In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration

The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genet...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 26; no. 1; pp. 34 - 47.e3
Main Authors Matsumoto, Tomonori, Wakefield, Leslie, Tarlow, Branden David, Grompe, Markus
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. [Display omitted] •A genetic system to trace polyploid cells in any organ in vivo was developed•Polyploid hepatocytes regenerate injured livers and frequently reduce their ploidy•Ploidy-reduced progeny proliferates and re-polyploidizes in subsequent mitoses•Chromosome segregation during ploidy reduction is not random but faithful Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes proliferate continuously and dynamically decrease and increase their ploidy while remaining proliferative.
AbstractList The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. [Display omitted] •A genetic system to trace polyploid cells in any organ in vivo was developed•Polyploid hepatocytes regenerate injured livers and frequently reduce their ploidy•Ploidy-reduced progeny proliferates and re-polyploidizes in subsequent mitoses•Chromosome segregation during ploidy reduction is not random but faithful Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes proliferate continuously and dynamically decrease and increase their ploidy while remaining proliferative.
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence for the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses. Polyploid cells are common in several mammalian tissues. Using a genetic system to label and trace polyploid cells in vivo, Matsumoto et al. showed that polyploid hepatocytes are major contributors to regeneration of chronically injured livers. Polyploid hepatocytes continuously proliferate, and dynamically decrease and increase their ploidy while remaining proliferative.
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
Author Wakefield, Leslie
Tarlow, Branden David
Grompe, Markus
Matsumoto, Tomonori
AuthorAffiliation 3. Gastroenterology and Hepatology, Stanford University, Stanford, California, 94305, USA
4. Lead Contact
1. Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 97239, USA
2. JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
AuthorAffiliation_xml – name: 4. Lead Contact
– name: 2. JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
– name: 3. Gastroenterology and Hepatology, Stanford University, Stanford, California, 94305, USA
– name: 1. Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 97239, USA
Author_xml – sequence: 1
  givenname: Tomonori
  orcidid: 0000-0003-4483-2178
  surname: Matsumoto
  fullname: Matsumoto, Tomonori
  organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
– sequence: 2
  givenname: Leslie
  surname: Wakefield
  fullname: Wakefield, Leslie
  organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
– sequence: 3
  givenname: Branden David
  surname: Tarlow
  fullname: Tarlow, Branden David
  organization: Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA
– sequence: 4
  givenname: Markus
  orcidid: 0000-0002-6616-4345
  surname: Grompe
  fullname: Grompe, Markus
  email: grompem@ohsu.edu
  organization: Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31866222$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uGyEUhVGVqvlpXiCLimU3MwEGzCBFlaoobSJZSlSl2SLC3HFwxuACHtVv02fpkxXHTtR2kRVI53z3wjmHaM8HDwidUFJTQien8zplWNSMUFVTWhPK36AD2kpRKSnlXrmrhldCEbWPDlOaEyIkJfId2m9oO5kwxg7Q45X__evOjQFPnQczA3wbjXV-hkOPb8KwXg7BdfgSliYHu86Q8DcYwQwJX_zM4JMbAd_EMLgeoskueNyt4oafFiUW8wz8TnmP3vYFhOPdeYS-f7m4Pb-sptdfr84_TysrGM2VYdaYe9mCZAwYZ1z1wKxVrRGCtk3TK6MYs5xzQUGotkjlO22nLDFWMtscoU_bucvV_QI6Cz5HM-hldAsT1zoYp_9VvHvQszBqyQjnhJcBH3cDYvixgpT1wiULw2A8hFXSrGlKlkopUawf_t71suQ54WJgW4ONIaUI_YuFEr2pUc_1pka9qVFTqkuNBWr_g6zLTxmW97rhdfRsi0JJeHQQdbIOvIXORbBZd8G9hv8Bs1a78A
CitedBy_id crossref_primary_10_1016_j_jhep_2020_03_038
crossref_primary_10_1165_rcmb_2021_0356OC
crossref_primary_10_3390_genes11101163
crossref_primary_10_18632_aging_102957
crossref_primary_10_1038_s41467_022_33110_5
crossref_primary_10_1038_s41467_021_24543_5
crossref_primary_10_1101_gad_349727_122
crossref_primary_10_1146_annurev_genet_111523_102124
crossref_primary_10_1038_s41467_022_35167_8
crossref_primary_10_1136_gutjnl_2021_324321
crossref_primary_10_1016_j_kint_2023_10_036
crossref_primary_10_1111_nyas_14719
crossref_primary_10_1016_j_jcmgh_2020_09_016
crossref_primary_10_1042_BST20200219
crossref_primary_10_1038_s41467_020_20572_8
crossref_primary_10_1007_s11427_021_2007_8
crossref_primary_10_1016_j_jhep_2024_03_043
crossref_primary_10_1021_acsami_2c02523
crossref_primary_10_3389_fmed_2020_00479
crossref_primary_10_1142_S1793545823300069
crossref_primary_10_1002_advs_202308711
crossref_primary_10_1016_j_jhepr_2021_100315
crossref_primary_10_1038_s41416_023_02408_6
crossref_primary_10_1002_hep_32408
crossref_primary_10_1186_s13619_022_00152_5
crossref_primary_10_1186_s13619_020_00063_3
crossref_primary_10_2147_OTT_S340435
crossref_primary_10_7554_eLife_89912_3
crossref_primary_10_1101_cshperspect_a040832
crossref_primary_10_3389_fonc_2024_1367364
crossref_primary_10_3390_ijms23169409
crossref_primary_10_1017_S0954422423000124
crossref_primary_10_1111_cpr_13446
crossref_primary_10_1016_j_semcdb_2023_05_009
crossref_primary_10_1038_s41576_020_0239_7
crossref_primary_10_1055_s_0040_1719175
crossref_primary_10_1016_j_stem_2023_09_002
crossref_primary_10_29169_1927_5951_2021_11_01
crossref_primary_10_1146_annurev_physiol_032822_094134
crossref_primary_10_1186_s13287_020_01941_y
crossref_primary_10_3389_fcell_2021_698661
crossref_primary_10_3390_ijms222011093
crossref_primary_10_1126_science_abc4346
crossref_primary_10_1038_s41536_024_00370_2
crossref_primary_10_1016_j_stem_2019_12_002
crossref_primary_10_1016_j_stem_2021_02_010
crossref_primary_10_1002_ar_24560
crossref_primary_10_1016_j_jhep_2021_06_030
crossref_primary_10_1146_annurev_physiol_021119_034520
crossref_primary_10_1002_bies_202000105
crossref_primary_10_3389_fcell_2021_809668
crossref_primary_10_1053_j_gastro_2024_02_001
crossref_primary_10_1016_j_tig_2022_05_007
crossref_primary_10_1038_s44318_024_00099_0
crossref_primary_10_1002_hep4_1925
crossref_primary_10_1111_febs_16629
crossref_primary_10_1016_j_trecan_2020_08_005
crossref_primary_10_1038_s41467_021_21897_8
crossref_primary_10_1055_a_2211_2144
crossref_primary_10_23868_202104005
crossref_primary_10_1016_j_jhepr_2023_100779
crossref_primary_10_1016_j_cels_2022_05_001
crossref_primary_10_1083_jcb_202403020
crossref_primary_10_1186_s12964_024_01526_9
crossref_primary_10_1016_j_ceb_2023_102292
crossref_primary_10_2174_1574888X17666220614160957
crossref_primary_10_1186_s13619_021_00101_8
crossref_primary_10_1016_j_bbcan_2020_188408
crossref_primary_10_1038_s41586_024_07376_2
crossref_primary_10_1007_s11684_023_1002_1
crossref_primary_10_1242_dev_202392
crossref_primary_10_7554_eLife_46206
crossref_primary_10_1007_s13770_023_00576_3
crossref_primary_10_1242_dev_201581
crossref_primary_10_1038_s41467_021_20916_y
crossref_primary_10_3390_v13020210
crossref_primary_10_1038_s41575_020_0284_x
crossref_primary_10_1016_j_isci_2021_102142
crossref_primary_10_1002_2211_5463_13803
crossref_primary_10_1242_dev_193193
crossref_primary_10_1038_s41467_024_45439_0
crossref_primary_10_1038_s41575_020_0342_4
crossref_primary_10_1016_j_trecan_2022_10_005
crossref_primary_10_3390_cancers13174496
crossref_primary_10_1093_function_zqac059
crossref_primary_10_3390_ijms21051811
crossref_primary_10_1016_j_semcdb_2021_09_011
crossref_primary_10_1038_s41421_022_00474_3
crossref_primary_10_1111_jgh_15587
crossref_primary_10_1186_s12967_023_03897_y
crossref_primary_10_3389_fcell_2021_643055
crossref_primary_10_3390_cancers13205151
crossref_primary_10_1038_s41598_025_90004_4
crossref_primary_10_3390_ijms24076546
crossref_primary_10_1101_gr_267013_120
crossref_primary_10_1083_jcb_202212088
crossref_primary_10_1371_journal_pbio_3001597
crossref_primary_10_1093_carcin_bgac028
crossref_primary_10_1038_s12276_021_00579_x
crossref_primary_10_20935_AcadMed6233
crossref_primary_10_1016_j_gendis_2023_01_003
crossref_primary_10_1016_j_tcb_2020_01_007
crossref_primary_10_1016_j_bbcan_2023_188870
crossref_primary_10_1002_hep_32299
crossref_primary_10_1016_j_gde_2022_101921
crossref_primary_10_1016_j_jcmgh_2020_12_011
crossref_primary_10_3389_fcell_2022_854998
crossref_primary_10_1371_journal_pbio_3002315
crossref_primary_10_1007_s10577_021_09664_3
crossref_primary_10_3389_fcell_2023_1210983
crossref_primary_10_7554_eLife_89912
crossref_primary_10_1016_j_antiviral_2023_105642
crossref_primary_10_1016_j_jhepr_2021_100416
crossref_primary_10_1038_s41392_023_01383_x
crossref_primary_10_14336_AD_2020_1227
crossref_primary_10_1002_advs_202306318
crossref_primary_10_1093_lifemedi_lnac040
crossref_primary_10_3390_cells12232718
crossref_primary_10_1016_j_jceh_2022_09_006
crossref_primary_10_1242_dev_199401
crossref_primary_10_1016_j_jhepr_2020_100198
crossref_primary_10_1186_s13287_023_03400_w
crossref_primary_10_1002_hep_31772
crossref_primary_10_1038_s41420_024_02206_w
Cites_doi 10.1038/s41586-018-0004-7
10.1016/j.cell.2015.07.026
10.1242/dev.156034
10.1016/j.tig.2018.10.005
10.1038/nature14187
10.1101/gad.7.12a.2298
10.1007/s00441-016-2427-5
10.1016/j.clinre.2011.05.011
10.1172/JCI59261
10.1172/JCI64026
10.3389/fonc.2013.00198
10.1126/science.166.3906.761
10.1016/S0959-8049(99)00224-5
10.1111/cas.13717
10.1016/j.semcdb.2013.01.003
10.1002/hep.30286
10.1172/JCI73957
10.1016/S0002-9440(10)65531-9
10.1038/nature14863
10.1016/j.stem.2007.03.002
10.1016/j.cub.2012.05.016
10.1016/j.cell.2010.09.016
10.1073/pnas.1708981114
10.1074/jbc.M114.633891
10.1038/nrg.2017.26
10.1083/jcb.201502016
10.3892/or.2015.3751
10.1136/gut.2004.043893
10.1038/nature09414
10.1016/j.ajpath.2013.06.035
10.1038/ng0396-266
10.1016/j.stemcr.2013.08.003
10.1016/j.stem.2017.02.012
10.1038/nrm1276
10.1053/j.gastro.2011.10.029
10.1128/MCB.20.2.648-655.2000
10.1074/jbc.M300982200
10.1038/nrm4025
10.1152/ajpgi.00199.2012
10.1007/BF00326331
10.1371/journal.pone.0002493
10.1016/j.tig.2015.03.011
10.1016/j.tcb.2013.06.002
10.1038/nrclinonc.2017.198
10.1038/emboj.2010.11
10.1016/j.cell.2018.07.042
10.1038/nature08136
10.1016/j.cell.2007.10.024
10.1016/j.neuron.2016.08.021
10.1016/j.acthis.2014.11.009
10.7150/ijbs.7.1122
10.1371/journal.pgen.1000385
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.stem.2019.11.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 47.e3
ExternalDocumentID PMC7204404
31866222
10_1016_j_stem_2019_11_014
S1934590919304692
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA190144
– fundername: NIDDK NIH HHS
  grantid: R01 DK051592
– fundername: NIDDK NIH HHS
  grantid: F30 DK095514
– fundername: NIDDK NIH HHS
  grantid: R01 DK083355
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAKRW
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
O-L
O9-
OK1
P2P
ROL
RPZ
SES
SSZ
TR2
ZBA
53G
5VS
AAIKJ
AALRI
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
0SF
AAFTH
ABVKL
CGR
CUY
CVF
ECM
EIF
NPM
RCE
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-a2caab78e722e24249fe2cc98a551833f9a922c44451e598cc91868d9c0ac72c3
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Thu Aug 21 18:45:33 EDT 2025
Fri Jul 11 07:02:39 EDT 2025
Wed Feb 19 02:28:40 EST 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 01:08:32 EDT 2025
Sun Apr 06 06:54:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ploidy conveyor
ploidy reduction
hepatocyte
lineage tracing
polyploidy
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-a2caab78e722e24249fe2cc98a551833f9a922c44451e598cc91868d9c0ac72c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
T.M. and M.G. conceived the project, designed the experiments and wrote the manuscript. T.M. performed and analyzed most of the experiments. L.W. assisted with experiments and provided technical help. B.D.T. provided comments and assisted with manuscript preparation.
Author Contributions
ORCID 0000-0003-4483-2178
0000-0002-6616-4345
OpenAccessLink http://www.cell.com/article/S1934590919304692/pdf
PMID 31866222
PQID 2330059995
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7204404
proquest_miscellaneous_2330059995
pubmed_primary_31866222
crossref_primary_10_1016_j_stem_2019_11_014
crossref_citationtrail_10_1016_j_stem_2019_11_014
elsevier_sciencedirect_doi_10_1016_j_stem_2019_11_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pera, Rainer (bib35) 1973; 42
Orr-Weaver (bib29) 2015; 31
Preisegger, Factor, Fuchsbichler, Stumptner, Denk, Thorgeirsson (bib36) 1999; 79
Vitale, Senovilla, Jemaà, Michaud, Galluzzi, Kepp, Nanty, Criollo, Rello-Varona, Manic (bib53) 2010; 29
Li, Germain, Gerner (bib21) 2017; 114
Toyoda, Bregerie, Vallet, Nalpas, Pivert, Brechot, Desdouets (bib51) 2005; 54
Miyaoka, Ebato, Kato, Arakawa, Shimizu, Miyajima (bib27) 2012; 22
Selmecki, Maruvka, Richmond, Guillet, Shoresh, Sorenson, De, Kishony, Michor, Dowell, Pellman (bib42) 2015; 519
Malato, Naqvi, Schürmann, Ng, Wang, Zape, Kay, Grimm, Willenbring (bib25) 2011; 121
Wang, Zhao, Fish, Logan, Nusse (bib54) 2015; 524
Sigal, Rajvanshi, Gorla, Sokhi, Saxena, Gebhard, Reid, Gupta (bib43) 1999; 276
Gjelsvik, Besen-McNally, Losick (bib15) 2019; 35
Martin, Sprague (bib26) 1969; 166
Wilkinson, Delgado, Alencastro, Leek, Roy, Weirich, Stahl, Otero, Chen, Brown, Duncan (bib55) 2019; 69
Taghizadeh, Sherley (bib46) 2008; 2008
Gentric, Maillet, Paradis, Couton, L’Hermitte, Panasyuk, Fromenty, Celton-Morizur, Desdouets (bib14) 2015; 125
D’Hulst, Parvanova, Tomoiaga, Sapar, Feinstein (bib3) 2013; 1
Chan (bib2) 2011; 7
Grompe, al-Dhalimy, Finegold, Ou, Burlingame, Kennaway, Soriano (bib16) 1993; 7
Overturf, Al-Dhalimy, Tanguay, Brantly, Ou, Finegold, Grompe (bib30) 1996; 12
Tanaka, Goto, Inoko, Makihara, Enomoto, Horimoto, Matsuyama, Kurita, Izawa, Inagaki (bib47) 2015; 290
Duncan, Hanlon Newell, Smith, Wilson, Olson, Thayer, Strom, Grompe (bib8) 2012; 142
Lucchetta, Ohlstein (bib24) 2017; 20
Pandit, Westendorp, de Bruin (bib34) 2013; 23
Ruzankina, Pinzon-Guzman, Asare, Ong, Pontano, Cotsarelis, Zediak, Velez, Bhandoola, Brown (bib37) 2007; 1
Duncan, Hanlon Newell, Bi, Finegold, Olson, Beaudet, Grompe (bib7) 2012; 122
He, Tucciarone, Lee, Nigro, Kim, Levine, Kelly, Krugikov, Wu, Chen (bib18) 2016; 91
Schoenfelder, Fox (bib41) 2015; 209
Van de Peer, Mizrachi, Marchal (bib52) 2017; 18
Duncan, Taylor, Hickey, Hanlon Newell, Lenzi, Olson, Finegold, Grompe (bib6) 2010; 467
Ganem, Godinho, Pellman (bib11) 2009; 460
Telentschak, Soliwoda, Nohroudi, Addicks, Klinz (bib50) 2015; 33
Lin, Nascimento, Gajera, Chen, Neuhöfer, Garbuzov, Wang, Artandi (bib22) 2018; 556
Gentric, Celton-Morizur, Desdouets (bib13) 2012; 36
Gentric, Desdouets (bib12) 2014; 184
Liu, Meyer, Xu, Weng, Hellerbrand, ten Dijke, Dooley (bib23) 2013; 304
Schnur, Nagy, Sebestyén, Schaff, Thorgeirsson (bib40) 1999; 35
Overturf, al-Dhalimy, Ou, Finegold, Grompe (bib31) 1997; 151
Duncan (bib4) 2013; 24
Font-Burgada, Shalapour, Ramaswamy, Hsueh, Rossell, Umemura, Taniguchi, Nakagawa, Valasek, Ye (bib9) 2015; 162
Øvrebø, Edgar (bib33) 2018; 145
Beer, Komatsubara, Bellovin, Kurobe, Sylvester, Felsher (bib1) 2008; 3
Snippert, van der Flier, Sato, van Es, van den Born, Kroon-Veenboer, Barker, Klein, van Rheenen, Simons, Clevers (bib44) 2010; 143
Storchova, Pellman (bib45) 2004; 5
Duncan, Hickey, Paulk, Culberson, Olson, Finegold, Grompe (bib5) 2009; 5
Kalatova, Jesenska, Hlinka, Dudas (bib19) 2015; 117
Knouse, Lopez, Bachofner, Amon (bib20) 2018; 175
Ganem, Pellman (bib10) 2007; 131
Guidotti, Brégerie, Robert, Debey, Brechot, Desdouets (bib17) 2003; 278
Tanami, Ben-Moshe, Elkayam, Mayo, Bahar Halpern, Itzkovitz (bib49) 2017; 368
Santaguida, Amon (bib39) 2015; 16
Ohshima, Seyama (bib28) 2013; 3
Sansregret, Vanhaesebroeck, Swanton (bib38) 2018; 15
Zheng, Sage, Sheppeard, Jurecic, Bradley (bib56) 2000; 20
Overturf, Al-Dhalimy, Finegold, Grompe (bib32) 1999; 155
Tanaka, Goto, Nishimura, Kasahara, Mizoguchi, Inagaki (bib48) 2018; 109
Knouse (10.1016/j.stem.2019.11.014_bib20) 2018; 175
Tanaka (10.1016/j.stem.2019.11.014_bib47) 2015; 290
Lucchetta (10.1016/j.stem.2019.11.014_bib24) 2017; 20
Schoenfelder (10.1016/j.stem.2019.11.014_bib41) 2015; 209
Selmecki (10.1016/j.stem.2019.11.014_bib42) 2015; 519
Overturf (10.1016/j.stem.2019.11.014_bib30) 1996; 12
Orr-Weaver (10.1016/j.stem.2019.11.014_bib29) 2015; 31
Miyaoka (10.1016/j.stem.2019.11.014_bib27) 2012; 22
Font-Burgada (10.1016/j.stem.2019.11.014_bib9) 2015; 162
Ganem (10.1016/j.stem.2019.11.014_bib11) 2009; 460
Ruzankina (10.1016/j.stem.2019.11.014_bib37) 2007; 1
Lin (10.1016/j.stem.2019.11.014_bib22) 2018; 556
Sansregret (10.1016/j.stem.2019.11.014_bib38) 2018; 15
Pandit (10.1016/j.stem.2019.11.014_bib34) 2013; 23
Duncan (10.1016/j.stem.2019.11.014_bib4) 2013; 24
Liu (10.1016/j.stem.2019.11.014_bib23) 2013; 304
Pera (10.1016/j.stem.2019.11.014_bib35) 1973; 42
Zheng (10.1016/j.stem.2019.11.014_bib56) 2000; 20
Øvrebø (10.1016/j.stem.2019.11.014_bib33) 2018; 145
Storchova (10.1016/j.stem.2019.11.014_bib45) 2004; 5
Toyoda (10.1016/j.stem.2019.11.014_bib51) 2005; 54
Ohshima (10.1016/j.stem.2019.11.014_bib28) 2013; 3
Duncan (10.1016/j.stem.2019.11.014_bib5) 2009; 5
Snippert (10.1016/j.stem.2019.11.014_bib44) 2010; 143
Gentric (10.1016/j.stem.2019.11.014_bib12) 2014; 184
Wilkinson (10.1016/j.stem.2019.11.014_bib55) 2019; 69
Tanaka (10.1016/j.stem.2019.11.014_bib48) 2018; 109
Van de Peer (10.1016/j.stem.2019.11.014_bib52) 2017; 18
Overturf (10.1016/j.stem.2019.11.014_bib31) 1997; 151
Preisegger (10.1016/j.stem.2019.11.014_bib36) 1999; 79
Taghizadeh (10.1016/j.stem.2019.11.014_bib46) 2008; 2008
Li (10.1016/j.stem.2019.11.014_bib21) 2017; 114
Duncan (10.1016/j.stem.2019.11.014_bib8) 2012; 142
Martin (10.1016/j.stem.2019.11.014_bib26) 1969; 166
Grompe (10.1016/j.stem.2019.11.014_bib16) 1993; 7
Wang (10.1016/j.stem.2019.11.014_bib54) 2015; 524
D’Hulst (10.1016/j.stem.2019.11.014_bib3) 2013; 1
Gjelsvik (10.1016/j.stem.2019.11.014_bib15) 2019; 35
He (10.1016/j.stem.2019.11.014_bib18) 2016; 91
Kalatova (10.1016/j.stem.2019.11.014_bib19) 2015; 117
Sigal (10.1016/j.stem.2019.11.014_bib43) 1999; 276
Duncan (10.1016/j.stem.2019.11.014_bib7) 2012; 122
Santaguida (10.1016/j.stem.2019.11.014_bib39) 2015; 16
Malato (10.1016/j.stem.2019.11.014_bib25) 2011; 121
Vitale (10.1016/j.stem.2019.11.014_bib53) 2010; 29
Beer (10.1016/j.stem.2019.11.014_bib1) 2008; 3
Gentric (10.1016/j.stem.2019.11.014_bib14) 2015; 125
Tanami (10.1016/j.stem.2019.11.014_bib49) 2017; 368
Ganem (10.1016/j.stem.2019.11.014_bib10) 2007; 131
Telentschak (10.1016/j.stem.2019.11.014_bib50) 2015; 33
Gentric (10.1016/j.stem.2019.11.014_bib13) 2012; 36
Duncan (10.1016/j.stem.2019.11.014_bib6) 2010; 467
Schnur (10.1016/j.stem.2019.11.014_bib40) 1999; 35
Guidotti (10.1016/j.stem.2019.11.014_bib17) 2003; 278
Overturf (10.1016/j.stem.2019.11.014_bib32) 1999; 155
Chan (10.1016/j.stem.2019.11.014_bib2) 2011; 7
32386955 - J Hepatol. 2020 Jul;73(1):6-8
31951586 - Cell Stem Cell. 2020 Jan 2;26(1):2-3
References_xml – volume: 91
  start-page: 1228
  year: 2016
  end-page: 1243
  ident: bib18
  article-title: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex
  publication-title: Neuron
– volume: 24
  start-page: 347
  year: 2013
  end-page: 356
  ident: bib4
  article-title: Aneuploidy, polyploidy and ploidy reversal in the liver
  publication-title: Semin. Cell Dev. Biol.
– volume: 556
  start-page: 244
  year: 2018
  end-page: 248
  ident: bib22
  article-title: Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury
  publication-title: Nature
– volume: 166
  start-page: 761
  year: 1969
  end-page: 763
  ident: bib26
  article-title: Parasexual cycle in cultivated human somatic cells
  publication-title: Science
– volume: 36
  start-page: 29
  year: 2012
  end-page: 34
  ident: bib13
  article-title: Polyploidy and liver proliferation
  publication-title: Clin. Res. Hepatol. Gastroenterol.
– volume: 29
  start-page: 1272
  year: 2010
  end-page: 1284
  ident: bib53
  article-title: Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos
  publication-title: EMBO J.
– volume: 20
  start-page: 648
  year: 2000
  end-page: 655
  ident: bib56
  article-title: Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications
  publication-title: Mol. Cell. Biol.
– volume: 7
  start-page: 1122
  year: 2011
  end-page: 1144
  ident: bib2
  article-title: A clinical overview of centrosome amplification in human cancers
  publication-title: Int. J. Biol. Sci.
– volume: 524
  start-page: 180
  year: 2015
  end-page: 185
  ident: bib54
  article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver
  publication-title: Nature
– volume: 42
  start-page: 71
  year: 1973
  end-page: 86
  ident: bib35
  article-title: Studies of multipolar mitoses in euploid tissue cultures. I. Somatic reduction to exactly haploid and triploid chromosome sets
  publication-title: Chromosoma
– volume: 114
  start-page: E7321
  year: 2017
  end-page: E7330
  ident: bib21
  article-title: Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (C
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 155
  start-page: 2135
  year: 1999
  end-page: 2143
  ident: bib32
  article-title: The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion
  publication-title: Am. J. Pathol.
– volume: 467
  start-page: 707
  year: 2010
  end-page: 710
  ident: bib6
  article-title: The ploidy conveyor of mature hepatocytes as a source of genetic variation
  publication-title: Nature
– volume: 519
  start-page: 349
  year: 2015
  end-page: 352
  ident: bib42
  article-title: Polyploidy can drive rapid adaptation in yeast
  publication-title: Nature
– volume: 16
  start-page: 473
  year: 2015
  end-page: 485
  ident: bib39
  article-title: Short- and long-term effects of chromosome mis-segregation and aneuploidy
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 109
  start-page: 2632
  year: 2018
  end-page: 2640
  ident: bib48
  article-title: Tetraploidy in cancer and its possible link to aging
  publication-title: Cancer Sci.
– volume: 33
  start-page: 2001
  year: 2015
  end-page: 2008
  ident: bib50
  article-title: Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells
  publication-title: Oncol. Rep.
– volume: 151
  start-page: 1273
  year: 1997
  end-page: 1280
  ident: bib31
  article-title: Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes
  publication-title: Am. J. Pathol.
– volume: 5
  start-page: e1000385
  year: 2009
  ident: bib5
  article-title: Ploidy reductions in murine fusion-derived hepatocytes
  publication-title: PLoS Genet.
– volume: 142
  start-page: 25
  year: 2012
  end-page: 28
  ident: bib8
  article-title: Frequent aneuploidy among normal human hepatocytes
  publication-title: Gastroenterology
– volume: 121
  start-page: 4850
  year: 2011
  end-page: 4860
  ident: bib25
  article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration
  publication-title: J. Clin. Invest.
– volume: 162
  start-page: 766
  year: 2015
  end-page: 779
  ident: bib9
  article-title: Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer
  publication-title: Cell
– volume: 1
  start-page: 350
  year: 2013
  end-page: 359
  ident: bib3
  article-title: Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells
  publication-title: Stem Cell Reports
– volume: 184
  start-page: 322
  year: 2014
  end-page: 331
  ident: bib12
  article-title: Polyploidization in liver tissue
  publication-title: Am. J. Pathol.
– volume: 304
  start-page: G449
  year: 2013
  end-page: G468
  ident: bib23
  article-title: Animal models of chronic liver diseases
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 175
  start-page: 200
  year: 2018
  end-page: 211.e13
  ident: bib20
  article-title: ). Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture
  publication-title: Cell
– volume: 35
  start-page: 6
  year: 2019
  end-page: 14
  ident: bib15
  article-title: Solving the Polyploid Mystery in Health and Disease
  publication-title: Trends Genet.
– volume: 209
  start-page: 485
  year: 2015
  end-page: 491
  ident: bib41
  article-title: The expanding implications of polyploidy
  publication-title: J. Cell Biol.
– volume: 18
  start-page: 411
  year: 2017
  end-page: 424
  ident: bib52
  article-title: The evolutionary significance of polyploidy
  publication-title: Nat. Rev. Genet.
– volume: 131
  start-page: 437
  year: 2007
  end-page: 440
  ident: bib10
  article-title: Limiting the proliferation of polyploid cells
  publication-title: Cell
– volume: 278
  start-page: 19095
  year: 2003
  end-page: 19101
  ident: bib17
  article-title: Liver cell polyploidization: a pivotal role for binuclear hepatocytes
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 198
  year: 2013
  ident: bib28
  article-title: Establishment of proliferative tetraploid cells from normal human fibroblasts
  publication-title: Front. Oncol.
– volume: 5
  start-page: 45
  year: 2004
  end-page: 54
  ident: bib45
  article-title: From polyploidy to aneuploidy, genome instability and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 2008
  start-page: 453590
  year: 2008
  ident: bib46
  article-title: CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells
  publication-title: J. Biomed. Biotechnol.
– volume: 69
  start-page: 1242
  year: 2019
  end-page: 1258
  ident: bib55
  article-title: The polyploid state restricts hepatocyte proliferation and liver regeneration in mice
  publication-title: Hepatology
– volume: 117
  start-page: 111
  year: 2015
  end-page: 125
  ident: bib19
  article-title: Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications
  publication-title: Acta Histochem.
– volume: 12
  start-page: 266
  year: 1996
  end-page: 273
  ident: bib30
  article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I
  publication-title: Nat. Genet.
– volume: 1
  start-page: 113
  year: 2007
  end-page: 126
  ident: bib37
  article-title: Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss
  publication-title: Cell Stem Cell
– volume: 54
  start-page: 297
  year: 2005
  end-page: 302
  ident: bib51
  article-title: Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis
  publication-title: Gut
– volume: 15
  start-page: 139
  year: 2018
  end-page: 150
  ident: bib38
  article-title: Determinants and clinical implications of chromosomal instability in cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 368
  start-page: 405
  year: 2017
  end-page: 410
  ident: bib49
  article-title: Dynamic zonation of liver polyploidy
  publication-title: Cell Tissue Res.
– volume: 20
  start-page: 609
  year: 2017
  end-page: 620.e6
  ident: bib24
  article-title: ). Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine
  publication-title: Cell Stem Cell
– volume: 143
  start-page: 134
  year: 2010
  end-page: 144
  ident: bib44
  article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
  publication-title: Cell
– volume: 31
  start-page: 307
  year: 2015
  end-page: 315
  ident: bib29
  article-title: When bigger is better: the role of polyploidy in organogenesis
  publication-title: Trends Genet.
– volume: 3
  start-page: e2493
  year: 2008
  ident: bib1
  article-title: Hepatotoxin-induced changes in the adult murine liver promote MYC-induced tumorigenesis
  publication-title: PLoS ONE
– volume: 22
  start-page: 1166
  year: 2012
  end-page: 1175
  ident: bib27
  article-title: Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration
  publication-title: Curr. Biol.
– volume: 125
  start-page: 981
  year: 2015
  end-page: 992
  ident: bib14
  article-title: Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
– volume: 23
  start-page: 556
  year: 2013
  end-page: 566
  ident: bib34
  article-title: Physiological significance of polyploidization in mammalian cells
  publication-title: Trends Cell Biol.
– volume: 290
  start-page: 12984
  year: 2015
  end-page: 12998
  ident: bib47
  article-title: Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice
  publication-title: J. Biol. Chem.
– volume: 460
  start-page: 278
  year: 2009
  end-page: 282
  ident: bib11
  article-title: A mechanism linking extra centrosomes to chromosomal instability
  publication-title: Nature
– volume: 7
  start-page: 2298
  year: 1993
  end-page: 2307
  ident: bib16
  article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice
  publication-title: Genes Dev.
– volume: 122
  start-page: 3307
  year: 2012
  end-page: 3315
  ident: bib7
  article-title: Aneuploidy as a mechanism for stress-induced liver adaptation
  publication-title: J. Clin. Invest.
– volume: 276
  start-page: G1260
  year: 1999
  end-page: G1272
  ident: bib43
  article-title: Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events
  publication-title: Am. J. Physiol.
– volume: 79
  start-page: 103
  year: 1999
  end-page: 109
  ident: bib36
  article-title: Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease
  publication-title: Lab. Invest.
– volume: 145
  start-page: dev156034
  year: 2018
  ident: bib33
  article-title: Polyploidy in tissue homeostasis and regeneration
  publication-title: Development
– volume: 35
  start-page: 1842
  year: 1999
  end-page: 1845
  ident: bib40
  article-title: Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGF beta-1 in liver
  publication-title: Eur. J. Cancer
– volume: 556
  start-page: 244
  year: 2018
  ident: 10.1016/j.stem.2019.11.014_bib22
  article-title: Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury
  publication-title: Nature
  doi: 10.1038/s41586-018-0004-7
– volume: 162
  start-page: 766
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib9
  article-title: Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.026
– volume: 145
  start-page: dev156034
  year: 2018
  ident: 10.1016/j.stem.2019.11.014_bib33
  article-title: Polyploidy in tissue homeostasis and regeneration
  publication-title: Development
  doi: 10.1242/dev.156034
– volume: 35
  start-page: 6
  year: 2019
  ident: 10.1016/j.stem.2019.11.014_bib15
  article-title: Solving the Polyploid Mystery in Health and Disease
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.10.005
– volume: 519
  start-page: 349
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib42
  article-title: Polyploidy can drive rapid adaptation in yeast
  publication-title: Nature
  doi: 10.1038/nature14187
– volume: 7
  start-page: 2298
  issue: 12A
  year: 1993
  ident: 10.1016/j.stem.2019.11.014_bib16
  article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.12a.2298
– volume: 368
  start-page: 405
  year: 2017
  ident: 10.1016/j.stem.2019.11.014_bib49
  article-title: Dynamic zonation of liver polyploidy
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-016-2427-5
– volume: 36
  start-page: 29
  year: 2012
  ident: 10.1016/j.stem.2019.11.014_bib13
  article-title: Polyploidy and liver proliferation
  publication-title: Clin. Res. Hepatol. Gastroenterol.
  doi: 10.1016/j.clinre.2011.05.011
– volume: 121
  start-page: 4850
  year: 2011
  ident: 10.1016/j.stem.2019.11.014_bib25
  article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI59261
– volume: 151
  start-page: 1273
  year: 1997
  ident: 10.1016/j.stem.2019.11.014_bib31
  article-title: Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes
  publication-title: Am. J. Pathol.
– volume: 122
  start-page: 3307
  year: 2012
  ident: 10.1016/j.stem.2019.11.014_bib7
  article-title: Aneuploidy as a mechanism for stress-induced liver adaptation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64026
– volume: 3
  start-page: 198
  year: 2013
  ident: 10.1016/j.stem.2019.11.014_bib28
  article-title: Establishment of proliferative tetraploid cells from normal human fibroblasts
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2013.00198
– volume: 166
  start-page: 761
  year: 1969
  ident: 10.1016/j.stem.2019.11.014_bib26
  article-title: Parasexual cycle in cultivated human somatic cells
  publication-title: Science
  doi: 10.1126/science.166.3906.761
– volume: 35
  start-page: 1842
  year: 1999
  ident: 10.1016/j.stem.2019.11.014_bib40
  article-title: Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGF beta-1 in liver
  publication-title: Eur. J. Cancer
  doi: 10.1016/S0959-8049(99)00224-5
– volume: 109
  start-page: 2632
  year: 2018
  ident: 10.1016/j.stem.2019.11.014_bib48
  article-title: Tetraploidy in cancer and its possible link to aging
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13717
– volume: 24
  start-page: 347
  year: 2013
  ident: 10.1016/j.stem.2019.11.014_bib4
  article-title: Aneuploidy, polyploidy and ploidy reversal in the liver
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2013.01.003
– volume: 69
  start-page: 1242
  year: 2019
  ident: 10.1016/j.stem.2019.11.014_bib55
  article-title: The polyploid state restricts hepatocyte proliferation and liver regeneration in mice
  publication-title: Hepatology
  doi: 10.1002/hep.30286
– volume: 125
  start-page: 981
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib14
  article-title: Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73957
– volume: 155
  start-page: 2135
  year: 1999
  ident: 10.1016/j.stem.2019.11.014_bib32
  article-title: The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65531-9
– volume: 524
  start-page: 180
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib54
  article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver
  publication-title: Nature
  doi: 10.1038/nature14863
– volume: 1
  start-page: 113
  year: 2007
  ident: 10.1016/j.stem.2019.11.014_bib37
  article-title: Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.03.002
– volume: 22
  start-page: 1166
  year: 2012
  ident: 10.1016/j.stem.2019.11.014_bib27
  article-title: Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.05.016
– volume: 143
  start-page: 134
  year: 2010
  ident: 10.1016/j.stem.2019.11.014_bib44
  article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.016
– volume: 114
  start-page: E7321
  year: 2017
  ident: 10.1016/j.stem.2019.11.014_bib21
  article-title: Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1708981114
– volume: 290
  start-page: 12984
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib47
  article-title: Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.633891
– volume: 18
  start-page: 411
  year: 2017
  ident: 10.1016/j.stem.2019.11.014_bib52
  article-title: The evolutionary significance of polyploidy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.26
– volume: 209
  start-page: 485
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib41
  article-title: The expanding implications of polyploidy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201502016
– volume: 33
  start-page: 2001
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib50
  article-title: Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2015.3751
– volume: 54
  start-page: 297
  year: 2005
  ident: 10.1016/j.stem.2019.11.014_bib51
  article-title: Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis
  publication-title: Gut
  doi: 10.1136/gut.2004.043893
– volume: 467
  start-page: 707
  year: 2010
  ident: 10.1016/j.stem.2019.11.014_bib6
  article-title: The ploidy conveyor of mature hepatocytes as a source of genetic variation
  publication-title: Nature
  doi: 10.1038/nature09414
– volume: 184
  start-page: 322
  year: 2014
  ident: 10.1016/j.stem.2019.11.014_bib12
  article-title: Polyploidization in liver tissue
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.06.035
– volume: 12
  start-page: 266
  year: 1996
  ident: 10.1016/j.stem.2019.11.014_bib30
  article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I
  publication-title: Nat. Genet.
  doi: 10.1038/ng0396-266
– volume: 276
  start-page: G1260
  year: 1999
  ident: 10.1016/j.stem.2019.11.014_bib43
  article-title: Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events
  publication-title: Am. J. Physiol.
– volume: 1
  start-page: 350
  year: 2013
  ident: 10.1016/j.stem.2019.11.014_bib3
  article-title: Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2013.08.003
– volume: 20
  start-page: 609
  year: 2017
  ident: 10.1016/j.stem.2019.11.014_bib24
  article-title: ). Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.02.012
– volume: 5
  start-page: 45
  year: 2004
  ident: 10.1016/j.stem.2019.11.014_bib45
  article-title: From polyploidy to aneuploidy, genome instability and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1276
– volume: 142
  start-page: 25
  year: 2012
  ident: 10.1016/j.stem.2019.11.014_bib8
  article-title: Frequent aneuploidy among normal human hepatocytes
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.10.029
– volume: 20
  start-page: 648
  year: 2000
  ident: 10.1016/j.stem.2019.11.014_bib56
  article-title: Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.2.648-655.2000
– volume: 278
  start-page: 19095
  year: 2003
  ident: 10.1016/j.stem.2019.11.014_bib17
  article-title: Liver cell polyploidization: a pivotal role for binuclear hepatocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300982200
– volume: 79
  start-page: 103
  year: 1999
  ident: 10.1016/j.stem.2019.11.014_bib36
  article-title: Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease
  publication-title: Lab. Invest.
– volume: 16
  start-page: 473
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib39
  article-title: Short- and long-term effects of chromosome mis-segregation and aneuploidy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4025
– volume: 304
  start-page: G449
  year: 2013
  ident: 10.1016/j.stem.2019.11.014_bib23
  article-title: Animal models of chronic liver diseases
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00199.2012
– volume: 42
  start-page: 71
  year: 1973
  ident: 10.1016/j.stem.2019.11.014_bib35
  article-title: Studies of multipolar mitoses in euploid tissue cultures. I. Somatic reduction to exactly haploid and triploid chromosome sets
  publication-title: Chromosoma
  doi: 10.1007/BF00326331
– volume: 3
  start-page: e2493
  year: 2008
  ident: 10.1016/j.stem.2019.11.014_bib1
  article-title: Hepatotoxin-induced changes in the adult murine liver promote MYC-induced tumorigenesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002493
– volume: 31
  start-page: 307
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib29
  article-title: When bigger is better: the role of polyploidy in organogenesis
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.03.011
– volume: 23
  start-page: 556
  year: 2013
  ident: 10.1016/j.stem.2019.11.014_bib34
  article-title: Physiological significance of polyploidization in mammalian cells
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2013.06.002
– volume: 15
  start-page: 139
  year: 2018
  ident: 10.1016/j.stem.2019.11.014_bib38
  article-title: Determinants and clinical implications of chromosomal instability in cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.198
– volume: 29
  start-page: 1272
  year: 2010
  ident: 10.1016/j.stem.2019.11.014_bib53
  article-title: Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.11
– volume: 175
  start-page: 200
  year: 2018
  ident: 10.1016/j.stem.2019.11.014_bib20
  article-title: ). Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.042
– volume: 460
  start-page: 278
  year: 2009
  ident: 10.1016/j.stem.2019.11.014_bib11
  article-title: A mechanism linking extra centrosomes to chromosomal instability
  publication-title: Nature
  doi: 10.1038/nature08136
– volume: 131
  start-page: 437
  year: 2007
  ident: 10.1016/j.stem.2019.11.014_bib10
  article-title: Limiting the proliferation of polyploid cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.024
– volume: 91
  start-page: 1228
  year: 2016
  ident: 10.1016/j.stem.2019.11.014_bib18
  article-title: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.08.021
– volume: 117
  start-page: 111
  year: 2015
  ident: 10.1016/j.stem.2019.11.014_bib19
  article-title: Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications
  publication-title: Acta Histochem.
  doi: 10.1016/j.acthis.2014.11.009
– volume: 7
  start-page: 1122
  year: 2011
  ident: 10.1016/j.stem.2019.11.014_bib2
  article-title: A clinical overview of centrosome amplification in human cancers
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.7.1122
– volume: 2008
  start-page: 453590
  year: 2008
  ident: 10.1016/j.stem.2019.11.014_bib46
  article-title: CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells
  publication-title: J. Biomed. Biotechnol.
– volume: 5
  start-page: e1000385
  year: 2009
  ident: 10.1016/j.stem.2019.11.014_bib5
  article-title: Ploidy reductions in murine fusion-derived hepatocytes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000385
– reference: 31951586 - Cell Stem Cell. 2020 Jan 2;26(1):2-3
– reference: 32386955 - J Hepatol. 2020 Jul;73(1):6-8
SSID ssj0057107
Score 2.6175218
Snippet The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms Cell Proliferation
hepatocyte
Hepatocytes
Humans
lineage tracing
Liver
Liver Regeneration
ploidy conveyor
ploidy reduction
Polyploidy
Title In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration
URI https://dx.doi.org/10.1016/j.stem.2019.11.014
https://www.ncbi.nlm.nih.gov/pubmed/31866222
https://www.proquest.com/docview/2330059995
https://pubmed.ncbi.nlm.nih.gov/PMC7204404
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA8iCL6I_53_iOCb1HVJui6POjamoAx1srcQ01Srox06h_s2fhY_mXdNO5yiD742lxJ6l_tdmrvfEXIYRmAVMmbIbxd5wsbC05jkaEJfRHVADJtr-uKy3umJ837QnyPNshYG0yoL3-98eu6tiyfV4mtWh0lSvYbQQwQS8E7i7Z5EP8xFIy_i65-W3jgABA3dzbLwULoonHE5XsiVjOld8hiZPGviN3D6GXx-z6H8AkrtZbJURJP0xC14hczZdJUsuP6SkzXydJZ-vN8m44zCkdOC56AATQbAimYx7WaDyXCQJRHtACSNMjOBqJNe2TGEji-09VakttMu9vWJrbMU6soa4X2wBUD4PmetxpF10mu3bpodr-iu4BlsYuBpZrS-Cxs2ZMxikYiMLTNGNjSStHEeSy0ZMwIZzGwgGzCE1PqRNL42ITN8g8ynWWq3CI2s5lzwqF6XUsTW14KHfsTjGsbvzMoKqZWfVZmCehw7YAxUmWP2qFAVClUBZxIFqqiQo-mcoSPe-FM6KLWlZsxHATL8Oe-gVK2CfYWXJTq12euLYpzn3DUyqJBNp-rpOjiyBEJgVSHhjBFMBZCze3YkTR5y7m7sCSR8sf3P9e6QRYYHfvwHxHbJ_Oj51e5BVDS628_N_hMZfgzt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0ECYrmUnRN3JUBeitUyyRlmsc0sGE3C4zWCXwjGIpK1RqS0ThB_Df5ln5ZZ0TJqFskh15FUiA0w3mP4vANwHuVolfojJO-XRpJn8nIUpKjU7FMu4gYvrL08Ul3eCo_T5PpBhw0d2EorbKO_SGmV9G6ftKuv2Z7nuftr0g9ZKIR7zSd7mmMw1vIBhTVbxhNPzXhOEEIVeFoWUbUvb45E5K8SCyZ8rv0R5Ly7Mi70Olf9vl3EuUfqDR4DI9qOsn2w4yfwIYvnsKDUGBy-Qx-jIpft2f5dclwz-kxdDDEJodoxcqMjcvZcj4r85QNEZMWpVsi7WRf_DVyx0vWv6lz29mYCvtkPrgKC_ca8X24BrDzRSVbTS3P4XTQnxwMo7q8QuSoikFkubP2XPW84tzTLRGdee6c7llSaRMi01Zz7iRJmPlE97CJtPVT7WLrFHfiBWwWZeF3gaXeCiFF2u1qLTMfWylUnIqsQwSee92CTvNZjau1x6kExsw0SWbfDZnCkClwU2LQFC34sBozD8ob9_ZOGmuZNf8xCA33jttrTGtwYdFpiS18eXVpuBCVeI1OWrATTL2ahyCZQGRWLVBrTrDqQKLd6y1F_q0S76aiQDKWL_9zvu_g4XByfGSORieHr2Cb0-6ffgjx17C5-Hnl3yBFWpy_rZbAb5pCEAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0Vivo+Lineage+Tracing+of+Polyploid+Hepatocytes+Reveals+Extensive+Proliferation+during+Liver+Regeneration&rft.jtitle=Cell+stem+cell&rft.au=Matsumoto%2C+Tomonori&rft.au=Wakefield%2C+Leslie&rft.au=Tarlow%2C+Branden+David&rft.au=Grompe%2C+Markus&rft.date=2020-01-02&rft.issn=1934-5909&rft.volume=26&rft.issue=1&rft.spage=34&rft.epage=47.e3&rft_id=info:doi/10.1016%2Fj.stem.2019.11.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stem_2019_11_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon