A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response

Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 167; no. 7; pp. 1867 - 1882.e21
Main Authors Adamson, Britt, Norman, Thomas M., Jost, Marco, Cho, Min Y., Nuñez, James K., Chen, Yuwen, Villalta, Jacqueline E., Gilbert, Luke A., Horlbeck, Max A., Hein, Marco Y., Pak, Ryan A., Gray, Andrew N., Gross, Carol A., Dixit, Atray, Parnas, Oren, Regev, Aviv, Weissman, Jonathan S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. [Display omitted] •Perturb-seq allows parallel screening with rich phenotypic output from single cells•Simultaneous delivery and identification of up to three CRISPR perturbations•Genome-scale screens dissect the mammalian unfolded protein response•Analytical methods separate perturbation responses from confounding effects A strategy for barcoding CRISPR-mediated perturbations allows pooled expression profiling via single-cell RNA sequencing. Application to the mammalian unfolded protein response then enabled systematic delineation of the transcriptional arms of the response and functional clustering of genes affecting ER homeostasis.
AbstractList Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses. [Display omitted] •Perturb-seq allows parallel screening with rich phenotypic output from single cells•Simultaneous delivery and identification of up to three CRISPR perturbations•Genome-scale screens dissect the mammalian unfolded protein response•Analytical methods separate perturbation responses from confounding effects A strategy for barcoding CRISPR-mediated perturbations allows pooled expression profiling via single-cell RNA sequencing. Application to the mammalian unfolded protein response then enabled systematic delineation of the transcriptional arms of the response and functional clustering of genes affecting ER homeostasis.
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ~100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Author Jost, Marco
Pak, Ryan A.
Hein, Marco Y.
Norman, Thomas M.
Villalta, Jacqueline E.
Gray, Andrew N.
Regev, Aviv
Gross, Carol A.
Cho, Min Y.
Horlbeck, Max A.
Gilbert, Luke A.
Weissman, Jonathan S.
Nuñez, James K.
Adamson, Britt
Parnas, Oren
Chen, Yuwen
Dixit, Atray
AuthorAffiliation 5 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
8 Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA
7 Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
4 Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
9 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142
10 Broad Institute of MIT and Harvard, Cambridge MA 02142, USA
3 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
2 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
1 Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
6 Innovative Genomics Initiative, University of California, Berk
AuthorAffiliation_xml – name: 6 Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
– name: 1 Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 2 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 7 Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 9 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142
– name: 10 Broad Institute of MIT and Harvard, Cambridge MA 02142, USA
– name: 8 Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 3 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 12 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02140, USA
– name: 4 Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 5 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
Author_xml – sequence: 1
  givenname: Britt
  surname: Adamson
  fullname: Adamson, Britt
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 2
  givenname: Thomas M.
  surname: Norman
  fullname: Norman, Thomas M.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 3
  givenname: Marco
  surname: Jost
  fullname: Jost, Marco
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 4
  givenname: Min Y.
  surname: Cho
  fullname: Cho, Min Y.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 5
  givenname: James K.
  surname: Nuñez
  fullname: Nuñez, James K.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 6
  givenname: Yuwen
  surname: Chen
  fullname: Chen, Yuwen
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 7
  givenname: Jacqueline E.
  surname: Villalta
  fullname: Villalta, Jacqueline E.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 8
  givenname: Luke A.
  surname: Gilbert
  fullname: Gilbert, Luke A.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 9
  givenname: Max A.
  surname: Horlbeck
  fullname: Horlbeck, Max A.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 10
  givenname: Marco Y.
  surname: Hein
  fullname: Hein, Marco Y.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 11
  givenname: Ryan A.
  surname: Pak
  fullname: Pak, Ryan A.
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 12
  givenname: Andrew N.
  surname: Gray
  fullname: Gray, Andrew N.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 13
  givenname: Carol A.
  surname: Gross
  fullname: Gross, Carol A.
  organization: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 14
  givenname: Atray
  surname: Dixit
  fullname: Dixit, Atray
  organization: Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142, USA
– sequence: 15
  givenname: Oren
  surname: Parnas
  fullname: Parnas, Oren
  organization: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 16
  givenname: Aviv
  surname: Regev
  fullname: Regev, Aviv
  organization: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 17
  givenname: Jonathan S.
  surname: Weissman
  fullname: Weissman, Jonathan S.
  email: jonathan.weissman@ucsf.edu
  organization: Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27984733$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rHCEYhaWkNJu0f6AXxcvezESdcT6gFMLmExKy7DbX4jqviYujW3VD8-_rsElpexG8UF7f8xw45wgdOO8Aoc-UlJTQ5mRTKrC2ZPldUlqSunuHZpT0bVHTlh2gGSE9K7qmrQ_RUYwbQkjHOf-ADlnbd3VbVTMUTvHtziaztfALBrwy7sFCMc9cPF9erxZLvFIBwOU5XliZtA8jPndybSHi1XNMMMpkFD4zMYJKxjvsNU6PgO-d9nbIzEXwCYzDS4hb7yJ8RO-1tBE-vdzH6P7i_Mf8qri5u7yen94UijOair6uJDSaaq2ZZvW6qpWmfc-blvWNqlXbyqaWjRwUk1XFeDN0g6zYQIlUJJ_qGH3fc7e79QiDApeCtGIbzCjDs_DSiH9_nHkUD_5J8Ipy3tIM-PoCCP7nDmISo4lT5NKB30VBO05ZTxvG8-qXv73-mLwGnRe6_YIKPsYAWiiT5JRXtjZWUCKmTsVGTAZi6lRQKnKnWcr-k77S3xR924sgJ_xkIIioDDgFgwm5JzF485b8NxSRvK8
CitedBy_id crossref_primary_10_1016_j_cell_2023_03_035
crossref_primary_10_1016_j_semcdb_2019_05_007
crossref_primary_10_1089_crispr_2021_0063
crossref_primary_10_1007_s11427_024_2813_y
crossref_primary_10_1177_2472555219883621
crossref_primary_10_1093_bioinformatics_btab847
crossref_primary_10_1093_plcell_koad027
crossref_primary_10_1038_s41592_021_01153_z
crossref_primary_10_1016_j_cels_2024_04_008
crossref_primary_10_1093_bib_bbad313
crossref_primary_10_1146_annurev_immunol_042718_041522
crossref_primary_10_3324_haematol_2023_284901
crossref_primary_10_1093_protein_gzac011
crossref_primary_10_1093_hmg_ddy120
crossref_primary_10_1007_s00281_022_00972_2
crossref_primary_10_1016_j_gde_2021_08_006
crossref_primary_10_1186_s13059_021_02268_4
crossref_primary_10_1016_j_cels_2024_12_002
crossref_primary_10_1002_advs_202303799
crossref_primary_10_1038_s41588_022_01118_8
crossref_primary_10_1038_s41588_022_01061_8
crossref_primary_10_1038_s41551_024_01278_4
crossref_primary_10_1038_547024a
crossref_primary_10_1038_s41556_020_00620_7
crossref_primary_10_1038_s41573_023_00688_4
crossref_primary_10_1126_sciadv_abi4360
crossref_primary_10_1093_plcell_koab099
crossref_primary_10_1021_acssynbio_0c00499
crossref_primary_10_1146_annurev_physiol_031522_100639
crossref_primary_10_1016_j_semcdb_2019_05_013
crossref_primary_10_1038_s41467_020_17440_w
crossref_primary_10_1093_nargab_lqaa012
crossref_primary_10_3389_fimmu_2020_00633
crossref_primary_10_1038_s41568_019_0132_x
crossref_primary_10_1161_ATVBAHA_117_309645
crossref_primary_10_1016_j_molcel_2018_03_024
crossref_primary_10_1073_pnas_2207392119
crossref_primary_10_1111_imr_12976
crossref_primary_10_1111_mmi_15103
crossref_primary_10_3233_JAD_180422
crossref_primary_10_1016_j_mcn_2020_103532
crossref_primary_10_1007_s00239_023_10114_3
crossref_primary_10_1007_s10565_021_09586_0
crossref_primary_10_3389_fnmol_2021_733012
crossref_primary_10_1038_s44161_023_00411_x
crossref_primary_10_1101_gad_297796_117
crossref_primary_10_3389_fgene_2022_1100016
crossref_primary_10_1186_s12967_023_04328_8
crossref_primary_10_1016_j_cell_2016_11_038
crossref_primary_10_3390_v9080215
crossref_primary_10_1038_s41556_025_01622_z
crossref_primary_10_1038_s41579_018_0002_7
crossref_primary_10_1038_s41592_023_02144_y
crossref_primary_10_1038_s41587_020_0470_y
crossref_primary_10_15252_msb_202010025
crossref_primary_10_1016_j_neuron_2022_09_030
crossref_primary_10_1016_j_ggedit_2021_100008
crossref_primary_10_1007_s00018_022_04482_0
crossref_primary_10_1089_gen_40_09_08
crossref_primary_10_1186_s13059_020_02085_1
crossref_primary_10_1016_j_it_2023_05_001
crossref_primary_10_1093_bfgp_elx046
crossref_primary_10_3390_genes13071232
crossref_primary_10_1016_j_cell_2023_02_015
crossref_primary_10_1016_j_semcancer_2018_04_001
crossref_primary_10_1038_ng_3963
crossref_primary_10_1093_hmg_ddac193
crossref_primary_10_1161_CIRCGEN_118_002090
crossref_primary_10_1016_j_cbpa_2019_04_015
crossref_primary_10_1186_s13059_024_03351_2
crossref_primary_10_3390_cancers15143566
crossref_primary_10_1038_s41467_020_15053_x
crossref_primary_10_1038_s41598_018_38146_6
crossref_primary_10_1038_s41598_023_31141_6
crossref_primary_10_1038_s41434_020_0142_z
crossref_primary_10_1038_s41586_020_2078_2
crossref_primary_10_1080_21541264_2024_2334110
crossref_primary_10_7554_eLife_42940
crossref_primary_10_1101_gr_278001_123
crossref_primary_10_1016_j_gde_2019_03_002
crossref_primary_10_1096_fj_201801350RR
crossref_primary_10_1038_s41556_023_01337_z
crossref_primary_10_1186_s13073_022_01134_7
crossref_primary_10_1093_bfgp_ely009
crossref_primary_10_1038_s41540_024_00446_1
crossref_primary_10_1158_0008_5472_CAN_22_2717
crossref_primary_10_1038_s41592_018_0113_0
crossref_primary_10_1111_boc_201800029
crossref_primary_10_1186_s13045_023_01495_5
crossref_primary_10_1002_JLB_5MR0321_170R
crossref_primary_10_15252_msb_20178046
crossref_primary_10_1093_neuonc_noac211
crossref_primary_10_1515_medgen_2022_2156
crossref_primary_10_1016_j_celrep_2022_111775
crossref_primary_10_1038_s41587_022_01448_2
crossref_primary_10_1038_s41596_022_00700_y
crossref_primary_10_1038_s41592_019_0433_8
crossref_primary_10_1016_j_copbio_2018_02_004
crossref_primary_10_1074_jbc_M117_813790
crossref_primary_10_1016_j_it_2021_03_003
crossref_primary_10_1038_s41587_020_0600_6
crossref_primary_10_1038_s41587_024_02347_4
crossref_primary_10_1021_acschembio_7b00965
crossref_primary_10_1021_acs_analchem_8b04757
crossref_primary_10_1021_acschembio_7b00842
crossref_primary_10_1073_pnas_1906275116
crossref_primary_10_1146_annurev_immunol_042617_053035
crossref_primary_10_1242_jcs_238402
crossref_primary_10_1016_j_molcel_2017_09_017
crossref_primary_10_1038_s41588_022_01106_y
crossref_primary_10_1016_j_jare_2024_10_035
crossref_primary_10_1016_j_molcel_2017_09_012
crossref_primary_10_1016_j_xgen_2023_100487
crossref_primary_10_1038_nrg_2016_171
crossref_primary_10_1360_nso_20220057
crossref_primary_10_3389_fimmu_2022_1041451
crossref_primary_10_1016_j_psc_2025_01_002
crossref_primary_10_1016_j_cels_2020_11_013
crossref_primary_10_1002_bab_1901
crossref_primary_10_1038_s41582_020_0373_z
crossref_primary_10_1038_s10038_020_00844_3
crossref_primary_10_1146_annurev_cancerbio_030518_055742
crossref_primary_10_12688_f1000research_12138_1
crossref_primary_10_1083_jcb_202006180
crossref_primary_10_1038_s42003_020_0888_2
crossref_primary_10_3390_cells12040538
crossref_primary_10_15252_msb_20178064
crossref_primary_10_1016_j_cell_2022_02_015
crossref_primary_10_1016_j_xgen_2022_100177
crossref_primary_10_1038_s41576_018_0053_7
crossref_primary_10_1038_s41592_023_02002_x
crossref_primary_10_1038_s43018_020_0067_x
crossref_primary_10_1134_S1819712421040152
crossref_primary_10_3389_fmolb_2021_647277
crossref_primary_10_1093_bib_bbae617
crossref_primary_10_1111_febs_17003
crossref_primary_10_1016_j_isci_2024_109354
crossref_primary_10_1242_dev_182667
crossref_primary_10_1016_j_bbagrm_2019_194441
crossref_primary_10_1038_s41590_022_01224_z
crossref_primary_10_1007_s11427_023_2571_0
crossref_primary_10_1073_pnas_2010738117
crossref_primary_10_3389_fbioe_2020_00882
crossref_primary_10_1126_scitranslmed_abj8670
crossref_primary_10_1038_nbt_3849
crossref_primary_10_1038_s41580_023_00633_8
crossref_primary_10_1016_j_gde_2019_02_007
crossref_primary_10_1038_nmeth_4604
crossref_primary_10_1093_bib_bbz038
crossref_primary_10_1016_j_tcb_2022_04_006
crossref_primary_10_1016_j_ymeth_2017_03_008
crossref_primary_10_1126_scitranslmed_abd3049
crossref_primary_10_7554_eLife_100949_3
crossref_primary_10_1016_j_copbio_2017_11_015
crossref_primary_10_1038_s41467_021_24324_0
crossref_primary_10_1038_s41593_018_0077_5
crossref_primary_10_1038_s41467_024_51424_4
crossref_primary_10_1016_j_celrep_2020_108563
crossref_primary_10_1186_s13073_017_0467_4
crossref_primary_10_1038_s41568_022_00441_w
crossref_primary_10_1084_jem_20221085
crossref_primary_10_1016_j_devcel_2021_03_005
crossref_primary_10_1002_ijch_202200056
crossref_primary_10_1126_science_abb9662
crossref_primary_10_1158_0008_5472_CAN_21_1017
crossref_primary_10_1016_j_molcel_2021_12_012
crossref_primary_10_1080_21553769_2019_1670739
crossref_primary_10_1038_s41556_025_01626_9
crossref_primary_10_1038_s41576_022_00568_4
crossref_primary_10_1088_1758_5090_ac39a9
crossref_primary_10_1038_s41587_021_01160_7
crossref_primary_10_1101_cshperspect_a041382
crossref_primary_10_1101_cshperspect_a033886
crossref_primary_10_1016_j_cbpa_2017_06_003
crossref_primary_10_1093_nar_gkae858
crossref_primary_10_3390_ijms25094854
crossref_primary_10_1038_s41580_022_00571_x
crossref_primary_10_1186_s13059_023_03084_8
crossref_primary_10_1186_s13073_020_00788_5
crossref_primary_10_7554_eLife_46595
crossref_primary_10_1016_j_tibtech_2020_02_013
crossref_primary_10_1161_CIRCRESAHA_117_310910
crossref_primary_10_12688_f1000research_15274_1
crossref_primary_10_1091_mbc_E24_01_0041
crossref_primary_10_1016_j_biotechadv_2018_01_006
crossref_primary_10_1042_EBC20200061
crossref_primary_10_1016_j_coisb_2017_05_008
crossref_primary_10_1016_j_neuron_2019_07_014
crossref_primary_10_1016_j_coisb_2017_10_003
crossref_primary_10_1038_nri_2017_51
crossref_primary_10_1038_s41587_021_01172_3
crossref_primary_10_1186_s13578_019_0304_0
crossref_primary_10_1016_j_ddtec_2021_06_003
crossref_primary_10_3389_fcell_2023_1156152
crossref_primary_10_1038_s41592_022_01705_x
crossref_primary_10_1007_s00418_018_1726_1
crossref_primary_10_1038_s41386_020_0768_y
crossref_primary_10_1038_nrg_2017_15
crossref_primary_10_1038_s41576_018_0001_6
crossref_primary_10_1038_d41586_019_01086_w
crossref_primary_10_1016_j_crmeth_2021_100062
crossref_primary_10_1016_j_tig_2018_06_001
crossref_primary_10_1038_s41598_019_50588_0
crossref_primary_10_1002_cpz1_579
crossref_primary_10_1038_s41587_021_00902_x
crossref_primary_10_1089_crispr_2022_0093
crossref_primary_10_1016_j_immuni_2022_02_006
crossref_primary_10_1186_s13059_020_02044_w
crossref_primary_10_1038_nrc_2017_58
crossref_primary_10_1089_gen_39_04_26
crossref_primary_10_3390_genes11050504
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1016_j_celrep_2020_108426
crossref_primary_10_1021_acschembio_7b00657
crossref_primary_10_1038_s41591_022_02104_7
crossref_primary_10_1016_j_cell_2018_10_024
crossref_primary_10_1186_s13059_024_03404_6
crossref_primary_10_1038_s41586_023_06473_y
crossref_primary_10_1038_s41576_019_0093_7
crossref_primary_10_1186_s13059_021_02554_1
crossref_primary_10_1373_clinchem_2017_283895
crossref_primary_10_3390_ijms22062822
crossref_primary_10_1038_nrg_2017_28
crossref_primary_10_1038_s41592_018_0149_1
crossref_primary_10_3389_fmolb_2023_1176856
crossref_primary_10_1073_pnas_2208844119
crossref_primary_10_12688_f1000research_19848_1
crossref_primary_10_1016_j_mam_2017_07_003
crossref_primary_10_1038_nmeth_4407
crossref_primary_10_1073_pnas_2206938119
crossref_primary_10_1038_s41587_023_01905_6
crossref_primary_10_1099_jgv_0_001603
crossref_primary_10_1093_bioinformatics_btab113
crossref_primary_10_1073_pnas_1903808116
crossref_primary_10_1016_j_cell_2020_10_018
crossref_primary_10_3389_fgene_2024_1375481
crossref_primary_10_1038_s41576_021_00409_w
crossref_primary_10_1038_s41592_024_02201_0
crossref_primary_10_1021_acschemneuro_5c00021
crossref_primary_10_1371_journal_pgen_1008057
crossref_primary_10_1038_s41577_022_00802_4
crossref_primary_10_1016_j_xpro_2020_100255
crossref_primary_10_1038_s41420_018_0135_5
crossref_primary_10_1186_s13073_021_00987_8
crossref_primary_10_1038_s41467_020_18582_7
crossref_primary_10_1093_nar_gkab211
crossref_primary_10_1016_j_coisb_2017_02_002
crossref_primary_10_1016_j_jmb_2018_06_034
crossref_primary_10_1016_j_tig_2017_04_004
crossref_primary_10_7554_eLife_79525
crossref_primary_10_2174_011574888X265479231127065541
crossref_primary_10_3389_fbioe_2021_748942
crossref_primary_10_1038_s41467_023_41788_4
crossref_primary_10_1038_s41586_022_05688_9
crossref_primary_10_1038_s41586_023_06570_y
crossref_primary_10_1038_s41467_024_45382_0
crossref_primary_10_1016_j_neuron_2018_10_013
crossref_primary_10_1038_s41587_023_02079_x
crossref_primary_10_3390_jof7050377
crossref_primary_10_1016_j_devcel_2022_04_003
crossref_primary_10_1016_j_drudis_2023_103737
crossref_primary_10_1016_j_devcel_2022_06_017
crossref_primary_10_1038_s41586_024_07259_6
crossref_primary_10_7554_eLife_81856
crossref_primary_10_1038_s41569_021_00669_3
crossref_primary_10_1093_nar_gkad329
crossref_primary_10_1016_j_ajpath_2023_09_012
crossref_primary_10_1016_j_crmeth_2022_100239
crossref_primary_10_1146_annurev_cancerbio_070120_094725
crossref_primary_10_1038_s41698_022_00299_z
crossref_primary_10_1038_s43588_024_00698_1
crossref_primary_10_1158_0008_5472_CAN_21_2555
crossref_primary_10_1038_nmeth_4466
crossref_primary_10_1038_s41587_023_01948_9
crossref_primary_10_1161_ATVBAHA_123_318328
crossref_primary_10_3389_fcell_2023_1158373
crossref_primary_10_1016_j_celrep_2019_03_076
crossref_primary_10_1016_j_cell_2018_03_068
crossref_primary_10_1016_j_xgen_2025_100766
crossref_primary_10_1126_science_aav6872
crossref_primary_10_1038_s43586_021_00093_4
crossref_primary_10_3390_ijms19040933
crossref_primary_10_1096_fj_202002713RR
crossref_primary_10_1186_s13059_021_02545_2
crossref_primary_10_1681_ASN_2017050566
crossref_primary_10_4252_wjsc_v10_i11_160
crossref_primary_10_1016_j_celrep_2023_112209
crossref_primary_10_1097_HS9_0000000000000034
crossref_primary_10_1093_bioinformatics_btae411
crossref_primary_10_1136_esmoopen_2019_000505
crossref_primary_10_1093_bioinformatics_btae535
crossref_primary_10_1146_annurev_genet_120417_031247
crossref_primary_10_1016_j_vaccine_2019_11_035
crossref_primary_10_1126_science_aaz6063
crossref_primary_10_1016_j_tig_2024_11_001
crossref_primary_10_1038_s41467_023_40408_5
crossref_primary_10_1016_j_tibtech_2018_08_002
crossref_primary_10_1016_j_tig_2023_10_009
crossref_primary_10_1038_s41576_024_00750_w
crossref_primary_10_1017_S0033583519000052
crossref_primary_10_1038_s41556_021_00728_4
crossref_primary_10_1016_j_cels_2021_05_016
crossref_primary_10_7554_eLife_57306
crossref_primary_10_1111_sji_12753
crossref_primary_10_1242_dmm_049857
crossref_primary_10_1016_j_tig_2023_10_012
crossref_primary_10_1038_s41592_019_0392_0
crossref_primary_10_1261_rna_066282_118
crossref_primary_10_1038_s41375_021_01378_z
crossref_primary_10_1038_s41588_020_0596_3
crossref_primary_10_1242_dev_150458
crossref_primary_10_1016_j_copbio_2018_08_004
crossref_primary_10_1007_s00018_021_03903_w
crossref_primary_10_1016_j_molcel_2022_06_001
crossref_primary_10_1016_j_cell_2019_10_018
crossref_primary_10_1038_s41587_023_01949_8
crossref_primary_10_7554_eLife_43036
crossref_primary_10_1002_cbic_202100561
crossref_primary_10_3389_fgeed_2024_1481443
crossref_primary_10_1101_cshperspect_a033894
crossref_primary_10_1038_s41587_024_02391_0
crossref_primary_10_1038_s41586_024_07663_y
crossref_primary_10_15302_J_QB_022_0299
crossref_primary_10_1126_science_abc1944
crossref_primary_10_1007_s00395_022_00972_1
crossref_primary_10_1016_j_bbcan_2024_189212
crossref_primary_10_1016_j_cell_2024_03_020
crossref_primary_10_1016_j_semcdb_2023_06_005
crossref_primary_10_1371_journal_pcbi_1007061
crossref_primary_10_1016_j_phymed_2024_155812
crossref_primary_10_1021_acs_analchem_0c03059
crossref_primary_10_3389_fragi_2021_714926
crossref_primary_10_1186_s13059_025_03474_0
crossref_primary_10_1016_j_omtm_2021_04_014
crossref_primary_10_15252_msb_20177834
crossref_primary_10_14348_molcells_2021_0002
crossref_primary_10_1016_j_cels_2020_08_019
crossref_primary_10_1016_j_isci_2024_110090
crossref_primary_10_1016_j_stem_2017_09_006
crossref_primary_10_1126_science_aav1898
crossref_primary_10_1002_bies_202100086
crossref_primary_10_1038_s41588_019_0489_5
crossref_primary_10_1038_s41467_019_10216_x
crossref_primary_10_1002_med_21549
crossref_primary_10_1038_nbt_4048
crossref_primary_10_1161_ATVBAHA_123_318771
crossref_primary_10_1016_j_cell_2017_10_040
crossref_primary_10_1038_nmeth_4495
crossref_primary_10_1515_hsz_2023_0174
crossref_primary_10_1038_nbt_4042
crossref_primary_10_1109_JBHI_2024_3370868
crossref_primary_10_1016_j_cell_2021_03_025
crossref_primary_10_1038_s41592_020_0826_8
crossref_primary_10_1038_s41592_018_0185_x
crossref_primary_10_1038_s41467_021_26682_1
crossref_primary_10_1126_science_abb6896
crossref_primary_10_2139_ssrn_3376670
crossref_primary_10_1158_0008_5472_CAN_21_1545
crossref_primary_10_1016_j_csbj_2020_08_009
crossref_primary_10_1128_mmbr_00170_22
crossref_primary_10_1186_s13059_020_02000_8
crossref_primary_10_1111_eva_12846
crossref_primary_10_1016_j_isci_2022_104097
crossref_primary_10_1038_nrg_2017_97
crossref_primary_10_1038_s41596_021_00653_8
crossref_primary_10_1021_acssynbio_9b00322
crossref_primary_10_1016_j_celrep_2020_108020
crossref_primary_10_1016_j_mib_2024_102554
crossref_primary_10_1038_s41467_021_25992_8
crossref_primary_10_1038_s41587_019_0286_9
crossref_primary_10_1038_s43018_020_0071_1
crossref_primary_10_1186_s13059_021_02548_z
crossref_primary_10_1016_j_devcel_2024_03_024
crossref_primary_10_1126_science_aax4438
crossref_primary_10_1016_j_cell_2017_10_023
crossref_primary_10_1016_j_tcb_2023_11_003
crossref_primary_10_1038_s41467_024_53284_4
crossref_primary_10_1091_mbc_E22_09_0432
crossref_primary_10_1080_21541264_2023_2213514
crossref_primary_10_1016_j_stemcr_2021_02_006
crossref_primary_10_1016_j_crmeth_2023_100672
crossref_primary_10_1016_j_ejcb_2018_05_002
crossref_primary_10_1371_journal_pntd_0010672
crossref_primary_10_1016_j_molmed_2020_12_003
crossref_primary_10_1002_advs_202204484
crossref_primary_10_7554_eLife_55320
crossref_primary_10_1038_s41467_020_17798_x
crossref_primary_10_1038_s43018_024_00789_y
crossref_primary_10_1007_s11427_021_2057_0
crossref_primary_10_1016_j_crmeth_2024_100737
crossref_primary_10_1016_j_coi_2018_04_020
crossref_primary_10_1016_j_gendis_2022_10_024
crossref_primary_10_1093_narcan_zcac038
crossref_primary_10_1146_annurev_cancerbio_030617_050455
crossref_primary_10_1101_gr_259655_119
crossref_primary_10_3390_cells10123337
crossref_primary_10_1016_j_xpro_2022_101944
crossref_primary_10_1038_s41467_023_41101_3
crossref_primary_10_1016_j_crbiot_2023_100127
crossref_primary_10_1016_j_cell_2022_05_013
crossref_primary_10_1016_j_snb_2018_11_035
crossref_primary_10_1146_annurev_genom_021623_083207
crossref_primary_10_2337_dbi20_0047
crossref_primary_10_7554_eLife_88187
crossref_primary_10_3390_cancers14246031
crossref_primary_10_1002_biot_201700746
crossref_primary_10_1016_j_ymben_2024_11_009
crossref_primary_10_1038_s41577_019_0263_z
crossref_primary_10_1093_cvr_cvab040
crossref_primary_10_1038_s41419_018_0427_y
crossref_primary_10_1038_s41593_021_00862_0
crossref_primary_10_1016_j_biomaterials_2021_121276
crossref_primary_10_15252_msb_202110768
crossref_primary_10_1038_s41592_019_0494_8
crossref_primary_10_3390_cimb46040197
crossref_primary_10_1038_nmeth_4177
crossref_primary_10_1038_nrg_2017_47
crossref_primary_10_1038_s41586_024_07022_x
crossref_primary_10_1186_s13059_021_02590_x
crossref_primary_10_1186_s12864_022_08359_1
crossref_primary_10_1016_j_cell_2022_06_039
crossref_primary_10_1016_j_tig_2023_02_014
crossref_primary_10_1101_gr_280008_124
crossref_primary_10_3892_mmr_2021_12489
crossref_primary_10_1016_j_cell_2021_12_045
crossref_primary_10_1016_j_cell_2022_06_031
crossref_primary_10_1038_s41593_024_01814_0
crossref_primary_10_1042_BST20230190
crossref_primary_10_18699_VJ19_520
crossref_primary_10_1016_j_neuron_2020_09_001
crossref_primary_10_1007_s10565_017_9396_7
crossref_primary_10_1038_s41556_021_00821_8
crossref_primary_10_1016_j_tibtech_2017_05_004
crossref_primary_10_1136_jitc_2020_000705
crossref_primary_10_3389_fgene_2023_1304425
crossref_primary_10_15252_emmm_202114764
crossref_primary_10_1186_s12859_017_1980_6
crossref_primary_10_1186_s12864_023_09754_y
crossref_primary_10_1038_s41587_019_0387_5
crossref_primary_10_1089_gen_39_S2_09
crossref_primary_10_1186_s13059_019_1699_y
crossref_primary_10_1016_j_devcel_2017_11_024
crossref_primary_10_1038_s41467_020_17209_1
crossref_primary_10_1016_j_ebiom_2018_08_050
crossref_primary_10_1016_j_celrep_2020_108460
crossref_primary_10_1038_s41586_023_06464_z
crossref_primary_10_1038_s41592_020_0837_5
crossref_primary_10_7554_eLife_27187
crossref_primary_10_7554_eLife_83884
crossref_primary_10_1016_j_omto_2023_100733
crossref_primary_10_1172_JCI141171
crossref_primary_10_1016_j_tig_2024_03_010
crossref_primary_10_1093_g3journal_jkad096
crossref_primary_10_1007_s00412_023_00796_5
crossref_primary_10_15252_embj_2018100990
crossref_primary_10_1186_s11658_023_00483_4
crossref_primary_10_1016_j_cell_2018_09_022
crossref_primary_10_3390_ijms25137128
crossref_primary_10_1177_2472630318824337
crossref_primary_10_1038_s41467_024_52538_5
crossref_primary_10_1038_s41588_018_0254_1
crossref_primary_10_1016_j_gde_2018_05_001
crossref_primary_10_1007_s12015_023_10506_4
crossref_primary_10_1016_j_cell_2018_11_029
crossref_primary_10_1080_14737159_2024_2388777
crossref_primary_10_1186_s13058_019_1242_9
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1038_s41587_024_02224_0
crossref_primary_10_1146_annurev_genet_072920_032107
crossref_primary_10_1016_j_cell_2018_09_010
crossref_primary_10_1016_j_cell_2018_11_022
crossref_primary_10_1371_journal_pbio_2004624
crossref_primary_10_1152_ajplung_00408_2021
crossref_primary_10_1371_journal_pcbi_1008789
crossref_primary_10_1038_s41586_024_07510_0
crossref_primary_10_1042_ETLS20170129
crossref_primary_10_1126_science_aax6648
crossref_primary_10_1038_s41587_024_02213_3
crossref_primary_10_1038_s41587_022_01452_6
crossref_primary_10_1038_s41592_019_0691_5
crossref_primary_10_26599_BDMA_2024_9020034
crossref_primary_10_1016_j_cmet_2019_01_020
crossref_primary_10_1038_s44319_023_00026_0
crossref_primary_10_1101_cshperspect_a035386
crossref_primary_10_1016_j_cell_2017_11_011
crossref_primary_10_1016_j_copbio_2017_03_014
crossref_primary_10_1016_j_jmb_2017_07_020
crossref_primary_10_1016_j_cell_2024_06_005
crossref_primary_10_1038_s41588_021_00779_1
crossref_primary_10_1016_j_biosystems_2021_104411
crossref_primary_10_1016_j_stem_2018_09_003
crossref_primary_10_1016_j_cels_2020_06_004
crossref_primary_10_1038_s41592_024_02537_7
crossref_primary_10_1182_blood_2018_08_835355
crossref_primary_10_1016_j_molmet_2017_06_021
crossref_primary_10_1136_jmedgenet_2022_108588
crossref_primary_10_1016_j_cell_2020_03_039
crossref_primary_10_1038_nbt_4208
crossref_primary_10_1101_gad_310367_117
crossref_primary_10_1038_s41592_023_02040_5
crossref_primary_10_1038_s41596_020_0378_5
crossref_primary_10_1016_j_ceb_2022_102084
crossref_primary_10_1016_j_cell_2023_05_043
crossref_primary_10_1016_j_tips_2020_02_005
crossref_primary_10_1126_science_abi8207
crossref_primary_10_7554_eLife_96979_3
crossref_primary_10_1016_j_nbd_2021_105580
crossref_primary_10_3390_cancers13102341
crossref_primary_10_1038_s41592_019_0629_y
crossref_primary_10_3389_fmolb_2022_930223
crossref_primary_10_1371_journal_pgen_1008630
crossref_primary_10_1371_journal_pgen_1010710
crossref_primary_10_1371_journal_pone_0249591
crossref_primary_10_7554_eLife_96979
crossref_primary_10_3390_ijms19092731
crossref_primary_10_1002_pros_23934
crossref_primary_10_1038_s41587_020_0437_z
crossref_primary_10_1042_EBC20220009
crossref_primary_10_1016_j_phrs_2017_09_008
crossref_primary_10_1016_j_stemcr_2022_11_010
crossref_primary_10_1038_s41467_018_04696_6
crossref_primary_10_1038_s41587_022_01209_1
crossref_primary_10_1002_wsbm_1464
crossref_primary_10_1111_jnc_14856
crossref_primary_10_1038_s41598_018_36008_9
crossref_primary_10_1158_2159_8290_CD_18_1237
crossref_primary_10_1038_s41580_024_00794_0
crossref_primary_10_1038_s41587_021_01059_3
crossref_primary_10_1016_j_ccell_2022_06_001
crossref_primary_10_1021_acssynbio_9b00297
crossref_primary_10_7554_eLife_51254
crossref_primary_10_1186_s13059_017_1218_y
crossref_primary_10_1016_j_mito_2020_12_003
crossref_primary_10_1186_s13059_020_1928_4
crossref_primary_10_1074_jbc_RA119_009432
crossref_primary_10_1038_s41467_024_45478_7
crossref_primary_10_1172_JCI153876
crossref_primary_10_1038_s41598_021_90255_x
crossref_primary_10_1016_j_molcel_2020_06_012
crossref_primary_10_1002_jcb_30247
crossref_primary_10_1038_s41589_020_0497_x
crossref_primary_10_1016_j_cell_2024_07_035
crossref_primary_10_1016_j_isci_2022_104100
crossref_primary_10_1038_nmeth_4196
crossref_primary_10_3389_fsysb_2023_1126044
crossref_primary_10_3390_ijms23031791
crossref_primary_10_1016_j_gpb_2020_06_010
crossref_primary_10_1126_science_abl5829
crossref_primary_10_1093_bib_bbae011
crossref_primary_10_1016_j_cell_2019_07_002
crossref_primary_10_3389_fonc_2021_796477
crossref_primary_10_1002_widm_1414
crossref_primary_10_1016_j_cels_2021_08_003
crossref_primary_10_3390_cells11142225
crossref_primary_10_1016_j_molcel_2022_03_025
crossref_primary_10_1016_j_gde_2018_06_001
crossref_primary_10_1101_cshperspect_a026898
crossref_primary_10_1158_2159_8290_CD_20_1849
crossref_primary_10_3389_fimmu_2021_702636
crossref_primary_10_1038_s41467_018_05452_6
crossref_primary_10_1126_science_aay0262
crossref_primary_10_1038_s43588_021_00086_z
crossref_primary_10_1073_pnas_1921187117
crossref_primary_10_5483_BMBRep_2021_54_1_245
crossref_primary_10_1038_nrmicro_2017_29
crossref_primary_10_1097_JBR_0000000000000066
crossref_primary_10_3892_ol_2024_14285
crossref_primary_10_1002_advs_202206939
crossref_primary_10_1016_j_tcb_2024_04_007
crossref_primary_10_7554_eLife_27041
crossref_primary_10_1016_j_celrep_2021_110136
crossref_primary_10_1016_j_trac_2021_116333
crossref_primary_10_1038_s41586_019_1184_5
crossref_primary_10_1016_j_coisb_2017_08_003
crossref_primary_10_1038_s43586_021_00056_9
crossref_primary_10_1016_j_molcel_2023_03_013
crossref_primary_10_1242_dev_170506
crossref_primary_10_1021_acssynbio_2c00627
crossref_primary_10_1074_jbc_RA117_001484
crossref_primary_10_1073_pnas_1816202116
crossref_primary_10_1093_hmg_ddac204
crossref_primary_10_1002_biot_201700227
crossref_primary_10_1038_s41592_020_01053_8
crossref_primary_10_3389_fimmu_2023_1295523
crossref_primary_10_3390_vaccines5040037
crossref_primary_10_1038_s41592_024_02305_7
crossref_primary_10_3390_cells11213339
crossref_primary_10_1038_s41587_024_02320_1
crossref_primary_10_1016_j_biomaterials_2020_120189
crossref_primary_10_1038_s41596_021_00595_1
crossref_primary_10_1146_annurev_neuro_070918_050154
crossref_primary_10_1038_s41540_019_0104_5
crossref_primary_10_1146_annurev_cancerbio_061421_123301
crossref_primary_10_1002_glia_23907
crossref_primary_10_1038_s41551_023_01085_3
crossref_primary_10_1016_j_cels_2018_10_008
crossref_primary_10_1038_s41573_019_0046_z
crossref_primary_10_1016_j_gde_2017_06_003
crossref_primary_10_1016_j_molcel_2017_03_007
crossref_primary_10_1091_mbc_e17_03_0144
crossref_primary_10_1038_d41586_024_00061_4
crossref_primary_10_3389_fphys_2018_01457
crossref_primary_10_1016_j_xgen_2022_100229
crossref_primary_10_1016_j_cell_2018_06_010
crossref_primary_10_1091_mbc_E17_10_0594
crossref_primary_10_3390_cancers14215254
crossref_primary_10_1038_nbt_3785
crossref_primary_10_1038_s41593_024_01599_2
crossref_primary_10_1039_D1LC00302J
crossref_primary_10_1016_j_cell_2019_09_016
crossref_primary_10_1101_gr_262295_120
crossref_primary_10_3389_fcell_2021_760226
crossref_primary_10_1002_smtd_202401451
crossref_primary_10_1073_pnas_2011763118
crossref_primary_10_1016_j_cell_2022_04_015
crossref_primary_10_1016_j_molcel_2017_03_018
crossref_primary_10_1038_s41467_023_41572_4
crossref_primary_10_1038_s41580_023_00697_6
crossref_primary_10_1126_science_adh7699
crossref_primary_10_15252_msb_202010105
crossref_primary_10_1089_crispr_2019_29045_adr
crossref_primary_10_3389_fgene_2022_994069
crossref_primary_10_1016_j_stem_2020_04_020
crossref_primary_10_1016_j_cels_2018_11_005
crossref_primary_10_1038_s41587_021_00875_x
crossref_primary_10_1002_dvdy_463
crossref_primary_10_1242_dev_169748
crossref_primary_10_1038_s41467_022_30196_9
crossref_primary_10_1038_s41588_024_01758_y
crossref_primary_10_1016_j_stem_2021_11_001
crossref_primary_10_1038_d41586_022_02826_1
crossref_primary_10_1038_s41467_023_41792_8
crossref_primary_10_1186_s13059_024_03254_2
crossref_primary_10_3389_fcell_2022_947769
crossref_primary_10_1038_s41583_022_00576_7
crossref_primary_10_1186_s13073_018_0608_4
crossref_primary_10_1093_bib_bbad123
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_1038_s41587_023_01964_9
crossref_primary_10_1038_s41592_022_01436_z
crossref_primary_10_1247_csf_23072
crossref_primary_10_7554_eLife_100949
crossref_primary_10_15252_embj_2020104983
crossref_primary_10_1101_gr_234948_118
crossref_primary_10_1016_j_cell_2018_07_028
crossref_primary_10_1073_pnas_2303224120
crossref_primary_10_3390_cancers14102515
crossref_primary_10_1016_j_chom_2019_08_017
Cites_doi 10.1038/nature17946
10.1016/j.devcel.2007.07.018
10.1016/j.cell.2014.09.029
10.7554/eLife.19760
10.1128/MCB.23.21.7448-7459.2003
10.1126/science.1209038
10.1016/j.cell.2013.02.022
10.1093/nar/gku749
10.1534/g3.116.030973
10.1093/bioinformatics/btn615
10.1126/science.1247651
10.1016/B978-0-12-385114-7.00004-0
10.1016/j.molcel.2015.04.028
10.1038/nprot.2008.211
10.1016/j.celrep.2013.03.024
10.1126/science.1146361
10.1016/j.cell.2015.05.002
10.1016/j.cell.2016.11.038
10.1186/s13059-016-0904-5
10.1016/j.cell.2015.04.044
10.1091/mbc.e05-03-0268
10.1093/nar/gkw377
10.1126/science.aac7041
10.1038/ncb2738
10.1073/pnas.1604435113
10.1016/S0021-9258(19)61473-0
10.1042/BJ20050374
10.1016/j.cell.2014.02.001
10.1016/j.molcel.2014.04.022
10.1126/science.1167983
10.1093/nar/gkv019
10.7554/eLife.07426
10.1128/JB.183.21.6384-6393.2001
10.1016/j.virusres.2012.06.015
10.1016/j.molcel.2007.06.011
10.1016/j.cell.2013.06.044
10.1016/j.cels.2016.04.001
10.1038/nprot.2014.103
10.7554/eLife.07314
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cell.2016.11.048
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1882.e21
ExternalDocumentID PMC5315571
27984733
10_1016_j_cell_2016_11_048
S0092867416316609
Genre Journal Article
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: P50 HG006193
– fundername: NCI NIH HHS
  grantid: U01 CA168370
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: T32 GM007618
– fundername: NIA NIH HHS
  grantid: R01 AG041826
– fundername: NIGMS NIH HHS
  grantid: R01 GM102790
– fundername: NIGMS NIH HHS
  grantid: F32 GM116331
– fundername: NCI NIH HHS
  grantid: K99 CA204602
– fundername: NIDA NIH HHS
  grantid: R01 DA036858
– fundername: NCI NIH HHS
  grantid: R00 CA204602
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-943ae6f1fff2f24b34cf199567296c4c77a64a6adc2a33256d8da32d10ac0c0c3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:43:06 EDT 2025
Fri Jul 11 06:18:02 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Tue Jul 01 02:16:56 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CRISPR
unfolded protein response
Single-cell RNA-seq
cell-to-cell heterogeneity
single-cell genomics
genome-scale screening
CRIPSRi
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-943ae6f1fff2f24b34cf199567296c4c77a64a6adc2a33256d8da32d10ac0c0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, 91120 Jerusalem, Israel
Co-first author
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416316609
PMID 27984733
PQID 1851291625
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5315571
proquest_miscellaneous_1851291625
pubmed_primary_27984733
crossref_citationtrail_10_1016_j_cell_2016_11_048
crossref_primary_10_1016_j_cell_2016_11_048
elsevier_sciencedirect_doi_10_1016_j_cell_2016_11_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Heimberg, Bhatnagar, El-Samad, Thomson (bib13) 2016; 2
Kabadi, Ousterout, Hilton, Gersbach (bib18) 2014; 42
Macosko, Basu, Satija, Nemesh, Shekhar, Goldman, Tirosh, Bialas, Kamitaki, Martersteck (bib28) 2015; 161
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (bib23) 2016; 44
Lee, Iwakoshi, Glimcher (bib24) 2003; 23
Van Der Maaten (bib39) 2014; 15
Sidrauski, Tsai, Kampmann, Hearn, Vedantham, Jaishankar, Sokabe, Mendez, Newton, Tang (bib37) 2015; 4
Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib44) 2016
Carbon, Ireland, Mungall, Shu, Marshall, Lewis (bib4) 2009; 25
Sack, Davoli, Xu, Li, Elledge (bib35) 2016; 6
Smyth, Davenport, Mak (bib38) 2012; 169
Dixit, Parnas, Li, Chen, Fulco, Jerby-Arnon, Marjanovic, Dionne, Burks, Raychowdhury (bib5) 2016; 167
Liang, Zhang, McGrath, Zhang, Cavener (bib25) 2006; 393
Friedman, Hastie, Tibshirani (bib6) 2001
Hamanaka, Bennett, Cullinan, Diehl (bib11) 2005; 16
Oslowski, Urano (bib32) 2011; 490
Jaitin, Kenigsberg, Keren-Shaul, Elefant, Paul, Zaretsky, Mildner, Cohen, Jung, Tanay, Amit (bib16) 2014; 343
Gilbert, Larson, Morsut, Liu, Brar, Torres, Stern-Ginossar, Brandman, Whitehead, Doudna (bib7) 2013; 154
Gilbert, Horlbeck, Adamson, Villalta, Chen, Whitehead, Guimaraes, Panning, Ploegh, Bassik (bib8) 2014; 159
Qi, Larson, Gilbert, Doudna, Weissman, Arkin, Lim (bib34) 2013; 152
Acosta-Alvear, Zhou, Blais, Tsikitis, Lents, Arias, Lennon, Kluger, Dynlacht (bib1) 2007; 27
Han, Back, Hur, Lin, Gildersleeve, Shan, Yuan, Krokowski, Wang, Hatzoglou (bib12) 2013; 15
Kanda, Yanagitani, Yokota, Esaki, Kohno (bib20) 2016; 113
Boettcher, McManus (bib2) 2015; 58
Horlbeck, Gilbert, Villalta, Adamson, Pak, Chen, Fields, Park, Corn, Kampmann, Weissman (bib14) 2016; 5
Shoulders, Ryno, Genereux, Moresco, Tu, Wu, Yates, Su, Kelly, Wiseman (bib36) 2013; 3
Komor, Kim, Packer, Zuris, Liu (bib22) 2016; 533
Kampmann, Bassik, Weissman (bib19) 2014; 9
Huang, Sherman, Lempicki (bib15) 2009; 4
Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib21) 2015; 161
Lin, Li, Yasumura, Cohen, Zhang, Panning, Shokat, Lavail, Walter (bib26) 2007; 318
Wang, Birsoy, Hughes, Krupczak, Post, Wei, Lander, Sabatini (bib41) 2015; 350
Jonikas, Collins, Denic, Oh, Quan, Schmid, Weibezahn, Schwappach, Walter, Weissman, Schuldiner (bib17) 2009; 323
Nissim, Perli, Fridkin, Perez-Pinera, Lu (bib31) 2014; 54
Lin, Chen, Ma (bib27) 2010
Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani, Zhang, Nureki (bib30) 2014; 156
Yamamoto, Sato, Matsui, Sato, Okada, Yoshida, Harada, Mori (bib43) 2007; 13
Müller-Kuller, Ackermann, Kolodziej, Brendel, Fritsch, Lachmann, Kunkel, Lausen, Schambach, Moritz, Grez (bib29) 2015; 43
Plumb, Zhang, Appathurai, Mariappan (bib33) 2015; 4
Candès, Li, Ma, Wright (bib3) 2011; 58
Gu, Crawford, O’Donovan, Wilson, Chow, Retallack, DeRisi (bib9) 2016; 17
Walter, Ron (bib40) 2011; 334
Wang, Shen, Arenzana, Tirasophon, Kaufman, Prywes (bib42) 2000; 275
Haldimann, Wanner (bib10) 2001; 183
Heimberg (10.1016/j.cell.2016.11.048_bib13) 2016; 2
Walter (10.1016/j.cell.2016.11.048_bib40) 2011; 334
Kampmann (10.1016/j.cell.2016.11.048_bib19) 2014; 9
Kuleshov (10.1016/j.cell.2016.11.048_bib23) 2016; 44
Wang (10.1016/j.cell.2016.11.048_bib41) 2015; 350
Dixit (10.1016/j.cell.2016.11.048_bib5) 2016; 167
Qi (10.1016/j.cell.2016.11.048_bib34) 2013; 152
Wang (10.1016/j.cell.2016.11.048_bib42) 2000; 275
Müller-Kuller (10.1016/j.cell.2016.11.048_bib29) 2015; 43
Haldimann (10.1016/j.cell.2016.11.048_bib10) 2001; 183
Van Der Maaten (10.1016/j.cell.2016.11.048_bib39) 2014; 15
Zheng (10.1016/j.cell.2016.11.048_bib44) 2016
Komor (10.1016/j.cell.2016.11.048_bib22) 2016; 533
Klein (10.1016/j.cell.2016.11.048_bib21) 2015; 161
Gilbert (10.1016/j.cell.2016.11.048_bib7) 2013; 154
Lin (10.1016/j.cell.2016.11.048_bib27) 2010
Boettcher (10.1016/j.cell.2016.11.048_bib2) 2015; 58
Carbon (10.1016/j.cell.2016.11.048_bib4) 2009; 25
Lee (10.1016/j.cell.2016.11.048_bib24) 2003; 23
Jonikas (10.1016/j.cell.2016.11.048_bib17) 2009; 323
Gu (10.1016/j.cell.2016.11.048_bib9) 2016; 17
Yamamoto (10.1016/j.cell.2016.11.048_bib43) 2007; 13
Gilbert (10.1016/j.cell.2016.11.048_bib8) 2014; 159
Huang (10.1016/j.cell.2016.11.048_bib15) 2009; 4
Kabadi (10.1016/j.cell.2016.11.048_bib18) 2014; 42
Macosko (10.1016/j.cell.2016.11.048_bib28) 2015; 161
Lin (10.1016/j.cell.2016.11.048_bib26) 2007; 318
Hamanaka (10.1016/j.cell.2016.11.048_bib11) 2005; 16
Candès (10.1016/j.cell.2016.11.048_bib3) 2011; 58
Kanda (10.1016/j.cell.2016.11.048_bib20) 2016; 113
Nishimasu (10.1016/j.cell.2016.11.048_bib30) 2014; 156
Oslowski (10.1016/j.cell.2016.11.048_bib32) 2011; 490
Sidrauski (10.1016/j.cell.2016.11.048_bib37) 2015; 4
Sack (10.1016/j.cell.2016.11.048_bib35) 2016; 6
Jaitin (10.1016/j.cell.2016.11.048_bib16) 2014; 343
Han (10.1016/j.cell.2016.11.048_bib12) 2013; 15
Horlbeck (10.1016/j.cell.2016.11.048_bib14) 2016; 5
Acosta-Alvear (10.1016/j.cell.2016.11.048_bib1) 2007; 27
Nissim (10.1016/j.cell.2016.11.048_bib31) 2014; 54
Shoulders (10.1016/j.cell.2016.11.048_bib36) 2013; 3
Smyth (10.1016/j.cell.2016.11.048_bib38) 2012; 169
Friedman (10.1016/j.cell.2016.11.048_bib6) 2001
Plumb (10.1016/j.cell.2016.11.048_bib33) 2015; 4
Liang (10.1016/j.cell.2016.11.048_bib25) 2006; 393
28398325 - Nat Biotechnol. 2017 Apr 11;35(4):339-340. doi: 10.1038/nbt.3849.
28096529 - Nat Rev Genet. 2017 Jan 18;18(2):67. doi: 10.1038/nrg.2016.171.
28245215 - Nat Methods. 2017 Feb 28;14(3):237-238. doi: 10.1038/nmeth.4196.
References_xml – volume: 318
  start-page: 944
  year: 2007
  end-page: 949
  ident: bib26
  article-title: IRE1 signaling affects cell fate during the unfolded protein response
  publication-title: Science
– volume: 23
  start-page: 7448
  year: 2003
  end-page: 7459
  ident: bib24
  article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
  publication-title: Mol. Cell. Biol.
– volume: 275
  start-page: 27013
  year: 2000
  end-page: 27020
  ident: bib42
  article-title: Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response
  publication-title: J. Biol. Chem.
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: bib22
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 334
  start-page: 1081
  year: 2011
  end-page: 1086
  ident: bib40
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
– volume: 183
  start-page: 6384
  year: 2001
  end-page: 6393
  ident: bib10
  article-title: Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria
  publication-title: J. Bacteriol.
– volume: 323
  start-page: 1693
  year: 2009
  end-page: 1697
  ident: bib17
  article-title: Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
  publication-title: Science
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: bib21
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: bib15
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
– volume: 156
  start-page: 935
  year: 2014
  end-page: 949
  ident: bib30
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
– volume: 2
  start-page: 239
  year: 2016
  end-page: 250
  ident: bib13
  article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing
  publication-title: Cell Syst.
– volume: 42
  start-page: e147
  year: 2014
  ident: bib18
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 3221
  year: 2014
  end-page: 3245
  ident: bib39
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 169
  start-page: 415
  year: 2012
  end-page: 429
  ident: bib38
  article-title: The origin of genetic diversity in HIV-1
  publication-title: Virus Res.
– year: 2001
  ident: bib6
  article-title: The elements of statistical learning Springer series in statistics
– volume: 43
  start-page: 1577
  year: 2015
  end-page: 1592
  ident: bib29
  article-title: A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells
  publication-title: Nucleic Acids Res.
– volume: 490
  start-page: 71
  year: 2011
  end-page: 92
  ident: bib32
  article-title: Measuring ER stress and the unfolded protein response using mammalian tissue culture system
  publication-title: Methods Enzymol.
– volume: 58
  start-page: 11
  year: 2011
  ident: bib3
  article-title: Robust principal component analysis?
  publication-title: J. Assoc. Comput. Mach.
– volume: 16
  start-page: 5493
  year: 2005
  end-page: 5501
  ident: bib11
  article-title: PERK and GCN2 contribute to eIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway
  publication-title: Mol. Biol. Cell
– volume: 393
  start-page: 201
  year: 2006
  end-page: 209
  ident: bib25
  article-title: PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis
  publication-title: Biochem. J.
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  ident: bib28
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
– volume: 4
  start-page: e07314
  year: 2015
  ident: bib37
  article-title: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response
  publication-title: eLife
– volume: 113
  start-page: E5886
  year: 2016
  end-page: E5895
  ident: bib20
  article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 58
  start-page: 575
  year: 2015
  end-page: 585
  ident: bib2
  article-title: Choosing the right tool for the job: RNAi, TALEN, or CRISPR
  publication-title: Mol. Cell
– volume: 25
  start-page: 288
  year: 2009
  end-page: 289
  ident: bib4
  article-title: AmiGO: online access to ontology and annotation data
  publication-title: Bioinformatics
– year: 2016
  ident: bib44
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: bioRxiv
– year: 2010
  ident: bib27
  article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: ArXiv
– volume: 54
  start-page: 698
  year: 2014
  end-page: 710
  ident: bib31
  article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
  publication-title: Mol. Cell
– volume: 3
  start-page: 1279
  year: 2013
  end-page: 1292
  ident: bib36
  article-title: Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments
  publication-title: Cell Rep.
– volume: 167
  start-page: 1853
  year: 2016
  end-page: 1866
  ident: bib5
  article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell
– volume: 9
  start-page: 1825
  year: 2014
  end-page: 1847
  ident: bib19
  article-title: Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps
  publication-title: Nat. Protoc.
– volume: 27
  start-page: 53
  year: 2007
  end-page: 66
  ident: bib1
  article-title: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks
  publication-title: Mol. Cell
– volume: 343
  start-page: 776
  year: 2014
  end-page: 779
  ident: bib16
  article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
  publication-title: Science
– volume: 4
  start-page: e07426
  year: 2015
  ident: bib33
  article-title: A functional link between the co-translational protein translocation pathway and the UPR
  publication-title: Elife
– volume: 159
  start-page: 647
  year: 2014
  end-page: 661
  ident: bib8
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
– volume: 350
  start-page: 1096
  year: 2015
  end-page: 1101
  ident: bib41
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
– volume: 13
  start-page: 365
  year: 2007
  end-page: 376
  ident: bib43
  article-title: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1
  publication-title: Dev. Cell
– volume: 152
  start-page: 1173
  year: 2013
  end-page: 1183
  ident: bib34
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
– volume: 154
  start-page: 442
  year: 2013
  end-page: 451
  ident: bib7
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
– volume: 6
  start-page: 2781
  year: 2016
  end-page: 2790
  ident: bib35
  article-title: Sources of error in mammalian genetic screens
  publication-title: G3 (Bethesda)
– volume: 15
  start-page: 481
  year: 2013
  end-page: 490
  ident: bib12
  article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
  publication-title: Nat. Cell Biol.
– volume: 17
  start-page: 41
  year: 2016
  ident: bib9
  article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications
  publication-title: Genome Biol.
– volume: 5
  start-page: e19760
  year: 2016
  ident: bib14
  article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
  publication-title: eLife
– volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: bib23
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
– volume: 533
  start-page: 420
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib22
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 13
  start-page: 365
  year: 2007
  ident: 10.1016/j.cell.2016.11.048_bib43
  article-title: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.07.018
– volume: 159
  start-page: 647
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib8
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 5
  start-page: e19760
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib14
  article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
  publication-title: eLife
  doi: 10.7554/eLife.19760
– volume: 58
  start-page: 11
  year: 2011
  ident: 10.1016/j.cell.2016.11.048_bib3
  article-title: Robust principal component analysis?
  publication-title: J. Assoc. Comput. Mach.
– volume: 23
  start-page: 7448
  year: 2003
  ident: 10.1016/j.cell.2016.11.048_bib24
  article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.21.7448-7459.2003
– volume: 334
  start-page: 1081
  year: 2011
  ident: 10.1016/j.cell.2016.11.048_bib40
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
  doi: 10.1126/science.1209038
– volume: 152
  start-page: 1173
  year: 2013
  ident: 10.1016/j.cell.2016.11.048_bib34
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 42
  start-page: e147
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib18
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku749
– volume: 6
  start-page: 2781
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib35
  article-title: Sources of error in mammalian genetic screens
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.116.030973
– volume: 25
  start-page: 288
  year: 2009
  ident: 10.1016/j.cell.2016.11.048_bib4
  article-title: AmiGO: online access to ontology and annotation data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn615
– volume: 343
  start-page: 776
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib16
  article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
  publication-title: Science
  doi: 10.1126/science.1247651
– volume: 490
  start-page: 71
  year: 2011
  ident: 10.1016/j.cell.2016.11.048_bib32
  article-title: Measuring ER stress and the unfolded protein response using mammalian tissue culture system
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-385114-7.00004-0
– volume: 58
  start-page: 575
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib2
  article-title: Choosing the right tool for the job: RNAi, TALEN, or CRISPR
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.028
– volume: 4
  start-page: 44
  year: 2009
  ident: 10.1016/j.cell.2016.11.048_bib15
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– year: 2010
  ident: 10.1016/j.cell.2016.11.048_bib27
  article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: ArXiv
– volume: 3
  start-page: 1279
  year: 2013
  ident: 10.1016/j.cell.2016.11.048_bib36
  article-title: Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.03.024
– volume: 318
  start-page: 944
  year: 2007
  ident: 10.1016/j.cell.2016.11.048_bib26
  article-title: IRE1 signaling affects cell fate during the unfolded protein response
  publication-title: Science
  doi: 10.1126/science.1146361
– volume: 161
  start-page: 1202
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib28
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 167
  start-page: 1853
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib5
  article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.038
– volume: 17
  start-page: 41
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib9
  article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0904-5
– volume: 161
  start-page: 1187
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib21
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 16
  start-page: 5493
  year: 2005
  ident: 10.1016/j.cell.2016.11.048_bib11
  article-title: PERK and GCN2 contribute to eIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-03-0268
– volume: 44
  start-page: W90
  issue: W1
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib23
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 350
  start-page: 1096
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib41
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
  doi: 10.1126/science.aac7041
– volume: 15
  start-page: 481
  year: 2013
  ident: 10.1016/j.cell.2016.11.048_bib12
  article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2738
– volume: 113
  start-page: E5886
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib20
  article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604435113
– year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib44
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: bioRxiv
– volume: 275
  start-page: 27013
  year: 2000
  ident: 10.1016/j.cell.2016.11.048_bib42
  article-title: Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61473-0
– volume: 393
  start-page: 201
  year: 2006
  ident: 10.1016/j.cell.2016.11.048_bib25
  article-title: PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050374
– volume: 156
  start-page: 935
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib30
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 54
  start-page: 698
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib31
  article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.022
– volume: 323
  start-page: 1693
  year: 2009
  ident: 10.1016/j.cell.2016.11.048_bib17
  article-title: Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
  publication-title: Science
  doi: 10.1126/science.1167983
– year: 2001
  ident: 10.1016/j.cell.2016.11.048_bib6
– volume: 43
  start-page: 1577
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib29
  article-title: A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv019
– volume: 4
  start-page: e07426
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib33
  article-title: A functional link between the co-translational protein translocation pathway and the UPR
  publication-title: Elife
  doi: 10.7554/eLife.07426
– volume: 183
  start-page: 6384
  year: 2001
  ident: 10.1016/j.cell.2016.11.048_bib10
  article-title: Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.21.6384-6393.2001
– volume: 169
  start-page: 415
  year: 2012
  ident: 10.1016/j.cell.2016.11.048_bib38
  article-title: The origin of genetic diversity in HIV-1
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2012.06.015
– volume: 27
  start-page: 53
  year: 2007
  ident: 10.1016/j.cell.2016.11.048_bib1
  article-title: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.011
– volume: 154
  start-page: 442
  year: 2013
  ident: 10.1016/j.cell.2016.11.048_bib7
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 2
  start-page: 239
  year: 2016
  ident: 10.1016/j.cell.2016.11.048_bib13
  article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.04.001
– volume: 9
  start-page: 1825
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib19
  article-title: Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.103
– volume: 4
  start-page: e07314
  year: 2015
  ident: 10.1016/j.cell.2016.11.048_bib37
  article-title: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response
  publication-title: eLife
  doi: 10.7554/eLife.07314
– volume: 15
  start-page: 3221
  year: 2014
  ident: 10.1016/j.cell.2016.11.048_bib39
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– reference: 28096529 - Nat Rev Genet. 2017 Jan 18;18(2):67. doi: 10.1038/nrg.2016.171.
– reference: 28245215 - Nat Methods. 2017 Feb 28;14(3):237-238. doi: 10.1038/nmeth.4196.
– reference: 28398325 - Nat Biotechnol. 2017 Apr 11;35(4):339-340. doi: 10.1038/nbt.3849.
SSID ssj0008555
Score 2.672409
Snippet Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1867
SubjectTerms Animals
cell-to-cell heterogeneity
Clustered Regularly Interspaced Short Palindromic Repeats
CRIPSRi
CRISPR
Endoribonucleases
Feedback
genome-scale screening
Humans
Models, Molecular
Protein Serine-Threonine Kinases
RNA, Guide, CRISPR-Cas Systems - metabolism
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
single-cell genomics
Single-cell RNA-seq
Transcription, Genetic
Unfolded Protein Response
Title A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response
URI https://dx.doi.org/10.1016/j.cell.2016.11.048
https://www.ncbi.nlm.nih.gov/pubmed/27984733
https://www.proquest.com/docview/1851291625
https://pubmed.ncbi.nlm.nih.gov/PMC5315571
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEBYhUNjLsu2-0seiwt6KN7YlS_KxzTa0hZSQbCA3IcsSmxKc0KbQ_vvO-MWmXXIoPtmWjdBIM5_s75sh5GdoleS5s0HGuAhgJapAce4Cb0LpY69yFaJQeHQrrmb8Zp7MO2TQaGGQVln7_sqnl966vtKvR7O_XixQ45vGSpSIIhKiFPExrkoR3_yi9cYqSaoqBimsfGhdC2cqjhd-HEd6l_iFmTyxBtD_g9Nb8PmaQ_lPUBp-Ih9rNEnPqw7vk44rDsheVV_y-TO5P6ejmjD45HI6hTC1dMEAukMHk-vpeEKnFnk3cJ2Ol2aDAJZelmqqBzptczzT3_jTvhRA0JWnABnpDOblMod3jjHPw6Kgk4pr676Q2fDyz-AqqIssBBZrGQQpZ8YJH3kPpok5mMx6lG0LQN3CciulEdwIk9vYMAYAKVe5YXEehcaGcLCvpFusCvedUJ5m1oQqy6Is5omHQCdl6GPhJXiGLBU9EjWjq22dgRwLYSx1QzW702gRjRaBrYkGi_TIWfvMusq_sbN10hhNb80iDQFi53OnjYU1LC-8bQq3enzQAGcAEUWwS-yRb5XF237EMoXYzliPyK250DbA1N3bd4rF3zKFN3i-JJHR4Tv7e0Q-4BnSaqLkmHQ394_uBMDRJvtRzv4X9oQOMg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkQviDfhuUhwQqb2er1rHziUtFVCmypKGim3Zb3eFakip2pSQX8Xf5AZPyICqAekyjfvQ6Mdz8y31jczAO9CmypROBvksZABWmIapEK4wJtQee7TIg0pUXhwInsT8WWaTLfgZ5sLQ7TKxvfXPr3y1s2b3eY0d89nM8rxzXgqK0QRSRlmDbPyyF19x3vb8lN_H5X8nvPDg9NuL2haCwSWKvgHmYiNkz7yHgXiAgW1npKVJWJNaYVVykhhpCksN3GMsKBICxPzIgqNDfGJcd9bcBvRhyJv0J9-Xrv_NEnqtgkZuhoUr8nUqUll9Dee-GTyI5UOpaZD_46Gf6PdP0mbv0XBw_twr4GvbK8-oQew5cqHcKduaHn1CC722KBhKP5wBRtjXJy7oIvisO6oPx6O2NgS0Qffs-HcrAgxs4MqfWvJxuui0myfWAJVxgVbeIYYlU3QEOYF7jmkwhKzko1qcq97DJMbOfonsF0uSvcMmMhya8I0z6Oci8RjZFUq9Fx6ha4oz2QHovZ0tW1KnlPnjbluuW1nmjSiSSN4F9KokQ58WK85rwt-XDs7aZWmNz5bjRHp2nVvWw1rtGcaNqVbXC414ieEYBFeSzvwtNb4Wg6uMgQTcdwBtfEtrCdQrfDNkXL2raoZjq42SVT0_D_lfQN3e6eDY33cPzl6ATs0QpyeKHkJ26uLS_cKkdkqf11ZAoOvN216vwDwFkvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiplexed+Single-Cell+CRISPR+Screening+Platform+Enables+Systematic+Dissection+of+the+Unfolded+Protein+Response&rft.jtitle=Cell&rft.au=Adamson%2C+Britt&rft.au=Norman%2C+Thomas+M.&rft.au=Jost%2C+Marco&rft.au=Cho%2C+Min+Y.&rft.date=2016-12-15&rft.issn=0092-8674&rft.volume=167&rft.issue=7&rft.spage=1867&rft.epage=1882.e21&rft_id=info:doi/10.1016%2Fj.cell.2016.11.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2016_11_048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon