Benefits of Metformin in Attenuating the Hallmarks of Aging
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—...
Saved in:
Published in | Cell metabolism Vol. 32; no. 1; pp. 15 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—TAME (targeting aging by metformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention. |
---|---|
AbstractList | Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin- a biguanide that combats age-related disorders and improves healthspan, is the first drug to be tested for its age-targeting effects in the large clinical trial- TAME (Targeting Aging by MEtformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient-sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem-cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this Perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention. Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—TAME (targeting aging by metformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention. |
Author | Kulkarni, Ameya S. Gubbi, Sriram Barzilai, Nir |
AuthorAffiliation | 3 Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 1 Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 2 Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York |
AuthorAffiliation_xml | – name: 2 Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York – name: 1 Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York – name: 3 Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland |
Author_xml | – sequence: 1 givenname: Ameya S. surname: Kulkarni fullname: Kulkarni, Ameya S. email: ameyak225@gmail.com organization: Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA – sequence: 2 givenname: Sriram surname: Gubbi fullname: Gubbi, Sriram organization: Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA – sequence: 3 givenname: Nir surname: Barzilai fullname: Barzilai, Nir email: nir.barzilai@einsteinmed.org organization: Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32333835$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtLHDEUDsXi_Q_0ocxjX2aa2-zMUCmsUrWg9KU-H7LJyZrtTKJJVvDfN-tqqT4IgRxOvkv4vgOy44NHQj4x2jDKZl9XjZ4wN5xy2lDZUMo-kH02CF53ktOdMrctrSUTbI8cpLSiVMzEIHbJnuBCiF60--TbKXq0Lqcq2Ooasw1xcr4qZ54z-rXKzi-rfIvVpRrHScU_T8j5sqyPyEerxoTHz_chuTn_8fvssr76dfHzbH5V65azXA-SD1wp0VrZK0nLLHvLZqKlneJCSWO07tSApl8szIKrQZahV8zKbqDGWHFIvm9179aLCY1Gn6Ma4S668p9HCMrB6xfvbmEZHqATsiQxKwJfngViuF9jyjC5pHEclcewTsBF8ew5Z6xAP__v9c_kJbEC6LcAHUNKES1ol0tKYWPtRmAUNuXACjblwKYcoBJKOYXK31Bf1N8lnWxJWBJ-cBghaYdeo3ERdQYT3Hv0v6UyqIU |
CitedBy_id | crossref_primary_10_1155_2021_6616240 crossref_primary_10_1016_j_celrep_2022_111451 crossref_primary_10_3390_nu14020353 crossref_primary_10_3390_cells13141192 crossref_primary_10_1002_adbi_202200321 crossref_primary_10_1002_ctm2_1179 crossref_primary_10_1016_j_devcel_2023_05_015 crossref_primary_10_1016_j_bbadis_2023_166642 crossref_primary_10_1016_S2666_7568_23_00085_5 crossref_primary_10_3389_fonc_2024_1399693 crossref_primary_10_14336_AD_2021_1213 crossref_primary_10_1089_rej_2021_0052 crossref_primary_10_5051_jpis_2106240312 crossref_primary_10_1007_s11033_024_10159_7 crossref_primary_10_1093_ageing_afab271 crossref_primary_10_1016_j_arr_2024_102253 crossref_primary_10_2337_dc22_2539 crossref_primary_10_1007_s11010_020_03922_4 crossref_primary_10_1152_ajpcell_00469_2020 crossref_primary_10_1021_acsptsci_1c00167 crossref_primary_10_3390_biomedicines11092334 crossref_primary_10_3390_antiox11081426 crossref_primary_10_1021_acs_jafc_4c04367 crossref_primary_10_1016_j_arr_2022_101833 crossref_primary_10_1080_15548627_2021_1933742 crossref_primary_10_1016_j_diabres_2022_110178 crossref_primary_10_3389_fonc_2024_1455492 crossref_primary_10_3389_fragi_2023_1272336 crossref_primary_10_3390_ijms221810175 crossref_primary_10_1016_j_yjmcc_2021_08_009 crossref_primary_10_1016_j_exger_2022_111770 crossref_primary_10_1093_gerona_glad174 crossref_primary_10_1155_2022_4201533 crossref_primary_10_1016_j_jchf_2024_02_021 crossref_primary_10_1136_bmjopen_2022_064682 crossref_primary_10_1007_s11010_023_04843_8 crossref_primary_10_1016_j_isci_2024_110670 crossref_primary_10_3390_ijerph17228650 crossref_primary_10_1038_s41467_025_57032_0 crossref_primary_10_3892_ijmm_2023_5239 crossref_primary_10_1016_j_arr_2020_101188 crossref_primary_10_14336_AD_2020_0629 crossref_primary_10_1016_j_arr_2021_101468 crossref_primary_10_3389_fphys_2022_872745 crossref_primary_10_1155_2022_7707875 crossref_primary_10_1111_febs_16350 crossref_primary_10_1111_acel_13256 crossref_primary_10_38124_ijisrt_IJISRT24MAY2391 crossref_primary_10_2147_DMSO_S428560 crossref_primary_10_3389_fendo_2023_1133280 crossref_primary_10_1002_jcp_30111 crossref_primary_10_1136_jech_2022_219142 crossref_primary_10_1038_s41392_024_02095_6 crossref_primary_10_1002_adhm_202403318 crossref_primary_10_1016_j_mito_2025_102022 crossref_primary_10_1146_annurev_food_072023_034458 crossref_primary_10_7554_eLife_62659 crossref_primary_10_1016_j_brainres_2024_149202 crossref_primary_10_1172_jci_insight_168787 crossref_primary_10_1038_s41392_025_02145_7 crossref_primary_10_1038_s12276_024_01297_w crossref_primary_10_1016_j_mmm_2021_02_013 crossref_primary_10_1016_j_exger_2020_111197 crossref_primary_10_18632_aging_202422 crossref_primary_10_1007_s11904_021_00547_0 crossref_primary_10_15656_kjgg_2024_25_3_129 crossref_primary_10_1016_j_intimp_2023_111357 crossref_primary_10_3389_fcimb_2023_1098712 crossref_primary_10_3390_ijms25168884 crossref_primary_10_1007_s00018_023_04903_8 crossref_primary_10_1242_dmm_049345 crossref_primary_10_3389_fgene_2022_1022739 crossref_primary_10_1016_j_tem_2024_07_009 crossref_primary_10_1007_s12016_021_08905_x crossref_primary_10_1111_acel_13596 crossref_primary_10_1146_annurev_pharmtox_051920_093829 crossref_primary_10_1111_eci_14280 crossref_primary_10_1007_s11357_025_01598_6 crossref_primary_10_3390_ijms25074083 crossref_primary_10_1016_j_cytogfr_2023_02_001 crossref_primary_10_3390_nu13072197 crossref_primary_10_1016_j_heliyon_2024_e37883 crossref_primary_10_1177_15593258241272619 crossref_primary_10_1016_j_arr_2021_101538 crossref_primary_10_1038_s41574_021_00551_9 crossref_primary_10_14336_AD_2023_0631 crossref_primary_10_18632_aging_203859 crossref_primary_10_1155_2022_4620254 crossref_primary_10_1186_s12967_024_05322_4 crossref_primary_10_3390_cells12222650 crossref_primary_10_1155_2023_4388437 crossref_primary_10_3390_jpm11040314 crossref_primary_10_3390_ijms23094843 crossref_primary_10_1016_j_arr_2022_101634 crossref_primary_10_31083_j_jin2305091 crossref_primary_10_1016_j_mad_2021_111584 crossref_primary_10_1111_ctr_14742 crossref_primary_10_1186_s40168_023_01567_1 crossref_primary_10_1016_j_jare_2024_03_008 crossref_primary_10_1021_acsomega_3c06721 crossref_primary_10_1093_femsre_fuac042 crossref_primary_10_3390_ijms23136960 crossref_primary_10_2174_1574885518666230516150404 crossref_primary_10_1007_s11892_024_01539_1 crossref_primary_10_3390_ijms26010364 crossref_primary_10_1159_000511362 crossref_primary_10_1016_j_mad_2021_111597 crossref_primary_10_1016_j_biopha_2022_113547 crossref_primary_10_1016_j_arr_2022_101621 crossref_primary_10_3390_cells11193021 crossref_primary_10_3390_biom14030329 crossref_primary_10_1016_j_isci_2023_108082 crossref_primary_10_1038_s41366_021_00757_x crossref_primary_10_3389_fmicb_2023_1268142 crossref_primary_10_3390_biology11121731 crossref_primary_10_1016_j_phymed_2024_155665 crossref_primary_10_1016_j_tem_2024_08_004 crossref_primary_10_3390_ph13100323 crossref_primary_10_1016_j_carbpol_2025_123526 crossref_primary_10_1186_s12915_023_01779_9 crossref_primary_10_15570_actaapa_2023_29 crossref_primary_10_1111_jgs_17921 crossref_primary_10_1016_j_micres_2023_127547 crossref_primary_10_4103_ajprhc_ajprhc_143_24 crossref_primary_10_1016_j_fct_2022_113129 crossref_primary_10_1016_j_exger_2022_111804 crossref_primary_10_1556_650_2021_32200 crossref_primary_10_3389_fragi_2022_736835 crossref_primary_10_1016_j_exger_2022_111800 crossref_primary_10_1007_s40472_023_00393_6 crossref_primary_10_1038_s41467_023_39786_7 crossref_primary_10_1038_s43587_023_00455_5 crossref_primary_10_1111_acel_13317 crossref_primary_10_2337_dci23_0035 crossref_primary_10_3389_fcell_2023_1184524 crossref_primary_10_1186_s12933_022_01482_z crossref_primary_10_1016_j_ejcb_2023_151331 crossref_primary_10_1080_03007995_2021_2003149 crossref_primary_10_1016_j_arr_2023_102131 crossref_primary_10_1016_j_trecan_2021_03_001 crossref_primary_10_14336_AD_2024_1477 crossref_primary_10_1002_advs_202402477 crossref_primary_10_1007_s10522_023_10091_6 crossref_primary_10_1007_s11427_023_2595_5 crossref_primary_10_1038_s43587_023_00489_9 crossref_primary_10_1101_gad_343129_120 crossref_primary_10_1016_j_molmed_2021_12_003 crossref_primary_10_3389_fphar_2025_1567544 crossref_primary_10_1002_jmv_28239 crossref_primary_10_1007_s12603_020_1531_0 crossref_primary_10_4103_1673_5374_389624 crossref_primary_10_1016_j_mam_2022_101157 crossref_primary_10_1080_17425255_2021_1991308 crossref_primary_10_4239_wjd_v12_i11_1832 crossref_primary_10_3923_ijp_2024_1151_1162 crossref_primary_10_1242_jcs_259738 crossref_primary_10_3390_biomedicines12091948 crossref_primary_10_1111_liv_15611 crossref_primary_10_4155_tde_2020_0102 crossref_primary_10_1093_lifemedi_lnaf004 crossref_primary_10_1038_s41420_022_01205_z crossref_primary_10_1007_s12035_024_04503_y crossref_primary_10_3389_fgene_2021_719713 crossref_primary_10_3389_fragi_2024_1373741 crossref_primary_10_1186_s12974_024_03072_0 crossref_primary_10_14283_jpad_2023_103 crossref_primary_10_1016_j_pharmthera_2024_108710 crossref_primary_10_1016_j_isci_2023_108681 crossref_primary_10_1016_j_cmet_2023_10_011 crossref_primary_10_1111_cei_13523 crossref_primary_10_1038_s41590_021_00927_z crossref_primary_10_1155_2021_5294266 crossref_primary_10_14283_jpad_2023_108 crossref_primary_10_1016_j_biopha_2021_111286 crossref_primary_10_1016_j_tem_2024_07_017 crossref_primary_10_3389_fvets_2021_651698 crossref_primary_10_3390_ijms23052901 crossref_primary_10_1007_s10522_021_09941_y crossref_primary_10_1016_j_arr_2023_102122 crossref_primary_10_1093_femsyr_foad018 crossref_primary_10_1007_s00223_023_01100_4 crossref_primary_10_1080_19490976_2022_2154550 crossref_primary_10_1007_s11684_023_0998_6 crossref_primary_10_1016_j_freeradbiomed_2021_01_024 crossref_primary_10_1186_s43556_022_00108_w crossref_primary_10_1007_s10522_024_10156_0 crossref_primary_10_1002_alz_13349 crossref_primary_10_1016_j_arr_2024_102213 crossref_primary_10_3390_cells10020208 crossref_primary_10_1007_s00103_024_03873_x crossref_primary_10_1038_s41392_023_01502_8 crossref_primary_10_1038_s41575_024_00913_4 crossref_primary_10_1016_j_metabol_2022_155223 crossref_primary_10_1038_s41392_022_01251_0 crossref_primary_10_3389_fmolb_2023_1260633 crossref_primary_10_3389_fimmu_2021_682853 crossref_primary_10_1093_ije_dyac200 crossref_primary_10_3390_ph16121714 crossref_primary_10_20517_jca_2024_14 crossref_primary_10_1002_etc_5684 crossref_primary_10_1038_s41514_024_00170_4 crossref_primary_10_18632_aging_204668 crossref_primary_10_1186_s12964_024_01663_1 crossref_primary_10_1016_j_neures_2025_02_008 crossref_primary_10_1111_cpr_13095 crossref_primary_10_2174_0113895575299439240216081711 crossref_primary_10_3390_pharmaceutics13071048 crossref_primary_10_1186_s13018_023_03571_5 crossref_primary_10_1093_cvr_cvae178 crossref_primary_10_1016_S2707_3688_23_00066_3 crossref_primary_10_14336_AD_2023_0630_1 crossref_primary_10_1126_sciadv_adl0372 crossref_primary_10_1016_j_phytochem_2022_113521 crossref_primary_10_3390_ph14060545 crossref_primary_10_3390_ijms242316880 crossref_primary_10_18632_aging_202454 crossref_primary_10_1111_acel_13733 crossref_primary_10_1016_j_diabet_2020_101216 crossref_primary_10_1016_j_hermed_2023_100717 crossref_primary_10_1186_s12931_023_02636_7 crossref_primary_10_3390_cells13131077 crossref_primary_10_4236_jbbs_2021_114007 crossref_primary_10_3390_cancers14071621 crossref_primary_10_3390_ph18010055 crossref_primary_10_1002_dmrr_3712 crossref_primary_10_1186_s12979_023_00377_1 crossref_primary_10_1016_j_bbrc_2024_150027 crossref_primary_10_1016_j_expneurol_2024_115057 crossref_primary_10_1021_acsnano_2c08146 crossref_primary_10_51847_OVGA9z0WDB crossref_primary_10_7554_eLife_90579 crossref_primary_10_1007_s11357_023_00978_0 crossref_primary_10_3389_fneur_2023_1275266 crossref_primary_10_1093_gerona_glac181 crossref_primary_10_1080_14656566_2021_1912735 crossref_primary_10_1093_gerona_glad034 crossref_primary_10_1182_bloodadvances_2021006490 crossref_primary_10_1016_j_phrs_2024_107367 crossref_primary_10_1186_s13195_023_01355_x crossref_primary_10_3923_ijp_2024_726_734 crossref_primary_10_1016_j_jchromb_2023_123868 crossref_primary_10_1016_j_biopha_2023_114384 crossref_primary_10_1016_j_bbamcr_2021_118954 crossref_primary_10_3390_ijms24010755 crossref_primary_10_1167_iovs_65_3_23 crossref_primary_10_3389_fnut_2021_758058 crossref_primary_10_1016_j_mad_2024_111931 crossref_primary_10_1111_acel_13715 crossref_primary_10_1038_s41586_023_06017_4 crossref_primary_10_1016_j_cbi_2023_110462 crossref_primary_10_1073_pnas_2012363117 crossref_primary_10_1016_j_diabet_2022_101359 crossref_primary_10_1038_s44318_024_00220_3 crossref_primary_10_1007_s10522_023_10072_9 crossref_primary_10_1016_j_ejphar_2025_177475 crossref_primary_10_3390_ph15010062 crossref_primary_10_1016_j_neurobiolaging_2021_11_001 crossref_primary_10_1111_bph_15410 crossref_primary_10_1016_j_trac_2023_117248 crossref_primary_10_3390_ijms23179957 crossref_primary_10_1016_j_molcel_2023_10_006 crossref_primary_10_3389_fimmu_2021_594330 crossref_primary_10_1038_s41580_024_00775_3 crossref_primary_10_1186_s12915_025_02170_6 crossref_primary_10_1093_gigascience_giac126 crossref_primary_10_3389_fcell_2022_682045 crossref_primary_10_1139_apnm_2022_0276 crossref_primary_10_1016_j_cmet_2024_10_021 crossref_primary_10_1016_j_placenta_2023_10_003 crossref_primary_10_1111_jcmm_17519 crossref_primary_10_13005_bbra_3226 crossref_primary_10_1097_MCP_0000000000000878 crossref_primary_10_1186_s12967_024_05436_9 crossref_primary_10_1016_j_intimp_2024_113151 crossref_primary_10_1038_s41598_022_05276_x crossref_primary_10_2337_dsi22_0013 crossref_primary_10_1016_j_indcrop_2023_116903 crossref_primary_10_1111_acel_13936 crossref_primary_10_1016_j_scib_2024_09_005 crossref_primary_10_1016_j_jacc_2023_05_038 crossref_primary_10_18632_aging_204393 crossref_primary_10_1016_j_tins_2024_04_003 crossref_primary_10_1038_s41574_023_00833_4 crossref_primary_10_1134_S2635167624601104 crossref_primary_10_1126_sciadv_abq1475 crossref_primary_10_14336_AD_202_0516 crossref_primary_10_1016_j_bbadis_2024_167201 crossref_primary_10_3389_fendo_2021_718942 crossref_primary_10_1016_j_smim_2023_101838 crossref_primary_10_1002_adfm_202420600 crossref_primary_10_1007_s10522_020_09894_8 crossref_primary_10_3390_biom14020189 crossref_primary_10_3390_ijms23179738 crossref_primary_10_1016_j_celrep_2022_111928 crossref_primary_10_1002_ijc_33594 crossref_primary_10_1002_adhm_202405069 crossref_primary_10_1016_j_smim_2023_101842 crossref_primary_10_3389_fcell_2021_768689 crossref_primary_10_1016_j_expneurol_2024_114689 crossref_primary_10_3389_fphar_2021_689111 crossref_primary_10_3389_fphar_2021_645810 crossref_primary_10_1186_s13075_022_02859_x crossref_primary_10_1016_j_arr_2024_102619 crossref_primary_10_1007_s11357_024_01067_6 crossref_primary_10_1016_j_biocel_2021_106086 crossref_primary_10_18632_aging_204498 crossref_primary_10_1007_s00109_023_02360_1 crossref_primary_10_14336_AD_2024_0065 crossref_primary_10_3390_biomedicines12112540 crossref_primary_10_1016_j_trsl_2023_08_001 crossref_primary_10_1016_j_mad_2022_111695 crossref_primary_10_1186_s13048_025_01591_9 crossref_primary_10_47855_jal9020_2023_2_2 crossref_primary_10_2147_JIR_S436147 crossref_primary_10_3233_JAD_230899 crossref_primary_10_1038_s41573_024_01126_9 crossref_primary_10_3390_biom13071085 crossref_primary_10_1038_s12276_024_01357_1 crossref_primary_10_3390_cells11061010 crossref_primary_10_1186_s11658_022_00366_0 crossref_primary_10_18632_aging_203051 crossref_primary_10_3389_fsci_2025_1441297 crossref_primary_10_1016_j_ejmech_2021_113378 crossref_primary_10_1016_j_biopha_2024_116981 crossref_primary_10_1016_j_metabol_2023_155597 crossref_primary_10_1007_s11357_023_01015_w crossref_primary_10_3389_fphar_2021_630419 crossref_primary_10_1038_s41591_022_01923_y crossref_primary_10_3390_ijms252211901 crossref_primary_10_1111_dom_15663 crossref_primary_10_1016_j_bbamcr_2024_119753 crossref_primary_10_1016_j_clgc_2024_01_005 crossref_primary_10_1016_j_arr_2024_102512 crossref_primary_10_1152_physrev_00017_2021 crossref_primary_10_3389_fendo_2023_1181064 crossref_primary_10_4103_1673_5374_320971 crossref_primary_10_1016_S2666_7568_22_00095_2 crossref_primary_10_1002_jor_25470 crossref_primary_10_1134_S0006297923110020 crossref_primary_10_1186_s40001_023_01017_6 crossref_primary_10_1007_s00011_022_01598_8 crossref_primary_10_1210_clinem_dgae635 crossref_primary_10_1111_febs_15617 crossref_primary_10_1016_j_arr_2024_102502 crossref_primary_10_1093_lifemedi_lnac045 crossref_primary_10_1167_iovs_64_11_22 crossref_primary_10_13005_bpj_2977 crossref_primary_10_1097_WNF_0000000000000625 crossref_primary_10_1016_j_jbc_2025_108271 crossref_primary_10_1016_j_tcb_2020_07_002 crossref_primary_10_1111_nyas_14681 crossref_primary_10_1007_s00417_023_06218_7 crossref_primary_10_1016_j_cmet_2020_04_016 crossref_primary_10_22159_ijap_2025v17i2_53174 crossref_primary_10_3389_fendo_2023_1128622 crossref_primary_10_2337_dc22_1728 crossref_primary_10_4103_SBVJ_SBVJ_11_25 crossref_primary_10_1186_s12933_025_02643_6 crossref_primary_10_1016_j_aohep_2023_101135 crossref_primary_10_1016_j_arr_2021_101280 crossref_primary_10_3389_fphar_2024_1347047 crossref_primary_10_1007_s11357_020_00261_6 crossref_primary_10_3390_muscles2020011 crossref_primary_10_1111_cpr_13612 crossref_primary_10_1016_j_tips_2022_02_001 crossref_primary_10_3389_fimmu_2025_1534263 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_20900_agmr20220002 crossref_primary_10_3390_brainsci13030520 crossref_primary_10_1093_qje_qjae015 crossref_primary_10_1007_s40200_021_00835_x crossref_primary_10_1038_s44321_024_00065_7 crossref_primary_10_1093_lifemeta_loac025 crossref_primary_10_1111_febs_15540 crossref_primary_10_31083_j_fbl2711318 crossref_primary_10_3390_antiox11040706 crossref_primary_10_1016_j_cell_2022_11_001 crossref_primary_10_1186_s10020_024_01016_1 crossref_primary_10_1007_s12020_024_04012_x crossref_primary_10_3389_fcell_2022_948819 crossref_primary_10_1097_QAI_0000000000002858 crossref_primary_10_3389_fmed_2023_1072359 crossref_primary_10_3389_fragi_2021_695218 crossref_primary_10_18632_aging_203910 crossref_primary_10_1016_j_trsl_2021_10_003 crossref_primary_10_1111_fcp_12884 crossref_primary_10_3389_fendo_2020_581839 crossref_primary_10_1002_slct_202403395 crossref_primary_10_4062_biomolther_2022_114 crossref_primary_10_1016_j_cmet_2022_11_005 crossref_primary_10_1097_PSY_0000000000001257 crossref_primary_10_1136_jech_2023_220664 crossref_primary_10_3390_antiox11050975 crossref_primary_10_1155_2023_1429642 crossref_primary_10_1016_j_mito_2024_101902 crossref_primary_10_3928_00989134_20220808_05 crossref_primary_10_1080_08923973_2023_2232101 crossref_primary_10_3389_fonc_2020_620641 crossref_primary_10_1016_S2213_8587_23_00001_3 crossref_primary_10_1016_j_tig_2024_09_006 crossref_primary_10_1186_s12933_023_01817_4 crossref_primary_10_3390_cells10010079 crossref_primary_10_1038_s41416_024_02865_7 crossref_primary_10_3389_fgene_2023_1136763 crossref_primary_10_1016_j_jacadv_2022_100070 crossref_primary_10_1007_s12011_021_02734_x crossref_primary_10_1016_j_ejphar_2024_176846 crossref_primary_10_1016_j_obmed_2023_100514 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1093_ageing_afac156 crossref_primary_10_3390_cells12081111 crossref_primary_10_1016_j_dsx_2021_02_022 crossref_primary_10_1016_j_ebiom_2023_104484 crossref_primary_10_3389_fragi_2025_1492099 crossref_primary_10_1007_s00281_024_01016_7 crossref_primary_10_1016_j_jare_2021_12_009 crossref_primary_10_1016_j_tips_2023_12_002 crossref_primary_10_2337_db23_0827 crossref_primary_10_1186_s12953_022_00194_2 crossref_primary_10_18632_aging_103344 crossref_primary_10_18632_aging_103347 crossref_primary_10_1016_j_arr_2021_101263 crossref_primary_10_1155_2021_2027359 crossref_primary_10_1016_j_isci_2020_101631 crossref_primary_10_1038_s41392_023_01378_8 crossref_primary_10_1038_s41598_022_09074_3 crossref_primary_10_31857_S0320972523110039 crossref_primary_10_1146_annurev_bioeng_120122_123054 crossref_primary_10_3390_ijms25095044 crossref_primary_10_1007_s10654_021_00828_3 crossref_primary_10_3390_ijms232314503 crossref_primary_10_1089_ten_tea_2023_0327 crossref_primary_10_3390_biomedicines11030730 crossref_primary_10_1016_j_jot_2024_03_001 crossref_primary_10_1038_s41541_023_00682_2 crossref_primary_10_1186_s40035_024_00409_w crossref_primary_10_18632_aging_103693 crossref_primary_10_3390_biology13090647 crossref_primary_10_3390_cells11050862 crossref_primary_10_1096_fj_202301861RR crossref_primary_10_3389_fragi_2023_1202152 crossref_primary_10_1016_j_arr_2023_101995 crossref_primary_10_1016_j_heliyon_2024_e25253 crossref_primary_10_1038_s41584_022_00863_8 crossref_primary_10_7554_eLife_90579_3 crossref_primary_10_3389_fphar_2024_1507860 crossref_primary_10_1007_s10728_024_00497_9 crossref_primary_10_1016_j_exger_2025_112702 crossref_primary_10_1007_s10238_023_01051_y crossref_primary_10_1016_j_pharmthera_2020_107673 crossref_primary_10_3389_fneur_2022_903565 crossref_primary_10_3390_genes14020329 crossref_primary_10_3389_fendo_2023_1079626 crossref_primary_10_3390_cells11152465 |
Cites_doi | 10.1016/j.arr.2017.08.003 10.7326/M16-1901 10.1007/s10522-017-9685-9 10.1111/acel.12075 10.1016/0014-4827(61)90192-6 10.1016/j.numecd.2015.03.007 10.1371/journal.pone.0053533 10.1038/nrd.2018.174 10.1158/1940-6207.CAPR-11-0536 10.1038/s41586-019-1365-2 10.3389/fendo.2018.00657 10.1016/j.ajhg.2009.10.028 10.1073/pnas.1321776111 10.1007/s00125-017-4318-z 10.1124/jpet.102.034140 10.7554/eLife.02242 10.1016/j.molcel.2016.01.028 10.1016/j.freeradbiomed.2010.06.022 10.1016/j.mad.2015.05.004 10.1016/j.biochi.2018.08.002 10.3892/ol.2014.2466 10.1016/j.cmet.2014.09.018 10.1186/s13148-018-0593-x 10.1038/ncb2152 10.12688/f1000research.15121.1 10.1126/sciadv.1600031 10.1152/japplphysiol.00255.2006 10.2337/dc19-S009 10.1073/pnas.1810692116 10.1038/s41580-018-0020-3 10.1172/JCI120842 10.1042/bj3480607 10.1371/journal.pone.0061537 10.1111/acel.12469 10.1038/nrm.2017.95 10.1007/s10522-018-9769-1 10.1111/acel.12765 10.2217/epi-2018-0187 10.3389/fimmu.2018.01236 10.3389/fendo.2018.00753 10.1016/j.cell.2013.05.039 10.1038/s41514-017-0018-7 10.1007/s10522-019-09838-x 10.1038/onc.2016.391 10.2337/db10-0805 10.18632/oncotarget.14640 10.1007/s10522-018-9773-5 10.1074/jbc.275.1.223 10.1161/CIRCHEARTFAILURE.118.005418 10.1016/j.cmet.2012.02.013 10.1111/jgs.14969 10.1210/en.2015-1572 10.1038/onc.2017.367 10.1111/acel.12723 10.1111/bph.12585 10.1016/j.diabres.2017.10.020 10.1038/s41580-019-0128-0 10.3390/genes9030165 10.18632/oncotarget.13639 10.1097/FPC.0b013e3283559b22 10.1146/annurev-biochem-062917-012239 10.1001/jamapediatrics.2015.0439 10.1016/j.tem.2019.07.015 10.1016/j.tibs.2016.05.008 10.1016/j.mce.2016.11.011 10.1016/j.metabol.2015.10.014 10.1016/j.arr.2019.100914 10.1016/j.yexcr.2017.01.017 10.1093/geroni/igx004.2682 10.2337/db14-1225 10.1161/CIRCRESAHA.116.308445 10.1016/j.arr.2011.12.005 10.1093/ijnp/pyw047 10.1038/s41580-019-0143-1 10.1007/s00125-015-3844-9 10.1038/s41591-018-0092-9 10.1038/s41591-018-0159-7 10.2337/dc15-2534 10.1159/000502257 10.1016/j.chom.2018.03.006 10.18632/aging.100397 10.3892/or.2016.4740 10.1038/s41598-019-41839-1 10.1016/j.redox.2017.02.007 10.1126/science.aab3389 10.1007/s00125-017-4349-5 10.3390/ijms17010122 10.1038/nature13270 10.1124/mol.117.109512 10.1096/fasebj.2019.33.1_supplement.794.4 10.1016/j.bbadis.2018.01.018 10.1016/j.mrgentox.2016.09.001 10.1016/j.cmet.2016.05.014 10.7554/eLife.31268 10.1038/nm.4000 10.1146/annurev-pathol-121808-102144 10.1016/j.cell.2016.11.055 10.1038/cddis.2016.334 10.1101/gr.240093.118 10.1007/s00125-017-4372-6 10.1038/oncsis.2016.2 10.1016/j.cmet.2016.12.009 10.1016/j.cmet.2016.05.011 10.1158/0008-5472.CAN-07-2310 10.1177/1535370213480744 10.1016/j.stemcr.2015.10.014 10.3390/ijms20133173 10.1080/19490976.2017.1405209 10.2337/diabetes.51.8.2420 10.1111/acel.12880 10.3390/ijms18040872 10.1038/nrm4048 10.1371/journal.pone.0208533 10.1371/journal.pone.0008758 10.3389/fcvm.2018.00012 10.1353/hpu.2013.0044 10.1172/JCI64099 10.1158/0008-5472.CAN-10-1769 10.1038/s41580-019-0101-y 10.1016/j.mad.2013.07.003 10.1038/cddis.2012.13 10.1186/s13046-018-0731-5 10.1016/j.stem.2019.08.015 10.1038/nature10600 10.3389/fphys.2019.00572 10.3389/fphys.2018.00706 10.1210/jcem-73-6-1294 10.1101/cshperspect.a025932 10.2337/dc16-1324 10.1016/j.cell.2019.08.003 10.1038/nm.4001 10.1126/sciadv.aax1912 10.1016/j.cmet.2017.09.019 10.3389/fendo.2018.00400 10.7150/ijms.19800 10.1098/rsbl.2018.0885 10.1111/acel.13028 10.1038/s41586-019-1911-y 10.1074/jbc.M115.662114 10.3892/ijo.2013.2077 10.1371/journal.pone.0047699 10.1111/bcp.13780 10.1073/pnas.1311121111 10.1016/j.mrgentox.2018.01.007 10.4161/cc.10.9.15423 10.1038/s41574-018-0059-4 10.18632/aging.101781 10.1111/dom.12812 10.1016/j.cmet.2010.03.014 10.1210/jc.2015-3754 10.1016/j.bbrc.2018.02.191 10.1161/CIRCULATIONAHA.117.031735 10.3389/fendo.2019.00294 10.2337/diabetes.49.5.735 10.1073/pnas.1902452116 10.1126/sciadv.1600584 10.1146/annurev-physiol-030212-183715 10.4161/cc.7.17.6625 10.1038/ncomms3192 10.1016/j.cell.2013.02.035 10.1016/j.cell.2013.11.037 10.1016/j.cmet.2016.09.003 10.1038/s41591-018-0222-4 10.1172/JCI40671 10.1242/dev.130633 10.1016/j.cmet.2018.09.019 10.1155/2019/5980465 10.1007/s10522-017-9724-6 10.1016/j.ebiom.2018.12.052 10.2337/diab.36.5.632 10.1016/j.cell.2016.07.050 10.1111/dom.13262 10.2174/1871530315666150316124019 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.04.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 30 |
ExternalDocumentID | PMC7347426 32333835 10_1016_j_cmet_2020_04_001 S1550413120301832 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK020541 – fundername: NIA NIH HHS grantid: P30 AG038072 – fundername: NIA NIH HHS grantid: P01 AG021654 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-94292aa35f48a4092a48f163507a23a4ddcc7a9ed8bbdb2a948bb8a1f4790ddf3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 14:11:49 EDT 2025 Fri Jul 11 04:43:47 EDT 2025 Mon Jul 21 05:50:52 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:47:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | TAME aging hallmarks metformin longevity metabolism aging health span |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-94292aa35f48a4092a48f163507a23a4ddcc7a9ed8bbdb2a948bb8a1f4790ddf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1550413120301832/pdf |
PMID | 32333835 |
PQID | 2394882211 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347426 proquest_miscellaneous_2394882211 pubmed_primary_32333835 crossref_citationtrail_10_1016_j_cmet_2020_04_001 crossref_primary_10_1016_j_cmet_2020_04_001 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_04_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-07 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Blackburn, Epel, Lin (bib22) 2015; 350 Williams, Singleton, Llopis, Skripnikova (bib168) 2013; 24 Salminen, Kaarniranta (bib135) 2012; 11 Pavlidou, Marinkovic, Rosina, Fuoco, Vumbaca, Gargioli, Castagnoli, Cesareni (bib123) 2019; 2019 Benayoun, Pollina, Brunet (bib19) 2015; 16 Kulkarni, Brutsaert, Anghel, Zhang, Bloomgarden, Pollak, Mar, Hawkins, Crandall, Barzilai (bib94) 2018; 17 Grabowska, Sikora, Bielak-Zmijewska (bib68) 2017; 18 de Kreutzenberg, Ceolotto, Cattelan, Pagnin, Mazzucato, Garagnani, Borelli, Bacalini, Franceschi, Fadini, Avogaro (bib42) 2015; 25 Kalender, Selvaraj, Kim, Gulati, Brûlé, Viollet, Kemp, Bardeesy, Dennis, Schlager (bib82) 2010; 11 Casagrande, Hau (bib28) 2019; 15 Wu, Zhou, Oshiro-Rapley, Li, Paulo, Webster, Mou, Kacergis, Talkowski, Carr (bib169) 2016; 167 Karnewar, Neeli, Panuganti, Kotagiri, Mallappa, Jain, Jerald, Kotamraju (bib85) 2018; 1864 Gil (bib63) 2019; 20 Moreno-Navarrete, Ortega, Rodríguez-Hermosa, Sabater, Pardo, Ricart, Fernández-Real (bib109) 2011; 60 Anisimov, Berstein, Egormin, Piskunova, Popovich, Zabezhinski, Tyndyk, Yurova, Kovalenko, Poroshina, Semenchenko (bib7) 2008; 7 Glossmann, Lutz (bib65) 2019; 65 Peleg, Feller, Ladurner, Imhof (bib124) 2016; 41 Ursini, Russo, Pellino, D'Angelo, Chiaravalloti, De Sarro, Manfredini, De Giorgio (bib155) 2018; 9 Kelly, Tannahill, Murphy, O'Neill (bib87) 2015; 290 Barzilai, Crandall, Kritchevsky, Espeland (bib15) 2016; 23 Vial, Detaille, Guigas (bib159) 2019; 10 Zhang, Li, Ma, Zong, Cui, Feng, Wu, Lin, Lin (bib177) 2016; 24 Hunter, Hughey, Lantier, Sundelin, Peggie, Zeqiraj, Sicheri, Jessen, Wasserman, Sakamoto (bib76) 2018; 24 Xu, Pirtskhalava, Farr, Weigand, Palmer, Weivoda, Inman, Ogrodnik, Hachfeld, Fraser (bib172) 2018; 24 Fang, Yang, Wu, Zhang, Li, Wang, Zhang, Wang, Liu, Wang (bib55) 2018; 17 Na, Park, Pyo, Lee, Jeon, Kim, Yoo (bib112) 2013; 134 Araújo Carvalho, Tavares Mendes, da Silva Reis, Santos, Tanajura, Martins-Filho (bib8) 2019; 54 Robb-MacKay (bib129) 2018 Bakris, Molitch (bib14) 2016; 39 Gong, Goswami, Giacomini, Altman, Klein (bib67) 2012; 22 Liu, Chhipa, Pooya, Wortman, Yachyshin, Chow, Kumar, Zhou, Sun, Quinn (bib99) 2014; 111 Childs, Durik, Baker, van Deursen (bib34) 2015; 21 Sarfstein, Friedman, Attias-Geva, Fishman, Bruchim, Werner (bib138) 2013; 8 Aroda, Edelstein, Goldberg, Knowler, Marcovina, Orchard, Bray, Schade, Temprosa, White (bib10) 2016; 101 Halicka, Zhao, Li, Traganos, Zhang, Lee, Darzynkiewicz (bib69) 2011; 3 Schulten, Bakhashab (bib139) 2019; 20 Chen, Ou, Li, Hu, Shao, Liu (bib33) 2017; 6 Wheaton, Weinberg, Hamanaka, Soberanes, Sullivan, Anso, Glasauer, Dufour, Mutlu, Budigner, Chandel (bib166) 2014; 3 Cuyàs, Verdura, Llorach-Parés, Fernández-Arroyo, Joven, Martin-Castillo, Bosch-Barrera, Brunet, Nonell-Canals, Sanchez-Martinez, Menendez (bib40) 2018; 9 Othman, Oli, Arias-Loza, Kreissl, Stopper (bib119) 2016; 157 Jang, Blum, Liu, Finkel (bib79) 2018; 128 Wang, Jonker, Kato, Kusuhara, Schinkel, Sugiyama (bib162) 2002; 302 Cabreiro, Au, Leung, Vergara-Irigaray, Cochemé, Noori, Weinkove, Schuster, Greene, Gems (bib24) 2013; 153 Noren Hooten, Martin-Montalvo, Dluzen, Zhang, Bernier, Zonderman, Becker, Gorospe, de Cabo, Evans (bib117) 2016; 15 Saisho (bib134) 2015; 15 Lee, Lee, Kim, An, Lee, Kong, Song, Lee, Kim (bib96) 2018; 9 Dowling, Zakikhani, Fantus, Pollak, Sonenberg (bib49) 2007; 67 Cuyàs, Fernández-Arroyo, Verdura, García, Stursa, Werner, Blanco-González, Montes-Bayón, Joven, Viollet (bib39) 2018; 37 Bettedi, Foukas (bib21) 2017; 18 Algire, Moiseeva, Deschênes-Simard, Amrein, Petruccelli, Birman, Viollet, Ferbeyre, Pollak (bib3) 2012; 5 Soukas, Hao, Wu (bib148) 2019; 30 Chen, Xia, Pan, Xu, Zhou, Wu, Cai, Tang, Wang, Yan (bib31) 2016; 7 Chen, Brooks, Houskeeper, Bremner, Dunlop, Viollet, Logan, Salt, Ahmed, Yarwood (bib32) 2017; 440 Amin, Lux, O'Callaghan (bib6) 2019; 85 Konopka, Laurin, Schoenberg, Reid, Castor, Wolff, Musci, Safairad, Linden, Biela (bib91) 2019; 18 Kirkland, Tchkonia, Zhu, Niedernhofer, Robbins (bib89) 2017; 65 Niedernhofer, Gurkar, Wang, Vijg, Hoeijmakers, Robbins (bib116) 2018; 87 (bib5) 2019; 42 Dogan Turacli, Candar, Yuksel, Kalay, Oguz, Demirtas (bib48) 2018; 154 Sun, Xie, Wang, Wu, Wu, Wang, Liu, Deng, Xia, Chen (bib149) 2018; 24 Kristensen, Larsen, Helge, Dela, Wojtaszewski (bib92) 2013; 8 Hayflick, Moorhead (bib71) 1961; 25 Kim, Kundu, Viollet, Guan (bib88) 2011; 13 Wu, Xie, Wu, Jones, Horowitz, Rayner (bib170) 2017; 19 Martin-Montalvo, Mercken, Mitchell, Palacios, Mote, Scheibye-Knudsen, Gomes, Ward, Minor, Blouin (bib104) 2013; 4 McCreight, Bailey, Pearson (bib105) 2016; 59 Vazquez-Martin, Oliveras-Ferraros, Cufí, Martin-Castillo, Menendez (bib158) 2011; 10 Whittemore, Vera, Martínez-Nevado, Sanpera, Blasco (bib167) 2019; 116 de la Cuesta-Zuluaga, Mueller, Corrales-Agudelo, Velásquez-Mejía, Carmona, Abad, Escobar (bib43) 2017; 40 Wang, Bi, Liu, Zhao, Han, Wei, Zhang (bib163) 2017; 14 Armanios, Alder, Parry, Karim, Strong, Greider (bib9) 2009; 85 Zarse, Schmeisser, Groth, Priebe, Beuster, Kuhlow, Guthke, Platzer, Kahn, Ristow (bib176) 2012; 15 Athanasiou, Aguila, Opefi, South, Bellingham, Bevilacqua, Munro, Kanuga, Mackenzie, Dubis (bib11) 2017; 26 Fatt, Hsu, He, Wondisford, Miller, Kaplan, Wang (bib56) 2015; 5 Moiseeva, Deschênes-Simard, St-Germain, Igelmann, Huot, Cadar, Bourdeau, Pollak, Ferbeyre (bib108) 2013; 12 Tizazu, Nyunt, Cexus, Suku, Mok, Xian, Chong, Tan, How, Hubert (bib153) 2019; 10 Foretz, Hébrard, Leclerc, Zarrinpashneh, Soty, Mithieux, Sakamoto, Andreelli, Viollet (bib59) 2010; 120 Bridgeman, Ellison, Melton, Newsholme, Mamotte (bib23) 2018; 20 Crowley, Diamantidis, McDuffie, Cameron, Stanifer, Mock, Wang, Tang, Nagi, Kosinski, Williams (bib38) 2017; 166 Cameron, Morrison, Levin, Mohan, Forteath, Beall, McNeilly, Balfour, Savinko, Wong (bib25) 2016; 119 Bailey (bib12) 2017; 60 Xie, Wang, Ji, Yuan, Peng, Zhang, Wen, Shi (bib171) 2014; 8 El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib51) 2000; 275 Prasad, Sajja, Kaisar, Park, Villalba, Liles, Abbruscato, Cucullo (bib126) 2017; 12 Kane, Anderson, Price, Woodlief, Lin, Bikman, Cortright, Neufer (bib84) 2010; 49 Campbell, Bellman, Stephenson, Lisy (bib26) 2017; 40 Howell, Hellberg, Turner, Talbott, Kolar, Ross, Hoxhaj, Saghatelian, Shaw, Manning (bib75) 2017; 25 Sun, Youle, Finkel (bib150) 2016; 61 Heckman-Stoddard, DeCensi, Sahasrabuddhe, Ford (bib72) 2017; 60 Slack, Foley, Partridge (bib144) 2012; 7 Fahy, Brooke, Watson, Good, Vasanawala, Maecker, Leipold, Lin, Kobor, Horvath (bib54) 2019; 18 Patanè, Piro, Rabuazzo, Anello, Vigneri, Purrello (bib122) 2000; 49 Song, Lee, Lee, Kang, Cha, Lee (bib147) 2016; 17 Suwa, Egashira, Nakano, Sasaki, Kumagai (bib151) 2006; 101 Kaushik, Cuervo (bib86) 2015; 21 Sabit, Abdel-Ghany, M Said, Mostafa, El-Zawahry (bib133) 2018; 19 Shi, Xiao, Wang, Dong, Yan, Shen, Chen, Chen, Zhao (bib143) 2012; 3 Zhong, Men, Lu, Geng, Zhou, Mitsuhashi, Shozu, Maihle, Carmichael, Taylor, Huang (bib178) 2017; 36 Benayoun, Pollina, Singh, Mahmoudi, Harel, Casey, Dulken, Kundaje, Brunet (bib20) 2019; 29 Schultz, Sinclair (bib140) 2016; 143 Piskovatska, Stefanyshyn, Storey, Vaiserman, Lushchak (bib125) 2019; 20 Pryor, Norvaisas, Marinos, Best, Thingholm, Quintaneiro, De Haes, Esser, Waschina, Lujan (bib127) 2019; 178 Vinatier, Domínguez, Guicheux, Caramés (bib161) 2018; 9 Gillespie, Wang, Vadan, Yu, Ausió, Kusalik, Eskiw (bib64) 2019; 9 Sen, Shah, Nativio, Berger (bib142) 2016; 166 Tsai, Lai, Chen, Li, Huang, Liu, Tsai, Wang (bib154) 2017; 8 de Zegher, Díaz, Ibáñez (bib44) 2015; 169 Madreiter-Sokolowski, Sokolowski, Waldeck-Weiermair, Malli, Graier (bib103) 2018; 9 Milman, Huffman, Barzilai (bib107) 2016; 23 Valencia, Palacio, Tamariz, Florez (bib156) 2017; 60 Murphy, Hartley (bib110) 2018; 17 Fontaine (bib57) 2018; 9 Owen, Doran, Halestrap (bib120) 2000; 348 Galuska, Zierath, Thörne, Sonnenfeld, Wallberg-Henriksson (bib61) 1991; 17 Sanada, Taniyama, Muratsu, Otsu, Shimizu, Rakugi, Morishita (bib136) 2018; 5 Chung, Nicol, Cheng, Lin, Chen, Pei, Lin, Shih, Yen, Chen (bib35) 2017; 352 Novelle, Ali, Diéguez, Bernier, de Cabo (bib4) 2016; 6 Lu, Su, Qiao, Bian, Ding, Hu (bib101) 2016; 19 Zhu, Liu, Ding, Wang, Geng (bib180) 2019; 20 Śmieszek, Stręk, Kornicka, Grzesiak, Weiss, Marycz (bib145) 2017; 18 Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald (bib102) 2014; 510 Neumann, Baror, Zhao, Segel, Dietmann, Rawji, Foerster, McClain, Chalut, van Wijngaarden, Franklin (bib115) 2019; 25 Ruddy, Adams, Morshead (bib132) 2019; 5 Foretz, Guigas, Bertrand, Pollak, Viollet (bib58) 2014; 20 Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib66) 2013; 155 Coppé, Desprez, Krtolica, Campisi (bib37) 2010; 5 Liu, Ge, Wu, Ma, Xu, Zhang, Yang (bib98) 2019; 11 Wang, Liu, Yang, Wang, Zhao, Miao, Zhu (bib164) 2019; 11 Yan, Han, Wang, Waddington, Zheng, Zhen (bib173) 2017; 92 Na, Park, Pyo, Jeon, Kim, Arking, Yoo (bib111) 2015; 149 Herzig, Shaw (bib73) 2018; 19 Soberanes, Misharin, Jairaman, Morales-Nebreda, McQuattie-Pimentel, Cho, Hamanaka, Meliton, Reyfman, Walter (bib146) 2019; 29 Hawley, Gadalla, Olsen, Hardie (bib70) 2002; 51 Wang, Xu, Yan, Zhao, Mi, Li, Yan (bib165) 2018; 37 Cheki, Ghasemi, Rezaei Rashnoudi, Erfani Majd (bib29) 2019 Elbere, Silamikelis, Ustinova, Kalnina, Zaharenko, Peculis, Konrade, Ciuculete, Zhukovsky, Gudra (bib50) 2018; 10 Franceschi, Garagnani, Parini, Giuliani, Santoro (bib60) 2018; 14 Barzilai (bib16) 2017; 1 Sant'Anna, Yajima, Rosada, Franco, Prioli, Della-Rosa, Mathias, Castro-Prado (bib137) 2013; 238 Coll, Chen, Taskar, Rimmington, Patel, Tadross, Cimino, Yang, Welsh, Virtue (bib36) 2020; 578 Alfaras, Mitchell, Mora, Lugo, Warren, Navas-Enamorado, Hoffmann, Hine, Mitchell, Le Couteur (bib2) 2017; 3 Zhou, Tang, Jin, Chen, Lu, Liu, Shen (bib179) 2016; 2016 De Haes, Frooninckx, Van Assche, Smolders, Depuydt, Billen, Braeckman, Schoofs, Temmerman (bib41) 2014; 111 Jackson, Hawa, Jaspan, Sim, Disilvio, Featherbe, Kurtz (bib78) 1987; 36 Baker, Wijshake, Tchkonia, LeBrasseur, Childs, van de Sluis, Kirkland, van Deursen (bib13) 2011; 479 Michalak, Bur Heckman-Stoddard (10.1016/j.cmet.2020.04.001_bib72) 2017; 60 Othman (10.1016/j.cmet.2020.04.001_bib119) 2016; 157 Bailey (10.1016/j.cmet.2020.04.001_bib12) 2017; 60 Benayoun (10.1016/j.cmet.2020.04.001_bib19) 2015; 16 Jang (10.1016/j.cmet.2020.04.001_bib79) 2018; 128 Neumann (10.1016/j.cmet.2020.04.001_bib115) 2019; 25 Ben Sahra (10.1016/j.cmet.2020.04.001_bib18) 2011; 71 Hunter (10.1016/j.cmet.2020.04.001_bib76) 2018; 24 Kalender (10.1016/j.cmet.2020.04.001_bib82) 2010; 11 Lamming (10.1016/j.cmet.2020.04.001_bib95) 2013; 123 Piskovatska (10.1016/j.cmet.2020.04.001_bib125) 2019; 20 Sen (10.1016/j.cmet.2020.04.001_bib142) 2016; 166 Fang (10.1016/j.cmet.2020.04.001_bib55) 2018; 17 Sarfstein (10.1016/j.cmet.2020.04.001_bib138) 2013; 8 Cuyàs (10.1016/j.cmet.2020.04.001_bib39) 2018; 37 Chen (10.1016/j.cmet.2020.04.001_bib33) 2017; 6 Whittemore (10.1016/j.cmet.2020.04.001_bib167) 2019; 116 Seidel (10.1016/j.cmet.2020.04.001_bib141) 2018; 7 Sant'Anna (10.1016/j.cmet.2020.04.001_bib137) 2013; 238 Dowling (10.1016/j.cmet.2020.04.001_bib49) 2007; 67 Foretz (10.1016/j.cmet.2020.04.001_bib59) 2010; 120 Chen (10.1016/j.cmet.2020.04.001_bib31) 2016; 7 Armanios (10.1016/j.cmet.2020.04.001_bib9) 2009; 85 Benayoun (10.1016/j.cmet.2020.04.001_bib20) 2019; 29 Rena (10.1016/j.cmet.2020.04.001_bib128) 2018; 137 Foretz (10.1016/j.cmet.2020.04.001_bib58) 2014; 20 Franceschi (10.1016/j.cmet.2020.04.001_bib60) 2018; 14 Amin (10.1016/j.cmet.2020.04.001_bib6) 2019; 85 Herzig (10.1016/j.cmet.2020.04.001_bib73) 2018; 19 Kaushik (10.1016/j.cmet.2020.04.001_bib86) 2015; 21 de Kreutzenberg (10.1016/j.cmet.2020.04.001_bib42) 2015; 25 Coppé (10.1016/j.cmet.2020.04.001_bib37) 2010; 5 Cheki (10.1016/j.cmet.2020.04.001_bib30) 2016; 809 Alfaras (10.1016/j.cmet.2020.04.001_bib2) 2017; 3 Zhong (10.1016/j.cmet.2020.04.001_bib178) 2017; 36 Elbere (10.1016/j.cmet.2020.04.001_bib50) 2018; 10 Izzo (10.1016/j.cmet.2020.04.001_bib77) 2017; 26 Madiraju (10.1016/j.cmet.2020.04.001_bib102) 2014; 510 El-Mir (10.1016/j.cmet.2020.04.001_bib51) 2000; 275 Pryor (10.1016/j.cmet.2020.04.001_bib127) 2019; 178 Childs (10.1016/j.cmet.2020.04.001_bib34) 2015; 21 Glossmann (10.1016/j.cmet.2020.04.001_bib65) 2019; 65 Wang (10.1016/j.cmet.2020.04.001_bib165) 2018; 37 Patanè (10.1016/j.cmet.2020.04.001_bib122) 2000; 49 Zhou (10.1016/j.cmet.2020.04.001_bib179) 2016; 2016 Kristensen (10.1016/j.cmet.2020.04.001_bib92) 2013; 8 Niedernhofer (10.1016/j.cmet.2020.04.001_bib116) 2018; 87 Sabit (10.1016/j.cmet.2020.04.001_bib133) 2018; 19 Schulten (10.1016/j.cmet.2020.04.001_bib139) 2019; 20 Gil (10.1016/j.cmet.2020.04.001_bib63) 2019; 20 Garcia-Martin (10.1016/j.cmet.2020.04.001_bib62) 2018; 13 Zarse (10.1016/j.cmet.2020.04.001_bib176) 2012; 15 Moiseeva (10.1016/j.cmet.2020.04.001_bib108) 2013; 12 Howell (10.1016/j.cmet.2020.04.001_bib75) 2017; 25 Rosa (10.1016/j.cmet.2020.04.001_bib130) 2018; 135 Blackburn (10.1016/j.cmet.2020.04.001_bib22) 2015; 350 Halicka (10.1016/j.cmet.2020.04.001_bib69) 2011; 3 Kim (10.1016/j.cmet.2020.04.001_bib88) 2011; 13 Dogan Turacli (10.1016/j.cmet.2020.04.001_bib48) 2018; 154 Jackson (10.1016/j.cmet.2020.04.001_bib78) 1987; 36 Song (10.1016/j.cmet.2020.04.001_bib147) 2016; 17 Xie (10.1016/j.cmet.2020.04.001_bib171) 2014; 8 Saisho (10.1016/j.cmet.2020.04.001_bib134) 2015; 15 Gong (10.1016/j.cmet.2020.04.001_bib67) 2012; 22 Bauer (10.1016/j.cmet.2020.04.001_bib17) 2018; 27 Bettedi (10.1016/j.cmet.2020.04.001_bib21) 2017; 18 Cameron (10.1016/j.cmet.2020.04.001_bib25) 2016; 119 Barzilai (10.1016/j.cmet.2020.04.001_bib16) 2017; 1 Wang (10.1016/j.cmet.2020.04.001_bib164) 2019; 11 Yan (10.1016/j.cmet.2020.04.001_bib173) 2017; 92 Cheki (10.1016/j.cmet.2020.04.001_bib29) 2019 Sun (10.1016/j.cmet.2020.04.001_bib149) 2018; 24 Araújo Carvalho (10.1016/j.cmet.2020.04.001_bib8) 2019; 54 Hayflick (10.1016/j.cmet.2020.04.001_bib71) 1961; 25 Zhang (10.1016/j.cmet.2020.04.001_bib177) 2016; 24 Robb-MacKay (10.1016/j.cmet.2020.04.001_bib129) 2018 Emelyanova (10.1016/j.cmet.2020.04.001_bib52) 2019; 33 Wheaton (10.1016/j.cmet.2020.04.001_bib166) 2014; 3 Lu (10.1016/j.cmet.2020.04.001_bib101) 2016; 19 Bridgeman (10.1016/j.cmet.2020.04.001_bib23) 2018; 20 Konopka (10.1016/j.cmet.2020.04.001_bib91) 2019; 18 Fontaine (10.1016/j.cmet.2020.04.001_bib57) 2018; 9 Pal (10.1016/j.cmet.2020.04.001_bib121) 2016; 2 (10.1016/j.cmet.2020.04.001_bib5) 2019; 42 Vazquez-Martin (10.1016/j.cmet.2020.04.001_bib158) 2011; 10 Wu (10.1016/j.cmet.2020.04.001_bib169) 2016; 167 Xu (10.1016/j.cmet.2020.04.001_bib172) 2018; 24 Owen (10.1016/j.cmet.2020.04.001_bib120) 2000; 348 Tsai (10.1016/j.cmet.2020.04.001_bib154) 2017; 8 Onken (10.1016/j.cmet.2020.04.001_bib118) 2010; 5 Na (10.1016/j.cmet.2020.04.001_bib113) 2018; 498 Slack (10.1016/j.cmet.2020.04.001_bib144) 2012; 7 Kanamori (10.1016/j.cmet.2020.04.001_bib83) 2019; 12 Rotermund (10.1016/j.cmet.2020.04.001_bib131) 2018; 9 Kane (10.1016/j.cmet.2020.04.001_bib84) 2010; 49 Wu (10.1016/j.cmet.2020.04.001_bib170) 2017; 19 Karnewar (10.1016/j.cmet.2020.04.001_bib85) 2018; 1864 Noren Hooten (10.1016/j.cmet.2020.04.001_bib117) 2016; 15 Josephson (10.1016/j.cmet.2020.04.001_bib80) 2019; 116 Fatt (10.1016/j.cmet.2020.04.001_bib56) 2015; 5 Shi (10.1016/j.cmet.2020.04.001_bib143) 2012; 3 Peleg (10.1016/j.cmet.2020.04.001_bib124) 2016; 41 Ursini (10.1016/j.cmet.2020.04.001_bib155) 2018; 9 Anisimov (10.1016/j.cmet.2020.04.001_bib7) 2008; 7 Justice (10.1016/j.cmet.2020.04.001_bib81) 2019; 40 Chung (10.1016/j.cmet.2020.04.001_bib35) 2017; 352 Zhu (10.1016/j.cmet.2020.04.001_bib180) 2019; 20 Novelle (10.1016/j.cmet.2020.04.001_bib4) 2016; 6 Valencia (10.1016/j.cmet.2020.04.001_bib156) 2017; 60 de la Cuesta-Zuluaga (10.1016/j.cmet.2020.04.001_bib43) 2017; 40 Wang (10.1016/j.cmet.2020.04.001_bib163) 2017; 14 Vasamsetti (10.1016/j.cmet.2020.04.001_bib157) 2015; 64 Vial (10.1016/j.cmet.2020.04.001_bib159) 2019; 10 DeFronzo (10.1016/j.cmet.2020.04.001_bib46) 1991; 73 Sanada (10.1016/j.cmet.2020.04.001_bib136) 2018; 5 Algire (10.1016/j.cmet.2020.04.001_bib3) 2012; 5 Gillespie (10.1016/j.cmet.2020.04.001_bib64) 2019; 9 Cuyàs (10.1016/j.cmet.2020.04.001_bib40) 2018; 9 Gomes (10.1016/j.cmet.2020.04.001_bib66) 2013; 155 Murphy (10.1016/j.cmet.2020.04.001_bib110) 2018; 17 de Zegher (10.1016/j.cmet.2020.04.001_bib44) 2015; 169 Crowley (10.1016/j.cmet.2020.04.001_bib38) 2017; 166 Thevaranjan (10.1016/j.cmet.2020.04.001_bib152) 2017; 23 Soukas (10.1016/j.cmet.2020.04.001_bib148) 2019; 30 Vinatier (10.1016/j.cmet.2020.04.001_bib161) 2018; 9 Klement (10.1016/j.cmet.2020.04.001_bib90) 2016; 5 López-Otín (10.1016/j.cmet.2020.04.001_bib100) 2013; 153 Soberanes (10.1016/j.cmet.2020.04.001_bib146) 2019; 29 Lee (10.1016/j.cmet.2020.04.001_bib97) 2016; 35 Athanasiou (10.1016/j.cmet.2020.04.001_bib11) 2017; 26 Yu (10.1016/j.cmet.2020.04.001_bib175) 2017; 8 Kirkland (10.1016/j.cmet.2020.04.001_bib89) 2017; 65 Ruddy (10.1016/j.cmet.2020.04.001_bib132) 2019; 5 McCreight (10.1016/j.cmet.2020.04.001_bib105) 2016; 59 Na (10.1016/j.cmet.2020.04.001_bib111) 2015; 149 Lee (10.1016/j.cmet.2020.04.001_bib96) 2018; 9 Liu (10.1016/j.cmet.2020.04.001_bib98) 2019; 11 Coll (10.1016/j.cmet.2020.04.001_bib36) 2020; 578 Chen (10.1016/j.cmet.2020.04.001_bib32) 2017; 440 Cabreiro (10.1016/j.cmet.2020.04.001_bib24) 2013; 153 Tizazu (10.1016/j.cmet.2020.04.001_bib153) 2019; 10 Salminen (10.1016/j.cmet.2020.04.001_bib135) 2012; 11 Yi (10.1016/j.cmet.2020.04.001_bib174) 2013; 43 Moreno-Navarrete (10.1016/j.cmet.2020.04.001_bib109) 2011; 60 Martin-Montalvo (10.1016/j.cmet.2020.04.001_bib104) 2013; 4 Michalak (10.1016/j.cmet.2020.04.001_bib106) 2019; 20 Pavlidou (10.1016/j.cmet.2020.04.001_bib123) 2019; 2019 Williams (10.1016/j.cmet.2020.04.001_bib168) 2013; 24 Kulkarni (10.1016/j.cmet.2020.04.001_bib94) 2018; 17 Madreiter-Sokolowski (10.1016/j.cmet.2020.04.001_bib103) 2018; 9 Liu (10.1016/j.cmet.2020.04.001_bib99) 2014; 111 Aatsinki (10.1016/j.cmet.2020.04.001_bib1) 2014; 171 Aroda (10.1016/j.cmet.2020.04.001_bib10) 2016; 101 Sun (10.1016/j.cmet.2020.04.001_bib150) 2016; 61 Fahy (10.1016/j.cmet.2020.04.001_bib54) 2019; 18 Śmieszek (10.1016/j.cmet.2020.04.001_bib145) 2017; 18 Wang (10.1016/j.cmet.2020.04.001_bib162) 2002; 302 Casagrande (10.1016/j.cmet.2020.04.001_bib28) 2019; 15 Bakris (10.1016/j.cmet.2020.04.001_bib14) 2016; 39 Hawley (10.1016/j.cmet.2020.04.001_bib70) 2002; 51 Najafi (10.1016/j.cmet.2020.04.001_bib114) 2018; 827 DeFronzo (10.1016/j.cmet.2020.04.001_bib45) 2016; 65 De Haes (10.1016/j.cmet.2020.04.001_bib41) 2014; 111 Grabowska (10.1016/j.cmet.2020.04.001_bib68) 2017; 18 Schultz (10.1016/j.cmet.2020.04.001_bib140) 2016; 143 Campisi (10.1016/j.cmet.2020.04.001_bib27) 2019; 571 Kelly (10.1016/j.cmet.2020.04.001_bib87) 2015; 290 Kuang (10.1016/j.cmet.2020.04.001_bib93) 2020; 21 Ermolaeva (10.1016/j.cmet.2020.04.001_bib53) 2018; 19 Vijg (10.1016/j.cmet.2020.04.001_bib160) 2013; 75 Suwa (10.1016/j.cmet.2020.04.001_bib151) 2006; 101 Milman (10.1016/j.cmet.2020.04.001_bib107) 2016; 23 Prasad (10.1016/j.cmet.2020.04.001_bib126) 2017; 12 Baker (10.1016/j.cmet.2020.04.001_bib13) 2011; 479 Hipp (10.1016/j.cmet.2020.04.001_bib74) 2019; 20 Na (10.1016/j.cmet.2020.04.001_bib112) 2013; 134 Barzilai (10.1016/j.cmet.2020.04.001_bib15) 2016; 23 Galuska (10.1016/j.cmet.2020.04.001_bib61) 1991; 17 Campbell (10.1016/j.cmet.2020.04.001_bib26) 2017; 40 Diman (10.1016/j.cmet.2020.04.001_bib47) 2016; 2 |
References_xml | – volume: 24 start-page: 93 year: 2013 end-page: 103 ident: bib168 article-title: Metformin induces a senescence-associated gene signature in breast cancer cells publication-title: J. Health Care Poor Underserved – volume: 8 start-page: e53533 year: 2013 ident: bib92 article-title: Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice publication-title: PLoS One – volume: 578 start-page: 444 year: 2020 end-page: 448 ident: bib36 article-title: GDF15 mediates the effects of metformin on body weight and energy balance publication-title: Nature – volume: 60 start-page: 1639 year: 2017 end-page: 1647 ident: bib72 article-title: Repurposing metformin for the prevention of cancer and cancer recurrence publication-title: Diabetologia – volume: 5 start-page: e8758 year: 2010 ident: bib118 article-title: Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1 publication-title: PLoS One – volume: 6 start-page: a025932 year: 2016 ident: bib4 article-title: Metformin: a hopeful promise in aging research publication-title: Cold Spring Harb. Perspect. Med. – volume: 51 start-page: 2420 year: 2002 end-page: 2425 ident: bib70 article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism publication-title: Diabetes – volume: 116 start-page: 6995 year: 2019 end-page: 7004 ident: bib80 article-title: Age-related inflammation triggers skeletal stem/progenitor cell dysfunction publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 1246 year: 2018 end-page: 1256 ident: bib172 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat. Med. – volume: 5 start-page: 12 year: 2018 ident: bib136 article-title: Source of chronic inflammation in aging publication-title: Front. Cardiovasc. Med. – volume: 128 start-page: 3662 year: 2018 end-page: 3670 ident: bib79 article-title: The role of mitochondria in aging publication-title: J. Clin. Invest. – volume: 166 start-page: 191 year: 2017 end-page: 200 ident: bib38 article-title: Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review publication-title: Ann. Intern. Med. – volume: 5 start-page: e193 year: 2016 ident: bib90 article-title: Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer publication-title: Oncogenesis – volume: 275 start-page: 223 year: 2000 end-page: 228 ident: bib51 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. – volume: 87 start-page: 295 year: 2018 end-page: 322 ident: bib116 article-title: Nuclear genomic instability and aging publication-title: Annu. Rev. Biochem. – volume: 135 start-page: 30 year: 2018 end-page: 36 ident: bib130 article-title: Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes publication-title: Diabetes Res. Clin. Pract. – volume: 7 start-page: e47699 year: 2012 ident: bib144 article-title: Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila publication-title: PLoS One – volume: 9 start-page: 400 year: 2018 ident: bib131 article-title: The therapeutic potential of metformin in neurodegenerative diseases publication-title: Front. Endocrinol. – volume: 30 start-page: 745 year: 2019 end-page: 755 ident: bib148 article-title: Metformin as anti-aging therapy: is it for everyone? publication-title: Trends Endocrinol. Metab. – volume: 137 start-page: 422 year: 2018 end-page: 424 ident: bib128 article-title: Repurposing metformin for cardiovascular disease publication-title: Circulation – volume: 11 start-page: 230 year: 2012 end-page: 241 ident: bib135 article-title: AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network publication-title: Ageing Res. Rev. – volume: 3 start-page: 16 year: 2017 ident: bib2 article-title: Health benefits of late-onset metformin treatment every other week in mice publication-title: npj Aging Mech. Dis. – volume: 40 start-page: 554 year: 2019 end-page: 563 ident: bib81 article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study publication-title: EBiomedicine – volume: 4 start-page: 2192 year: 2013 ident: bib104 article-title: Metformin improves healthspan and lifespan in mice publication-title: Nat. Commun. – volume: 64 start-page: 2028 year: 2015 end-page: 2041 ident: bib157 article-title: Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis publication-title: Diabetes – volume: 10 start-page: 156 year: 2018 ident: bib50 article-title: Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals publication-title: Clin. Epigenet. – volume: 827 start-page: 1 year: 2018 end-page: 8 ident: bib114 article-title: Metformin: prevention of genomic instability and cancer: a review publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen. – volume: 15 start-page: 451 year: 2012 end-page: 465 ident: bib176 article-title: Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal publication-title: Cell Metab. – volume: 5 start-page: 536 year: 2012 end-page: 543 ident: bib3 article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage publication-title: Cancer Prev. Res. (Phila.) – volume: 119 start-page: 652 year: 2016 end-page: 665 ident: bib25 article-title: Anti-inflammatory effects of metformin irrespective of diabetes status publication-title: Circ. Res. – volume: 40 start-page: 54 year: 2017 end-page: 62 ident: bib43 article-title: Metformin is associated with higher relative abundance of Mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut publication-title: Diabetes Care – volume: 18 start-page: 872 year: 2017 ident: bib145 article-title: Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study publication-title: Int. J. Mol. Sci. – volume: 54 start-page: 100914 year: 2019 ident: bib8 article-title: Telomere length and frailty in older adults-a systematic review and meta-analysis publication-title: Ageing Res. Rev. – volume: 120 start-page: 2355 year: 2010 end-page: 2369 ident: bib59 article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state publication-title: J. Clin. Invest. – volume: 37 start-page: 963 year: 2018 end-page: 970 ident: bib39 article-title: Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism publication-title: Oncogene – volume: 2 start-page: e1600584 year: 2016 ident: bib121 article-title: Epigenetics and aging publication-title: Sci. Adv. – volume: 25 start-page: 473 year: 2019 end-page: 485.e8 ident: bib115 article-title: Metformin restores CNS remyelination capacity by rejuvenating aged stem cells publication-title: Cell Stem Cell – volume: 166 start-page: 822 year: 2016 end-page: 839 ident: bib142 article-title: Epigenetic mechanisms of longevity and aging publication-title: Cell – volume: 9 start-page: 706 year: 2018 ident: bib161 article-title: Role of the inflammation-autophagy-senescence integrative network in osteoarthritis publication-title: Front. Physiol. – volume: 8 start-page: 13832 year: 2017 end-page: 13845 ident: bib154 article-title: Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway publication-title: Oncotarget – volume: 348 start-page: 607 year: 2000 end-page: 614 ident: bib120 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. – volume: 40 start-page: 31 year: 2017 end-page: 44 ident: bib26 article-title: Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis publication-title: Ageing Res. Rev. – volume: 20 start-page: 953 year: 2014 end-page: 966 ident: bib58 article-title: Metformin: from mechanisms of action to therapies publication-title: Cell Metab. – volume: 111 start-page: E435 year: 2014 end-page: E444 ident: bib99 article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK publication-title: Proc. Natl. Acad. Sci. USA – volume: 479 start-page: 232 year: 2011 end-page: 236 ident: bib13 article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders publication-title: Nature – volume: 67 start-page: 10804 year: 2007 end-page: 10812 ident: bib49 article-title: Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells publication-title: Cancer Res. – volume: 9 start-page: 753 year: 2018 ident: bib57 article-title: Metformin-induced mitochondrial Complex I inhibition: facts, uncertainties, and consequences publication-title: Front. Endocrinol. (Lausanne) – volume: 12 start-page: 489 year: 2013 end-page: 498 ident: bib108 article-title: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation publication-title: Aging Cell – volume: 25 start-page: 686 year: 2015 end-page: 693 ident: bib42 article-title: Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial publication-title: Nutr. Metab. Cardiovasc. Dis. – volume: 171 start-page: 2351 year: 2014 end-page: 2363 ident: bib1 article-title: Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions publication-title: Br. J. Pharmacol. – volume: 20 start-page: 1 year: 2019 end-page: 16 ident: bib180 article-title: Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction publication-title: Biogerontology – volume: 21 start-page: 13 year: 2020 end-page: 27 ident: bib93 article-title: Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells publication-title: Biogerontology – volume: 59 start-page: 426 year: 2016 end-page: 435 ident: bib105 article-title: Metformin and the gastrointestinal tract publication-title: Diabetologia – volume: 11 start-page: 655 year: 2019 end-page: 667 ident: bib164 article-title: Metformin exerts antidepressant effects by regulated DNA hydroxymethylation publication-title: Epigenomics – volume: 571 start-page: 183 year: 2019 end-page: 192 ident: bib27 article-title: From discoveries in ageing research to therapeutics for healthy ageing publication-title: Nature – volume: 153 start-page: 228 year: 2013 end-page: 239 ident: bib24 article-title: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism publication-title: Cell – volume: 15 start-page: 20180885 year: 2019 ident: bib28 article-title: Telomere attrition: metabolic regulation and signalling function? publication-title: Biol. Lett. – volume: 6 start-page: e31268 year: 2017 ident: bib33 article-title: Metformin extends C. elegans lifespan through lysosomal pathway publication-title: eLife – volume: 9 start-page: 155 year: 2018 end-page: 165 ident: bib96 article-title: Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice publication-title: Gut Microbes – volume: 5 start-page: eaax1912 year: 2019 ident: bib132 article-title: Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke publication-title: Sci. Adv. – volume: 9 start-page: 657 year: 2018 ident: bib40 article-title: Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation publication-title: Front. Endocrinol. (Lausanne) – volume: 43 start-page: 1503 year: 2013 end-page: 1510 ident: bib174 article-title: Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway publication-title: Int. J. Oncol. – volume: 33 start-page: 794 year: 2019 ident: bib52 article-title: Metformin has direct protective effect on human cardiac mitochondria publication-title: FASEB J – volume: 20 start-page: 421 year: 2019 end-page: 435 ident: bib74 article-title: The proteostasis network and its decline in ageing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 25 start-page: 463 year: 2017 end-page: 471 ident: bib75 article-title: Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex publication-title: Cell Metab. – volume: 440 start-page: 57 year: 2017 end-page: 68 ident: bib32 article-title: Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms publication-title: Mol. Cell. Endocrinol. – volume: 18 start-page: 447 year: 2017 end-page: 476 ident: bib68 article-title: Sirtuins, a promising target in slowing down the ageing process publication-title: Biogerontology – volume: 17 start-page: 122 year: 2016 ident: bib147 article-title: Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53 publication-title: Int. J. Mol. Sci. – volume: 3 start-page: e02242 year: 2014 ident: bib166 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife – volume: 101 start-page: 1754 year: 2016 end-page: 1761 ident: bib10 article-title: Long-term Metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study publication-title: J. Clin. Endocrinol. Metab. – volume: 20 start-page: 573 year: 2019 end-page: 589 ident: bib106 article-title: The roles of DNA, RNA and histone methylation in ageing and cancer publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 290 year: 2017 end-page: 293 ident: bib170 article-title: Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes publication-title: Diabetes Obes. Metab. – volume: 29 start-page: 697 year: 2019 end-page: 709 ident: bib20 article-title: Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses publication-title: Genome Res. – volume: 49 start-page: 735 year: 2000 end-page: 740 ident: bib122 article-title: Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells publication-title: Diabetes – volume: 8 start-page: 5619 year: 2017 end-page: 5628 ident: bib175 article-title: Anti-tumor activity of metformin: from metabolic and epigenetic perspectives publication-title: Oncotarget – volume: 7 start-page: e2441 year: 2016 ident: bib31 article-title: Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo publication-title: Cell Death Dis. – volume: 11 start-page: 741 year: 2019 end-page: 755 ident: bib98 article-title: Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes publication-title: Aging – volume: 17 start-page: 159 year: 1991 end-page: 163 ident: bib61 article-title: Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle publication-title: Diabete Metab – volume: 24 start-page: 1919 year: 2018 end-page: 1929 ident: bib149 article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin publication-title: Nat. Med. – volume: 41 start-page: 700 year: 2016 end-page: 711 ident: bib124 article-title: The metabolic impact on histone acetylation and transcription in ageing publication-title: Trends Biochem. Sci. – year: 2018 ident: bib129 article-title: The effect of metformin on absolute telomere length – volume: 85 start-page: 823 year: 2009 end-page: 832 ident: bib9 article-title: Short telomeres are sufficient to cause the degenerative defects associated with aging publication-title: Am. J. Hum. Genet. – volume: 65 start-page: 2297 year: 2017 end-page: 2301 ident: bib89 article-title: The clinical potential of senolytic drugs publication-title: J. Am. Geriatr. Soc. – volume: 36 start-page: 2345 year: 2017 end-page: 2354 ident: bib178 article-title: Metformin alters DNA methylation genome-wide via the H19/SAHH axis publication-title: Oncogene – volume: 18 start-page: e12880 year: 2019 ident: bib91 article-title: Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults publication-title: Aging Cell – volume: 498 start-page: 18 year: 2018 end-page: 24 ident: bib113 article-title: Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 1028 year: 2011 end-page: 1038 ident: bib69 article-title: Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling publication-title: Aging (Albany NY) – volume: 75 start-page: 645 year: 2013 end-page: 668 ident: bib160 article-title: Genome instability and aging publication-title: Annu. Rev. Physiol. – volume: 60 start-page: 1630 year: 2017 end-page: 1638 ident: bib156 article-title: Metformin and ageing: improving ageing outcomes beyond glycaemic control publication-title: Diabetologia – volume: 10 start-page: 572 year: 2019 ident: bib153 article-title: Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality publication-title: Front. Physiol. – volume: 27 start-page: 101 year: 2018 end-page: 117.e5 ident: bib17 article-title: Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway publication-title: Cell Metab. – volume: 1864 start-page: 1115 year: 2018 end-page: 1128 ident: bib85 article-title: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction publication-title: Biochim. Biophys. Acta Mol. Basis Dis. – volume: 20 start-page: 388 year: 2019 ident: bib63 article-title: Cellular senescence causes ageing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 1 start-page: 743 year: 2017 ident: bib16 article-title: Targeting aging WITH metformin (TAME) publication-title: Innov. Aging – volume: 9 start-page: 5369 year: 2019 ident: bib64 article-title: Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts publication-title: Sci. Rep. – volume: 23 start-page: 1060 year: 2016 end-page: 1065 ident: bib15 article-title: Metformin as a tool to target aging publication-title: Cell Metab. – volume: 238 start-page: 803 year: 2013 end-page: 810 ident: bib137 article-title: Metformin's performance in in vitro and in vivo genetic toxicology studies publication-title: Exp. Biol. Med. (Maywood) – volume: 8 start-page: 1993 year: 2014 end-page: 1999 ident: bib171 article-title: Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells publication-title: Oncol. Lett. – volume: 123 start-page: 980 year: 2013 end-page: 989 ident: bib95 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J. Clin. Invest. – volume: 42 start-page: S90 year: 2019 end-page: S102 ident: bib5 article-title: Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019 publication-title: Diabetes Care – volume: 350 start-page: 1193 year: 2015 end-page: 1198 ident: bib22 article-title: Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection publication-title: Science – volume: 5 start-page: 988 year: 2015 end-page: 995 ident: bib56 article-title: Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation publication-title: Stem Cell Reports – volume: 19 year: 2016 ident: bib101 article-title: Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS Clearance publication-title: Int. J. Neuropsychopharmacol. – volume: 20 start-page: 1553 year: 2018 end-page: 1562 ident: bib23 article-title: Epigenetic effects of metformin: from molecular mechanisms to clinical implications publication-title: Diabetes Obes. Metab. – volume: 10 start-page: 294 year: 2019 ident: bib159 article-title: Role of mitochondria in the mechanism(s) of action of metformin publication-title: Front. Endocrinol. (Lausanne) – volume: 290 start-page: 20348 year: 2015 end-page: 20359 ident: bib87 article-title: Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages publication-title: J. Biol. Chem. – volume: 116 start-page: 15122 year: 2019 end-page: 15127 ident: bib167 article-title: Telomere shortening rate predicts species life span publication-title: Proc. Natl. Acad. Sci. USA – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: bib66 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell – volume: 13 start-page: 132 year: 2011 end-page: 141 ident: bib88 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. – volume: 7 start-page: 2769 year: 2008 end-page: 2773 ident: bib7 article-title: Metformin slows down aging and extends life span of female SHR mice publication-title: Cell Cycle – volume: 2016 start-page: 4847812 year: 2016 ident: bib179 article-title: Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression publication-title: J. Diabetes Res. – volume: 154 start-page: 62 year: 2018 end-page: 68 ident: bib48 article-title: Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes publication-title: Biochimie – volume: 25 start-page: 585 year: 1961 end-page: 621 ident: bib71 article-title: The serial cultivation of human diploid cell strains publication-title: Exp. Cell Res. – volume: 149 start-page: 8 year: 2015 end-page: 18 ident: bib111 article-title: Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway publication-title: Mech. Ageing Dev. – volume: 17 start-page: 865 year: 2018 end-page: 886 ident: bib110 article-title: Mitochondria as a therapeutic target for common pathologies publication-title: Nat. Rev. Drug Discov. – start-page: 1 year: 2019 end-page: 8 ident: bib29 article-title: Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells publication-title: Drug Chem. Toxicol. – volume: 92 start-page: 640 year: 2017 end-page: 652 ident: bib173 article-title: Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death publication-title: Mol. Pharmacol. – volume: 15 start-page: 572 year: 2016 end-page: 581 ident: bib117 article-title: Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence publication-title: Aging Cell – volume: 36 start-page: 632 year: 1987 end-page: 640 ident: bib78 article-title: Mechanism of metformin action in non-insulin-dependent diabetes publication-title: Diabetes – volume: 17 year: 2018 ident: bib94 article-title: Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults publication-title: Aging Cell – volume: 17 start-page: e12765 year: 2018 ident: bib55 article-title: Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7 publication-title: Aging Cell – volume: 352 start-page: 75 year: 2017 end-page: 83 ident: bib35 article-title: Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs publication-title: Exp. Cell Res. – volume: 12 start-page: 58 year: 2017 end-page: 69 ident: bib126 article-title: Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity publication-title: Redox Biol. – volume: 178 start-page: 1299 year: 2019 end-page: 1312.e29 ident: bib127 article-title: Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy publication-title: Cell – volume: 29 start-page: 335 year: 2019 end-page: 347.e5 ident: bib146 article-title: Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis publication-title: Cell Metab – volume: 510 start-page: 542 year: 2014 end-page: 546 ident: bib102 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature – volume: 169 start-page: 787 year: 2015 end-page: 788 ident: bib44 article-title: Association between long telomere length and insulin sensitization in adolescent girls with hyperinsulinemic androgen excess publication-title: JAMA Pediatr. – volume: 85 start-page: 37 year: 2019 end-page: 46 ident: bib6 article-title: The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth publication-title: Br. J. Clin. Pharmacol. – volume: 809 start-page: 24 year: 2016 end-page: 32 ident: bib30 article-title: The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes publication-title: Mutat. Res. – volume: 2 start-page: e1600031 year: 2016 ident: bib47 article-title: Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription publication-title: Sci. Adv. – volume: 143 start-page: 3 year: 2016 end-page: 14 ident: bib140 article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging publication-title: Development – volume: 167 start-page: 1705 year: 2016 end-page: 1718.e13 ident: bib169 article-title: An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer publication-title: Cell – volume: 14 start-page: 698 year: 2017 end-page: 704 ident: bib163 article-title: Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and connexin43 downregulation in H9c2 cells publication-title: Int. J. Med. Sci. – volume: 60 start-page: 1566 year: 2017 end-page: 1576 ident: bib12 article-title: Metformin: historical overview publication-title: Diabetologia – volume: 24 start-page: 1395 year: 2018 end-page: 1406 ident: bib76 article-title: Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase publication-title: Nat. Med. – volume: 35 start-page: 3735 year: 2016 end-page: 3741 ident: bib97 article-title: Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair publication-title: Oncol. Rep. – volume: 111 start-page: E2501 year: 2014 end-page: E2509 ident: bib41 article-title: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 1236 year: 2018 ident: bib155 article-title: Metformin and autoimmunity: a "new deal" of an old drug publication-title: Front. Immunol. – volume: 24 start-page: 521 year: 2016 end-page: 522 ident: bib177 article-title: Metformin activates AMPK through the lysosomal pathway publication-title: Cell Metab. – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: bib100 article-title: The hallmarks of aging publication-title: Cell – volume: 65 start-page: 20 year: 2016 end-page: 29 ident: bib45 article-title: Metformin-associated lactic acidosis: current perspectives on causes and risk publication-title: Metabolism – volume: 22 start-page: 820 year: 2012 end-page: 827 ident: bib67 article-title: Metformin pathways: pharmacokinetics and pharmacodynamics publication-title: Pharmacogenet. Genomics – volume: 16 start-page: 593 year: 2015 end-page: 610 ident: bib19 article-title: Epigenetic regulation of ageing: linking environmental inputs to genomic stability publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 start-page: e0208533 year: 2018 ident: bib62 article-title: Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes publication-title: PLoS One – volume: 26 start-page: 305 year: 2017 end-page: 319 ident: bib11 article-title: Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration publication-title: Hum. Mol. Genet. – volume: 20 start-page: 33 year: 2019 end-page: 48 ident: bib125 article-title: Metformin as a geroprotector: experimental and clinical evidence publication-title: Biogerontology – volume: 37 start-page: 63 year: 2018 ident: bib165 article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways publication-title: J. Exp. Clin. Cancer Res. – volume: 18 start-page: e13028 year: 2019 ident: bib54 article-title: Reversal of epigenetic aging and immunosenescent trends in humans publication-title: Aging Cell – volume: 60 start-page: 168 year: 2011 end-page: 176 ident: bib109 article-title: OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects publication-title: Diabetes – volume: 7 start-page: F1000 year: 2018 ident: bib141 article-title: The role of the gut microbiome during host ageing publication-title: F1000Res. – volume: 71 start-page: 4366 year: 2011 end-page: 4372 ident: bib18 article-title: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1 publication-title: Cancer Res. – volume: 73 start-page: 1294 year: 1991 end-page: 1301 ident: bib46 article-title: Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects publication-title: J. Clin. Endocrinol. Metab. – volume: 20 year: 2019 ident: bib139 article-title: Meta-analysis of microarray expression studies on metformin in cancer cell lines publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 390 year: 2010 end-page: 401 ident: bib82 article-title: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner publication-title: Cell Metab. – volume: 14 start-page: 576 year: 2018 end-page: 590 ident: bib60 article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. – volume: 9 start-page: 165 year: 2018 ident: bib103 article-title: Targeting mitochondria to counteract age-related cellular dysfunction publication-title: Genes – volume: 8 start-page: e61537 year: 2013 ident: bib138 article-title: Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners publication-title: PLoS One – volume: 5 start-page: 99 year: 2010 end-page: 118 ident: bib37 article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression publication-title: Annu. Rev. Pathol. – volume: 10 start-page: 1499 year: 2011 end-page: 1501 ident: bib158 article-title: Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response publication-title: Cell Cycle – volume: 49 start-page: 1082 year: 2010 end-page: 1087 ident: bib84 article-title: Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats publication-title: Free Radic. Biol. Med. – volume: 134 start-page: 381 year: 2013 end-page: 390 ident: bib112 article-title: Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell publication-title: Mech. Ageing Dev. – volume: 21 start-page: 1406 year: 2015 end-page: 1415 ident: bib86 article-title: Proteostasis and aging publication-title: Nat. Med. – volume: 2019 start-page: 5980465 year: 2019 ident: bib123 article-title: Metformin delays satellite cell activation and maintains quiescence publication-title: Stem Cells Int. – volume: 19 start-page: 121 year: 2018 end-page: 135 ident: bib73 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 26 start-page: 1056 year: 2017 end-page: 1069 ident: bib77 article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells publication-title: Hum. Mol. Genet. – volume: 3 start-page: e275 year: 2012 ident: bib143 article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy publication-title: Cell Death Dis. – volume: 19 start-page: 2991 year: 2018 end-page: 2999 ident: bib133 article-title: Metformin reshapes the methylation profile in breast and colorectal cancer cells publication-title: Asian Pac. J. Cancer Prev. – volume: 15 start-page: 196 year: 2015 end-page: 205 ident: bib134 article-title: Metformin and inflammation: its potential Beyond glucose-lowering effect publication-title: Endocr. Metab. Immune Disord. Drug Targets – volume: 39 start-page: 1287 year: 2016 end-page: 1291 ident: bib14 article-title: Should restrictions be relaxed for metformin use in chronic kidney disease? Yes, they should be relaxed! What’s the fuss? publication-title: Diabetes Care – volume: 61 start-page: 654 year: 2016 end-page: 666 ident: bib150 article-title: The mitochondrial basis of aging publication-title: Mol. Cell – volume: 19 start-page: 594 year: 2018 end-page: 610 ident: bib53 article-title: Cellular and epigenetic drivers of stem cell ageing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 21 start-page: 1424 year: 2015 end-page: 1435 ident: bib34 article-title: Cellular senescence in aging and age-related disease: from mechanisms to therapy publication-title: Nat. Med. – volume: 23 start-page: 980 year: 2016 end-page: 989 ident: bib107 article-title: The somatotropic axis in human aging: framework for the current state of knowledge and future research publication-title: Cell Metab. – volume: 23 start-page: 570 year: 2017 ident: bib152 article-title: Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction publication-title: Cell Host Microbe – volume: 302 start-page: 510 year: 2002 end-page: 515 ident: bib162 article-title: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin publication-title: J. Pharmacol. Exp. Ther. – volume: 12 start-page: e005418 year: 2019 ident: bib83 article-title: Metformin enhances autophagy and provides cardioprotection in delta-sarcoglycan deficiency-induced dilated cardiomyopathy publication-title: Circ. Heart Fail. – volume: 65 start-page: 581 year: 2019 end-page: 590 ident: bib65 article-title: Metformin and aging: a review publication-title: Gerontology – volume: 18 start-page: 913 year: 2017 end-page: 929 ident: bib21 article-title: Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing publication-title: Biogerontology – volume: 101 start-page: 1685 year: 2006 end-page: 1692 ident: bib151 article-title: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo publication-title: J. Appl. Physiol. – volume: 157 start-page: 548 year: 2016 end-page: 559 ident: bib119 article-title: Metformin protects kidney cells From insulin-mediated genotoxicity in vitro and in male Zucker diabetic fatty rats publication-title: Endocrinology – volume: 40 start-page: 31 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib26 article-title: Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2017.08.003 – volume: 166 start-page: 191 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib38 article-title: Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review publication-title: Ann. Intern. Med. doi: 10.7326/M16-1901 – volume: 18 start-page: 447 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib68 article-title: Sirtuins, a promising target in slowing down the ageing process publication-title: Biogerontology doi: 10.1007/s10522-017-9685-9 – volume: 12 start-page: 489 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib108 article-title: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation publication-title: Aging Cell doi: 10.1111/acel.12075 – volume: 26 start-page: 1056 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib77 article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells publication-title: Hum. Mol. Genet. – volume: 25 start-page: 585 year: 1961 ident: 10.1016/j.cmet.2020.04.001_bib71 article-title: The serial cultivation of human diploid cell strains publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(61)90192-6 – volume: 25 start-page: 686 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib42 article-title: Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2015.03.007 – volume: 8 start-page: e53533 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib92 article-title: Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice publication-title: PLoS One doi: 10.1371/journal.pone.0053533 – volume: 17 start-page: 865 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib110 article-title: Mitochondria as a therapeutic target for common pathologies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.174 – volume: 5 start-page: 536 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib3 article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage publication-title: Cancer Prev. Res. (Phila.) doi: 10.1158/1940-6207.CAPR-11-0536 – volume: 571 start-page: 183 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib27 article-title: From discoveries in ageing research to therapeutics for healthy ageing publication-title: Nature doi: 10.1038/s41586-019-1365-2 – volume: 9 start-page: 657 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib40 article-title: Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00657 – volume: 85 start-page: 823 year: 2009 ident: 10.1016/j.cmet.2020.04.001_bib9 article-title: Short telomeres are sufficient to cause the degenerative defects associated with aging publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.10.028 – volume: 111 start-page: E2501 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib41 article-title: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1321776111 – volume: 60 start-page: 1566 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib12 article-title: Metformin: historical overview publication-title: Diabetologia doi: 10.1007/s00125-017-4318-z – volume: 302 start-page: 510 year: 2002 ident: 10.1016/j.cmet.2020.04.001_bib162 article-title: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.102.034140 – volume: 3 start-page: e02242 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib166 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife doi: 10.7554/eLife.02242 – volume: 61 start-page: 654 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib150 article-title: The mitochondrial basis of aging publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.028 – volume: 49 start-page: 1082 year: 2010 ident: 10.1016/j.cmet.2020.04.001_bib84 article-title: Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.06.022 – volume: 149 start-page: 8 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib111 article-title: Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2015.05.004 – volume: 154 start-page: 62 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib48 article-title: Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes publication-title: Biochimie doi: 10.1016/j.biochi.2018.08.002 – volume: 8 start-page: 1993 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib171 article-title: Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells publication-title: Oncol. Lett. doi: 10.3892/ol.2014.2466 – volume: 20 start-page: 953 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib58 article-title: Metformin: from mechanisms of action to therapies publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.09.018 – volume: 10 start-page: 156 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib50 article-title: Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals publication-title: Clin. Epigenet. doi: 10.1186/s13148-018-0593-x – volume: 13 start-page: 132 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib88 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2152 – volume: 7 start-page: F1000 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib141 article-title: The role of the gut microbiome during host ageing publication-title: F1000Res. doi: 10.12688/f1000research.15121.1 – volume: 2 start-page: e1600031 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib47 article-title: Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription publication-title: Sci. Adv. doi: 10.1126/sciadv.1600031 – volume: 101 start-page: 1685 year: 2006 ident: 10.1016/j.cmet.2020.04.001_bib151 article-title: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00255.2006 – volume: 42 start-page: S90 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib5 article-title: Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019 publication-title: Diabetes Care doi: 10.2337/dc19-S009 – volume: 116 start-page: 6995 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib80 article-title: Age-related inflammation triggers skeletal stem/progenitor cell dysfunction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1810692116 – volume: 2016 start-page: 4847812 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib179 article-title: Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression publication-title: J. Diabetes Res. – volume: 19 start-page: 594 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib53 article-title: Cellular and epigenetic drivers of stem cell ageing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0020-3 – volume: 128 start-page: 3662 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib79 article-title: The role of mitochondria in aging publication-title: J. Clin. Invest. doi: 10.1172/JCI120842 – volume: 348 start-page: 607 year: 2000 ident: 10.1016/j.cmet.2020.04.001_bib120 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. doi: 10.1042/bj3480607 – volume: 8 start-page: e61537 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib138 article-title: Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners publication-title: PLoS One doi: 10.1371/journal.pone.0061537 – volume: 15 start-page: 572 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib117 article-title: Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence publication-title: Aging Cell doi: 10.1111/acel.12469 – volume: 19 start-page: 121 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib73 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.95 – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib180 article-title: Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction publication-title: Biogerontology doi: 10.1007/s10522-018-9769-1 – volume: 17 start-page: e12765 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib55 article-title: Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7 publication-title: Aging Cell doi: 10.1111/acel.12765 – volume: 11 start-page: 655 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib164 article-title: Metformin exerts antidepressant effects by regulated DNA hydroxymethylation publication-title: Epigenomics doi: 10.2217/epi-2018-0187 – volume: 9 start-page: 1236 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib155 article-title: Metformin and autoimmunity: a "new deal" of an old drug publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01236 – volume: 9 start-page: 753 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib57 article-title: Metformin-induced mitochondrial Complex I inhibition: facts, uncertainties, and consequences publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00753 – volume: 153 start-page: 1194 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib100 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 3 start-page: 16 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib2 article-title: Health benefits of late-onset metformin treatment every other week in mice publication-title: npj Aging Mech. Dis. doi: 10.1038/s41514-017-0018-7 – volume: 21 start-page: 13 year: 2020 ident: 10.1016/j.cmet.2020.04.001_bib93 article-title: Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells publication-title: Biogerontology doi: 10.1007/s10522-019-09838-x – volume: 36 start-page: 2345 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib178 article-title: Metformin alters DNA methylation genome-wide via the H19/SAHH axis publication-title: Oncogene doi: 10.1038/onc.2016.391 – volume: 60 start-page: 168 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib109 article-title: OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects publication-title: Diabetes doi: 10.2337/db10-0805 – volume: 8 start-page: 13832 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib154 article-title: Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway publication-title: Oncotarget doi: 10.18632/oncotarget.14640 – volume: 20 start-page: 33 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib125 article-title: Metformin as a geroprotector: experimental and clinical evidence publication-title: Biogerontology doi: 10.1007/s10522-018-9773-5 – volume: 275 start-page: 223 year: 2000 ident: 10.1016/j.cmet.2020.04.001_bib51 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.223 – volume: 12 start-page: e005418 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib83 article-title: Metformin enhances autophagy and provides cardioprotection in delta-sarcoglycan deficiency-induced dilated cardiomyopathy publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.118.005418 – volume: 15 start-page: 451 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib176 article-title: Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.02.013 – volume: 65 start-page: 2297 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib89 article-title: The clinical potential of senolytic drugs publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.14969 – volume: 157 start-page: 548 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib119 article-title: Metformin protects kidney cells From insulin-mediated genotoxicity in vitro and in male Zucker diabetic fatty rats publication-title: Endocrinology doi: 10.1210/en.2015-1572 – volume: 37 start-page: 963 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib39 article-title: Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism publication-title: Oncogene doi: 10.1038/onc.2017.367 – volume: 17 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib94 article-title: Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults publication-title: Aging Cell doi: 10.1111/acel.12723 – volume: 171 start-page: 2351 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib1 article-title: Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12585 – volume: 135 start-page: 30 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib130 article-title: Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2017.10.020 – volume: 20 start-page: 388 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib63 article-title: Cellular senescence causes ageing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0128-0 – volume: 9 start-page: 165 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib103 article-title: Targeting mitochondria to counteract age-related cellular dysfunction publication-title: Genes doi: 10.3390/genes9030165 – volume: 8 start-page: 5619 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib175 article-title: Anti-tumor activity of metformin: from metabolic and epigenetic perspectives publication-title: Oncotarget doi: 10.18632/oncotarget.13639 – volume: 22 start-page: 820 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib67 article-title: Metformin pathways: pharmacokinetics and pharmacodynamics publication-title: Pharmacogenet. Genomics doi: 10.1097/FPC.0b013e3283559b22 – volume: 87 start-page: 295 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib116 article-title: Nuclear genomic instability and aging publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012239 – volume: 169 start-page: 787 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib44 article-title: Association between long telomere length and insulin sensitization in adolescent girls with hyperinsulinemic androgen excess publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2015.0439 – volume: 30 start-page: 745 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib148 article-title: Metformin as anti-aging therapy: is it for everyone? publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2019.07.015 – volume: 41 start-page: 700 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib124 article-title: The metabolic impact on histone acetylation and transcription in ageing publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.05.008 – volume: 440 start-page: 57 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib32 article-title: Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2016.11.011 – volume: 65 start-page: 20 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib45 article-title: Metformin-associated lactic acidosis: current perspectives on causes and risk publication-title: Metabolism doi: 10.1016/j.metabol.2015.10.014 – volume: 19 start-page: 2991 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib133 article-title: Metformin reshapes the methylation profile in breast and colorectal cancer cells publication-title: Asian Pac. J. Cancer Prev. – volume: 54 start-page: 100914 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib8 article-title: Telomere length and frailty in older adults-a systematic review and meta-analysis publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2019.100914 – volume: 352 start-page: 75 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib35 article-title: Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2017.01.017 – volume: 1 start-page: 743 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib16 article-title: Targeting aging WITH metformin (TAME) publication-title: Innov. Aging doi: 10.1093/geroni/igx004.2682 – volume: 64 start-page: 2028 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib157 article-title: Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis publication-title: Diabetes doi: 10.2337/db14-1225 – volume: 119 start-page: 652 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib25 article-title: Anti-inflammatory effects of metformin irrespective of diabetes status publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.308445 – volume: 17 start-page: 159 year: 1991 ident: 10.1016/j.cmet.2020.04.001_bib61 article-title: Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle publication-title: Diabete Metab – volume: 11 start-page: 230 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib135 article-title: AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2011.12.005 – volume: 19 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib101 article-title: Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS Clearance publication-title: Int. J. Neuropsychopharmacol. doi: 10.1093/ijnp/pyw047 – volume: 20 start-page: 573 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib106 article-title: The roles of DNA, RNA and histone methylation in ageing and cancer publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0143-1 – volume: 59 start-page: 426 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib105 article-title: Metformin and the gastrointestinal tract publication-title: Diabetologia doi: 10.1007/s00125-015-3844-9 – volume: 24 start-page: 1246 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib172 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat. Med. doi: 10.1038/s41591-018-0092-9 – volume: 24 start-page: 1395 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib76 article-title: Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase publication-title: Nat. Med. doi: 10.1038/s41591-018-0159-7 – volume: 39 start-page: 1287 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib14 article-title: Should restrictions be relaxed for metformin use in chronic kidney disease? Yes, they should be relaxed! What’s the fuss? publication-title: Diabetes Care doi: 10.2337/dc15-2534 – volume: 65 start-page: 581 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib65 article-title: Metformin and aging: a review publication-title: Gerontology doi: 10.1159/000502257 – volume: 23 start-page: 570 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib152 article-title: Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.03.006 – volume: 3 start-page: 1028 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib69 article-title: Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling publication-title: Aging (Albany NY) doi: 10.18632/aging.100397 – volume: 35 start-page: 3735 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib97 article-title: Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair publication-title: Oncol. Rep. doi: 10.3892/or.2016.4740 – volume: 9 start-page: 5369 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib64 article-title: Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts publication-title: Sci. Rep. doi: 10.1038/s41598-019-41839-1 – volume: 12 start-page: 58 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib126 article-title: Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity publication-title: Redox Biol. doi: 10.1016/j.redox.2017.02.007 – volume: 350 start-page: 1193 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib22 article-title: Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection publication-title: Science doi: 10.1126/science.aab3389 – volume: 60 start-page: 1630 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib156 article-title: Metformin and ageing: improving ageing outcomes beyond glycaemic control publication-title: Diabetologia doi: 10.1007/s00125-017-4349-5 – volume: 17 start-page: 122 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib147 article-title: Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17010122 – volume: 510 start-page: 542 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib102 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature doi: 10.1038/nature13270 – volume: 92 start-page: 640 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib173 article-title: Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death publication-title: Mol. Pharmacol. doi: 10.1124/mol.117.109512 – volume: 33 start-page: 794 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib52 article-title: Metformin has direct protective effect on human cardiac mitochondria publication-title: FASEB J doi: 10.1096/fasebj.2019.33.1_supplement.794.4 – volume: 1864 start-page: 1115 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib85 article-title: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.01.018 – volume: 809 start-page: 24 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib30 article-title: The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2016.09.001 – volume: 23 start-page: 980 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib107 article-title: The somatotropic axis in human aging: framework for the current state of knowledge and future research publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.014 – volume: 6 start-page: e31268 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib33 article-title: Metformin extends C. elegans lifespan through lysosomal pathway publication-title: eLife doi: 10.7554/eLife.31268 – volume: 21 start-page: 1424 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib34 article-title: Cellular senescence in aging and age-related disease: from mechanisms to therapy publication-title: Nat. Med. doi: 10.1038/nm.4000 – volume: 5 start-page: 99 year: 2010 ident: 10.1016/j.cmet.2020.04.001_bib37 article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-121808-102144 – volume: 167 start-page: 1705 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib169 article-title: An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer publication-title: Cell doi: 10.1016/j.cell.2016.11.055 – volume: 7 start-page: e2441 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib31 article-title: Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.334 – volume: 29 start-page: 697 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib20 article-title: Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses publication-title: Genome Res. doi: 10.1101/gr.240093.118 – volume: 60 start-page: 1639 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib72 article-title: Repurposing metformin for the prevention of cancer and cancer recurrence publication-title: Diabetologia doi: 10.1007/s00125-017-4372-6 – volume: 5 start-page: e193 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib90 article-title: Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer publication-title: Oncogenesis doi: 10.1038/oncsis.2016.2 – volume: 25 start-page: 463 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib75 article-title: Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.009 – volume: 23 start-page: 1060 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib15 article-title: Metformin as a tool to target aging publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.011 – volume: 67 start-page: 10804 year: 2007 ident: 10.1016/j.cmet.2020.04.001_bib49 article-title: Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2310 – volume: 238 start-page: 803 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib137 article-title: Metformin's performance in in vitro and in vivo genetic toxicology studies publication-title: Exp. Biol. Med. (Maywood) doi: 10.1177/1535370213480744 – volume: 5 start-page: 988 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib56 article-title: Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.10.014 – volume: 20 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib139 article-title: Meta-analysis of microarray expression studies on metformin in cancer cell lines publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20133173 – volume: 9 start-page: 155 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib96 article-title: Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice publication-title: Gut Microbes doi: 10.1080/19490976.2017.1405209 – volume: 51 start-page: 2420 year: 2002 ident: 10.1016/j.cmet.2020.04.001_bib70 article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism publication-title: Diabetes doi: 10.2337/diabetes.51.8.2420 – volume: 18 start-page: e12880 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib91 article-title: Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults publication-title: Aging Cell doi: 10.1111/acel.12880 – volume: 18 start-page: 872 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib145 article-title: Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18040872 – volume: 16 start-page: 593 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib19 article-title: Epigenetic regulation of ageing: linking environmental inputs to genomic stability publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4048 – volume: 13 start-page: e0208533 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib62 article-title: Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes publication-title: PLoS One doi: 10.1371/journal.pone.0208533 – volume: 5 start-page: e8758 year: 2010 ident: 10.1016/j.cmet.2020.04.001_bib118 article-title: Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1 publication-title: PLoS One doi: 10.1371/journal.pone.0008758 – volume: 5 start-page: 12 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib136 article-title: Source of chronic inflammation in aging publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2018.00012 – volume: 24 start-page: 93 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib168 article-title: Metformin induces a senescence-associated gene signature in breast cancer cells publication-title: J. Health Care Poor Underserved doi: 10.1353/hpu.2013.0044 – year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib129 – volume: 123 start-page: 980 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib95 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J. Clin. Invest. doi: 10.1172/JCI64099 – volume: 71 start-page: 4366 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib18 article-title: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1769 – volume: 20 start-page: 421 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib74 article-title: The proteostasis network and its decline in ageing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0101-y – volume: 134 start-page: 381 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib112 article-title: Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2013.07.003 – volume: 3 start-page: e275 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib143 article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy publication-title: Cell Death Dis. doi: 10.1038/cddis.2012.13 – volume: 37 start-page: 63 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib165 article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0731-5 – volume: 25 start-page: 473 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib115 article-title: Metformin restores CNS remyelination capacity by rejuvenating aged stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.08.015 – volume: 479 start-page: 232 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib13 article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders publication-title: Nature doi: 10.1038/nature10600 – volume: 10 start-page: 572 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib153 article-title: Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00572 – volume: 9 start-page: 706 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib161 article-title: Role of the inflammation-autophagy-senescence integrative network in osteoarthritis publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00706 – volume: 73 start-page: 1294 year: 1991 ident: 10.1016/j.cmet.2020.04.001_bib46 article-title: Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-73-6-1294 – volume: 6 start-page: a025932 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib4 article-title: Metformin: a hopeful promise in aging research publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a025932 – volume: 26 start-page: 305 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib11 article-title: Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration publication-title: Hum. Mol. Genet. – volume: 40 start-page: 54 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib43 article-title: Metformin is associated with higher relative abundance of Mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut publication-title: Diabetes Care doi: 10.2337/dc16-1324 – volume: 178 start-page: 1299 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib127 article-title: Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy publication-title: Cell doi: 10.1016/j.cell.2019.08.003 – volume: 21 start-page: 1406 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib86 article-title: Proteostasis and aging publication-title: Nat. Med. doi: 10.1038/nm.4001 – volume: 5 start-page: eaax1912 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib132 article-title: Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1912 – volume: 27 start-page: 101 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib17 article-title: Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.019 – start-page: 1 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib29 article-title: Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells publication-title: Drug Chem. Toxicol. – volume: 9 start-page: 400 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib131 article-title: The therapeutic potential of metformin in neurodegenerative diseases publication-title: Front. Endocrinol. doi: 10.3389/fendo.2018.00400 – volume: 14 start-page: 698 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib163 article-title: Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and connexin43 downregulation in H9c2 cells publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.19800 – volume: 15 start-page: 20180885 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib28 article-title: Telomere attrition: metabolic regulation and signalling function? publication-title: Biol. Lett. doi: 10.1098/rsbl.2018.0885 – volume: 18 start-page: e13028 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib54 article-title: Reversal of epigenetic aging and immunosenescent trends in humans publication-title: Aging Cell doi: 10.1111/acel.13028 – volume: 578 start-page: 444 year: 2020 ident: 10.1016/j.cmet.2020.04.001_bib36 article-title: GDF15 mediates the effects of metformin on body weight and energy balance publication-title: Nature doi: 10.1038/s41586-019-1911-y – volume: 290 start-page: 20348 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib87 article-title: Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.662114 – volume: 43 start-page: 1503 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib174 article-title: Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.2077 – volume: 7 start-page: e47699 year: 2012 ident: 10.1016/j.cmet.2020.04.001_bib144 article-title: Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila publication-title: PLoS One doi: 10.1371/journal.pone.0047699 – volume: 85 start-page: 37 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib6 article-title: The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/bcp.13780 – volume: 111 start-page: E435 year: 2014 ident: 10.1016/j.cmet.2020.04.001_bib99 article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311121111 – volume: 827 start-page: 1 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib114 article-title: Metformin: prevention of genomic instability and cancer: a review publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen. doi: 10.1016/j.mrgentox.2018.01.007 – volume: 10 start-page: 1499 year: 2011 ident: 10.1016/j.cmet.2020.04.001_bib158 article-title: Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response publication-title: Cell Cycle doi: 10.4161/cc.10.9.15423 – volume: 14 start-page: 576 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib60 article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-018-0059-4 – volume: 11 start-page: 741 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib98 article-title: Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes publication-title: Aging doi: 10.18632/aging.101781 – volume: 19 start-page: 290 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib170 article-title: Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12812 – volume: 11 start-page: 390 year: 2010 ident: 10.1016/j.cmet.2020.04.001_bib82 article-title: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.03.014 – volume: 101 start-page: 1754 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib10 article-title: Long-term Metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-3754 – volume: 498 start-page: 18 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib113 article-title: Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.02.191 – volume: 137 start-page: 422 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib128 article-title: Repurposing metformin for cardiovascular disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.031735 – volume: 10 start-page: 294 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib159 article-title: Role of mitochondria in the mechanism(s) of action of metformin publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2019.00294 – volume: 49 start-page: 735 year: 2000 ident: 10.1016/j.cmet.2020.04.001_bib122 article-title: Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells publication-title: Diabetes doi: 10.2337/diabetes.49.5.735 – volume: 116 start-page: 15122 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib167 article-title: Telomere shortening rate predicts species life span publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1902452116 – volume: 2 start-page: e1600584 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib121 article-title: Epigenetics and aging publication-title: Sci. Adv. doi: 10.1126/sciadv.1600584 – volume: 75 start-page: 645 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib160 article-title: Genome instability and aging publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-030212-183715 – volume: 7 start-page: 2769 year: 2008 ident: 10.1016/j.cmet.2020.04.001_bib7 article-title: Metformin slows down aging and extends life span of female SHR mice publication-title: Cell Cycle doi: 10.4161/cc.7.17.6625 – volume: 4 start-page: 2192 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib104 article-title: Metformin improves healthspan and lifespan in mice publication-title: Nat. Commun. doi: 10.1038/ncomms3192 – volume: 153 start-page: 228 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib24 article-title: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism publication-title: Cell doi: 10.1016/j.cell.2013.02.035 – volume: 155 start-page: 1624 year: 2013 ident: 10.1016/j.cmet.2020.04.001_bib66 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 24 start-page: 521 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib177 article-title: Metformin activates AMPK through the lysosomal pathway publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.003 – volume: 24 start-page: 1919 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib149 article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin publication-title: Nat. Med. doi: 10.1038/s41591-018-0222-4 – volume: 120 start-page: 2355 year: 2010 ident: 10.1016/j.cmet.2020.04.001_bib59 article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state publication-title: J. Clin. Invest. doi: 10.1172/JCI40671 – volume: 143 start-page: 3 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib140 article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging publication-title: Development doi: 10.1242/dev.130633 – volume: 29 start-page: 335 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib146 article-title: Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis publication-title: Cell Metab doi: 10.1016/j.cmet.2018.09.019 – volume: 2019 start-page: 5980465 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib123 article-title: Metformin delays satellite cell activation and maintains quiescence publication-title: Stem Cells Int. doi: 10.1155/2019/5980465 – volume: 18 start-page: 913 year: 2017 ident: 10.1016/j.cmet.2020.04.001_bib21 article-title: Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing publication-title: Biogerontology doi: 10.1007/s10522-017-9724-6 – volume: 40 start-page: 554 year: 2019 ident: 10.1016/j.cmet.2020.04.001_bib81 article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study publication-title: EBiomedicine doi: 10.1016/j.ebiom.2018.12.052 – volume: 36 start-page: 632 year: 1987 ident: 10.1016/j.cmet.2020.04.001_bib78 article-title: Mechanism of metformin action in non-insulin-dependent diabetes publication-title: Diabetes doi: 10.2337/diab.36.5.632 – volume: 166 start-page: 822 year: 2016 ident: 10.1016/j.cmet.2020.04.001_bib142 article-title: Epigenetic mechanisms of longevity and aging publication-title: Cell doi: 10.1016/j.cell.2016.07.050 – volume: 20 start-page: 1553 year: 2018 ident: 10.1016/j.cmet.2020.04.001_bib23 article-title: Epigenetic effects of metformin: from molecular mechanisms to clinical implications publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13262 – volume: 15 start-page: 196 year: 2015 ident: 10.1016/j.cmet.2020.04.001_bib134 article-title: Metformin and inflammation: its potential Beyond glucose-lowering effect publication-title: Endocr. Metab. Immune Disord. Drug Targets doi: 10.2174/1871530315666150316124019 |
SSID | ssj0036393 |
Score | 2.7052677 |
SecondaryResourceType | review_article |
Snippet | Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that... Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin- a biguanide that... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15 |
SubjectTerms | aging Aging - drug effects Aging - metabolism aging hallmarks Animals Autophagy - drug effects Cell Communication - drug effects Cellular Senescence - drug effects health span Humans Hypoglycemic Agents - pharmacology longevity metabolism metformin Metformin - pharmacology Mitochondria - drug effects Mitochondria - metabolism TAME |
Title | Benefits of Metformin in Attenuating the Hallmarks of Aging |
URI | https://dx.doi.org/10.1016/j.cmet.2020.04.001 https://www.ncbi.nlm.nih.gov/pubmed/32333835 https://www.proquest.com/docview/2394882211 https://pubmed.ncbi.nlm.nih.gov/PMC7347426 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et_VFBW9Stk1S2-JpV5RF0IsKewtJk2h1t7u43YP_3pm0XVyVPQg99DGFMElnvmm-mSHknNEccW8aWBXyAHcCAwWeKcghNLikibSZy1u7f7jsP_O7QTxYIddtLgzSKhvbX9t0Z62bO51Gm51JUXQeEVyDCY4oonpYmGCHGU9dEt-g11pjBh7YkexBOEDpJnGm5njlI4N8Shq6cqdNY5g_nNNv8PmTQ_nNKd1uko0GTfrdesBbZMWU22St7i_5uUOuemDJbFFN_bH1702FALUofTi6FWBlrPJdvvgAAf2-HA5H8uPdSXaxcdEueb69ebruB023hCDHpgRBho2npGSx5amEqI1KnlpAWwD4JGWSa53nicyMTpXSisqMw0kqI8uTLNTasj2yWo5Lc0B8rXQcGaVMkjBwXjLTVIdaWSYj_BFHPRK1ahJ5U0ocO1oMRcsZexOoWoGqFSFH4pxHLubvTOpCGkul41b7YmE5CLD0S987a6dKwHeCmx-yNOPZVGALeIgmIN71yH49dfNxMMowUo89kixM6lwAa3AvPimLV1eLGxUEIOfwn-M9Iut45fi_yTFZrT5m5gRQTqVO3TL-Ajcr-Y0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4xpmm8IDbG6AYjk7anKWpiJyTRxENhQ-2gvAykvhk7tkdYSRENQvyu_cHdJU5F2cQDElIeotiOrLN99539-Q7gE2c54d7UtyqIfDoJ9BVaJj9H12CbJdJm9b214dF2_yT6MYpHC_CnvQtDtEqn-xudXmtr96XrpNm9LIruTwLXqIJDRqgeJ6ZjVh6Y2xv026Y7g284yJ8Z2_9-vNf3XWoBP6cI_n5GWZqk5LGNUokuDpNRahGaIDqSjMtI6zxPZGZ0qpRWTGYRvqQytFGSBVpbjv99Bs8RfSSkDQaj3Vb9czT5Nasfe-dT99xNnYZUll8YInCyoI6v6jLR_Mca_ot275M271jB_RVYdvDV6zUSegULpnwNL5qElrer8HUXVactqqk3sd7QVISIi9LDp1chOKew4uUvDzGn15fj8YW8-l3X7FGmpDdw8iQyXIPFclKadfC00nFolDJJwtFaykwzHWhluQxp5491IGzFJHIXu5xSaIxFS1I7FyRaQaIVQURMvQ58mbW5bCJ3PFg7bqUv5uafQNPyYLuP7VAJXJh02iJLM7meCso5j-4LOtgdeNsM3awfnHHaGog7kMwN6qwCBf2eLymLszr4NwkIUdW7R_Z3C172j4eH4nBwdPAelqikJh8nG7BYXV2bTYRYlfpQT2kPTp96Df0FWfg3pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benefits+of+Metformin+in+Attenuating+the+Hallmarks+of+Aging&rft.jtitle=Cell+metabolism&rft.au=Kulkarni%2C+Ameya+S.&rft.au=Gubbi%2C+Sriram&rft.au=Barzilai%2C+Nir&rft.date=2020-07-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=1&rft.spage=15&rft.epage=30&rft_id=info:doi/10.1016%2Fj.cmet.2020.04.001&rft.externalDocID=S1550413120301832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |