.11.014_bib11) 2009; 460 Ruzankina (10.1016/j.stem.2019.11.014_bib37) 2007; 1 Lin (10.1016/j.stem.2019.11.014_bib22) 2018; 556 Sansregret (10.1016/j.stem.2019.11.014_bib38) 2018; 15 Pandit (10.1016/j.stem.2019.11.014_bib34) 2013; 23 Duncan (10.1016/j.stem.2019.11.014_bib4) 2013; 24 Liu (10.1016/j.stem.2019.11.014_bib23) 2013; 304 Pera (10.1016/j.stem.2019.11.014_bib35) 1973; 42 Zheng (10.1016/j.stem.2019.11.014_bib56) 2000; 20 Øvrebø (10.1016/j.stem.2019.11.014_bib33) 2018; 145 Storchova (10.1016/j.stem.2019.11.014_bib45) 2004; 5 Toyoda (10.1016/j.stem.2019.11.014_bib51) 2005; 54 Ohshima (10.1016/j.stem.2019.11.014_bib28) 2013; 3 Duncan (10.1016/j.stem.2019.11.014_bib5) 2009; 5 Snippert (10.1016/j.stem.2019.11.014_bib44) 2010; 143 Gentric (10.1016/j.stem.2019.11.014_bib12) 2014; 184 Wilkinson (10.1016/j.stem.2019.11.014_bib55) 2019; 69 Tanaka (10.1016/j.stem.2019.11.014_bib48) 2018; 109 Van de Peer (10.1016/j.stem.2019.11.014_bib52) 2017; 18 Overturf (10.1016/j.stem.2019.11.014_bib31) 1997; 151 Preisegger (10.1016/j.stem.2019.11.014_bib36) 1999; 79 Taghizadeh (10.1016/j.stem.2019.11.014_bib46) 2008; 2008 Li (10.1016/j.stem.2019.11.014_bib21) 2017; 114 Duncan (10.1016/j.stem.2019.11.014_bib8) 2012; 142 Martin (10.1016/j.stem.2019.11.014_bib26) 1969; 166 Grompe (10.1016/j.stem.2019.11.014_bib16) 1993; 7 Wang (10.1016/j.stem.2019.11.014_bib54) 2015; 524 D’Hulst (10.1016/j.stem.2019.11.014_bib3) 2013; 1 Gjelsvik (10.1016/j.stem.2019.11.014_bib15) 2019; 35 He (10.1016/j.stem.2019.11.014_bib18) 2016; 91 Kalatova (10.1016/j.stem.2019.11.014_bib19) 2015; 117 Sigal (10.1016/j.stem.2019.11.014_bib43) 1999; 276 Duncan (10.1016/j.stem.2019.11.014_bib7) 2012; 122 Santaguida (10.1016/j.stem.2019.11.014_bib39) 2015; 16 Malato (10.1016/j.stem.2019.11.014_bib25) 2011; 121 Vitale (10.1016/j.stem.2019.11.014_bib53) 2010; 29 Beer (10.1016/j.stem.2019.11.014_bib1) 2008; 3 Gentric (10.1016/j.stem.2019.11.014_bib14) 2015; 125 Tanami (10.1016/j.stem.2019.11.014_bib49) 2017; 368 Ganem (10.1016/j.stem.2019.11.014_bib10) 2007; 131 Telentschak (10.1016/j.stem.2019.11.014_bib50) 2015; 33 Gentric (10.1016/j.stem.2019.11.014_bib13) 2012; 36 Duncan (10.1016/j.stem.2019.11.014_bib6) 2010; 467 Schnur (10.1016/j.stem.2019.11.014_bib40) 1999; 35 Guidotti (10.1016/j.stem.2019.11.014_bib17) 2003; 278 Overturf (10.1016/j.stem.2019.11.014_bib32) 1999; 155 Chan (10.1016/j.stem.2019.11.014_bib2) 2011; 7 32386955 - J Hepatol. 2020 Jul;73(1):6-8 31951586 - Cell Stem Cell. 2020 Jan 2;26(1):2-3 |
References_xml | – volume: 91 start-page: 1228 year: 2016 end-page: 1243 ident: bib18 article-title: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex publication-title: Neuron – volume: 24 start-page: 347 year: 2013 end-page: 356 ident: bib4 article-title: Aneuploidy, polyploidy and ploidy reversal in the liver publication-title: Semin. Cell Dev. Biol. – volume: 556 start-page: 244 year: 2018 end-page: 248 ident: bib22 article-title: Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury publication-title: Nature – volume: 166 start-page: 761 year: 1969 end-page: 763 ident: bib26 article-title: Parasexual cycle in cultivated human somatic cells publication-title: Science – volume: 36 start-page: 29 year: 2012 end-page: 34 ident: bib13 article-title: Polyploidy and liver proliferation publication-title: Clin. Res. Hepatol. Gastroenterol. – volume: 29 start-page: 1272 year: 2010 end-page: 1284 ident: bib53 article-title: Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos publication-title: EMBO J. – volume: 20 start-page: 648 year: 2000 end-page: 655 ident: bib56 article-title: Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications publication-title: Mol. Cell. Biol. – volume: 7 start-page: 1122 year: 2011 end-page: 1144 ident: bib2 article-title: A clinical overview of centrosome amplification in human cancers publication-title: Int. J. Biol. Sci. – volume: 524 start-page: 180 year: 2015 end-page: 185 ident: bib54 article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver publication-title: Nature – volume: 42 start-page: 71 year: 1973 end-page: 86 ident: bib35 article-title: Studies of multipolar mitoses in euploid tissue cultures. I. Somatic reduction to exactly haploid and triploid chromosome sets publication-title: Chromosoma – volume: 114 start-page: E7321 year: 2017 end-page: E7330 ident: bib21 article-title: Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (C publication-title: Proc. Natl. Acad. Sci. USA – volume: 155 start-page: 2135 year: 1999 end-page: 2143 ident: bib32 article-title: The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion publication-title: Am. J. Pathol. – volume: 467 start-page: 707 year: 2010 end-page: 710 ident: bib6 article-title: The ploidy conveyor of mature hepatocytes as a source of genetic variation publication-title: Nature – volume: 519 start-page: 349 year: 2015 end-page: 352 ident: bib42 article-title: Polyploidy can drive rapid adaptation in yeast publication-title: Nature – volume: 16 start-page: 473 year: 2015 end-page: 485 ident: bib39 article-title: Short- and long-term effects of chromosome mis-segregation and aneuploidy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 109 start-page: 2632 year: 2018 end-page: 2640 ident: bib48 article-title: Tetraploidy in cancer and its possible link to aging publication-title: Cancer Sci. – volume: 33 start-page: 2001 year: 2015 end-page: 2008 ident: bib50 article-title: Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells publication-title: Oncol. Rep. – volume: 151 start-page: 1273 year: 1997 end-page: 1280 ident: bib31 article-title: Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes publication-title: Am. J. Pathol. – volume: 5 start-page: e1000385 year: 2009 ident: bib5 article-title: Ploidy reductions in murine fusion-derived hepatocytes publication-title: PLoS Genet. – volume: 142 start-page: 25 year: 2012 end-page: 28 ident: bib8 article-title: Frequent aneuploidy among normal human hepatocytes publication-title: Gastroenterology – volume: 121 start-page: 4850 year: 2011 end-page: 4860 ident: bib25 article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration publication-title: J. Clin. Invest. – volume: 162 start-page: 766 year: 2015 end-page: 779 ident: bib9 article-title: Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer publication-title: Cell – volume: 1 start-page: 350 year: 2013 end-page: 359 ident: bib3 article-title: Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells publication-title: Stem Cell Reports – volume: 184 start-page: 322 year: 2014 end-page: 331 ident: bib12 article-title: Polyploidization in liver tissue publication-title: Am. J. Pathol. – volume: 304 start-page: G449 year: 2013 end-page: G468 ident: bib23 article-title: Animal models of chronic liver diseases publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 175 start-page: 200 year: 2018 end-page: 211.e13 ident: bib20 article-title: ). Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture publication-title: Cell – volume: 35 start-page: 6 year: 2019 end-page: 14 ident: bib15 article-title: Solving the Polyploid Mystery in Health and Disease publication-title: Trends Genet. – volume: 209 start-page: 485 year: 2015 end-page: 491 ident: bib41 article-title: The expanding implications of polyploidy publication-title: J. Cell Biol. – volume: 18 start-page: 411 year: 2017 end-page: 424 ident: bib52 article-title: The evolutionary significance of polyploidy publication-title: Nat. Rev. Genet. – volume: 131 start-page: 437 year: 2007 end-page: 440 ident: bib10 article-title: Limiting the proliferation of polyploid cells publication-title: Cell – volume: 278 start-page: 19095 year: 2003 end-page: 19101 ident: bib17 article-title: Liver cell polyploidization: a pivotal role for binuclear hepatocytes publication-title: J. Biol. Chem. – volume: 3 start-page: 198 year: 2013 ident: bib28 article-title: Establishment of proliferative tetraploid cells from normal human fibroblasts publication-title: Front. Oncol. – volume: 5 start-page: 45 year: 2004 end-page: 54 ident: bib45 article-title: From polyploidy to aneuploidy, genome instability and cancer publication-title: Nat. Rev. Mol. Cell Biol. – volume: 2008 start-page: 453590 year: 2008 ident: bib46 article-title: CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells publication-title: J. Biomed. Biotechnol. – volume: 69 start-page: 1242 year: 2019 end-page: 1258 ident: bib55 article-title: The polyploid state restricts hepatocyte proliferation and liver regeneration in mice publication-title: Hepatology – volume: 117 start-page: 111 year: 2015 end-page: 125 ident: bib19 article-title: Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications publication-title: Acta Histochem. – volume: 12 start-page: 266 year: 1996 end-page: 273 ident: bib30 article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I publication-title: Nat. Genet. – volume: 1 start-page: 113 year: 2007 end-page: 126 ident: bib37 article-title: Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss publication-title: Cell Stem Cell – volume: 54 start-page: 297 year: 2005 end-page: 302 ident: bib51 article-title: Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis publication-title: Gut – volume: 15 start-page: 139 year: 2018 end-page: 150 ident: bib38 article-title: Determinants and clinical implications of chromosomal instability in cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 368 start-page: 405 year: 2017 end-page: 410 ident: bib49 article-title: Dynamic zonation of liver polyploidy publication-title: Cell Tissue Res. – volume: 20 start-page: 609 year: 2017 end-page: 620.e6 ident: bib24 article-title: ). Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine publication-title: Cell Stem Cell – volume: 143 start-page: 134 year: 2010 end-page: 144 ident: bib44 article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells publication-title: Cell – volume: 31 start-page: 307 year: 2015 end-page: 315 ident: bib29 article-title: When bigger is better: the role of polyploidy in organogenesis publication-title: Trends Genet. – volume: 3 start-page: e2493 year: 2008 ident: bib1 article-title: Hepatotoxin-induced changes in the adult murine liver promote MYC-induced tumorigenesis publication-title: PLoS ONE – volume: 22 start-page: 1166 year: 2012 end-page: 1175 ident: bib27 article-title: Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration publication-title: Curr. Biol. – volume: 125 start-page: 981 year: 2015 end-page: 992 ident: bib14 article-title: Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease publication-title: J. Clin. Invest. – volume: 23 start-page: 556 year: 2013 end-page: 566 ident: bib34 article-title: Physiological significance of polyploidization in mammalian cells publication-title: Trends Cell Biol. – volume: 290 start-page: 12984 year: 2015 end-page: 12998 ident: bib47 article-title: Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice publication-title: J. Biol. Chem. – volume: 460 start-page: 278 year: 2009 end-page: 282 ident: bib11 article-title: A mechanism linking extra centrosomes to chromosomal instability publication-title: Nature – volume: 7 start-page: 2298 year: 1993 end-page: 2307 ident: bib16 article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice publication-title: Genes Dev. – volume: 122 start-page: 3307 year: 2012 end-page: 3315 ident: bib7 article-title: Aneuploidy as a mechanism for stress-induced liver adaptation publication-title: J. Clin. Invest. – volume: 276 start-page: G1260 year: 1999 end-page: G1272 ident: bib43 article-title: Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events publication-title: Am. J. Physiol. – volume: 79 start-page: 103 year: 1999 end-page: 109 ident: bib36 article-title: Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease publication-title: Lab. Invest. – volume: 145 start-page: dev156034 year: 2018 ident: bib33 article-title: Polyploidy in tissue homeostasis and regeneration publication-title: Development – volume: 35 start-page: 1842 year: 1999 end-page: 1845 ident: bib40 article-title: Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGF beta-1 in liver publication-title: Eur. J. Cancer – volume: 556 start-page: 244 year: 2018 ident: 10.1016/j.stem.2019.11.014_bib22 article-title: Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury publication-title: Nature doi: 10.1038/s41586-018-0004-7 – volume: 162 start-page: 766 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib9 article-title: Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer publication-title: Cell doi: 10.1016/j.cell.2015.07.026 – volume: 145 start-page: dev156034 year: 2018 ident: 10.1016/j.stem.2019.11.014_bib33 article-title: Polyploidy in tissue homeostasis and regeneration publication-title: Development doi: 10.1242/dev.156034 – volume: 35 start-page: 6 year: 2019 ident: 10.1016/j.stem.2019.11.014_bib15 article-title: Solving the Polyploid Mystery in Health and Disease publication-title: Trends Genet. doi: 10.1016/j.tig.2018.10.005 – volume: 519 start-page: 349 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib42 article-title: Polyploidy can drive rapid adaptation in yeast publication-title: Nature doi: 10.1038/nature14187 – volume: 7 start-page: 2298 issue: 12A year: 1993 ident: 10.1016/j.stem.2019.11.014_bib16 article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice publication-title: Genes Dev. doi: 10.1101/gad.7.12a.2298 – volume: 368 start-page: 405 year: 2017 ident: 10.1016/j.stem.2019.11.014_bib49 article-title: Dynamic zonation of liver polyploidy publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2427-5 – volume: 36 start-page: 29 year: 2012 ident: 10.1016/j.stem.2019.11.014_bib13 article-title: Polyploidy and liver proliferation publication-title: Clin. Res. Hepatol. Gastroenterol. doi: 10.1016/j.clinre.2011.05.011 – volume: 121 start-page: 4850 year: 2011 ident: 10.1016/j.stem.2019.11.014_bib25 article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI59261 – volume: 151 start-page: 1273 year: 1997 ident: 10.1016/j.stem.2019.11.014_bib31 article-title: Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes publication-title: Am. J. Pathol. – volume: 122 start-page: 3307 year: 2012 ident: 10.1016/j.stem.2019.11.014_bib7 article-title: Aneuploidy as a mechanism for stress-induced liver adaptation publication-title: J. Clin. Invest. doi: 10.1172/JCI64026 – volume: 3 start-page: 198 year: 2013 ident: 10.1016/j.stem.2019.11.014_bib28 article-title: Establishment of proliferative tetraploid cells from normal human fibroblasts publication-title: Front. Oncol. doi: 10.3389/fonc.2013.00198 – volume: 166 start-page: 761 year: 1969 ident: 10.1016/j.stem.2019.11.014_bib26 article-title: Parasexual cycle in cultivated human somatic cells publication-title: Science doi: 10.1126/science.166.3906.761 – volume: 35 start-page: 1842 year: 1999 ident: 10.1016/j.stem.2019.11.014_bib40 article-title: Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGF beta-1 in liver publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(99)00224-5 – volume: 109 start-page: 2632 year: 2018 ident: 10.1016/j.stem.2019.11.014_bib48 article-title: Tetraploidy in cancer and its possible link to aging publication-title: Cancer Sci. doi: 10.1111/cas.13717 – volume: 24 start-page: 347 year: 2013 ident: 10.1016/j.stem.2019.11.014_bib4 article-title: Aneuploidy, polyploidy and ploidy reversal in the liver publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2013.01.003 – volume: 69 start-page: 1242 year: 2019 ident: 10.1016/j.stem.2019.11.014_bib55 article-title: The polyploid state restricts hepatocyte proliferation and liver regeneration in mice publication-title: Hepatology doi: 10.1002/hep.30286 – volume: 125 start-page: 981 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib14 article-title: Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease publication-title: J. Clin. Invest. doi: 10.1172/JCI73957 – volume: 155 start-page: 2135 year: 1999 ident: 10.1016/j.stem.2019.11.014_bib32 article-title: The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65531-9 – volume: 524 start-page: 180 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib54 article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver publication-title: Nature doi: 10.1038/nature14863 – volume: 1 start-page: 113 year: 2007 ident: 10.1016/j.stem.2019.11.014_bib37 article-title: Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.03.002 – volume: 22 start-page: 1166 year: 2012 ident: 10.1016/j.stem.2019.11.014_bib27 article-title: Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.05.016 – volume: 143 start-page: 134 year: 2010 ident: 10.1016/j.stem.2019.11.014_bib44 article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells publication-title: Cell doi: 10.1016/j.cell.2010.09.016 – volume: 114 start-page: E7321 year: 2017 ident: 10.1016/j.stem.2019.11.014_bib21 article-title: Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708981114 – volume: 290 start-page: 12984 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib47 article-title: Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.633891 – volume: 18 start-page: 411 year: 2017 ident: 10.1016/j.stem.2019.11.014_bib52 article-title: The evolutionary significance of polyploidy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.26 – volume: 209 start-page: 485 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib41 article-title: The expanding implications of polyploidy publication-title: J. Cell Biol. doi: 10.1083/jcb.201502016 – volume: 33 start-page: 2001 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib50 article-title: Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells publication-title: Oncol. Rep. doi: 10.3892/or.2015.3751 – volume: 54 start-page: 297 year: 2005 ident: 10.1016/j.stem.2019.11.014_bib51 article-title: Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis publication-title: Gut doi: 10.1136/gut.2004.043893 – volume: 467 start-page: 707 year: 2010 ident: 10.1016/j.stem.2019.11.014_bib6 article-title: The ploidy conveyor of mature hepatocytes as a source of genetic variation publication-title: Nature doi: 10.1038/nature09414 – volume: 184 start-page: 322 year: 2014 ident: 10.1016/j.stem.2019.11.014_bib12 article-title: Polyploidization in liver tissue publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.06.035 – volume: 12 start-page: 266 year: 1996 ident: 10.1016/j.stem.2019.11.014_bib30 article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I publication-title: Nat. Genet. doi: 10.1038/ng0396-266 – volume: 276 start-page: G1260 year: 1999 ident: 10.1016/j.stem.2019.11.014_bib43 article-title: Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events publication-title: Am. J. Physiol. – volume: 1 start-page: 350 year: 2013 ident: 10.1016/j.stem.2019.11.014_bib3 article-title: Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2013.08.003 – volume: 20 start-page: 609 year: 2017 ident: 10.1016/j.stem.2019.11.014_bib24 article-title: ). Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.02.012 – volume: 5 start-page: 45 year: 2004 ident: 10.1016/j.stem.2019.11.014_bib45 article-title: From polyploidy to aneuploidy, genome instability and cancer publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1276 – volume: 142 start-page: 25 year: 2012 ident: 10.1016/j.stem.2019.11.014_bib8 article-title: Frequent aneuploidy among normal human hepatocytes publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.10.029 – volume: 20 start-page: 648 year: 2000 ident: 10.1016/j.stem.2019.11.014_bib56 article-title: Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.2.648-655.2000 – volume: 278 start-page: 19095 year: 2003 ident: 10.1016/j.stem.2019.11.014_bib17 article-title: Liver cell polyploidization: a pivotal role for binuclear hepatocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300982200 – volume: 79 start-page: 103 year: 1999 ident: 10.1016/j.stem.2019.11.014_bib36 article-title: Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease publication-title: Lab. Invest. – volume: 16 start-page: 473 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib39 article-title: Short- and long-term effects of chromosome mis-segregation and aneuploidy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4025 – volume: 304 start-page: G449 year: 2013 ident: 10.1016/j.stem.2019.11.014_bib23 article-title: Animal models of chronic liver diseases publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00199.2012 – volume: 42 start-page: 71 year: 1973 ident: 10.1016/j.stem.2019.11.014_bib35 article-title: Studies of multipolar mitoses in euploid tissue cultures. I. Somatic reduction to exactly haploid and triploid chromosome sets publication-title: Chromosoma doi: 10.1007/BF00326331 – volume: 3 start-page: e2493 year: 2008 ident: 10.1016/j.stem.2019.11.014_bib1 article-title: Hepatotoxin-induced changes in the adult murine liver promote MYC-induced tumorigenesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0002493 – volume: 31 start-page: 307 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib29 article-title: When bigger is better: the role of polyploidy in organogenesis publication-title: Trends Genet. doi: 10.1016/j.tig.2015.03.011 – volume: 23 start-page: 556 year: 2013 ident: 10.1016/j.stem.2019.11.014_bib34 article-title: Physiological significance of polyploidization in mammalian cells publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.06.002 – volume: 15 start-page: 139 year: 2018 ident: 10.1016/j.stem.2019.11.014_bib38 article-title: Determinants and clinical implications of chromosomal instability in cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.198 – volume: 29 start-page: 1272 year: 2010 ident: 10.1016/j.stem.2019.11.014_bib53 article-title: Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos publication-title: EMBO J. doi: 10.1038/emboj.2010.11 – volume: 175 start-page: 200 year: 2018 ident: 10.1016/j.stem.2019.11.014_bib20 article-title: ). Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture publication-title: Cell doi: 10.1016/j.cell.2018.07.042 – volume: 460 start-page: 278 year: 2009 ident: 10.1016/j.stem.2019.11.014_bib11 article-title: A mechanism linking extra centrosomes to chromosomal instability publication-title: Nature doi: 10.1038/nature08136 – volume: 131 start-page: 437 year: 2007 ident: 10.1016/j.stem.2019.11.014_bib10 article-title: Limiting the proliferation of polyploid cells publication-title: Cell doi: 10.1016/j.cell.2007.10.024 – volume: 91 start-page: 1228 year: 2016 ident: 10.1016/j.stem.2019.11.014_bib18 article-title: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex publication-title: Neuron doi: 10.1016/j.neuron.2016.08.021 – volume: 117 start-page: 111 year: 2015 ident: 10.1016/j.stem.2019.11.014_bib19 article-title: Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications publication-title: Acta Histochem. doi: 10.1016/j.acthis.2014.11.009 – volume: 7 start-page: 1122 year: 2011 ident: 10.1016/j.stem.2019.11.014_bib2 article-title: A clinical overview of centrosome amplification in human cancers publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.7.1122 – volume: 2008 start-page: 453590 year: 2008 ident: 10.1016/j.stem.2019.11.014_bib46 article-title: CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells publication-title: J. Biomed. Biotechnol. – volume: 5 start-page: e1000385 year: 2009 ident: 10.1016/j.stem.2019.11.014_bib5 article-title: Ploidy reductions in murine fusion-derived hepatocytes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000385 – reference: 31951586 - Cell Stem Cell. 2020 Jan 2;26(1):2-3 – reference: 32386955 - J Hepatol. 2020 Jul;73(1):6-8 |
SSID | ssj0057107 |
Score | 2.6175218 |
Snippet | The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | Cell Proliferation hepatocyte Hepatocytes Humans lineage tracing Liver Liver Regeneration ploidy conveyor ploidy reduction Polyploidy |
Title | In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration |
URI | https://dx.doi.org/10.1016/j.stem.2019.11.014 https://www.ncbi.nlm.nih.gov/pubmed/31866222 https://www.proquest.com/docview/2330059995 https://pubmed.ncbi.nlm.nih.gov/PMC7204404 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA8iCL6I_53_iOCb1HVJui6POjamoAx1srcQ01Srox06h_s2fhY_mXdNO5yiD742lxJ6l_tdmrvfEXIYRmAVMmbIbxd5wsbC05jkaEJfRHVADJtr-uKy3umJ837QnyPNshYG0yoL3-98eu6tiyfV4mtWh0lSvYbQQwQS8E7i7Z5EP8xFIy_i65-W3jgABA3dzbLwULoonHE5XsiVjOld8hiZPGviN3D6GXx-z6H8AkrtZbJURJP0xC14hczZdJUsuP6SkzXydJZ-vN8m44zCkdOC56AATQbAimYx7WaDyXCQJRHtACSNMjOBqJNe2TGEji-09VakttMu9vWJrbMU6soa4X2wBUD4PmetxpF10mu3bpodr-iu4BlsYuBpZrS-Cxs2ZMxikYiMLTNGNjSStHEeSy0ZMwIZzGwgGzCE1PqRNL42ITN8g8ynWWq3CI2s5lzwqF6XUsTW14KHfsTjGsbvzMoKqZWfVZmCehw7YAxUmWP2qFAVClUBZxIFqqiQo-mcoSPe-FM6KLWlZsxHATL8Oe-gVK2CfYWXJTq12euLYpzn3DUyqJBNp-rpOjiyBEJgVSHhjBFMBZCze3YkTR5y7m7sCSR8sf3P9e6QRYYHfvwHxHbJ_Oj51e5BVDS628_N_hMZfgzt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0ECYrmUnRN3JUBeitUyyRlmsc0sGE3C4zWCXwjGIpK1RqS0ThB_Df5ln5ZZ0TJqFskh15FUiA0w3mP4vANwHuVolfojJO-XRpJn8nIUpKjU7FMu4gYvrL08Ul3eCo_T5PpBhw0d2EorbKO_SGmV9G6ftKuv2Z7nuftr0g9ZKIR7zSd7mmMw1vIBhTVbxhNPzXhOEEIVeFoWUbUvb45E5K8SCyZ8rv0R5Ly7Mi70Olf9vl3EuUfqDR4DI9qOsn2w4yfwIYvnsKDUGBy-Qx-jIpft2f5dclwz-kxdDDEJodoxcqMjcvZcj4r85QNEZMWpVsi7WRf_DVyx0vWv6lz29mYCvtkPrgKC_ca8X24BrDzRSVbTS3P4XTQnxwMo7q8QuSoikFkubP2XPW84tzTLRGdee6c7llSaRMi01Zz7iRJmPlE97CJtPVT7WLrFHfiBWwWZeF3gaXeCiFF2u1qLTMfWylUnIqsQwSee92CTvNZjau1x6kExsw0SWbfDZnCkClwU2LQFC34sBozD8ob9_ZOGmuZNf8xCA33jttrTGtwYdFpiS18eXVpuBCVeI1OWrATTL2ahyCZQGRWLVBrTrDqQKLd6y1F_q0S76aiQDKWL_9zvu_g4XByfGSORieHr2Cb0-6ffgjx17C5-Hnl3yBFWpy_rZbAb5pCEAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0Vivo+Lineage+Tracing+of+Polyploid+Hepatocytes+Reveals+Extensive+Proliferation+during+Liver+Regeneration&rft.jtitle=Cell+stem+cell&rft.au=Matsumoto%2C+Tomonori&rft.au=Wakefield%2C+Leslie&rft.au=Tarlow%2C+Branden+David&rft.au=Grompe%2C+Markus&rft.date=2020-01-02&rft.issn=1934-5909&rft.volume=26&rft.issue=1&rft.spage=34&rft.epage=47.e3&rft_id=info:doi/10.1016%2Fj.stem.2019.11.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stem_2019_11_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |