A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to...
Saved in:
Published in | Cell Vol. 167; no. 7; pp. 1867 - 1882.e21 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
[Display omitted]
•Perturb-seq allows parallel screening with rich phenotypic output from single cells•Simultaneous delivery and identification of up to three CRISPR perturbations•Genome-scale screens dissect the mammalian unfolded protein response•Analytical methods separate perturbation responses from confounding effects
A strategy for barcoding CRISPR-mediated perturbations allows pooled expression profiling via single-cell RNA sequencing. Application to the mammalian unfolded protein response then enabled systematic delineation of the transcriptional arms of the response and functional clustering of genes affecting ER homeostasis. |
---|---|
AbstractList | Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. [Display omitted] •Perturb-seq allows parallel screening with rich phenotypic output from single cells•Simultaneous delivery and identification of up to three CRISPR perturbations•Genome-scale screens dissect the mammalian unfolded protein response•Analytical methods separate perturbation responses from confounding effects A strategy for barcoding CRISPR-mediated perturbations allows pooled expression profiling via single-cell RNA sequencing. Application to the mammalian unfolded protein response then enabled systematic delineation of the transcriptional arms of the response and functional clustering of genes affecting ER homeostasis. Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ~100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. |
Author | Jost, Marco Pak, Ryan A. Hein, Marco Y. Norman, Thomas M. Villalta, Jacqueline E. Gray, Andrew N. Regev, Aviv Gross, Carol A. Cho, Min Y. Horlbeck, Max A. Gilbert, Luke A. Weissman, Jonathan S. Nuñez, James K. Adamson, Britt Parnas, Oren Chen, Yuwen Dixit, Atray |
AuthorAffiliation | 5 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA 8 Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA 7 Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA 4 Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA 9 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142 10 Broad Institute of MIT and Harvard, Cambridge MA 02142, USA 3 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA 2 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA 1 Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA 6 Innovative Genomics Initiative, University of California, Berk |
AuthorAffiliation_xml | – name: 6 Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA – name: 1 Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – name: 2 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA – name: 7 Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA – name: 9 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142 – name: 10 Broad Institute of MIT and Harvard, Cambridge MA 02142, USA – name: 8 Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA – name: 3 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA – name: 12 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02140, USA – name: 4 Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA – name: 5 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA |
Author_xml | – sequence: 1 givenname: Britt surname: Adamson fullname: Adamson, Britt organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 2 givenname: Thomas M. surname: Norman fullname: Norman, Thomas M. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 3 givenname: Marco surname: Jost fullname: Jost, Marco organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 4 givenname: Min Y. surname: Cho fullname: Cho, Min Y. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 5 givenname: James K. surname: Nuñez fullname: Nuñez, James K. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 6 givenname: Yuwen surname: Chen fullname: Chen, Yuwen organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 7 givenname: Jacqueline E. surname: Villalta fullname: Villalta, Jacqueline E. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 8 givenname: Luke A. surname: Gilbert fullname: Gilbert, Luke A. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 9 givenname: Max A. surname: Horlbeck fullname: Horlbeck, Max A. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 10 givenname: Marco Y. surname: Hein fullname: Hein, Marco Y. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 11 givenname: Ryan A. surname: Pak fullname: Pak, Ryan A. organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 12 givenname: Andrew N. surname: Gray fullname: Gray, Andrew N. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 13 givenname: Carol A. surname: Gross fullname: Gross, Carol A. organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 14 givenname: Atray surname: Dixit fullname: Dixit, Atray organization: Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142, USA – sequence: 15 givenname: Oren surname: Parnas fullname: Parnas, Oren organization: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 16 givenname: Aviv surname: Regev fullname: Regev, Aviv organization: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 17 givenname: Jonathan S. surname: Weissman fullname: Weissman, Jonathan S. email: jonathan.weissman@ucsf.edu organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27984733$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rHCEYhaWkNJu0f6AXxcvezESdcT6gFMLmExKy7DbX4jqviYujW3VD8-_rsElpexG8UF7f8xw45wgdOO8Aoc-UlJTQ5mRTKrC2ZPldUlqSunuHZpT0bVHTlh2gGSE9K7qmrQ_RUYwbQkjHOf-ADlnbd3VbVTMUTvHtziaztfALBrwy7sFCMc9cPF9erxZLvFIBwOU5XliZtA8jPndybSHi1XNMMMpkFD4zMYJKxjvsNU6PgO-d9nbIzEXwCYzDS4hb7yJ8RO-1tBE-vdzH6P7i_Mf8qri5u7yen94UijOair6uJDSaaq2ZZvW6qpWmfc-blvWNqlXbyqaWjRwUk1XFeDN0g6zYQIlUJJ_qGH3fc7e79QiDApeCtGIbzCjDs_DSiH9_nHkUD_5J8Ipy3tIM-PoCCP7nDmISo4lT5NKB30VBO05ZTxvG8-qXv73-mLwGnRe6_YIKPsYAWiiT5JRXtjZWUCKmTsVGTAZi6lRQKnKnWcr-k77S3xR924sgJ_xkIIioDDgFgwm5JzF485b8NxSRvK8 |
CitedBy_id | crossref_primary_10_1016_j_cell_2023_03_035 crossref_primary_10_1016_j_semcdb_2019_05_007 crossref_primary_10_1089_crispr_2021_0063 crossref_primary_10_1007_s11427_024_2813_y crossref_primary_10_1177_2472555219883621 crossref_primary_10_1093_bioinformatics_btab847 crossref_primary_10_1093_plcell_koad027 crossref_primary_10_1038_s41592_021_01153_z crossref_primary_10_1016_j_cels_2024_04_008 crossref_primary_10_1093_bib_bbad313 crossref_primary_10_1146_annurev_immunol_042718_041522 crossref_primary_10_3324_haematol_2023_284901 crossref_primary_10_1093_protein_gzac011 crossref_primary_10_1093_hmg_ddy120 crossref_primary_10_1007_s00281_022_00972_2 crossref_primary_10_1016_j_gde_2021_08_006 crossref_primary_10_1186_s13059_021_02268_4 crossref_primary_10_1016_j_cels_2024_12_002 crossref_primary_10_1002_advs_202303799 crossref_primary_10_1038_s41588_022_01118_8 crossref_primary_10_1038_s41588_022_01061_8 crossref_primary_10_1038_s41551_024_01278_4 crossref_primary_10_1038_547024a crossref_primary_10_1038_s41556_020_00620_7 crossref_primary_10_1038_s41573_023_00688_4 crossref_primary_10_1126_sciadv_abi4360 crossref_primary_10_1093_plcell_koab099 crossref_primary_10_1021_acssynbio_0c00499 crossref_primary_10_1146_annurev_physiol_031522_100639 crossref_primary_10_1016_j_semcdb_2019_05_013 crossref_primary_10_1038_s41467_020_17440_w crossref_primary_10_1093_nargab_lqaa012 crossref_primary_10_3389_fimmu_2020_00633 crossref_primary_10_1038_s41568_019_0132_x crossref_primary_10_1161_ATVBAHA_117_309645 crossref_primary_10_1016_j_molcel_2018_03_024 crossref_primary_10_1073_pnas_2207392119 crossref_primary_10_1111_imr_12976 crossref_primary_10_1111_mmi_15103 crossref_primary_10_3233_JAD_180422 crossref_primary_10_1016_j_mcn_2020_103532 crossref_primary_10_1007_s00239_023_10114_3 crossref_primary_10_1007_s10565_021_09586_0 crossref_primary_10_3389_fnmol_2021_733012 crossref_primary_10_1038_s44161_023_00411_x crossref_primary_10_1101_gad_297796_117 crossref_primary_10_3389_fgene_2022_1100016 crossref_primary_10_1186_s12967_023_04328_8 crossref_primary_10_1016_j_cell_2016_11_038 crossref_primary_10_3390_v9080215 crossref_primary_10_1038_s41556_025_01622_z crossref_primary_10_1038_s41579_018_0002_7 crossref_primary_10_1038_s41592_023_02144_y crossref_primary_10_1038_s41587_020_0470_y crossref_primary_10_15252_msb_202010025 crossref_primary_10_1016_j_neuron_2022_09_030 crossref_primary_10_1016_j_ggedit_2021_100008 crossref_primary_10_1007_s00018_022_04482_0 crossref_primary_10_1089_gen_40_09_08 crossref_primary_10_1186_s13059_020_02085_1 crossref_primary_10_1016_j_it_2023_05_001 crossref_primary_10_1093_bfgp_elx046 crossref_primary_10_3390_genes13071232 crossref_primary_10_1016_j_cell_2023_02_015 crossref_primary_10_1016_j_semcancer_2018_04_001 crossref_primary_10_1038_ng_3963 crossref_primary_10_1093_hmg_ddac193 crossref_primary_10_1161_CIRCGEN_118_002090 crossref_primary_10_1016_j_cbpa_2019_04_015 crossref_primary_10_1186_s13059_024_03351_2 crossref_primary_10_3390_cancers15143566 crossref_primary_10_1038_s41467_020_15053_x crossref_primary_10_1038_s41598_018_38146_6 crossref_primary_10_1038_s41598_023_31141_6 crossref_primary_10_1038_s41434_020_0142_z crossref_primary_10_1038_s41586_020_2078_2 crossref_primary_10_1080_21541264_2024_2334110 crossref_primary_10_7554_eLife_42940 crossref_primary_10_1101_gr_278001_123 crossref_primary_10_1016_j_gde_2019_03_002 crossref_primary_10_1096_fj_201801350RR crossref_primary_10_1038_s41556_023_01337_z crossref_primary_10_1186_s13073_022_01134_7 crossref_primary_10_1093_bfgp_ely009 crossref_primary_10_1038_s41540_024_00446_1 crossref_primary_10_1158_0008_5472_CAN_22_2717 crossref_primary_10_1038_s41592_018_0113_0 crossref_primary_10_1111_boc_201800029 crossref_primary_10_1186_s13045_023_01495_5 crossref_primary_10_1002_JLB_5MR0321_170R crossref_primary_10_15252_msb_20178046 crossref_primary_10_1093_neuonc_noac211 crossref_primary_10_1515_medgen_2022_2156 crossref_primary_10_1016_j_celrep_2022_111775 crossref_primary_10_1038_s41587_022_01448_2 crossref_primary_10_1038_s41596_022_00700_y crossref_primary_10_1038_s41592_019_0433_8 crossref_primary_10_1016_j_copbio_2018_02_004 crossref_primary_10_1074_jbc_M117_813790 crossref_primary_10_1016_j_it_2021_03_003 crossref_primary_10_1038_s41587_020_0600_6 crossref_primary_10_1038_s41587_024_02347_4 crossref_primary_10_1021_acschembio_7b00965 crossref_primary_10_1021_acs_analchem_8b04757 crossref_primary_10_1021_acschembio_7b00842 crossref_primary_10_1073_pnas_1906275116 crossref_primary_10_1146_annurev_immunol_042617_053035 crossref_primary_10_1242_jcs_238402 crossref_primary_10_1016_j_molcel_2017_09_017 crossref_primary_10_1038_s41588_022_01106_y crossref_primary_10_1016_j_jare_2024_10_035 crossref_primary_10_1016_j_molcel_2017_09_012 crossref_primary_10_1016_j_xgen_2023_100487 crossref_primary_10_1038_nrg_2016_171 crossref_primary_10_1360_nso_20220057 crossref_primary_10_3389_fimmu_2022_1041451 crossref_primary_10_1016_j_psc_2025_01_002 crossref_primary_10_1016_j_cels_2020_11_013 crossref_primary_10_1002_bab_1901 crossref_primary_10_1038_s41582_020_0373_z crossref_primary_10_1038_s10038_020_00844_3 crossref_primary_10_1146_annurev_cancerbio_030518_055742 crossref_primary_10_12688_f1000research_12138_1 crossref_primary_10_1083_jcb_202006180 crossref_primary_10_1038_s42003_020_0888_2 crossref_primary_10_3390_cells12040538 crossref_primary_10_15252_msb_20178064 crossref_primary_10_1016_j_cell_2022_02_015 crossref_primary_10_1016_j_xgen_2022_100177 crossref_primary_10_1038_s41576_018_0053_7 crossref_primary_10_1038_s41592_023_02002_x crossref_primary_10_1038_s43018_020_0067_x crossref_primary_10_1134_S1819712421040152 crossref_primary_10_3389_fmolb_2021_647277 crossref_primary_10_1093_bib_bbae617 crossref_primary_10_1111_febs_17003 crossref_primary_10_1016_j_isci_2024_109354 crossref_primary_10_1242_dev_182667 crossref_primary_10_1016_j_bbagrm_2019_194441 crossref_primary_10_1038_s41590_022_01224_z crossref_primary_10_1007_s11427_023_2571_0 crossref_primary_10_1073_pnas_2010738117 crossref_primary_10_3389_fbioe_2020_00882 crossref_primary_10_1126_scitranslmed_abj8670 crossref_primary_10_1038_nbt_3849 crossref_primary_10_1038_s41580_023_00633_8 crossref_primary_10_1016_j_gde_2019_02_007 crossref_primary_10_1038_nmeth_4604 crossref_primary_10_1093_bib_bbz038 crossref_primary_10_1016_j_tcb_2022_04_006 crossref_primary_10_1016_j_ymeth_2017_03_008 crossref_primary_10_1126_scitranslmed_abd3049 crossref_primary_10_7554_eLife_100949_3 crossref_primary_10_1016_j_copbio_2017_11_015 crossref_primary_10_1038_s41467_021_24324_0 crossref_primary_10_1038_s41593_018_0077_5 crossref_primary_10_1038_s41467_024_51424_4 crossref_primary_10_1016_j_celrep_2020_108563 crossref_primary_10_1186_s13073_017_0467_4 crossref_primary_10_1038_s41568_022_00441_w crossref_primary_10_1084_jem_20221085 crossref_primary_10_1016_j_devcel_2021_03_005 crossref_primary_10_1002_ijch_202200056 crossref_primary_10_1126_science_abb9662 crossref_primary_10_1158_0008_5472_CAN_21_1017 crossref_primary_10_1016_j_molcel_2021_12_012 crossref_primary_10_1080_21553769_2019_1670739 crossref_primary_10_1038_s41556_025_01626_9 crossref_primary_10_1038_s41576_022_00568_4 crossref_primary_10_1088_1758_5090_ac39a9 crossref_primary_10_1038_s41587_021_01160_7 crossref_primary_10_1101_cshperspect_a041382 crossref_primary_10_1101_cshperspect_a033886 crossref_primary_10_1016_j_cbpa_2017_06_003 crossref_primary_10_1093_nar_gkae858 crossref_primary_10_3390_ijms25094854 crossref_primary_10_1038_s41580_022_00571_x crossref_primary_10_1186_s13059_023_03084_8 crossref_primary_10_1186_s13073_020_00788_5 crossref_primary_10_7554_eLife_46595 crossref_primary_10_1016_j_tibtech_2020_02_013 crossref_primary_10_1161_CIRCRESAHA_117_310910 crossref_primary_10_12688_f1000research_15274_1 crossref_primary_10_1091_mbc_E24_01_0041 crossref_primary_10_1016_j_biotechadv_2018_01_006 crossref_primary_10_1042_EBC20200061 crossref_primary_10_1016_j_coisb_2017_05_008 crossref_primary_10_1016_j_neuron_2019_07_014 crossref_primary_10_1016_j_coisb_2017_10_003 crossref_primary_10_1038_nri_2017_51 crossref_primary_10_1038_s41587_021_01172_3 crossref_primary_10_1186_s13578_019_0304_0 crossref_primary_10_1016_j_ddtec_2021_06_003 crossref_primary_10_3389_fcell_2023_1156152 crossref_primary_10_1038_s41592_022_01705_x crossref_primary_10_1007_s00418_018_1726_1 crossref_primary_10_1038_s41386_020_0768_y crossref_primary_10_1038_nrg_2017_15 crossref_primary_10_1038_s41576_018_0001_6 crossref_primary_10_1038_d41586_019_01086_w crossref_primary_10_1016_j_crmeth_2021_100062 crossref_primary_10_1016_j_tig_2018_06_001 crossref_primary_10_1038_s41598_019_50588_0 crossref_primary_10_1002_cpz1_579 crossref_primary_10_1038_s41587_021_00902_x crossref_primary_10_1089_crispr_2022_0093 crossref_primary_10_1016_j_immuni_2022_02_006 crossref_primary_10_1186_s13059_020_02044_w crossref_primary_10_1038_nrc_2017_58 crossref_primary_10_1089_gen_39_04_26 crossref_primary_10_3390_genes11050504 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1016_j_celrep_2020_108426 crossref_primary_10_1021_acschembio_7b00657 crossref_primary_10_1038_s41591_022_02104_7 crossref_primary_10_1016_j_cell_2018_10_024 crossref_primary_10_1186_s13059_024_03404_6 crossref_primary_10_1038_s41586_023_06473_y crossref_primary_10_1038_s41576_019_0093_7 crossref_primary_10_1186_s13059_021_02554_1 crossref_primary_10_1373_clinchem_2017_283895 crossref_primary_10_3390_ijms22062822 crossref_primary_10_1038_nrg_2017_28 crossref_primary_10_1038_s41592_018_0149_1 crossref_primary_10_3389_fmolb_2023_1176856 crossref_primary_10_1073_pnas_2208844119 crossref_primary_10_12688_f1000research_19848_1 crossref_primary_10_1016_j_mam_2017_07_003 crossref_primary_10_1038_nmeth_4407 crossref_primary_10_1073_pnas_2206938119 crossref_primary_10_1038_s41587_023_01905_6 crossref_primary_10_1099_jgv_0_001603 crossref_primary_10_1093_bioinformatics_btab113 crossref_primary_10_1073_pnas_1903808116 crossref_primary_10_1016_j_cell_2020_10_018 crossref_primary_10_3389_fgene_2024_1375481 crossref_primary_10_1038_s41576_021_00409_w crossref_primary_10_1038_s41592_024_02201_0 crossref_primary_10_1021_acschemneuro_5c00021 crossref_primary_10_1371_journal_pgen_1008057 crossref_primary_10_1038_s41577_022_00802_4 crossref_primary_10_1016_j_xpro_2020_100255 crossref_primary_10_1038_s41420_018_0135_5 crossref_primary_10_1186_s13073_021_00987_8 crossref_primary_10_1038_s41467_020_18582_7 crossref_primary_10_1093_nar_gkab211 crossref_primary_10_1016_j_coisb_2017_02_002 crossref_primary_10_1016_j_jmb_2018_06_034 crossref_primary_10_1016_j_tig_2017_04_004 crossref_primary_10_7554_eLife_79525 crossref_primary_10_2174_011574888X265479231127065541 crossref_primary_10_3389_fbioe_2021_748942 crossref_primary_10_1038_s41467_023_41788_4 crossref_primary_10_1038_s41586_022_05688_9 crossref_primary_10_1038_s41586_023_06570_y crossref_primary_10_1038_s41467_024_45382_0 crossref_primary_10_1016_j_neuron_2018_10_013 crossref_primary_10_1038_s41587_023_02079_x crossref_primary_10_3390_jof7050377 crossref_primary_10_1016_j_devcel_2022_04_003 crossref_primary_10_1016_j_drudis_2023_103737 crossref_primary_10_1016_j_devcel_2022_06_017 crossref_primary_10_1038_s41586_024_07259_6 crossref_primary_10_7554_eLife_81856 crossref_primary_10_1038_s41569_021_00669_3 crossref_primary_10_1093_nar_gkad329 crossref_primary_10_1016_j_ajpath_2023_09_012 crossref_primary_10_1016_j_crmeth_2022_100239 crossref_primary_10_1146_annurev_cancerbio_070120_094725 crossref_primary_10_1038_s41698_022_00299_z crossref_primary_10_1038_s43588_024_00698_1 crossref_primary_10_1158_0008_5472_CAN_21_2555 crossref_primary_10_1038_nmeth_4466 crossref_primary_10_1038_s41587_023_01948_9 crossref_primary_10_1161_ATVBAHA_123_318328 crossref_primary_10_3389_fcell_2023_1158373 crossref_primary_10_1016_j_celrep_2019_03_076 crossref_primary_10_1016_j_cell_2018_03_068 crossref_primary_10_1016_j_xgen_2025_100766 crossref_primary_10_1126_science_aav6872 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_3390_ijms19040933 crossref_primary_10_1096_fj_202002713RR crossref_primary_10_1186_s13059_021_02545_2 crossref_primary_10_1681_ASN_2017050566 crossref_primary_10_4252_wjsc_v10_i11_160 crossref_primary_10_1016_j_celrep_2023_112209 crossref_primary_10_1097_HS9_0000000000000034 crossref_primary_10_1093_bioinformatics_btae411 crossref_primary_10_1136_esmoopen_2019_000505 crossref_primary_10_1093_bioinformatics_btae535 crossref_primary_10_1146_annurev_genet_120417_031247 crossref_primary_10_1016_j_vaccine_2019_11_035 crossref_primary_10_1126_science_aaz6063 crossref_primary_10_1016_j_tig_2024_11_001 crossref_primary_10_1038_s41467_023_40408_5 crossref_primary_10_1016_j_tibtech_2018_08_002 crossref_primary_10_1016_j_tig_2023_10_009 crossref_primary_10_1038_s41576_024_00750_w crossref_primary_10_1017_S0033583519000052 crossref_primary_10_1038_s41556_021_00728_4 crossref_primary_10_1016_j_cels_2021_05_016 crossref_primary_10_7554_eLife_57306 crossref_primary_10_1111_sji_12753 crossref_primary_10_1242_dmm_049857 crossref_primary_10_1016_j_tig_2023_10_012 crossref_primary_10_1038_s41592_019_0392_0 crossref_primary_10_1261_rna_066282_118 crossref_primary_10_1038_s41375_021_01378_z crossref_primary_10_1038_s41588_020_0596_3 crossref_primary_10_1242_dev_150458 crossref_primary_10_1016_j_copbio_2018_08_004 crossref_primary_10_1007_s00018_021_03903_w crossref_primary_10_1016_j_molcel_2022_06_001 crossref_primary_10_1016_j_cell_2019_10_018 crossref_primary_10_1038_s41587_023_01949_8 crossref_primary_10_7554_eLife_43036 crossref_primary_10_1002_cbic_202100561 crossref_primary_10_3389_fgeed_2024_1481443 crossref_primary_10_1101_cshperspect_a033894 crossref_primary_10_1038_s41587_024_02391_0 crossref_primary_10_1038_s41586_024_07663_y crossref_primary_10_15302_J_QB_022_0299 crossref_primary_10_1126_science_abc1944 crossref_primary_10_1007_s00395_022_00972_1 crossref_primary_10_1016_j_bbcan_2024_189212 crossref_primary_10_1016_j_cell_2024_03_020 crossref_primary_10_1016_j_semcdb_2023_06_005 crossref_primary_10_1371_journal_pcbi_1007061 crossref_primary_10_1016_j_phymed_2024_155812 crossref_primary_10_1021_acs_analchem_0c03059 crossref_primary_10_3389_fragi_2021_714926 crossref_primary_10_1186_s13059_025_03474_0 crossref_primary_10_1016_j_omtm_2021_04_014 crossref_primary_10_15252_msb_20177834 crossref_primary_10_14348_molcells_2021_0002 crossref_primary_10_1016_j_cels_2020_08_019 crossref_primary_10_1016_j_isci_2024_110090 crossref_primary_10_1016_j_stem_2017_09_006 crossref_primary_10_1126_science_aav1898 crossref_primary_10_1002_bies_202100086 crossref_primary_10_1038_s41588_019_0489_5 crossref_primary_10_1038_s41467_019_10216_x crossref_primary_10_1002_med_21549 crossref_primary_10_1038_nbt_4048 crossref_primary_10_1161_ATVBAHA_123_318771 crossref_primary_10_1016_j_cell_2017_10_040 crossref_primary_10_1038_nmeth_4495 crossref_primary_10_1515_hsz_2023_0174 crossref_primary_10_1038_nbt_4042 crossref_primary_10_1109_JBHI_2024_3370868 crossref_primary_10_1016_j_cell_2021_03_025 crossref_primary_10_1038_s41592_020_0826_8 crossref_primary_10_1038_s41592_018_0185_x crossref_primary_10_1038_s41467_021_26682_1 crossref_primary_10_1126_science_abb6896 crossref_primary_10_2139_ssrn_3376670 crossref_primary_10_1158_0008_5472_CAN_21_1545 crossref_primary_10_1016_j_csbj_2020_08_009 crossref_primary_10_1128_mmbr_00170_22 crossref_primary_10_1186_s13059_020_02000_8 crossref_primary_10_1111_eva_12846 crossref_primary_10_1016_j_isci_2022_104097 crossref_primary_10_1038_nrg_2017_97 crossref_primary_10_1038_s41596_021_00653_8 crossref_primary_10_1021_acssynbio_9b00322 crossref_primary_10_1016_j_celrep_2020_108020 crossref_primary_10_1016_j_mib_2024_102554 crossref_primary_10_1038_s41467_021_25992_8 crossref_primary_10_1038_s41587_019_0286_9 crossref_primary_10_1038_s43018_020_0071_1 crossref_primary_10_1186_s13059_021_02548_z crossref_primary_10_1016_j_devcel_2024_03_024 crossref_primary_10_1126_science_aax4438 crossref_primary_10_1016_j_cell_2017_10_023 crossref_primary_10_1016_j_tcb_2023_11_003 crossref_primary_10_1038_s41467_024_53284_4 crossref_primary_10_1091_mbc_E22_09_0432 crossref_primary_10_1080_21541264_2023_2213514 crossref_primary_10_1016_j_stemcr_2021_02_006 crossref_primary_10_1016_j_crmeth_2023_100672 crossref_primary_10_1016_j_ejcb_2018_05_002 crossref_primary_10_1371_journal_pntd_0010672 crossref_primary_10_1016_j_molmed_2020_12_003 crossref_primary_10_1002_advs_202204484 crossref_primary_10_7554_eLife_55320 crossref_primary_10_1038_s41467_020_17798_x crossref_primary_10_1038_s43018_024_00789_y crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_1016_j_crmeth_2024_100737 crossref_primary_10_1016_j_coi_2018_04_020 crossref_primary_10_1016_j_gendis_2022_10_024 crossref_primary_10_1093_narcan_zcac038 crossref_primary_10_1146_annurev_cancerbio_030617_050455 crossref_primary_10_1101_gr_259655_119 crossref_primary_10_3390_cells10123337 crossref_primary_10_1016_j_xpro_2022_101944 crossref_primary_10_1038_s41467_023_41101_3 crossref_primary_10_1016_j_crbiot_2023_100127 crossref_primary_10_1016_j_cell_2022_05_013 crossref_primary_10_1016_j_snb_2018_11_035 crossref_primary_10_1146_annurev_genom_021623_083207 crossref_primary_10_2337_dbi20_0047 crossref_primary_10_7554_eLife_88187 crossref_primary_10_3390_cancers14246031 crossref_primary_10_1002_biot_201700746 crossref_primary_10_1016_j_ymben_2024_11_009 crossref_primary_10_1038_s41577_019_0263_z crossref_primary_10_1093_cvr_cvab040 crossref_primary_10_1038_s41419_018_0427_y crossref_primary_10_1038_s41593_021_00862_0 crossref_primary_10_1016_j_biomaterials_2021_121276 crossref_primary_10_15252_msb_202110768 crossref_primary_10_1038_s41592_019_0494_8 crossref_primary_10_3390_cimb46040197 crossref_primary_10_1038_nmeth_4177 crossref_primary_10_1038_nrg_2017_47 crossref_primary_10_1038_s41586_024_07022_x crossref_primary_10_1186_s13059_021_02590_x crossref_primary_10_1186_s12864_022_08359_1 crossref_primary_10_1016_j_cell_2022_06_039 crossref_primary_10_1016_j_tig_2023_02_014 crossref_primary_10_1101_gr_280008_124 crossref_primary_10_3892_mmr_2021_12489 crossref_primary_10_1016_j_cell_2021_12_045 crossref_primary_10_1016_j_cell_2022_06_031 crossref_primary_10_1038_s41593_024_01814_0 crossref_primary_10_1042_BST20230190 crossref_primary_10_18699_VJ19_520 crossref_primary_10_1016_j_neuron_2020_09_001 crossref_primary_10_1007_s10565_017_9396_7 crossref_primary_10_1038_s41556_021_00821_8 crossref_primary_10_1016_j_tibtech_2017_05_004 crossref_primary_10_1136_jitc_2020_000705 crossref_primary_10_3389_fgene_2023_1304425 crossref_primary_10_15252_emmm_202114764 crossref_primary_10_1186_s12859_017_1980_6 crossref_primary_10_1186_s12864_023_09754_y crossref_primary_10_1038_s41587_019_0387_5 crossref_primary_10_1089_gen_39_S2_09 crossref_primary_10_1186_s13059_019_1699_y crossref_primary_10_1016_j_devcel_2017_11_024 crossref_primary_10_1038_s41467_020_17209_1 crossref_primary_10_1016_j_ebiom_2018_08_050 crossref_primary_10_1016_j_celrep_2020_108460 crossref_primary_10_1038_s41586_023_06464_z crossref_primary_10_1038_s41592_020_0837_5 crossref_primary_10_7554_eLife_27187 crossref_primary_10_7554_eLife_83884 crossref_primary_10_1016_j_omto_2023_100733 crossref_primary_10_1172_JCI141171 crossref_primary_10_1016_j_tig_2024_03_010 crossref_primary_10_1093_g3journal_jkad096 crossref_primary_10_1007_s00412_023_00796_5 crossref_primary_10_15252_embj_2018100990 crossref_primary_10_1186_s11658_023_00483_4 crossref_primary_10_1016_j_cell_2018_09_022 crossref_primary_10_3390_ijms25137128 crossref_primary_10_1177_2472630318824337 crossref_primary_10_1038_s41467_024_52538_5 crossref_primary_10_1038_s41588_018_0254_1 crossref_primary_10_1016_j_gde_2018_05_001 crossref_primary_10_1007_s12015_023_10506_4 crossref_primary_10_1016_j_cell_2018_11_029 crossref_primary_10_1080_14737159_2024_2388777 crossref_primary_10_1186_s13058_019_1242_9 crossref_primary_10_1146_annurev_genet_072920_013842 crossref_primary_10_1038_s41587_024_02224_0 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_1016_j_cell_2018_09_010 crossref_primary_10_1016_j_cell_2018_11_022 crossref_primary_10_1371_journal_pbio_2004624 crossref_primary_10_1152_ajplung_00408_2021 crossref_primary_10_1371_journal_pcbi_1008789 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_1042_ETLS20170129 crossref_primary_10_1126_science_aax6648 crossref_primary_10_1038_s41587_024_02213_3 crossref_primary_10_1038_s41587_022_01452_6 crossref_primary_10_1038_s41592_019_0691_5 crossref_primary_10_26599_BDMA_2024_9020034 crossref_primary_10_1016_j_cmet_2019_01_020 crossref_primary_10_1038_s44319_023_00026_0 crossref_primary_10_1101_cshperspect_a035386 crossref_primary_10_1016_j_cell_2017_11_011 crossref_primary_10_1016_j_copbio_2017_03_014 crossref_primary_10_1016_j_jmb_2017_07_020 crossref_primary_10_1016_j_cell_2024_06_005 crossref_primary_10_1038_s41588_021_00779_1 crossref_primary_10_1016_j_biosystems_2021_104411 crossref_primary_10_1016_j_stem_2018_09_003 crossref_primary_10_1016_j_cels_2020_06_004 crossref_primary_10_1038_s41592_024_02537_7 crossref_primary_10_1182_blood_2018_08_835355 crossref_primary_10_1016_j_molmet_2017_06_021 crossref_primary_10_1136_jmedgenet_2022_108588 crossref_primary_10_1016_j_cell_2020_03_039 crossref_primary_10_1038_nbt_4208 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_1038_s41592_023_02040_5 crossref_primary_10_1038_s41596_020_0378_5 crossref_primary_10_1016_j_ceb_2022_102084 crossref_primary_10_1016_j_cell_2023_05_043 crossref_primary_10_1016_j_tips_2020_02_005 crossref_primary_10_1126_science_abi8207 crossref_primary_10_7554_eLife_96979_3 crossref_primary_10_1016_j_nbd_2021_105580 crossref_primary_10_3390_cancers13102341 crossref_primary_10_1038_s41592_019_0629_y crossref_primary_10_3389_fmolb_2022_930223 crossref_primary_10_1371_journal_pgen_1008630 crossref_primary_10_1371_journal_pgen_1010710 crossref_primary_10_1371_journal_pone_0249591 crossref_primary_10_7554_eLife_96979 crossref_primary_10_3390_ijms19092731 crossref_primary_10_1002_pros_23934 crossref_primary_10_1038_s41587_020_0437_z crossref_primary_10_1042_EBC20220009 crossref_primary_10_1016_j_phrs_2017_09_008 crossref_primary_10_1016_j_stemcr_2022_11_010 crossref_primary_10_1038_s41467_018_04696_6 crossref_primary_10_1038_s41587_022_01209_1 crossref_primary_10_1002_wsbm_1464 crossref_primary_10_1111_jnc_14856 crossref_primary_10_1038_s41598_018_36008_9 crossref_primary_10_1158_2159_8290_CD_18_1237 crossref_primary_10_1038_s41580_024_00794_0 crossref_primary_10_1038_s41587_021_01059_3 crossref_primary_10_1016_j_ccell_2022_06_001 crossref_primary_10_1021_acssynbio_9b00297 crossref_primary_10_7554_eLife_51254 crossref_primary_10_1186_s13059_017_1218_y crossref_primary_10_1016_j_mito_2020_12_003 crossref_primary_10_1186_s13059_020_1928_4 crossref_primary_10_1074_jbc_RA119_009432 crossref_primary_10_1038_s41467_024_45478_7 crossref_primary_10_1172_JCI153876 crossref_primary_10_1038_s41598_021_90255_x crossref_primary_10_1016_j_molcel_2020_06_012 crossref_primary_10_1002_jcb_30247 crossref_primary_10_1038_s41589_020_0497_x crossref_primary_10_1016_j_cell_2024_07_035 crossref_primary_10_1016_j_isci_2022_104100 crossref_primary_10_1038_nmeth_4196 crossref_primary_10_3389_fsysb_2023_1126044 crossref_primary_10_3390_ijms23031791 crossref_primary_10_1016_j_gpb_2020_06_010 crossref_primary_10_1126_science_abl5829 crossref_primary_10_1093_bib_bbae011 crossref_primary_10_1016_j_cell_2019_07_002 crossref_primary_10_3389_fonc_2021_796477 crossref_primary_10_1002_widm_1414 crossref_primary_10_1016_j_cels_2021_08_003 crossref_primary_10_3390_cells11142225 crossref_primary_10_1016_j_molcel_2022_03_025 crossref_primary_10_1016_j_gde_2018_06_001 crossref_primary_10_1101_cshperspect_a026898 crossref_primary_10_1158_2159_8290_CD_20_1849 crossref_primary_10_3389_fimmu_2021_702636 crossref_primary_10_1038_s41467_018_05452_6 crossref_primary_10_1126_science_aay0262 crossref_primary_10_1038_s43588_021_00086_z crossref_primary_10_1073_pnas_1921187117 crossref_primary_10_5483_BMBRep_2021_54_1_245 crossref_primary_10_1038_nrmicro_2017_29 crossref_primary_10_1097_JBR_0000000000000066 crossref_primary_10_3892_ol_2024_14285 crossref_primary_10_1002_advs_202206939 crossref_primary_10_1016_j_tcb_2024_04_007 crossref_primary_10_7554_eLife_27041 crossref_primary_10_1016_j_celrep_2021_110136 crossref_primary_10_1016_j_trac_2021_116333 crossref_primary_10_1038_s41586_019_1184_5 crossref_primary_10_1016_j_coisb_2017_08_003 crossref_primary_10_1038_s43586_021_00056_9 crossref_primary_10_1016_j_molcel_2023_03_013 crossref_primary_10_1242_dev_170506 crossref_primary_10_1021_acssynbio_2c00627 crossref_primary_10_1074_jbc_RA117_001484 crossref_primary_10_1073_pnas_1816202116 crossref_primary_10_1093_hmg_ddac204 crossref_primary_10_1002_biot_201700227 crossref_primary_10_1038_s41592_020_01053_8 crossref_primary_10_3389_fimmu_2023_1295523 crossref_primary_10_3390_vaccines5040037 crossref_primary_10_1038_s41592_024_02305_7 crossref_primary_10_3390_cells11213339 crossref_primary_10_1038_s41587_024_02320_1 crossref_primary_10_1016_j_biomaterials_2020_120189 crossref_primary_10_1038_s41596_021_00595_1 crossref_primary_10_1146_annurev_neuro_070918_050154 crossref_primary_10_1038_s41540_019_0104_5 crossref_primary_10_1146_annurev_cancerbio_061421_123301 crossref_primary_10_1002_glia_23907 crossref_primary_10_1038_s41551_023_01085_3 crossref_primary_10_1016_j_cels_2018_10_008 crossref_primary_10_1038_s41573_019_0046_z crossref_primary_10_1016_j_gde_2017_06_003 crossref_primary_10_1016_j_molcel_2017_03_007 crossref_primary_10_1091_mbc_e17_03_0144 crossref_primary_10_1038_d41586_024_00061_4 crossref_primary_10_3389_fphys_2018_01457 crossref_primary_10_1016_j_xgen_2022_100229 crossref_primary_10_1016_j_cell_2018_06_010 crossref_primary_10_1091_mbc_E17_10_0594 crossref_primary_10_3390_cancers14215254 crossref_primary_10_1038_nbt_3785 crossref_primary_10_1038_s41593_024_01599_2 crossref_primary_10_1039_D1LC00302J crossref_primary_10_1016_j_cell_2019_09_016 crossref_primary_10_1101_gr_262295_120 crossref_primary_10_3389_fcell_2021_760226 crossref_primary_10_1002_smtd_202401451 crossref_primary_10_1073_pnas_2011763118 crossref_primary_10_1016_j_cell_2022_04_015 crossref_primary_10_1016_j_molcel_2017_03_018 crossref_primary_10_1038_s41467_023_41572_4 crossref_primary_10_1038_s41580_023_00697_6 crossref_primary_10_1126_science_adh7699 crossref_primary_10_15252_msb_202010105 crossref_primary_10_1089_crispr_2019_29045_adr crossref_primary_10_3389_fgene_2022_994069 crossref_primary_10_1016_j_stem_2020_04_020 crossref_primary_10_1016_j_cels_2018_11_005 crossref_primary_10_1038_s41587_021_00875_x crossref_primary_10_1002_dvdy_463 crossref_primary_10_1242_dev_169748 crossref_primary_10_1038_s41467_022_30196_9 crossref_primary_10_1038_s41588_024_01758_y crossref_primary_10_1016_j_stem_2021_11_001 crossref_primary_10_1038_d41586_022_02826_1 crossref_primary_10_1038_s41467_023_41792_8 crossref_primary_10_1186_s13059_024_03254_2 crossref_primary_10_3389_fcell_2022_947769 crossref_primary_10_1038_s41583_022_00576_7 crossref_primary_10_1186_s13073_018_0608_4 crossref_primary_10_1093_bib_bbad123 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_1038_s41587_023_01964_9 crossref_primary_10_1038_s41592_022_01436_z crossref_primary_10_1247_csf_23072 crossref_primary_10_7554_eLife_100949 crossref_primary_10_15252_embj_2020104983 crossref_primary_10_1101_gr_234948_118 crossref_primary_10_1016_j_cell_2018_07_028 crossref_primary_10_1073_pnas_2303224120 crossref_primary_10_3390_cancers14102515 crossref_primary_10_1016_j_chom_2019_08_017 |
Cites_doi | 10.1038/nature17946 10.1016/j.devcel.2007.07.018 10.1016/j.cell.2014.09.029 10.7554/eLife.19760 10.1128/MCB.23.21.7448-7459.2003 10.1126/science.1209038 10.1016/j.cell.2013.02.022 10.1093/nar/gku749 10.1534/g3.116.030973 10.1093/bioinformatics/btn615 10.1126/science.1247651 10.1016/B978-0-12-385114-7.00004-0 10.1016/j.molcel.2015.04.028 10.1038/nprot.2008.211 10.1016/j.celrep.2013.03.024 10.1126/science.1146361 10.1016/j.cell.2015.05.002 10.1016/j.cell.2016.11.038 10.1186/s13059-016-0904-5 10.1016/j.cell.2015.04.044 10.1091/mbc.e05-03-0268 10.1093/nar/gkw377 10.1126/science.aac7041 10.1038/ncb2738 10.1073/pnas.1604435113 10.1016/S0021-9258(19)61473-0 10.1042/BJ20050374 10.1016/j.cell.2014.02.001 10.1016/j.molcel.2014.04.022 10.1126/science.1167983 10.1093/nar/gkv019 10.7554/eLife.07426 10.1128/JB.183.21.6384-6393.2001 10.1016/j.virusres.2012.06.015 10.1016/j.molcel.2007.06.011 10.1016/j.cell.2013.06.044 10.1016/j.cels.2016.04.001 10.1038/nprot.2014.103 10.7554/eLife.07314 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cell.2016.11.048 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1882.e21 |
ExternalDocumentID | PMC5315571 27984733 10_1016_j_cell_2016_11_048 S0092867416316609 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: P50 HG006193 – fundername: NCI NIH HHS grantid: U01 CA168370 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: T32 GM007618 – fundername: NIA NIH HHS grantid: R01 AG041826 – fundername: NIGMS NIH HHS grantid: R01 GM102790 – fundername: NIGMS NIH HHS grantid: F32 GM116331 – fundername: NCI NIH HHS grantid: K99 CA204602 – fundername: NIDA NIH HHS grantid: R01 DA036858 – fundername: NCI NIH HHS grantid: R00 CA204602 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-943ae6f1fff2f24b34cf199567296c4c77a64a6adc2a33256d8da32d10ac0c0c3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:43:06 EDT 2025 Fri Jul 11 06:18:02 EDT 2025 Mon Jul 21 06:01:44 EDT 2025 Tue Jul 01 02:16:56 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | CRISPR unfolded protein response Single-cell RNA-seq cell-to-cell heterogeneity single-cell genomics genome-scale screening CRIPSRi |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-943ae6f1fff2f24b34cf199567296c4c77a64a6adc2a33256d8da32d10ac0c0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, 91120 Jerusalem, Israel Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416316609 |
PMID | 27984733 |
PQID | 1851291625 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5315571 proquest_miscellaneous_1851291625 pubmed_primary_27984733 crossref_citationtrail_10_1016_j_cell_2016_11_048 crossref_primary_10_1016_j_cell_2016_11_048 elsevier_sciencedirect_doi_10_1016_j_cell_2016_11_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-15 |
PublicationDateYYYYMMDD | 2016-12-15 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Heimberg, Bhatnagar, El-Samad, Thomson (bib13) 2016; 2 Kabadi, Ousterout, Hilton, Gersbach (bib18) 2014; 42 Macosko, Basu, Satija, Nemesh, Shekhar, Goldman, Tirosh, Bialas, Kamitaki, Martersteck (bib28) 2015; 161 Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (bib23) 2016; 44 Lee, Iwakoshi, Glimcher (bib24) 2003; 23 Van Der Maaten (bib39) 2014; 15 Sidrauski, Tsai, Kampmann, Hearn, Vedantham, Jaishankar, Sokabe, Mendez, Newton, Tang (bib37) 2015; 4 Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib44) 2016 Carbon, Ireland, Mungall, Shu, Marshall, Lewis (bib4) 2009; 25 Sack, Davoli, Xu, Li, Elledge (bib35) 2016; 6 Smyth, Davenport, Mak (bib38) 2012; 169 Dixit, Parnas, Li, Chen, Fulco, Jerby-Arnon, Marjanovic, Dionne, Burks, Raychowdhury (bib5) 2016; 167 Liang, Zhang, McGrath, Zhang, Cavener (bib25) 2006; 393 Friedman, Hastie, Tibshirani (bib6) 2001 Hamanaka, Bennett, Cullinan, Diehl (bib11) 2005; 16 Oslowski, Urano (bib32) 2011; 490 Jaitin, Kenigsberg, Keren-Shaul, Elefant, Paul, Zaretsky, Mildner, Cohen, Jung, Tanay, Amit (bib16) 2014; 343 Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib7) 2013; 154 Gilbert, Horlbeck, Adamson, Villalta, Chen, Whitehead, Guimaraes, Panning, Ploegh, Bassik (bib8) 2014; 159 Qi, Larson, Gilbert, Doudna, Weissman, Arkin, Lim (bib34) 2013; 152 Acosta-Alvear, Zhou, Blais, Tsikitis, Lents, Arias, Lennon, Kluger, Dynlacht (bib1) 2007; 27 Han, Back, Hur, Lin, Gildersleeve, Shan, Yuan, Krokowski, Wang, Hatzoglou (bib12) 2013; 15 Kanda, Yanagitani, Yokota, Esaki, Kohno (bib20) 2016; 113 Boettcher, McManus (bib2) 2015; 58 Horlbeck, Gilbert, Villalta, Adamson, Pak, Chen, Fields, Park, Corn, Kampmann, Weissman (bib14) 2016; 5 Shoulders, Ryno, Genereux, Moresco, Tu, Wu, Yates, Su, Kelly, Wiseman (bib36) 2013; 3 Komor, Kim, Packer, Zuris, Liu (bib22) 2016; 533 Kampmann, Bassik, Weissman (bib19) 2014; 9 Huang, Sherman, Lempicki (bib15) 2009; 4 Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib21) 2015; 161 Lin, Li, Yasumura, Cohen, Zhang, Panning, Shokat, Lavail, Walter (bib26) 2007; 318 Wang, Birsoy, Hughes, Krupczak, Post, Wei, Lander, Sabatini (bib41) 2015; 350 Jonikas, Collins, Denic, Oh, Quan, Schmid, Weibezahn, Schwappach, Walter, Weissman, Schuldiner (bib17) 2009; 323 Nissim, Perli, Fridkin, Perez-Pinera, Lu (bib31) 2014; 54 Lin, Chen, Ma (bib27) 2010 Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani, Zhang, Nureki (bib30) 2014; 156 Yamamoto, Sato, Matsui, Sato, Okada, Yoshida, Harada, Mori (bib43) 2007; 13 Müller-Kuller, Ackermann, Kolodziej, Brendel, Fritsch, Lachmann, Kunkel, Lausen, Schambach, Moritz, Grez (bib29) 2015; 43 Plumb, Zhang, Appathurai, Mariappan (bib33) 2015; 4 Candès, Li, Ma, Wright (bib3) 2011; 58 Gu, Crawford, O’Donovan, Wilson, Chow, Retallack, DeRisi (bib9) 2016; 17 Walter, Ron (bib40) 2011; 334 Wang, Shen, Arenzana, Tirasophon, Kaufman, Prywes (bib42) 2000; 275 Haldimann, Wanner (bib10) 2001; 183 Heimberg (10.1016/j.cell.2016.11.048_bib13) 2016; 2 Walter (10.1016/j.cell.2016.11.048_bib40) 2011; 334 Kampmann (10.1016/j.cell.2016.11.048_bib19) 2014; 9 Kuleshov (10.1016/j.cell.2016.11.048_bib23) 2016; 44 Wang (10.1016/j.cell.2016.11.048_bib41) 2015; 350 Dixit (10.1016/j.cell.2016.11.048_bib5) 2016; 167 Qi (10.1016/j.cell.2016.11.048_bib34) 2013; 152 Wang (10.1016/j.cell.2016.11.048_bib42) 2000; 275 Müller-Kuller (10.1016/j.cell.2016.11.048_bib29) 2015; 43 Haldimann (10.1016/j.cell.2016.11.048_bib10) 2001; 183 Van Der Maaten (10.1016/j.cell.2016.11.048_bib39) 2014; 15 Zheng (10.1016/j.cell.2016.11.048_bib44) 2016 Komor (10.1016/j.cell.2016.11.048_bib22) 2016; 533 Klein (10.1016/j.cell.2016.11.048_bib21) 2015; 161 Gilbert (10.1016/j.cell.2016.11.048_bib7) 2013; 154 Lin (10.1016/j.cell.2016.11.048_bib27) 2010 Boettcher (10.1016/j.cell.2016.11.048_bib2) 2015; 58 Carbon (10.1016/j.cell.2016.11.048_bib4) 2009; 25 Lee (10.1016/j.cell.2016.11.048_bib24) 2003; 23 Jonikas (10.1016/j.cell.2016.11.048_bib17) 2009; 323 Gu (10.1016/j.cell.2016.11.048_bib9) 2016; 17 Yamamoto (10.1016/j.cell.2016.11.048_bib43) 2007; 13 Gilbert (10.1016/j.cell.2016.11.048_bib8) 2014; 159 Huang (10.1016/j.cell.2016.11.048_bib15) 2009; 4 Kabadi (10.1016/j.cell.2016.11.048_bib18) 2014; 42 Macosko (10.1016/j.cell.2016.11.048_bib28) 2015; 161 Lin (10.1016/j.cell.2016.11.048_bib26) 2007; 318 Hamanaka (10.1016/j.cell.2016.11.048_bib11) 2005; 16 Candès (10.1016/j.cell.2016.11.048_bib3) 2011; 58 Kanda (10.1016/j.cell.2016.11.048_bib20) 2016; 113 Nishimasu (10.1016/j.cell.2016.11.048_bib30) 2014; 156 Oslowski (10.1016/j.cell.2016.11.048_bib32) 2011; 490 Sidrauski (10.1016/j.cell.2016.11.048_bib37) 2015; 4 Sack (10.1016/j.cell.2016.11.048_bib35) 2016; 6 Jaitin (10.1016/j.cell.2016.11.048_bib16) 2014; 343 Han (10.1016/j.cell.2016.11.048_bib12) 2013; 15 Horlbeck (10.1016/j.cell.2016.11.048_bib14) 2016; 5 Acosta-Alvear (10.1016/j.cell.2016.11.048_bib1) 2007; 27 Nissim (10.1016/j.cell.2016.11.048_bib31) 2014; 54 Shoulders (10.1016/j.cell.2016.11.048_bib36) 2013; 3 Smyth (10.1016/j.cell.2016.11.048_bib38) 2012; 169 Friedman (10.1016/j.cell.2016.11.048_bib6) 2001 Plumb (10.1016/j.cell.2016.11.048_bib33) 2015; 4 Liang (10.1016/j.cell.2016.11.048_bib25) 2006; 393 28398325 - Nat Biotechnol. 2017 Apr 11;35(4):339-340. doi: 10.1038/nbt.3849. 28096529 - Nat Rev Genet. 2017 Jan 18;18(2):67. doi: 10.1038/nrg.2016.171. 28245215 - Nat Methods. 2017 Feb 28;14(3):237-238. doi: 10.1038/nmeth.4196. |
References_xml | – volume: 318 start-page: 944 year: 2007 end-page: 949 ident: bib26 article-title: IRE1 signaling affects cell fate during the unfolded protein response publication-title: Science – volume: 23 start-page: 7448 year: 2003 end-page: 7459 ident: bib24 article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response publication-title: Mol. Cell. Biol. – volume: 275 start-page: 27013 year: 2000 end-page: 27020 ident: bib42 article-title: Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response publication-title: J. Biol. Chem. – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: bib22 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 334 start-page: 1081 year: 2011 end-page: 1086 ident: bib40 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 183 start-page: 6384 year: 2001 end-page: 6393 ident: bib10 article-title: Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria publication-title: J. Bacteriol. – volume: 323 start-page: 1693 year: 2009 end-page: 1697 ident: bib17 article-title: Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum publication-title: Science – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: bib21 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 4 start-page: 44 year: 2009 end-page: 57 ident: bib15 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. – volume: 156 start-page: 935 year: 2014 end-page: 949 ident: bib30 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell – volume: 2 start-page: 239 year: 2016 end-page: 250 ident: bib13 article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing publication-title: Cell Syst. – volume: 42 start-page: e147 year: 2014 ident: bib18 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Nucleic Acids Res. – volume: 15 start-page: 3221 year: 2014 end-page: 3245 ident: bib39 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J. Mach. Learn. Res. – volume: 169 start-page: 415 year: 2012 end-page: 429 ident: bib38 article-title: The origin of genetic diversity in HIV-1 publication-title: Virus Res. – year: 2001 ident: bib6 article-title: The elements of statistical learning Springer series in statistics – volume: 43 start-page: 1577 year: 2015 end-page: 1592 ident: bib29 article-title: A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells publication-title: Nucleic Acids Res. – volume: 490 start-page: 71 year: 2011 end-page: 92 ident: bib32 article-title: Measuring ER stress and the unfolded protein response using mammalian tissue culture system publication-title: Methods Enzymol. – volume: 58 start-page: 11 year: 2011 ident: bib3 article-title: Robust principal component analysis? publication-title: J. Assoc. Comput. Mach. – volume: 16 start-page: 5493 year: 2005 end-page: 5501 ident: bib11 article-title: PERK and GCN2 contribute to eIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway publication-title: Mol. Biol. Cell – volume: 393 start-page: 201 year: 2006 end-page: 209 ident: bib25 article-title: PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis publication-title: Biochem. J. – volume: 161 start-page: 1202 year: 2015 end-page: 1214 ident: bib28 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell – volume: 4 start-page: e07314 year: 2015 ident: bib37 article-title: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response publication-title: eLife – volume: 113 start-page: E5886 year: 2016 end-page: E5895 ident: bib20 article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway publication-title: Proc. Natl. Acad. Sci. USA – volume: 58 start-page: 575 year: 2015 end-page: 585 ident: bib2 article-title: Choosing the right tool for the job: RNAi, TALEN, or CRISPR publication-title: Mol. Cell – volume: 25 start-page: 288 year: 2009 end-page: 289 ident: bib4 article-title: AmiGO: online access to ontology and annotation data publication-title: Bioinformatics – year: 2016 ident: bib44 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: bioRxiv – year: 2010 ident: bib27 article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: ArXiv – volume: 54 start-page: 698 year: 2014 end-page: 710 ident: bib31 article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells publication-title: Mol. Cell – volume: 3 start-page: 1279 year: 2013 end-page: 1292 ident: bib36 article-title: Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments publication-title: Cell Rep. – volume: 167 start-page: 1853 year: 2016 end-page: 1866 ident: bib5 article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens publication-title: Cell – volume: 9 start-page: 1825 year: 2014 end-page: 1847 ident: bib19 article-title: Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps publication-title: Nat. Protoc. – volume: 27 start-page: 53 year: 2007 end-page: 66 ident: bib1 article-title: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks publication-title: Mol. Cell – volume: 343 start-page: 776 year: 2014 end-page: 779 ident: bib16 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science – volume: 4 start-page: e07426 year: 2015 ident: bib33 article-title: A functional link between the co-translational protein translocation pathway and the UPR publication-title: Elife – volume: 159 start-page: 647 year: 2014 end-page: 661 ident: bib8 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell – volume: 350 start-page: 1096 year: 2015 end-page: 1101 ident: bib41 article-title: Identification and characterization of essential genes in the human genome publication-title: Science – volume: 13 start-page: 365 year: 2007 end-page: 376 ident: bib43 article-title: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1 publication-title: Dev. Cell – volume: 152 start-page: 1173 year: 2013 end-page: 1183 ident: bib34 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell – volume: 154 start-page: 442 year: 2013 end-page: 451 ident: bib7 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell – volume: 6 start-page: 2781 year: 2016 end-page: 2790 ident: bib35 article-title: Sources of error in mammalian genetic screens publication-title: G3 (Bethesda) – volume: 15 start-page: 481 year: 2013 end-page: 490 ident: bib12 article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death publication-title: Nat. Cell Biol. – volume: 17 start-page: 41 year: 2016 ident: bib9 article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications publication-title: Genome Biol. – volume: 5 start-page: e19760 year: 2016 ident: bib14 article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation publication-title: eLife – volume: 44 start-page: W90 year: 2016 end-page: W97 ident: bib23 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. – volume: 533 start-page: 420 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib22 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 13 start-page: 365 year: 2007 ident: 10.1016/j.cell.2016.11.048_bib43 article-title: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1 publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.07.018 – volume: 159 start-page: 647 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib8 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell doi: 10.1016/j.cell.2014.09.029 – volume: 5 start-page: e19760 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib14 article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation publication-title: eLife doi: 10.7554/eLife.19760 – volume: 58 start-page: 11 year: 2011 ident: 10.1016/j.cell.2016.11.048_bib3 article-title: Robust principal component analysis? publication-title: J. Assoc. Comput. Mach. – volume: 23 start-page: 7448 year: 2003 ident: 10.1016/j.cell.2016.11.048_bib24 article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.21.7448-7459.2003 – volume: 334 start-page: 1081 year: 2011 ident: 10.1016/j.cell.2016.11.048_bib40 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science doi: 10.1126/science.1209038 – volume: 152 start-page: 1173 year: 2013 ident: 10.1016/j.cell.2016.11.048_bib34 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 42 start-page: e147 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib18 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku749 – volume: 6 start-page: 2781 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib35 article-title: Sources of error in mammalian genetic screens publication-title: G3 (Bethesda) doi: 10.1534/g3.116.030973 – volume: 25 start-page: 288 year: 2009 ident: 10.1016/j.cell.2016.11.048_bib4 article-title: AmiGO: online access to ontology and annotation data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn615 – volume: 343 start-page: 776 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib16 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science doi: 10.1126/science.1247651 – volume: 490 start-page: 71 year: 2011 ident: 10.1016/j.cell.2016.11.048_bib32 article-title: Measuring ER stress and the unfolded protein response using mammalian tissue culture system publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-385114-7.00004-0 – volume: 58 start-page: 575 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib2 article-title: Choosing the right tool for the job: RNAi, TALEN, or CRISPR publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.04.028 – volume: 4 start-page: 44 year: 2009 ident: 10.1016/j.cell.2016.11.048_bib15 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – year: 2010 ident: 10.1016/j.cell.2016.11.048_bib27 article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: ArXiv – volume: 3 start-page: 1279 year: 2013 ident: 10.1016/j.cell.2016.11.048_bib36 article-title: Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.03.024 – volume: 318 start-page: 944 year: 2007 ident: 10.1016/j.cell.2016.11.048_bib26 article-title: IRE1 signaling affects cell fate during the unfolded protein response publication-title: Science doi: 10.1126/science.1146361 – volume: 161 start-page: 1202 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib28 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 167 start-page: 1853 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib5 article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 17 start-page: 41 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib9 article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications publication-title: Genome Biol. doi: 10.1186/s13059-016-0904-5 – volume: 161 start-page: 1187 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib21 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 16 start-page: 5493 year: 2005 ident: 10.1016/j.cell.2016.11.048_bib11 article-title: PERK and GCN2 contribute to eIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-03-0268 – volume: 44 start-page: W90 issue: W1 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib23 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – volume: 350 start-page: 1096 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib41 article-title: Identification and characterization of essential genes in the human genome publication-title: Science doi: 10.1126/science.aac7041 – volume: 15 start-page: 481 year: 2013 ident: 10.1016/j.cell.2016.11.048_bib12 article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death publication-title: Nat. Cell Biol. doi: 10.1038/ncb2738 – volume: 113 start-page: E5886 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib20 article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604435113 – year: 2016 ident: 10.1016/j.cell.2016.11.048_bib44 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: bioRxiv – volume: 275 start-page: 27013 year: 2000 ident: 10.1016/j.cell.2016.11.048_bib42 article-title: Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)61473-0 – volume: 393 start-page: 201 year: 2006 ident: 10.1016/j.cell.2016.11.048_bib25 article-title: PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis publication-title: Biochem. J. doi: 10.1042/BJ20050374 – volume: 156 start-page: 935 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib30 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 54 start-page: 698 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib31 article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.022 – volume: 323 start-page: 1693 year: 2009 ident: 10.1016/j.cell.2016.11.048_bib17 article-title: Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum publication-title: Science doi: 10.1126/science.1167983 – year: 2001 ident: 10.1016/j.cell.2016.11.048_bib6 – volume: 43 start-page: 1577 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib29 article-title: A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv019 – volume: 4 start-page: e07426 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib33 article-title: A functional link between the co-translational protein translocation pathway and the UPR publication-title: Elife doi: 10.7554/eLife.07426 – volume: 183 start-page: 6384 year: 2001 ident: 10.1016/j.cell.2016.11.048_bib10 article-title: Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria publication-title: J. Bacteriol. doi: 10.1128/JB.183.21.6384-6393.2001 – volume: 169 start-page: 415 year: 2012 ident: 10.1016/j.cell.2016.11.048_bib38 article-title: The origin of genetic diversity in HIV-1 publication-title: Virus Res. doi: 10.1016/j.virusres.2012.06.015 – volume: 27 start-page: 53 year: 2007 ident: 10.1016/j.cell.2016.11.048_bib1 article-title: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.011 – volume: 154 start-page: 442 year: 2013 ident: 10.1016/j.cell.2016.11.048_bib7 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 2 start-page: 239 year: 2016 ident: 10.1016/j.cell.2016.11.048_bib13 article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing publication-title: Cell Syst. doi: 10.1016/j.cels.2016.04.001 – volume: 9 start-page: 1825 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib19 article-title: Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.103 – volume: 4 start-page: e07314 year: 2015 ident: 10.1016/j.cell.2016.11.048_bib37 article-title: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response publication-title: eLife doi: 10.7554/eLife.07314 – volume: 15 start-page: 3221 year: 2014 ident: 10.1016/j.cell.2016.11.048_bib39 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J. Mach. Learn. Res. – reference: 28096529 - Nat Rev Genet. 2017 Jan 18;18(2):67. doi: 10.1038/nrg.2016.171. – reference: 28245215 - Nat Methods. 2017 Feb 28;14(3):237-238. doi: 10.1038/nmeth.4196. – reference: 28398325 - Nat Biotechnol. 2017 Apr 11;35(4):339-340. doi: 10.1038/nbt.3849. |
SSID | ssj0008555 |
Score | 2.672409 |
Snippet | Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1867 |
SubjectTerms | Animals cell-to-cell heterogeneity Clustered Regularly Interspaced Short Palindromic Repeats CRIPSRi CRISPR Endoribonucleases Feedback genome-scale screening Humans Models, Molecular Protein Serine-Threonine Kinases RNA, Guide, CRISPR-Cas Systems - metabolism Sequence Analysis, RNA - methods Single-Cell Analysis - methods single-cell genomics Single-cell RNA-seq Transcription, Genetic Unfolded Protein Response |
Title | A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response |
URI | https://dx.doi.org/10.1016/j.cell.2016.11.048 https://www.ncbi.nlm.nih.gov/pubmed/27984733 https://www.proquest.com/docview/1851291625 https://pubmed.ncbi.nlm.nih.gov/PMC5315571 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEBYhUNjLsu2-0seiwt6KN7YlS_KxzTa0hZSQbCA3IcsSmxKc0KbQ_vvO-MWmXXIoPtmWjdBIM5_s75sh5GdoleS5s0HGuAhgJapAce4Cb0LpY69yFaJQeHQrrmb8Zp7MO2TQaGGQVln7_sqnl966vtKvR7O_XixQ45vGSpSIIhKiFPExrkoR3_yi9cYqSaoqBimsfGhdC2cqjhd-HEd6l_iFmTyxBtD_g9Nb8PmaQ_lPUBp-Ih9rNEnPqw7vk44rDsheVV_y-TO5P6ejmjD45HI6hTC1dMEAukMHk-vpeEKnFnk3cJ2Ol2aDAJZelmqqBzptczzT3_jTvhRA0JWnABnpDOblMod3jjHPw6Kgk4pr676Q2fDyz-AqqIssBBZrGQQpZ8YJH3kPpok5mMx6lG0LQN3CciulEdwIk9vYMAYAKVe5YXEehcaGcLCvpFusCvedUJ5m1oQqy6Is5omHQCdl6GPhJXiGLBU9EjWjq22dgRwLYSx1QzW702gRjRaBrYkGi_TIWfvMusq_sbN10hhNb80iDQFi53OnjYU1LC-8bQq3enzQAGcAEUWwS-yRb5XF237EMoXYzliPyK250DbA1N3bd4rF3zKFN3i-JJHR4Tv7e0Q-4BnSaqLkmHQ394_uBMDRJvtRzv4X9oQOMg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkQviDfhuUhwQqb2er1rHziUtFVCmypKGim3Zb3eFakip2pSQX8Xf5AZPyICqAekyjfvQ6Mdz8y31jczAO9CmypROBvksZABWmIapEK4wJtQee7TIg0pUXhwInsT8WWaTLfgZ5sLQ7TKxvfXPr3y1s2b3eY0d89nM8rxzXgqK0QRSRlmDbPyyF19x3vb8lN_H5X8nvPDg9NuL2haCwSWKvgHmYiNkz7yHgXiAgW1npKVJWJNaYVVykhhpCksN3GMsKBICxPzIgqNDfGJcd9bcBvRhyJv0J9-Xrv_NEnqtgkZuhoUr8nUqUll9Dee-GTyI5UOpaZD_46Gf6PdP0mbv0XBw_twr4GvbK8-oQew5cqHcKduaHn1CC722KBhKP5wBRtjXJy7oIvisO6oPx6O2NgS0Qffs-HcrAgxs4MqfWvJxuui0myfWAJVxgVbeIYYlU3QEOYF7jmkwhKzko1qcq97DJMbOfonsF0uSvcMmMhya8I0z6Oci8RjZFUq9Fx6ha4oz2QHovZ0tW1KnlPnjbluuW1nmjSiSSN4F9KokQ58WK85rwt-XDs7aZWmNz5bjRHp2nVvWw1rtGcaNqVbXC414ieEYBFeSzvwtNb4Wg6uMgQTcdwBtfEtrCdQrfDNkXL2raoZjq42SVT0_D_lfQN3e6eDY33cPzl6ATs0QpyeKHkJ26uLS_cKkdkqf11ZAoOvN216vwDwFkvI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiplexed+Single-Cell+CRISPR+Screening+Platform+Enables+Systematic+Dissection+of+the+Unfolded+Protein+Response&rft.jtitle=Cell&rft.au=Adamson%2C+Britt&rft.au=Norman%2C+Thomas+M.&rft.au=Jost%2C+Marco&rft.au=Cho%2C+Min+Y.&rft.date=2016-12-15&rft.issn=0092-8674&rft.volume=167&rft.issue=7&rft.spage=1867&rft.epage=1882.e21&rft_id=info:doi/10.1016%2Fj.cell.2016.11.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2016_11_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |