Benefits of Metformin in Attenuating the Hallmarks of Aging

Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 32; no. 1; pp. 15 - 30
Main Authors Kulkarni, Ameya S., Gubbi, Sriram, Barzilai, Nir
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—TAME (targeting aging by metformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention.
AbstractList Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin- a biguanide that combats age-related disorders and improves healthspan, is the first drug to be tested for its age-targeting effects in the large clinical trial- TAME (Targeting Aging by MEtformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient-sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem-cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this Perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention.
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—TAME (targeting aging by metformin). This review focuses on metformin’s mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials. Metformin is the first drug to be tested for its age-targeting effects in a large clinical trial. In this perspective, Kulkarni et al. review how metformin acts on its primary and secondary targets to attenuate the hallmarks of aging, highlighting its utility as an effective gerotherapeutic intervention.
Author Kulkarni, Ameya S.
Gubbi, Sriram
Barzilai, Nir
AuthorAffiliation 3 Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
1 Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
2 Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York
AuthorAffiliation_xml – name: 2 Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York
– name: 1 Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
– name: 3 Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
Author_xml – sequence: 1
  givenname: Ameya S.
  surname: Kulkarni
  fullname: Kulkarni, Ameya S.
  email: ameyak225@gmail.com
  organization: Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
– sequence: 2
  givenname: Sriram
  surname: Gubbi
  fullname: Gubbi, Sriram
  organization: Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
– sequence: 3
  givenname: Nir
  surname: Barzilai
  fullname: Barzilai, Nir
  email: nir.barzilai@einsteinmed.org
  organization: Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32333835$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLHDEUDsXi_Q_0ocxjX2aa2-zMUCmsUrWg9KU-H7LJyZrtTKJJVvDfN-tqqT4IgRxOvkv4vgOy44NHQj4x2jDKZl9XjZ4wN5xy2lDZUMo-kH02CF53ktOdMrctrSUTbI8cpLSiVMzEIHbJnuBCiF60--TbKXq0Lqcq2Ooasw1xcr4qZ54z-rXKzi-rfIvVpRrHScU_T8j5sqyPyEerxoTHz_chuTn_8fvssr76dfHzbH5V65azXA-SD1wp0VrZK0nLLHvLZqKlneJCSWO07tSApl8szIKrQZahV8zKbqDGWHFIvm9179aLCY1Gn6Ma4S668p9HCMrB6xfvbmEZHqATsiQxKwJfngViuF9jyjC5pHEclcewTsBF8ew5Z6xAP__v9c_kJbEC6LcAHUNKES1ol0tKYWPtRmAUNuXACjblwKYcoBJKOYXK31Bf1N8lnWxJWBJ-cBghaYdeo3ERdQYT3Hv0v6UyqIU
CitedBy_id crossref_primary_10_1155_2021_6616240
crossref_primary_10_1016_j_celrep_2022_111451
crossref_primary_10_3390_nu14020353
crossref_primary_10_3390_cells13141192
crossref_primary_10_1002_adbi_202200321
crossref_primary_10_1002_ctm2_1179
crossref_primary_10_1016_j_devcel_2023_05_015
crossref_primary_10_1016_j_bbadis_2023_166642
crossref_primary_10_1016_S2666_7568_23_00085_5
crossref_primary_10_3389_fonc_2024_1399693
crossref_primary_10_14336_AD_2021_1213
crossref_primary_10_1089_rej_2021_0052
crossref_primary_10_5051_jpis_2106240312
crossref_primary_10_1007_s11033_024_10159_7
crossref_primary_10_1093_ageing_afab271
crossref_primary_10_1016_j_arr_2024_102253
crossref_primary_10_2337_dc22_2539
crossref_primary_10_1007_s11010_020_03922_4
crossref_primary_10_1152_ajpcell_00469_2020
crossref_primary_10_1021_acsptsci_1c00167
crossref_primary_10_3390_biomedicines11092334
crossref_primary_10_3390_antiox11081426
crossref_primary_10_1021_acs_jafc_4c04367
crossref_primary_10_1016_j_arr_2022_101833
crossref_primary_10_1080_15548627_2021_1933742
crossref_primary_10_1016_j_diabres_2022_110178
crossref_primary_10_3389_fonc_2024_1455492
crossref_primary_10_3389_fragi_2023_1272336
crossref_primary_10_3390_ijms221810175
crossref_primary_10_1016_j_yjmcc_2021_08_009
crossref_primary_10_1016_j_exger_2022_111770
crossref_primary_10_1093_gerona_glad174
crossref_primary_10_1155_2022_4201533
crossref_primary_10_1016_j_jchf_2024_02_021
crossref_primary_10_1136_bmjopen_2022_064682
crossref_primary_10_1007_s11010_023_04843_8
crossref_primary_10_1016_j_isci_2024_110670
crossref_primary_10_3390_ijerph17228650
crossref_primary_10_1038_s41467_025_57032_0
crossref_primary_10_3892_ijmm_2023_5239
crossref_primary_10_1016_j_arr_2020_101188
crossref_primary_10_14336_AD_2020_0629
crossref_primary_10_1016_j_arr_2021_101468
crossref_primary_10_3389_fphys_2022_872745
crossref_primary_10_1155_2022_7707875
crossref_primary_10_1111_febs_16350
crossref_primary_10_1111_acel_13256
crossref_primary_10_38124_ijisrt_IJISRT24MAY2391
crossref_primary_10_2147_DMSO_S428560
crossref_primary_10_3389_fendo_2023_1133280
crossref_primary_10_1002_jcp_30111
crossref_primary_10_1136_jech_2022_219142
crossref_primary_10_1038_s41392_024_02095_6
crossref_primary_10_1002_adhm_202403318
crossref_primary_10_1016_j_mito_2025_102022
crossref_primary_10_1146_annurev_food_072023_034458
crossref_primary_10_7554_eLife_62659
crossref_primary_10_1016_j_brainres_2024_149202
crossref_primary_10_1172_jci_insight_168787
crossref_primary_10_1038_s41392_025_02145_7
crossref_primary_10_1038_s12276_024_01297_w
crossref_primary_10_1016_j_mmm_2021_02_013
crossref_primary_10_1016_j_exger_2020_111197
crossref_primary_10_18632_aging_202422
crossref_primary_10_1007_s11904_021_00547_0
crossref_primary_10_15656_kjgg_2024_25_3_129
crossref_primary_10_1016_j_intimp_2023_111357
crossref_primary_10_3389_fcimb_2023_1098712
crossref_primary_10_3390_ijms25168884
crossref_primary_10_1007_s00018_023_04903_8
crossref_primary_10_1242_dmm_049345
crossref_primary_10_3389_fgene_2022_1022739
crossref_primary_10_1016_j_tem_2024_07_009
crossref_primary_10_1007_s12016_021_08905_x
crossref_primary_10_1111_acel_13596
crossref_primary_10_1146_annurev_pharmtox_051920_093829
crossref_primary_10_1111_eci_14280
crossref_primary_10_1007_s11357_025_01598_6
crossref_primary_10_3390_ijms25074083
crossref_primary_10_1016_j_cytogfr_2023_02_001
crossref_primary_10_3390_nu13072197
crossref_primary_10_1016_j_heliyon_2024_e37883
crossref_primary_10_1177_15593258241272619
crossref_primary_10_1016_j_arr_2021_101538
crossref_primary_10_1038_s41574_021_00551_9
crossref_primary_10_14336_AD_2023_0631
crossref_primary_10_18632_aging_203859
crossref_primary_10_1155_2022_4620254
crossref_primary_10_1186_s12967_024_05322_4
crossref_primary_10_3390_cells12222650
crossref_primary_10_1155_2023_4388437
crossref_primary_10_3390_jpm11040314
crossref_primary_10_3390_ijms23094843
crossref_primary_10_1016_j_arr_2022_101634
crossref_primary_10_31083_j_jin2305091
crossref_primary_10_1016_j_mad_2021_111584
crossref_primary_10_1111_ctr_14742
crossref_primary_10_1186_s40168_023_01567_1
crossref_primary_10_1016_j_jare_2024_03_008
crossref_primary_10_1021_acsomega_3c06721
crossref_primary_10_1093_femsre_fuac042
crossref_primary_10_3390_ijms23136960
crossref_primary_10_2174_1574885518666230516150404
crossref_primary_10_1007_s11892_024_01539_1
crossref_primary_10_3390_ijms26010364
crossref_primary_10_1159_000511362
crossref_primary_10_1016_j_mad_2021_111597
crossref_primary_10_1016_j_biopha_2022_113547
crossref_primary_10_1016_j_arr_2022_101621
crossref_primary_10_3390_cells11193021
crossref_primary_10_3390_biom14030329
crossref_primary_10_1016_j_isci_2023_108082
crossref_primary_10_1038_s41366_021_00757_x
crossref_primary_10_3389_fmicb_2023_1268142
crossref_primary_10_3390_biology11121731
crossref_primary_10_1016_j_phymed_2024_155665
crossref_primary_10_1016_j_tem_2024_08_004
crossref_primary_10_3390_ph13100323
crossref_primary_10_1016_j_carbpol_2025_123526
crossref_primary_10_1186_s12915_023_01779_9
crossref_primary_10_15570_actaapa_2023_29
crossref_primary_10_1111_jgs_17921
crossref_primary_10_1016_j_micres_2023_127547
crossref_primary_10_4103_ajprhc_ajprhc_143_24
crossref_primary_10_1016_j_fct_2022_113129
crossref_primary_10_1016_j_exger_2022_111804
crossref_primary_10_1556_650_2021_32200
crossref_primary_10_3389_fragi_2022_736835
crossref_primary_10_1016_j_exger_2022_111800
crossref_primary_10_1007_s40472_023_00393_6
crossref_primary_10_1038_s41467_023_39786_7
crossref_primary_10_1038_s43587_023_00455_5
crossref_primary_10_1111_acel_13317
crossref_primary_10_2337_dci23_0035
crossref_primary_10_3389_fcell_2023_1184524
crossref_primary_10_1186_s12933_022_01482_z
crossref_primary_10_1016_j_ejcb_2023_151331
crossref_primary_10_1080_03007995_2021_2003149
crossref_primary_10_1016_j_arr_2023_102131
crossref_primary_10_1016_j_trecan_2021_03_001
crossref_primary_10_14336_AD_2024_1477
crossref_primary_10_1002_advs_202402477
crossref_primary_10_1007_s10522_023_10091_6
crossref_primary_10_1007_s11427_023_2595_5
crossref_primary_10_1038_s43587_023_00489_9
crossref_primary_10_1101_gad_343129_120
crossref_primary_10_1016_j_molmed_2021_12_003
crossref_primary_10_3389_fphar_2025_1567544
crossref_primary_10_1002_jmv_28239
crossref_primary_10_1007_s12603_020_1531_0
crossref_primary_10_4103_1673_5374_389624
crossref_primary_10_1016_j_mam_2022_101157
crossref_primary_10_1080_17425255_2021_1991308
crossref_primary_10_4239_wjd_v12_i11_1832
crossref_primary_10_3923_ijp_2024_1151_1162
crossref_primary_10_1242_jcs_259738
crossref_primary_10_3390_biomedicines12091948
crossref_primary_10_1111_liv_15611
crossref_primary_10_4155_tde_2020_0102
crossref_primary_10_1093_lifemedi_lnaf004
crossref_primary_10_1038_s41420_022_01205_z
crossref_primary_10_1007_s12035_024_04503_y
crossref_primary_10_3389_fgene_2021_719713
crossref_primary_10_3389_fragi_2024_1373741
crossref_primary_10_1186_s12974_024_03072_0
crossref_primary_10_14283_jpad_2023_103
crossref_primary_10_1016_j_pharmthera_2024_108710
crossref_primary_10_1016_j_isci_2023_108681
crossref_primary_10_1016_j_cmet_2023_10_011
crossref_primary_10_1111_cei_13523
crossref_primary_10_1038_s41590_021_00927_z
crossref_primary_10_1155_2021_5294266
crossref_primary_10_14283_jpad_2023_108
crossref_primary_10_1016_j_biopha_2021_111286
crossref_primary_10_1016_j_tem_2024_07_017
crossref_primary_10_3389_fvets_2021_651698
crossref_primary_10_3390_ijms23052901
crossref_primary_10_1007_s10522_021_09941_y
crossref_primary_10_1016_j_arr_2023_102122
crossref_primary_10_1093_femsyr_foad018
crossref_primary_10_1007_s00223_023_01100_4
crossref_primary_10_1080_19490976_2022_2154550
crossref_primary_10_1007_s11684_023_0998_6
crossref_primary_10_1016_j_freeradbiomed_2021_01_024
crossref_primary_10_1186_s43556_022_00108_w
crossref_primary_10_1007_s10522_024_10156_0
crossref_primary_10_1002_alz_13349
crossref_primary_10_1016_j_arr_2024_102213
crossref_primary_10_3390_cells10020208
crossref_primary_10_1007_s00103_024_03873_x
crossref_primary_10_1038_s41392_023_01502_8
crossref_primary_10_1038_s41575_024_00913_4
crossref_primary_10_1016_j_metabol_2022_155223
crossref_primary_10_1038_s41392_022_01251_0
crossref_primary_10_3389_fmolb_2023_1260633
crossref_primary_10_3389_fimmu_2021_682853
crossref_primary_10_1093_ije_dyac200
crossref_primary_10_3390_ph16121714
crossref_primary_10_20517_jca_2024_14
crossref_primary_10_1002_etc_5684
crossref_primary_10_1038_s41514_024_00170_4
crossref_primary_10_18632_aging_204668
crossref_primary_10_1186_s12964_024_01663_1
crossref_primary_10_1016_j_neures_2025_02_008
crossref_primary_10_1111_cpr_13095
crossref_primary_10_2174_0113895575299439240216081711
crossref_primary_10_3390_pharmaceutics13071048
crossref_primary_10_1186_s13018_023_03571_5
crossref_primary_10_1093_cvr_cvae178
crossref_primary_10_1016_S2707_3688_23_00066_3
crossref_primary_10_14336_AD_2023_0630_1
crossref_primary_10_1126_sciadv_adl0372
crossref_primary_10_1016_j_phytochem_2022_113521
crossref_primary_10_3390_ph14060545
crossref_primary_10_3390_ijms242316880
crossref_primary_10_18632_aging_202454
crossref_primary_10_1111_acel_13733
crossref_primary_10_1016_j_diabet_2020_101216
crossref_primary_10_1016_j_hermed_2023_100717
crossref_primary_10_1186_s12931_023_02636_7
crossref_primary_10_3390_cells13131077
crossref_primary_10_4236_jbbs_2021_114007
crossref_primary_10_3390_cancers14071621
crossref_primary_10_3390_ph18010055
crossref_primary_10_1002_dmrr_3712
crossref_primary_10_1186_s12979_023_00377_1
crossref_primary_10_1016_j_bbrc_2024_150027
crossref_primary_10_1016_j_expneurol_2024_115057
crossref_primary_10_1021_acsnano_2c08146
crossref_primary_10_51847_OVGA9z0WDB
crossref_primary_10_7554_eLife_90579
crossref_primary_10_1007_s11357_023_00978_0
crossref_primary_10_3389_fneur_2023_1275266
crossref_primary_10_1093_gerona_glac181
crossref_primary_10_1080_14656566_2021_1912735
crossref_primary_10_1093_gerona_glad034
crossref_primary_10_1182_bloodadvances_2021006490
crossref_primary_10_1016_j_phrs_2024_107367
crossref_primary_10_1186_s13195_023_01355_x
crossref_primary_10_3923_ijp_2024_726_734
crossref_primary_10_1016_j_jchromb_2023_123868
crossref_primary_10_1016_j_biopha_2023_114384
crossref_primary_10_1016_j_bbamcr_2021_118954
crossref_primary_10_3390_ijms24010755
crossref_primary_10_1167_iovs_65_3_23
crossref_primary_10_3389_fnut_2021_758058
crossref_primary_10_1016_j_mad_2024_111931
crossref_primary_10_1111_acel_13715
crossref_primary_10_1038_s41586_023_06017_4
crossref_primary_10_1016_j_cbi_2023_110462
crossref_primary_10_1073_pnas_2012363117
crossref_primary_10_1016_j_diabet_2022_101359
crossref_primary_10_1038_s44318_024_00220_3
crossref_primary_10_1007_s10522_023_10072_9
crossref_primary_10_1016_j_ejphar_2025_177475
crossref_primary_10_3390_ph15010062
crossref_primary_10_1016_j_neurobiolaging_2021_11_001
crossref_primary_10_1111_bph_15410
crossref_primary_10_1016_j_trac_2023_117248
crossref_primary_10_3390_ijms23179957
crossref_primary_10_1016_j_molcel_2023_10_006
crossref_primary_10_3389_fimmu_2021_594330
crossref_primary_10_1038_s41580_024_00775_3
crossref_primary_10_1186_s12915_025_02170_6
crossref_primary_10_1093_gigascience_giac126
crossref_primary_10_3389_fcell_2022_682045
crossref_primary_10_1139_apnm_2022_0276
crossref_primary_10_1016_j_cmet_2024_10_021
crossref_primary_10_1016_j_placenta_2023_10_003
crossref_primary_10_1111_jcmm_17519
crossref_primary_10_13005_bbra_3226
crossref_primary_10_1097_MCP_0000000000000878
crossref_primary_10_1186_s12967_024_05436_9
crossref_primary_10_1016_j_intimp_2024_113151
crossref_primary_10_1038_s41598_022_05276_x
crossref_primary_10_2337_dsi22_0013
crossref_primary_10_1016_j_indcrop_2023_116903
crossref_primary_10_1111_acel_13936
crossref_primary_10_1016_j_scib_2024_09_005
crossref_primary_10_1016_j_jacc_2023_05_038
crossref_primary_10_18632_aging_204393
crossref_primary_10_1016_j_tins_2024_04_003
crossref_primary_10_1038_s41574_023_00833_4
crossref_primary_10_1134_S2635167624601104
crossref_primary_10_1126_sciadv_abq1475
crossref_primary_10_14336_AD_202_0516
crossref_primary_10_1016_j_bbadis_2024_167201
crossref_primary_10_3389_fendo_2021_718942
crossref_primary_10_1016_j_smim_2023_101838
crossref_primary_10_1002_adfm_202420600
crossref_primary_10_1007_s10522_020_09894_8
crossref_primary_10_3390_biom14020189
crossref_primary_10_3390_ijms23179738
crossref_primary_10_1016_j_celrep_2022_111928
crossref_primary_10_1002_ijc_33594
crossref_primary_10_1002_adhm_202405069
crossref_primary_10_1016_j_smim_2023_101842
crossref_primary_10_3389_fcell_2021_768689
crossref_primary_10_1016_j_expneurol_2024_114689
crossref_primary_10_3389_fphar_2021_689111
crossref_primary_10_3389_fphar_2021_645810
crossref_primary_10_1186_s13075_022_02859_x
crossref_primary_10_1016_j_arr_2024_102619
crossref_primary_10_1007_s11357_024_01067_6
crossref_primary_10_1016_j_biocel_2021_106086
crossref_primary_10_18632_aging_204498
crossref_primary_10_1007_s00109_023_02360_1
crossref_primary_10_14336_AD_2024_0065
crossref_primary_10_3390_biomedicines12112540
crossref_primary_10_1016_j_trsl_2023_08_001
crossref_primary_10_1016_j_mad_2022_111695
crossref_primary_10_1186_s13048_025_01591_9
crossref_primary_10_47855_jal9020_2023_2_2
crossref_primary_10_2147_JIR_S436147
crossref_primary_10_3233_JAD_230899
crossref_primary_10_1038_s41573_024_01126_9
crossref_primary_10_3390_biom13071085
crossref_primary_10_1038_s12276_024_01357_1
crossref_primary_10_3390_cells11061010
crossref_primary_10_1186_s11658_022_00366_0
crossref_primary_10_18632_aging_203051
crossref_primary_10_3389_fsci_2025_1441297
crossref_primary_10_1016_j_ejmech_2021_113378
crossref_primary_10_1016_j_biopha_2024_116981
crossref_primary_10_1016_j_metabol_2023_155597
crossref_primary_10_1007_s11357_023_01015_w
crossref_primary_10_3389_fphar_2021_630419
crossref_primary_10_1038_s41591_022_01923_y
crossref_primary_10_3390_ijms252211901
crossref_primary_10_1111_dom_15663
crossref_primary_10_1016_j_bbamcr_2024_119753
crossref_primary_10_1016_j_clgc_2024_01_005
crossref_primary_10_1016_j_arr_2024_102512
crossref_primary_10_1152_physrev_00017_2021
crossref_primary_10_3389_fendo_2023_1181064
crossref_primary_10_4103_1673_5374_320971
crossref_primary_10_1016_S2666_7568_22_00095_2
crossref_primary_10_1002_jor_25470
crossref_primary_10_1134_S0006297923110020
crossref_primary_10_1186_s40001_023_01017_6
crossref_primary_10_1007_s00011_022_01598_8
crossref_primary_10_1210_clinem_dgae635
crossref_primary_10_1111_febs_15617
crossref_primary_10_1016_j_arr_2024_102502
crossref_primary_10_1093_lifemedi_lnac045
crossref_primary_10_1167_iovs_64_11_22
crossref_primary_10_13005_bpj_2977
crossref_primary_10_1097_WNF_0000000000000625
crossref_primary_10_1016_j_jbc_2025_108271
crossref_primary_10_1016_j_tcb_2020_07_002
crossref_primary_10_1111_nyas_14681
crossref_primary_10_1007_s00417_023_06218_7
crossref_primary_10_1016_j_cmet_2020_04_016
crossref_primary_10_22159_ijap_2025v17i2_53174
crossref_primary_10_3389_fendo_2023_1128622
crossref_primary_10_2337_dc22_1728
crossref_primary_10_4103_SBVJ_SBVJ_11_25
crossref_primary_10_1186_s12933_025_02643_6
crossref_primary_10_1016_j_aohep_2023_101135
crossref_primary_10_1016_j_arr_2021_101280
crossref_primary_10_3389_fphar_2024_1347047
crossref_primary_10_1007_s11357_020_00261_6
crossref_primary_10_3390_muscles2020011
crossref_primary_10_1111_cpr_13612
crossref_primary_10_1016_j_tips_2022_02_001
crossref_primary_10_3389_fimmu_2025_1534263
crossref_primary_10_1038_s41392_023_01343_5
crossref_primary_10_20900_agmr20220002
crossref_primary_10_3390_brainsci13030520
crossref_primary_10_1093_qje_qjae015
crossref_primary_10_1007_s40200_021_00835_x
crossref_primary_10_1038_s44321_024_00065_7
crossref_primary_10_1093_lifemeta_loac025
crossref_primary_10_1111_febs_15540
crossref_primary_10_31083_j_fbl2711318
crossref_primary_10_3390_antiox11040706
crossref_primary_10_1016_j_cell_2022_11_001
crossref_primary_10_1186_s10020_024_01016_1
crossref_primary_10_1007_s12020_024_04012_x
crossref_primary_10_3389_fcell_2022_948819
crossref_primary_10_1097_QAI_0000000000002858
crossref_primary_10_3389_fmed_2023_1072359
crossref_primary_10_3389_fragi_2021_695218
crossref_primary_10_18632_aging_203910
crossref_primary_10_1016_j_trsl_2021_10_003
crossref_primary_10_1111_fcp_12884
crossref_primary_10_3389_fendo_2020_581839
crossref_primary_10_1002_slct_202403395
crossref_primary_10_4062_biomolther_2022_114
crossref_primary_10_1016_j_cmet_2022_11_005
crossref_primary_10_1097_PSY_0000000000001257
crossref_primary_10_1136_jech_2023_220664
crossref_primary_10_3390_antiox11050975
crossref_primary_10_1155_2023_1429642
crossref_primary_10_1016_j_mito_2024_101902
crossref_primary_10_3928_00989134_20220808_05
crossref_primary_10_1080_08923973_2023_2232101
crossref_primary_10_3389_fonc_2020_620641
crossref_primary_10_1016_S2213_8587_23_00001_3
crossref_primary_10_1016_j_tig_2024_09_006
crossref_primary_10_1186_s12933_023_01817_4
crossref_primary_10_3390_cells10010079
crossref_primary_10_1038_s41416_024_02865_7
crossref_primary_10_3389_fgene_2023_1136763
crossref_primary_10_1016_j_jacadv_2022_100070
crossref_primary_10_1007_s12011_021_02734_x
crossref_primary_10_1016_j_ejphar_2024_176846
crossref_primary_10_1016_j_obmed_2023_100514
crossref_primary_10_3389_fphys_2021_693067
crossref_primary_10_1093_ageing_afac156
crossref_primary_10_3390_cells12081111
crossref_primary_10_1016_j_dsx_2021_02_022
crossref_primary_10_1016_j_ebiom_2023_104484
crossref_primary_10_3389_fragi_2025_1492099
crossref_primary_10_1007_s00281_024_01016_7
crossref_primary_10_1016_j_jare_2021_12_009
crossref_primary_10_1016_j_tips_2023_12_002
crossref_primary_10_2337_db23_0827
crossref_primary_10_1186_s12953_022_00194_2
crossref_primary_10_18632_aging_103344
crossref_primary_10_18632_aging_103347
crossref_primary_10_1016_j_arr_2021_101263
crossref_primary_10_1155_2021_2027359
crossref_primary_10_1016_j_isci_2020_101631
crossref_primary_10_1038_s41392_023_01378_8
crossref_primary_10_1038_s41598_022_09074_3
crossref_primary_10_31857_S0320972523110039
crossref_primary_10_1146_annurev_bioeng_120122_123054
crossref_primary_10_3390_ijms25095044
crossref_primary_10_1007_s10654_021_00828_3
crossref_primary_10_3390_ijms232314503
crossref_primary_10_1089_ten_tea_2023_0327
crossref_primary_10_3390_biomedicines11030730
crossref_primary_10_1016_j_jot_2024_03_001
crossref_primary_10_1038_s41541_023_00682_2
crossref_primary_10_1186_s40035_024_00409_w
crossref_primary_10_18632_aging_103693
crossref_primary_10_3390_biology13090647
crossref_primary_10_3390_cells11050862
crossref_primary_10_1096_fj_202301861RR
crossref_primary_10_3389_fragi_2023_1202152
crossref_primary_10_1016_j_arr_2023_101995
crossref_primary_10_1016_j_heliyon_2024_e25253
crossref_primary_10_1038_s41584_022_00863_8
crossref_primary_10_7554_eLife_90579_3
crossref_primary_10_3389_fphar_2024_1507860
crossref_primary_10_1007_s10728_024_00497_9
crossref_primary_10_1016_j_exger_2025_112702
crossref_primary_10_1007_s10238_023_01051_y
crossref_primary_10_1016_j_pharmthera_2020_107673
crossref_primary_10_3389_fneur_2022_903565
crossref_primary_10_3390_genes14020329
crossref_primary_10_3389_fendo_2023_1079626
crossref_primary_10_3390_cells11152465
Cites_doi 10.1016/j.arr.2017.08.003
10.7326/M16-1901
10.1007/s10522-017-9685-9
10.1111/acel.12075
10.1016/0014-4827(61)90192-6
10.1016/j.numecd.2015.03.007
10.1371/journal.pone.0053533
10.1038/nrd.2018.174
10.1158/1940-6207.CAPR-11-0536
10.1038/s41586-019-1365-2
10.3389/fendo.2018.00657
10.1016/j.ajhg.2009.10.028
10.1073/pnas.1321776111
10.1007/s00125-017-4318-z
10.1124/jpet.102.034140
10.7554/eLife.02242
10.1016/j.molcel.2016.01.028
10.1016/j.freeradbiomed.2010.06.022
10.1016/j.mad.2015.05.004
10.1016/j.biochi.2018.08.002
10.3892/ol.2014.2466
10.1016/j.cmet.2014.09.018
10.1186/s13148-018-0593-x
10.1038/ncb2152
10.12688/f1000research.15121.1
10.1126/sciadv.1600031
10.1152/japplphysiol.00255.2006
10.2337/dc19-S009
10.1073/pnas.1810692116
10.1038/s41580-018-0020-3
10.1172/JCI120842
10.1042/bj3480607
10.1371/journal.pone.0061537
10.1111/acel.12469
10.1038/nrm.2017.95
10.1007/s10522-018-9769-1
10.1111/acel.12765
10.2217/epi-2018-0187
10.3389/fimmu.2018.01236
10.3389/fendo.2018.00753
10.1016/j.cell.2013.05.039
10.1038/s41514-017-0018-7
10.1007/s10522-019-09838-x
10.1038/onc.2016.391
10.2337/db10-0805
10.18632/oncotarget.14640
10.1007/s10522-018-9773-5
10.1074/jbc.275.1.223
10.1161/CIRCHEARTFAILURE.118.005418
10.1016/j.cmet.2012.02.013
10.1111/jgs.14969
10.1210/en.2015-1572
10.1038/onc.2017.367
10.1111/acel.12723
10.1111/bph.12585
10.1016/j.diabres.2017.10.020
10.1038/s41580-019-0128-0
10.3390/genes9030165
10.18632/oncotarget.13639
10.1097/FPC.0b013e3283559b22
10.1146/annurev-biochem-062917-012239
10.1001/jamapediatrics.2015.0439
10.1016/j.tem.2019.07.015
10.1016/j.tibs.2016.05.008
10.1016/j.mce.2016.11.011
10.1016/j.metabol.2015.10.014
10.1016/j.arr.2019.100914
10.1016/j.yexcr.2017.01.017
10.1093/geroni/igx004.2682
10.2337/db14-1225
10.1161/CIRCRESAHA.116.308445
10.1016/j.arr.2011.12.005
10.1093/ijnp/pyw047
10.1038/s41580-019-0143-1
10.1007/s00125-015-3844-9
10.1038/s41591-018-0092-9
10.1038/s41591-018-0159-7
10.2337/dc15-2534
10.1159/000502257
10.1016/j.chom.2018.03.006
10.18632/aging.100397
10.3892/or.2016.4740
10.1038/s41598-019-41839-1
10.1016/j.redox.2017.02.007
10.1126/science.aab3389
10.1007/s00125-017-4349-5
10.3390/ijms17010122
10.1038/nature13270
10.1124/mol.117.109512
10.1096/fasebj.2019.33.1_supplement.794.4
10.1016/j.bbadis.2018.01.018
10.1016/j.mrgentox.2016.09.001
10.1016/j.cmet.2016.05.014
10.7554/eLife.31268
10.1038/nm.4000
10.1146/annurev-pathol-121808-102144
10.1016/j.cell.2016.11.055
10.1038/cddis.2016.334
10.1101/gr.240093.118
10.1007/s00125-017-4372-6
10.1038/oncsis.2016.2
10.1016/j.cmet.2016.12.009
10.1016/j.cmet.2016.05.011
10.1158/0008-5472.CAN-07-2310
10.1177/1535370213480744
10.1016/j.stemcr.2015.10.014
10.3390/ijms20133173
10.1080/19490976.2017.1405209
10.2337/diabetes.51.8.2420
10.1111/acel.12880
10.3390/ijms18040872
10.1038/nrm4048
10.1371/journal.pone.0208533
10.1371/journal.pone.0008758
10.3389/fcvm.2018.00012
10.1353/hpu.2013.0044
10.1172/JCI64099
10.1158/0008-5472.CAN-10-1769
10.1038/s41580-019-0101-y
10.1016/j.mad.2013.07.003
10.1038/cddis.2012.13
10.1186/s13046-018-0731-5
10.1016/j.stem.2019.08.015
10.1038/nature10600
10.3389/fphys.2019.00572
10.3389/fphys.2018.00706
10.1210/jcem-73-6-1294
10.1101/cshperspect.a025932
10.2337/dc16-1324
10.1016/j.cell.2019.08.003
10.1038/nm.4001
10.1126/sciadv.aax1912
10.1016/j.cmet.2017.09.019
10.3389/fendo.2018.00400
10.7150/ijms.19800
10.1098/rsbl.2018.0885
10.1111/acel.13028
10.1038/s41586-019-1911-y
10.1074/jbc.M115.662114
10.3892/ijo.2013.2077
10.1371/journal.pone.0047699
10.1111/bcp.13780
10.1073/pnas.1311121111
10.1016/j.mrgentox.2018.01.007
10.4161/cc.10.9.15423
10.1038/s41574-018-0059-4
10.18632/aging.101781
10.1111/dom.12812
10.1016/j.cmet.2010.03.014
10.1210/jc.2015-3754
10.1016/j.bbrc.2018.02.191
10.1161/CIRCULATIONAHA.117.031735
10.3389/fendo.2019.00294
10.2337/diabetes.49.5.735
10.1073/pnas.1902452116
10.1126/sciadv.1600584
10.1146/annurev-physiol-030212-183715
10.4161/cc.7.17.6625
10.1038/ncomms3192
10.1016/j.cell.2013.02.035
10.1016/j.cell.2013.11.037
10.1016/j.cmet.2016.09.003
10.1038/s41591-018-0222-4
10.1172/JCI40671
10.1242/dev.130633
10.1016/j.cmet.2018.09.019
10.1155/2019/5980465
10.1007/s10522-017-9724-6
10.1016/j.ebiom.2018.12.052
10.2337/diab.36.5.632
10.1016/j.cell.2016.07.050
10.1111/dom.13262
10.2174/1871530315666150316124019
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2020.04.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 30
ExternalDocumentID PMC7347426
32333835
10_1016_j_cmet_2020_04_001
S1550413120301832
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK020541
– fundername: NIA NIH HHS
  grantid: P30 AG038072
– fundername: NIA NIH HHS
  grantid: P01 AG021654
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-94292aa35f48a4092a48f163507a23a4ddcc7a9ed8bbdb2a948bb8a1f4790ddf3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:11:49 EDT 2025
Fri Jul 11 04:43:47 EDT 2025
Mon Jul 21 05:50:52 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:47:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TAME
aging hallmarks
metformin
longevity
metabolism
aging
health span
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-94292aa35f48a4092a48f163507a23a4ddcc7a9ed8bbdb2a948bb8a1f4790ddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.cell.com/article/S1550413120301832/pdf
PMID 32333835
PQID 2394882211
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7347426
proquest_miscellaneous_2394882211
pubmed_primary_32333835
crossref_citationtrail_10_1016_j_cmet_2020_04_001
crossref_primary_10_1016_j_cmet_2020_04_001
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_04_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-07
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Blackburn, Epel, Lin (bib22) 2015; 350
Williams, Singleton, Llopis, Skripnikova (bib168) 2013; 24
Salminen, Kaarniranta (bib135) 2012; 11
Pavlidou, Marinkovic, Rosina, Fuoco, Vumbaca, Gargioli, Castagnoli, Cesareni (bib123) 2019; 2019
Benayoun, Pollina, Brunet (bib19) 2015; 16
Kulkarni, Brutsaert, Anghel, Zhang, Bloomgarden, Pollak, Mar, Hawkins, Crandall, Barzilai (bib94) 2018; 17
Grabowska, Sikora, Bielak-Zmijewska (bib68) 2017; 18
de Kreutzenberg, Ceolotto, Cattelan, Pagnin, Mazzucato, Garagnani, Borelli, Bacalini, Franceschi, Fadini, Avogaro (bib42) 2015; 25
Kalender, Selvaraj, Kim, Gulati, Brûlé, Viollet, Kemp, Bardeesy, Dennis, Schlager (bib82) 2010; 11
Casagrande, Hau (bib28) 2019; 15
Wu, Zhou, Oshiro-Rapley, Li, Paulo, Webster, Mou, Kacergis, Talkowski, Carr (bib169) 2016; 167
Karnewar, Neeli, Panuganti, Kotagiri, Mallappa, Jain, Jerald, Kotamraju (bib85) 2018; 1864
Gil (bib63) 2019; 20
Moreno-Navarrete, Ortega, Rodríguez-Hermosa, Sabater, Pardo, Ricart, Fernández-Real (bib109) 2011; 60
Anisimov, Berstein, Egormin, Piskunova, Popovich, Zabezhinski, Tyndyk, Yurova, Kovalenko, Poroshina, Semenchenko (bib7) 2008; 7
Glossmann, Lutz (bib65) 2019; 65
Peleg, Feller, Ladurner, Imhof (bib124) 2016; 41
Ursini, Russo, Pellino, D'Angelo, Chiaravalloti, De Sarro, Manfredini, De Giorgio (bib155) 2018; 9
Kelly, Tannahill, Murphy, O'Neill (bib87) 2015; 290
Barzilai, Crandall, Kritchevsky, Espeland (bib15) 2016; 23
Vial, Detaille, Guigas (bib159) 2019; 10
Zhang, Li, Ma, Zong, Cui, Feng, Wu, Lin, Lin (bib177) 2016; 24
Hunter, Hughey, Lantier, Sundelin, Peggie, Zeqiraj, Sicheri, Jessen, Wasserman, Sakamoto (bib76) 2018; 24
Xu, Pirtskhalava, Farr, Weigand, Palmer, Weivoda, Inman, Ogrodnik, Hachfeld, Fraser (bib172) 2018; 24
Fang, Yang, Wu, Zhang, Li, Wang, Zhang, Wang, Liu, Wang (bib55) 2018; 17
Na, Park, Pyo, Lee, Jeon, Kim, Yoo (bib112) 2013; 134
Araújo Carvalho, Tavares Mendes, da Silva Reis, Santos, Tanajura, Martins-Filho (bib8) 2019; 54
Robb-MacKay (bib129) 2018
Bakris, Molitch (bib14) 2016; 39
Gong, Goswami, Giacomini, Altman, Klein (bib67) 2012; 22
Liu, Chhipa, Pooya, Wortman, Yachyshin, Chow, Kumar, Zhou, Sun, Quinn (bib99) 2014; 111
Childs, Durik, Baker, van Deursen (bib34) 2015; 21
Sarfstein, Friedman, Attias-Geva, Fishman, Bruchim, Werner (bib138) 2013; 8
Aroda, Edelstein, Goldberg, Knowler, Marcovina, Orchard, Bray, Schade, Temprosa, White (bib10) 2016; 101
Halicka, Zhao, Li, Traganos, Zhang, Lee, Darzynkiewicz (bib69) 2011; 3
Schulten, Bakhashab (bib139) 2019; 20
Chen, Ou, Li, Hu, Shao, Liu (bib33) 2017; 6
Wheaton, Weinberg, Hamanaka, Soberanes, Sullivan, Anso, Glasauer, Dufour, Mutlu, Budigner, Chandel (bib166) 2014; 3
Cuyàs, Verdura, Llorach-Parés, Fernández-Arroyo, Joven, Martin-Castillo, Bosch-Barrera, Brunet, Nonell-Canals, Sanchez-Martinez, Menendez (bib40) 2018; 9
Othman, Oli, Arias-Loza, Kreissl, Stopper (bib119) 2016; 157
Jang, Blum, Liu, Finkel (bib79) 2018; 128
Wang, Jonker, Kato, Kusuhara, Schinkel, Sugiyama (bib162) 2002; 302
Cabreiro, Au, Leung, Vergara-Irigaray, Cochemé, Noori, Weinkove, Schuster, Greene, Gems (bib24) 2013; 153
Noren Hooten, Martin-Montalvo, Dluzen, Zhang, Bernier, Zonderman, Becker, Gorospe, de Cabo, Evans (bib117) 2016; 15
Saisho (bib134) 2015; 15
Lee, Lee, Kim, An, Lee, Kong, Song, Lee, Kim (bib96) 2018; 9
Dowling, Zakikhani, Fantus, Pollak, Sonenberg (bib49) 2007; 67
Cuyàs, Fernández-Arroyo, Verdura, García, Stursa, Werner, Blanco-González, Montes-Bayón, Joven, Viollet (bib39) 2018; 37
Bettedi, Foukas (bib21) 2017; 18
Algire, Moiseeva, Deschênes-Simard, Amrein, Petruccelli, Birman, Viollet, Ferbeyre, Pollak (bib3) 2012; 5
Soukas, Hao, Wu (bib148) 2019; 30
Chen, Xia, Pan, Xu, Zhou, Wu, Cai, Tang, Wang, Yan (bib31) 2016; 7
Chen, Brooks, Houskeeper, Bremner, Dunlop, Viollet, Logan, Salt, Ahmed, Yarwood (bib32) 2017; 440
Amin, Lux, O'Callaghan (bib6) 2019; 85
Konopka, Laurin, Schoenberg, Reid, Castor, Wolff, Musci, Safairad, Linden, Biela (bib91) 2019; 18
Kirkland, Tchkonia, Zhu, Niedernhofer, Robbins (bib89) 2017; 65
Niedernhofer, Gurkar, Wang, Vijg, Hoeijmakers, Robbins (bib116) 2018; 87
(bib5) 2019; 42
Dogan Turacli, Candar, Yuksel, Kalay, Oguz, Demirtas (bib48) 2018; 154
Sun, Xie, Wang, Wu, Wu, Wang, Liu, Deng, Xia, Chen (bib149) 2018; 24
Kristensen, Larsen, Helge, Dela, Wojtaszewski (bib92) 2013; 8
Hayflick, Moorhead (bib71) 1961; 25
Kim, Kundu, Viollet, Guan (bib88) 2011; 13
Wu, Xie, Wu, Jones, Horowitz, Rayner (bib170) 2017; 19
Martin-Montalvo, Mercken, Mitchell, Palacios, Mote, Scheibye-Knudsen, Gomes, Ward, Minor, Blouin (bib104) 2013; 4
McCreight, Bailey, Pearson (bib105) 2016; 59
Vazquez-Martin, Oliveras-Ferraros, Cufí, Martin-Castillo, Menendez (bib158) 2011; 10
Whittemore, Vera, Martínez-Nevado, Sanpera, Blasco (bib167) 2019; 116
de la Cuesta-Zuluaga, Mueller, Corrales-Agudelo, Velásquez-Mejía, Carmona, Abad, Escobar (bib43) 2017; 40
Wang, Bi, Liu, Zhao, Han, Wei, Zhang (bib163) 2017; 14
Armanios, Alder, Parry, Karim, Strong, Greider (bib9) 2009; 85
Zarse, Schmeisser, Groth, Priebe, Beuster, Kuhlow, Guthke, Platzer, Kahn, Ristow (bib176) 2012; 15
Athanasiou, Aguila, Opefi, South, Bellingham, Bevilacqua, Munro, Kanuga, Mackenzie, Dubis (bib11) 2017; 26
Fatt, Hsu, He, Wondisford, Miller, Kaplan, Wang (bib56) 2015; 5
Moiseeva, Deschênes-Simard, St-Germain, Igelmann, Huot, Cadar, Bourdeau, Pollak, Ferbeyre (bib108) 2013; 12
Tizazu, Nyunt, Cexus, Suku, Mok, Xian, Chong, Tan, How, Hubert (bib153) 2019; 10
Foretz, Hébrard, Leclerc, Zarrinpashneh, Soty, Mithieux, Sakamoto, Andreelli, Viollet (bib59) 2010; 120
Bridgeman, Ellison, Melton, Newsholme, Mamotte (bib23) 2018; 20
Crowley, Diamantidis, McDuffie, Cameron, Stanifer, Mock, Wang, Tang, Nagi, Kosinski, Williams (bib38) 2017; 166
Cameron, Morrison, Levin, Mohan, Forteath, Beall, McNeilly, Balfour, Savinko, Wong (bib25) 2016; 119
Bailey (bib12) 2017; 60
Xie, Wang, Ji, Yuan, Peng, Zhang, Wen, Shi (bib171) 2014; 8
El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib51) 2000; 275
Prasad, Sajja, Kaisar, Park, Villalba, Liles, Abbruscato, Cucullo (bib126) 2017; 12
Kane, Anderson, Price, Woodlief, Lin, Bikman, Cortright, Neufer (bib84) 2010; 49
Campbell, Bellman, Stephenson, Lisy (bib26) 2017; 40
Howell, Hellberg, Turner, Talbott, Kolar, Ross, Hoxhaj, Saghatelian, Shaw, Manning (bib75) 2017; 25
Sun, Youle, Finkel (bib150) 2016; 61
Heckman-Stoddard, DeCensi, Sahasrabuddhe, Ford (bib72) 2017; 60
Slack, Foley, Partridge (bib144) 2012; 7
Fahy, Brooke, Watson, Good, Vasanawala, Maecker, Leipold, Lin, Kobor, Horvath (bib54) 2019; 18
Patanè, Piro, Rabuazzo, Anello, Vigneri, Purrello (bib122) 2000; 49
Song, Lee, Lee, Kang, Cha, Lee (bib147) 2016; 17
Suwa, Egashira, Nakano, Sasaki, Kumagai (bib151) 2006; 101
Kaushik, Cuervo (bib86) 2015; 21
Sabit, Abdel-Ghany, M Said, Mostafa, El-Zawahry (bib133) 2018; 19
Shi, Xiao, Wang, Dong, Yan, Shen, Chen, Chen, Zhao (bib143) 2012; 3
Zhong, Men, Lu, Geng, Zhou, Mitsuhashi, Shozu, Maihle, Carmichael, Taylor, Huang (bib178) 2017; 36
Benayoun, Pollina, Singh, Mahmoudi, Harel, Casey, Dulken, Kundaje, Brunet (bib20) 2019; 29
Schultz, Sinclair (bib140) 2016; 143
Piskovatska, Stefanyshyn, Storey, Vaiserman, Lushchak (bib125) 2019; 20
Pryor, Norvaisas, Marinos, Best, Thingholm, Quintaneiro, De Haes, Esser, Waschina, Lujan (bib127) 2019; 178
Vinatier, Domínguez, Guicheux, Caramés (bib161) 2018; 9
Gillespie, Wang, Vadan, Yu, Ausió, Kusalik, Eskiw (bib64) 2019; 9
Sen, Shah, Nativio, Berger (bib142) 2016; 166
Tsai, Lai, Chen, Li, Huang, Liu, Tsai, Wang (bib154) 2017; 8
de Zegher, Díaz, Ibáñez (bib44) 2015; 169
Madreiter-Sokolowski, Sokolowski, Waldeck-Weiermair, Malli, Graier (bib103) 2018; 9
Milman, Huffman, Barzilai (bib107) 2016; 23
Valencia, Palacio, Tamariz, Florez (bib156) 2017; 60
Murphy, Hartley (bib110) 2018; 17
Fontaine (bib57) 2018; 9
Owen, Doran, Halestrap (bib120) 2000; 348
Galuska, Zierath, Thörne, Sonnenfeld, Wallberg-Henriksson (bib61) 1991; 17
Sanada, Taniyama, Muratsu, Otsu, Shimizu, Rakugi, Morishita (bib136) 2018; 5
Chung, Nicol, Cheng, Lin, Chen, Pei, Lin, Shih, Yen, Chen (bib35) 2017; 352
Novelle, Ali, Diéguez, Bernier, de Cabo (bib4) 2016; 6
Lu, Su, Qiao, Bian, Ding, Hu (bib101) 2016; 19
Zhu, Liu, Ding, Wang, Geng (bib180) 2019; 20
Śmieszek, Stręk, Kornicka, Grzesiak, Weiss, Marycz (bib145) 2017; 18
Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald (bib102) 2014; 510
Neumann, Baror, Zhao, Segel, Dietmann, Rawji, Foerster, McClain, Chalut, van Wijngaarden, Franklin (bib115) 2019; 25
Ruddy, Adams, Morshead (bib132) 2019; 5
Foretz, Guigas, Bertrand, Pollak, Viollet (bib58) 2014; 20
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib66) 2013; 155
Coppé, Desprez, Krtolica, Campisi (bib37) 2010; 5
Liu, Ge, Wu, Ma, Xu, Zhang, Yang (bib98) 2019; 11
Wang, Liu, Yang, Wang, Zhao, Miao, Zhu (bib164) 2019; 11
Yan, Han, Wang, Waddington, Zheng, Zhen (bib173) 2017; 92
Na, Park, Pyo, Jeon, Kim, Arking, Yoo (bib111) 2015; 149
Herzig, Shaw (bib73) 2018; 19
Soberanes, Misharin, Jairaman, Morales-Nebreda, McQuattie-Pimentel, Cho, Hamanaka, Meliton, Reyfman, Walter (bib146) 2019; 29
Hawley, Gadalla, Olsen, Hardie (bib70) 2002; 51
Wang, Xu, Yan, Zhao, Mi, Li, Yan (bib165) 2018; 37
Cheki, Ghasemi, Rezaei Rashnoudi, Erfani Majd (bib29) 2019
Elbere, Silamikelis, Ustinova, Kalnina, Zaharenko, Peculis, Konrade, Ciuculete, Zhukovsky, Gudra (bib50) 2018; 10
Franceschi, Garagnani, Parini, Giuliani, Santoro (bib60) 2018; 14
Barzilai (bib16) 2017; 1
Sant'Anna, Yajima, Rosada, Franco, Prioli, Della-Rosa, Mathias, Castro-Prado (bib137) 2013; 238
Coll, Chen, Taskar, Rimmington, Patel, Tadross, Cimino, Yang, Welsh, Virtue (bib36) 2020; 578
Alfaras, Mitchell, Mora, Lugo, Warren, Navas-Enamorado, Hoffmann, Hine, Mitchell, Le Couteur (bib2) 2017; 3
Zhou, Tang, Jin, Chen, Lu, Liu, Shen (bib179) 2016; 2016
De Haes, Frooninckx, Van Assche, Smolders, Depuydt, Billen, Braeckman, Schoofs, Temmerman (bib41) 2014; 111
Jackson, Hawa, Jaspan, Sim, Disilvio, Featherbe, Kurtz (bib78) 1987; 36
Baker, Wijshake, Tchkonia, LeBrasseur, Childs, van de Sluis, Kirkland, van Deursen (bib13) 2011; 479
Michalak, Bur
Heckman-Stoddard (10.1016/j.cmet.2020.04.001_bib72) 2017; 60
Othman (10.1016/j.cmet.2020.04.001_bib119) 2016; 157
Bailey (10.1016/j.cmet.2020.04.001_bib12) 2017; 60
Benayoun (10.1016/j.cmet.2020.04.001_bib19) 2015; 16
Jang (10.1016/j.cmet.2020.04.001_bib79) 2018; 128
Neumann (10.1016/j.cmet.2020.04.001_bib115) 2019; 25
Ben Sahra (10.1016/j.cmet.2020.04.001_bib18) 2011; 71
Hunter (10.1016/j.cmet.2020.04.001_bib76) 2018; 24
Kalender (10.1016/j.cmet.2020.04.001_bib82) 2010; 11
Lamming (10.1016/j.cmet.2020.04.001_bib95) 2013; 123
Piskovatska (10.1016/j.cmet.2020.04.001_bib125) 2019; 20
Sen (10.1016/j.cmet.2020.04.001_bib142) 2016; 166
Fang (10.1016/j.cmet.2020.04.001_bib55) 2018; 17
Sarfstein (10.1016/j.cmet.2020.04.001_bib138) 2013; 8
Cuyàs (10.1016/j.cmet.2020.04.001_bib39) 2018; 37
Chen (10.1016/j.cmet.2020.04.001_bib33) 2017; 6
Whittemore (10.1016/j.cmet.2020.04.001_bib167) 2019; 116
Seidel (10.1016/j.cmet.2020.04.001_bib141) 2018; 7
Sant'Anna (10.1016/j.cmet.2020.04.001_bib137) 2013; 238
Dowling (10.1016/j.cmet.2020.04.001_bib49) 2007; 67
Foretz (10.1016/j.cmet.2020.04.001_bib59) 2010; 120
Chen (10.1016/j.cmet.2020.04.001_bib31) 2016; 7
Armanios (10.1016/j.cmet.2020.04.001_bib9) 2009; 85
Benayoun (10.1016/j.cmet.2020.04.001_bib20) 2019; 29
Rena (10.1016/j.cmet.2020.04.001_bib128) 2018; 137
Foretz (10.1016/j.cmet.2020.04.001_bib58) 2014; 20
Franceschi (10.1016/j.cmet.2020.04.001_bib60) 2018; 14
Amin (10.1016/j.cmet.2020.04.001_bib6) 2019; 85
Herzig (10.1016/j.cmet.2020.04.001_bib73) 2018; 19
Kaushik (10.1016/j.cmet.2020.04.001_bib86) 2015; 21
de Kreutzenberg (10.1016/j.cmet.2020.04.001_bib42) 2015; 25
Coppé (10.1016/j.cmet.2020.04.001_bib37) 2010; 5
Cheki (10.1016/j.cmet.2020.04.001_bib30) 2016; 809
Alfaras (10.1016/j.cmet.2020.04.001_bib2) 2017; 3
Zhong (10.1016/j.cmet.2020.04.001_bib178) 2017; 36
Elbere (10.1016/j.cmet.2020.04.001_bib50) 2018; 10
Izzo (10.1016/j.cmet.2020.04.001_bib77) 2017; 26
Madiraju (10.1016/j.cmet.2020.04.001_bib102) 2014; 510
El-Mir (10.1016/j.cmet.2020.04.001_bib51) 2000; 275
Pryor (10.1016/j.cmet.2020.04.001_bib127) 2019; 178
Childs (10.1016/j.cmet.2020.04.001_bib34) 2015; 21
Glossmann (10.1016/j.cmet.2020.04.001_bib65) 2019; 65
Wang (10.1016/j.cmet.2020.04.001_bib165) 2018; 37
Patanè (10.1016/j.cmet.2020.04.001_bib122) 2000; 49
Zhou (10.1016/j.cmet.2020.04.001_bib179) 2016; 2016
Kristensen (10.1016/j.cmet.2020.04.001_bib92) 2013; 8
Niedernhofer (10.1016/j.cmet.2020.04.001_bib116) 2018; 87
Sabit (10.1016/j.cmet.2020.04.001_bib133) 2018; 19
Schulten (10.1016/j.cmet.2020.04.001_bib139) 2019; 20
Gil (10.1016/j.cmet.2020.04.001_bib63) 2019; 20
Garcia-Martin (10.1016/j.cmet.2020.04.001_bib62) 2018; 13
Zarse (10.1016/j.cmet.2020.04.001_bib176) 2012; 15
Moiseeva (10.1016/j.cmet.2020.04.001_bib108) 2013; 12
Howell (10.1016/j.cmet.2020.04.001_bib75) 2017; 25
Rosa (10.1016/j.cmet.2020.04.001_bib130) 2018; 135
Blackburn (10.1016/j.cmet.2020.04.001_bib22) 2015; 350
Halicka (10.1016/j.cmet.2020.04.001_bib69) 2011; 3
Kim (10.1016/j.cmet.2020.04.001_bib88) 2011; 13
Dogan Turacli (10.1016/j.cmet.2020.04.001_bib48) 2018; 154
Jackson (10.1016/j.cmet.2020.04.001_bib78) 1987; 36
Song (10.1016/j.cmet.2020.04.001_bib147) 2016; 17
Xie (10.1016/j.cmet.2020.04.001_bib171) 2014; 8
Saisho (10.1016/j.cmet.2020.04.001_bib134) 2015; 15
Gong (10.1016/j.cmet.2020.04.001_bib67) 2012; 22
Bauer (10.1016/j.cmet.2020.04.001_bib17) 2018; 27
Bettedi (10.1016/j.cmet.2020.04.001_bib21) 2017; 18
Cameron (10.1016/j.cmet.2020.04.001_bib25) 2016; 119
Barzilai (10.1016/j.cmet.2020.04.001_bib16) 2017; 1
Wang (10.1016/j.cmet.2020.04.001_bib164) 2019; 11
Yan (10.1016/j.cmet.2020.04.001_bib173) 2017; 92
Cheki (10.1016/j.cmet.2020.04.001_bib29) 2019
Sun (10.1016/j.cmet.2020.04.001_bib149) 2018; 24
Araújo Carvalho (10.1016/j.cmet.2020.04.001_bib8) 2019; 54
Hayflick (10.1016/j.cmet.2020.04.001_bib71) 1961; 25
Zhang (10.1016/j.cmet.2020.04.001_bib177) 2016; 24
Robb-MacKay (10.1016/j.cmet.2020.04.001_bib129) 2018
Emelyanova (10.1016/j.cmet.2020.04.001_bib52) 2019; 33
Wheaton (10.1016/j.cmet.2020.04.001_bib166) 2014; 3
Lu (10.1016/j.cmet.2020.04.001_bib101) 2016; 19
Bridgeman (10.1016/j.cmet.2020.04.001_bib23) 2018; 20
Konopka (10.1016/j.cmet.2020.04.001_bib91) 2019; 18
Fontaine (10.1016/j.cmet.2020.04.001_bib57) 2018; 9
Pal (10.1016/j.cmet.2020.04.001_bib121) 2016; 2
(10.1016/j.cmet.2020.04.001_bib5) 2019; 42
Vazquez-Martin (10.1016/j.cmet.2020.04.001_bib158) 2011; 10
Wu (10.1016/j.cmet.2020.04.001_bib169) 2016; 167
Xu (10.1016/j.cmet.2020.04.001_bib172) 2018; 24
Owen (10.1016/j.cmet.2020.04.001_bib120) 2000; 348
Tsai (10.1016/j.cmet.2020.04.001_bib154) 2017; 8
Onken (10.1016/j.cmet.2020.04.001_bib118) 2010; 5
Na (10.1016/j.cmet.2020.04.001_bib113) 2018; 498
Slack (10.1016/j.cmet.2020.04.001_bib144) 2012; 7
Kanamori (10.1016/j.cmet.2020.04.001_bib83) 2019; 12
Rotermund (10.1016/j.cmet.2020.04.001_bib131) 2018; 9
Kane (10.1016/j.cmet.2020.04.001_bib84) 2010; 49
Wu (10.1016/j.cmet.2020.04.001_bib170) 2017; 19
Karnewar (10.1016/j.cmet.2020.04.001_bib85) 2018; 1864
Noren Hooten (10.1016/j.cmet.2020.04.001_bib117) 2016; 15
Josephson (10.1016/j.cmet.2020.04.001_bib80) 2019; 116
Fatt (10.1016/j.cmet.2020.04.001_bib56) 2015; 5
Shi (10.1016/j.cmet.2020.04.001_bib143) 2012; 3
Peleg (10.1016/j.cmet.2020.04.001_bib124) 2016; 41
Ursini (10.1016/j.cmet.2020.04.001_bib155) 2018; 9
Anisimov (10.1016/j.cmet.2020.04.001_bib7) 2008; 7
Justice (10.1016/j.cmet.2020.04.001_bib81) 2019; 40
Chung (10.1016/j.cmet.2020.04.001_bib35) 2017; 352
Zhu (10.1016/j.cmet.2020.04.001_bib180) 2019; 20
Novelle (10.1016/j.cmet.2020.04.001_bib4) 2016; 6
Valencia (10.1016/j.cmet.2020.04.001_bib156) 2017; 60
de la Cuesta-Zuluaga (10.1016/j.cmet.2020.04.001_bib43) 2017; 40
Wang (10.1016/j.cmet.2020.04.001_bib163) 2017; 14
Vasamsetti (10.1016/j.cmet.2020.04.001_bib157) 2015; 64
Vial (10.1016/j.cmet.2020.04.001_bib159) 2019; 10
DeFronzo (10.1016/j.cmet.2020.04.001_bib46) 1991; 73
Sanada (10.1016/j.cmet.2020.04.001_bib136) 2018; 5
Algire (10.1016/j.cmet.2020.04.001_bib3) 2012; 5
Gillespie (10.1016/j.cmet.2020.04.001_bib64) 2019; 9
Cuyàs (10.1016/j.cmet.2020.04.001_bib40) 2018; 9
Gomes (10.1016/j.cmet.2020.04.001_bib66) 2013; 155
Murphy (10.1016/j.cmet.2020.04.001_bib110) 2018; 17
de Zegher (10.1016/j.cmet.2020.04.001_bib44) 2015; 169
Crowley (10.1016/j.cmet.2020.04.001_bib38) 2017; 166
Thevaranjan (10.1016/j.cmet.2020.04.001_bib152) 2017; 23
Soukas (10.1016/j.cmet.2020.04.001_bib148) 2019; 30
Vinatier (10.1016/j.cmet.2020.04.001_bib161) 2018; 9
Klement (10.1016/j.cmet.2020.04.001_bib90) 2016; 5
López-Otín (10.1016/j.cmet.2020.04.001_bib100) 2013; 153
Soberanes (10.1016/j.cmet.2020.04.001_bib146) 2019; 29
Lee (10.1016/j.cmet.2020.04.001_bib97) 2016; 35
Athanasiou (10.1016/j.cmet.2020.04.001_bib11) 2017; 26
Yu (10.1016/j.cmet.2020.04.001_bib175) 2017; 8
Kirkland (10.1016/j.cmet.2020.04.001_bib89) 2017; 65
Ruddy (10.1016/j.cmet.2020.04.001_bib132) 2019; 5
McCreight (10.1016/j.cmet.2020.04.001_bib105) 2016; 59
Na (10.1016/j.cmet.2020.04.001_bib111) 2015; 149
Lee (10.1016/j.cmet.2020.04.001_bib96) 2018; 9
Liu (10.1016/j.cmet.2020.04.001_bib98) 2019; 11
Coll (10.1016/j.cmet.2020.04.001_bib36) 2020; 578
Chen (10.1016/j.cmet.2020.04.001_bib32) 2017; 440
Cabreiro (10.1016/j.cmet.2020.04.001_bib24) 2013; 153
Tizazu (10.1016/j.cmet.2020.04.001_bib153) 2019; 10
Salminen (10.1016/j.cmet.2020.04.001_bib135) 2012; 11
Yi (10.1016/j.cmet.2020.04.001_bib174) 2013; 43
Moreno-Navarrete (10.1016/j.cmet.2020.04.001_bib109) 2011; 60
Martin-Montalvo (10.1016/j.cmet.2020.04.001_bib104) 2013; 4
Michalak (10.1016/j.cmet.2020.04.001_bib106) 2019; 20
Pavlidou (10.1016/j.cmet.2020.04.001_bib123) 2019; 2019
Williams (10.1016/j.cmet.2020.04.001_bib168) 2013; 24
Kulkarni (10.1016/j.cmet.2020.04.001_bib94) 2018; 17
Madreiter-Sokolowski (10.1016/j.cmet.2020.04.001_bib103) 2018; 9
Liu (10.1016/j.cmet.2020.04.001_bib99) 2014; 111
Aatsinki (10.1016/j.cmet.2020.04.001_bib1) 2014; 171
Aroda (10.1016/j.cmet.2020.04.001_bib10) 2016; 101
Sun (10.1016/j.cmet.2020.04.001_bib150) 2016; 61
Fahy (10.1016/j.cmet.2020.04.001_bib54) 2019; 18
Śmieszek (10.1016/j.cmet.2020.04.001_bib145) 2017; 18
Wang (10.1016/j.cmet.2020.04.001_bib162) 2002; 302
Casagrande (10.1016/j.cmet.2020.04.001_bib28) 2019; 15
Bakris (10.1016/j.cmet.2020.04.001_bib14) 2016; 39
Hawley (10.1016/j.cmet.2020.04.001_bib70) 2002; 51
Najafi (10.1016/j.cmet.2020.04.001_bib114) 2018; 827
DeFronzo (10.1016/j.cmet.2020.04.001_bib45) 2016; 65
De Haes (10.1016/j.cmet.2020.04.001_bib41) 2014; 111
Grabowska (10.1016/j.cmet.2020.04.001_bib68) 2017; 18
Schultz (10.1016/j.cmet.2020.04.001_bib140) 2016; 143
Campisi (10.1016/j.cmet.2020.04.001_bib27) 2019; 571
Kelly (10.1016/j.cmet.2020.04.001_bib87) 2015; 290
Kuang (10.1016/j.cmet.2020.04.001_bib93) 2020; 21
Ermolaeva (10.1016/j.cmet.2020.04.001_bib53) 2018; 19
Vijg (10.1016/j.cmet.2020.04.001_bib160) 2013; 75
Suwa (10.1016/j.cmet.2020.04.001_bib151) 2006; 101
Milman (10.1016/j.cmet.2020.04.001_bib107) 2016; 23
Prasad (10.1016/j.cmet.2020.04.001_bib126) 2017; 12
Baker (10.1016/j.cmet.2020.04.001_bib13) 2011; 479
Hipp (10.1016/j.cmet.2020.04.001_bib74) 2019; 20
Na (10.1016/j.cmet.2020.04.001_bib112) 2013; 134
Barzilai (10.1016/j.cmet.2020.04.001_bib15) 2016; 23
Galuska (10.1016/j.cmet.2020.04.001_bib61) 1991; 17
Campbell (10.1016/j.cmet.2020.04.001_bib26) 2017; 40
Diman (10.1016/j.cmet.2020.04.001_bib47) 2016; 2
References_xml – volume: 24
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib168
  article-title: Metformin induces a senescence-associated gene signature in breast cancer cells
  publication-title: J. Health Care Poor Underserved
– volume: 8
  start-page: e53533
  year: 2013
  ident: bib92
  article-title: Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice
  publication-title: PLoS One
– volume: 578
  start-page: 444
  year: 2020
  end-page: 448
  ident: bib36
  article-title: GDF15 mediates the effects of metformin on body weight and energy balance
  publication-title: Nature
– volume: 60
  start-page: 1639
  year: 2017
  end-page: 1647
  ident: bib72
  article-title: Repurposing metformin for the prevention of cancer and cancer recurrence
  publication-title: Diabetologia
– volume: 5
  start-page: e8758
  year: 2010
  ident: bib118
  article-title: Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1
  publication-title: PLoS One
– volume: 6
  start-page: a025932
  year: 2016
  ident: bib4
  article-title: Metformin: a hopeful promise in aging research
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 51
  start-page: 2420
  year: 2002
  end-page: 2425
  ident: bib70
  article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
  publication-title: Diabetes
– volume: 116
  start-page: 6995
  year: 2019
  end-page: 7004
  ident: bib80
  article-title: Age-related inflammation triggers skeletal stem/progenitor cell dysfunction
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 1246
  year: 2018
  end-page: 1256
  ident: bib172
  article-title: Senolytics improve physical function and increase lifespan in old age
  publication-title: Nat. Med.
– volume: 5
  start-page: 12
  year: 2018
  ident: bib136
  article-title: Source of chronic inflammation in aging
  publication-title: Front. Cardiovasc. Med.
– volume: 128
  start-page: 3662
  year: 2018
  end-page: 3670
  ident: bib79
  article-title: The role of mitochondria in aging
  publication-title: J. Clin. Invest.
– volume: 166
  start-page: 191
  year: 2017
  end-page: 200
  ident: bib38
  article-title: Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review
  publication-title: Ann. Intern. Med.
– volume: 5
  start-page: e193
  year: 2016
  ident: bib90
  article-title: Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer
  publication-title: Oncogenesis
– volume: 275
  start-page: 223
  year: 2000
  end-page: 228
  ident: bib51
  article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
  publication-title: J. Biol. Chem.
– volume: 87
  start-page: 295
  year: 2018
  end-page: 322
  ident: bib116
  article-title: Nuclear genomic instability and aging
  publication-title: Annu. Rev. Biochem.
– volume: 135
  start-page: 30
  year: 2018
  end-page: 36
  ident: bib130
  article-title: Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes
  publication-title: Diabetes Res. Clin. Pract.
– volume: 7
  start-page: e47699
  year: 2012
  ident: bib144
  article-title: Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila
  publication-title: PLoS One
– volume: 9
  start-page: 400
  year: 2018
  ident: bib131
  article-title: The therapeutic potential of metformin in neurodegenerative diseases
  publication-title: Front. Endocrinol.
– volume: 30
  start-page: 745
  year: 2019
  end-page: 755
  ident: bib148
  article-title: Metformin as anti-aging therapy: is it for everyone?
  publication-title: Trends Endocrinol. Metab.
– volume: 137
  start-page: 422
  year: 2018
  end-page: 424
  ident: bib128
  article-title: Repurposing metformin for cardiovascular disease
  publication-title: Circulation
– volume: 11
  start-page: 230
  year: 2012
  end-page: 241
  ident: bib135
  article-title: AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network
  publication-title: Ageing Res. Rev.
– volume: 3
  start-page: 16
  year: 2017
  ident: bib2
  article-title: Health benefits of late-onset metformin treatment every other week in mice
  publication-title: npj Aging Mech. Dis.
– volume: 40
  start-page: 554
  year: 2019
  end-page: 563
  ident: bib81
  article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study
  publication-title: EBiomedicine
– volume: 4
  start-page: 2192
  year: 2013
  ident: bib104
  article-title: Metformin improves healthspan and lifespan in mice
  publication-title: Nat. Commun.
– volume: 64
  start-page: 2028
  year: 2015
  end-page: 2041
  ident: bib157
  article-title: Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis
  publication-title: Diabetes
– volume: 10
  start-page: 156
  year: 2018
  ident: bib50
  article-title: Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals
  publication-title: Clin. Epigenet.
– volume: 827
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib114
  article-title: Metformin: prevention of genomic instability and cancer: a review
  publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen.
– volume: 15
  start-page: 451
  year: 2012
  end-page: 465
  ident: bib176
  article-title: Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal
  publication-title: Cell Metab.
– volume: 5
  start-page: 536
  year: 2012
  end-page: 543
  ident: bib3
  article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage
  publication-title: Cancer Prev. Res. (Phila.)
– volume: 119
  start-page: 652
  year: 2016
  end-page: 665
  ident: bib25
  article-title: Anti-inflammatory effects of metformin irrespective of diabetes status
  publication-title: Circ. Res.
– volume: 40
  start-page: 54
  year: 2017
  end-page: 62
  ident: bib43
  article-title: Metformin is associated with higher relative abundance of Mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut
  publication-title: Diabetes Care
– volume: 18
  start-page: 872
  year: 2017
  ident: bib145
  article-title: Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study
  publication-title: Int. J. Mol. Sci.
– volume: 54
  start-page: 100914
  year: 2019
  ident: bib8
  article-title: Telomere length and frailty in older adults-a systematic review and meta-analysis
  publication-title: Ageing Res. Rev.
– volume: 120
  start-page: 2355
  year: 2010
  end-page: 2369
  ident: bib59
  article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
  publication-title: J. Clin. Invest.
– volume: 37
  start-page: 963
  year: 2018
  end-page: 970
  ident: bib39
  article-title: Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism
  publication-title: Oncogene
– volume: 2
  start-page: e1600584
  year: 2016
  ident: bib121
  article-title: Epigenetics and aging
  publication-title: Sci. Adv.
– volume: 25
  start-page: 473
  year: 2019
  end-page: 485.e8
  ident: bib115
  article-title: Metformin restores CNS remyelination capacity by rejuvenating aged stem cells
  publication-title: Cell Stem Cell
– volume: 166
  start-page: 822
  year: 2016
  end-page: 839
  ident: bib142
  article-title: Epigenetic mechanisms of longevity and aging
  publication-title: Cell
– volume: 9
  start-page: 706
  year: 2018
  ident: bib161
  article-title: Role of the inflammation-autophagy-senescence integrative network in osteoarthritis
  publication-title: Front. Physiol.
– volume: 8
  start-page: 13832
  year: 2017
  end-page: 13845
  ident: bib154
  article-title: Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway
  publication-title: Oncotarget
– volume: 348
  start-page: 607
  year: 2000
  end-page: 614
  ident: bib120
  article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem. J.
– volume: 40
  start-page: 31
  year: 2017
  end-page: 44
  ident: bib26
  article-title: Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis
  publication-title: Ageing Res. Rev.
– volume: 20
  start-page: 953
  year: 2014
  end-page: 966
  ident: bib58
  article-title: Metformin: from mechanisms of action to therapies
  publication-title: Cell Metab.
– volume: 111
  start-page: E435
  year: 2014
  end-page: E444
  ident: bib99
  article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 479
  start-page: 232
  year: 2011
  end-page: 236
  ident: bib13
  article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
  publication-title: Nature
– volume: 67
  start-page: 10804
  year: 2007
  end-page: 10812
  ident: bib49
  article-title: Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
  publication-title: Cancer Res.
– volume: 9
  start-page: 753
  year: 2018
  ident: bib57
  article-title: Metformin-induced mitochondrial Complex I inhibition: facts, uncertainties, and consequences
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 12
  start-page: 489
  year: 2013
  end-page: 498
  ident: bib108
  article-title: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation
  publication-title: Aging Cell
– volume: 25
  start-page: 686
  year: 2015
  end-page: 693
  ident: bib42
  article-title: Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial
  publication-title: Nutr. Metab. Cardiovasc. Dis.
– volume: 171
  start-page: 2351
  year: 2014
  end-page: 2363
  ident: bib1
  article-title: Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions
  publication-title: Br. J. Pharmacol.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib180
  article-title: Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction
  publication-title: Biogerontology
– volume: 21
  start-page: 13
  year: 2020
  end-page: 27
  ident: bib93
  article-title: Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells
  publication-title: Biogerontology
– volume: 59
  start-page: 426
  year: 2016
  end-page: 435
  ident: bib105
  article-title: Metformin and the gastrointestinal tract
  publication-title: Diabetologia
– volume: 11
  start-page: 655
  year: 2019
  end-page: 667
  ident: bib164
  article-title: Metformin exerts antidepressant effects by regulated DNA hydroxymethylation
  publication-title: Epigenomics
– volume: 571
  start-page: 183
  year: 2019
  end-page: 192
  ident: bib27
  article-title: From discoveries in ageing research to therapeutics for healthy ageing
  publication-title: Nature
– volume: 153
  start-page: 228
  year: 2013
  end-page: 239
  ident: bib24
  article-title: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism
  publication-title: Cell
– volume: 15
  start-page: 20180885
  year: 2019
  ident: bib28
  article-title: Telomere attrition: metabolic regulation and signalling function?
  publication-title: Biol. Lett.
– volume: 6
  start-page: e31268
  year: 2017
  ident: bib33
  article-title: Metformin extends C. elegans lifespan through lysosomal pathway
  publication-title: eLife
– volume: 9
  start-page: 155
  year: 2018
  end-page: 165
  ident: bib96
  article-title: Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice
  publication-title: Gut Microbes
– volume: 5
  start-page: eaax1912
  year: 2019
  ident: bib132
  article-title: Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke
  publication-title: Sci. Adv.
– volume: 9
  start-page: 657
  year: 2018
  ident: bib40
  article-title: Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 43
  start-page: 1503
  year: 2013
  end-page: 1510
  ident: bib174
  article-title: Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway
  publication-title: Int. J. Oncol.
– volume: 33
  start-page: 794
  year: 2019
  ident: bib52
  article-title: Metformin has direct protective effect on human cardiac mitochondria
  publication-title: FASEB J
– volume: 20
  start-page: 421
  year: 2019
  end-page: 435
  ident: bib74
  article-title: The proteostasis network and its decline in ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 25
  start-page: 463
  year: 2017
  end-page: 471
  ident: bib75
  article-title: Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex
  publication-title: Cell Metab.
– volume: 440
  start-page: 57
  year: 2017
  end-page: 68
  ident: bib32
  article-title: Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms
  publication-title: Mol. Cell. Endocrinol.
– volume: 18
  start-page: 447
  year: 2017
  end-page: 476
  ident: bib68
  article-title: Sirtuins, a promising target in slowing down the ageing process
  publication-title: Biogerontology
– volume: 17
  start-page: 122
  year: 2016
  ident: bib147
  article-title: Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53
  publication-title: Int. J. Mol. Sci.
– volume: 3
  start-page: e02242
  year: 2014
  ident: bib166
  article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
  publication-title: eLife
– volume: 101
  start-page: 1754
  year: 2016
  end-page: 1761
  ident: bib10
  article-title: Long-term Metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 20
  start-page: 573
  year: 2019
  end-page: 589
  ident: bib106
  article-title: The roles of DNA, RNA and histone methylation in ageing and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 19
  start-page: 290
  year: 2017
  end-page: 293
  ident: bib170
  article-title: Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes
  publication-title: Diabetes Obes. Metab.
– volume: 29
  start-page: 697
  year: 2019
  end-page: 709
  ident: bib20
  article-title: Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses
  publication-title: Genome Res.
– volume: 49
  start-page: 735
  year: 2000
  end-page: 740
  ident: bib122
  article-title: Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells
  publication-title: Diabetes
– volume: 8
  start-page: 5619
  year: 2017
  end-page: 5628
  ident: bib175
  article-title: Anti-tumor activity of metformin: from metabolic and epigenetic perspectives
  publication-title: Oncotarget
– volume: 7
  start-page: e2441
  year: 2016
  ident: bib31
  article-title: Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 741
  year: 2019
  end-page: 755
  ident: bib98
  article-title: Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes
  publication-title: Aging
– volume: 17
  start-page: 159
  year: 1991
  end-page: 163
  ident: bib61
  article-title: Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle
  publication-title: Diabete Metab
– volume: 24
  start-page: 1919
  year: 2018
  end-page: 1929
  ident: bib149
  article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin
  publication-title: Nat. Med.
– volume: 41
  start-page: 700
  year: 2016
  end-page: 711
  ident: bib124
  article-title: The metabolic impact on histone acetylation and transcription in ageing
  publication-title: Trends Biochem. Sci.
– year: 2018
  ident: bib129
  article-title: The effect of metformin on absolute telomere length
– volume: 85
  start-page: 823
  year: 2009
  end-page: 832
  ident: bib9
  article-title: Short telomeres are sufficient to cause the degenerative defects associated with aging
  publication-title: Am. J. Hum. Genet.
– volume: 65
  start-page: 2297
  year: 2017
  end-page: 2301
  ident: bib89
  article-title: The clinical potential of senolytic drugs
  publication-title: J. Am. Geriatr. Soc.
– volume: 36
  start-page: 2345
  year: 2017
  end-page: 2354
  ident: bib178
  article-title: Metformin alters DNA methylation genome-wide via the H19/SAHH axis
  publication-title: Oncogene
– volume: 18
  start-page: e12880
  year: 2019
  ident: bib91
  article-title: Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults
  publication-title: Aging Cell
– volume: 498
  start-page: 18
  year: 2018
  end-page: 24
  ident: bib113
  article-title: Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 3
  start-page: 1028
  year: 2011
  end-page: 1038
  ident: bib69
  article-title: Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling
  publication-title: Aging (Albany NY)
– volume: 75
  start-page: 645
  year: 2013
  end-page: 668
  ident: bib160
  article-title: Genome instability and aging
  publication-title: Annu. Rev. Physiol.
– volume: 60
  start-page: 1630
  year: 2017
  end-page: 1638
  ident: bib156
  article-title: Metformin and ageing: improving ageing outcomes beyond glycaemic control
  publication-title: Diabetologia
– volume: 10
  start-page: 572
  year: 2019
  ident: bib153
  article-title: Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality
  publication-title: Front. Physiol.
– volume: 27
  start-page: 101
  year: 2018
  end-page: 117.e5
  ident: bib17
  article-title: Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway
  publication-title: Cell Metab.
– volume: 1864
  start-page: 1115
  year: 2018
  end-page: 1128
  ident: bib85
  article-title: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
– volume: 20
  start-page: 388
  year: 2019
  ident: bib63
  article-title: Cellular senescence causes ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 1
  start-page: 743
  year: 2017
  ident: bib16
  article-title: Targeting aging WITH metformin (TAME)
  publication-title: Innov. Aging
– volume: 9
  start-page: 5369
  year: 2019
  ident: bib64
  article-title: Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1060
  year: 2016
  end-page: 1065
  ident: bib15
  article-title: Metformin as a tool to target aging
  publication-title: Cell Metab.
– volume: 238
  start-page: 803
  year: 2013
  end-page: 810
  ident: bib137
  article-title: Metformin's performance in in vitro and in vivo genetic toxicology studies
  publication-title: Exp. Biol. Med. (Maywood)
– volume: 8
  start-page: 1993
  year: 2014
  end-page: 1999
  ident: bib171
  article-title: Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells
  publication-title: Oncol. Lett.
– volume: 123
  start-page: 980
  year: 2013
  end-page: 989
  ident: bib95
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J. Clin. Invest.
– volume: 42
  start-page: S90
  year: 2019
  end-page: S102
  ident: bib5
  article-title: Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019
  publication-title: Diabetes Care
– volume: 350
  start-page: 1193
  year: 2015
  end-page: 1198
  ident: bib22
  article-title: Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection
  publication-title: Science
– volume: 5
  start-page: 988
  year: 2015
  end-page: 995
  ident: bib56
  article-title: Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation
  publication-title: Stem Cell Reports
– volume: 19
  year: 2016
  ident: bib101
  article-title: Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS Clearance
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 20
  start-page: 1553
  year: 2018
  end-page: 1562
  ident: bib23
  article-title: Epigenetic effects of metformin: from molecular mechanisms to clinical implications
  publication-title: Diabetes Obes. Metab.
– volume: 10
  start-page: 294
  year: 2019
  ident: bib159
  article-title: Role of mitochondria in the mechanism(s) of action of metformin
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 290
  start-page: 20348
  year: 2015
  end-page: 20359
  ident: bib87
  article-title: Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages
  publication-title: J. Biol. Chem.
– volume: 116
  start-page: 15122
  year: 2019
  end-page: 15127
  ident: bib167
  article-title: Telomere shortening rate predicts species life span
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: bib66
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
– volume: 13
  start-page: 132
  year: 2011
  end-page: 141
  ident: bib88
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 2769
  year: 2008
  end-page: 2773
  ident: bib7
  article-title: Metformin slows down aging and extends life span of female SHR mice
  publication-title: Cell Cycle
– volume: 2016
  start-page: 4847812
  year: 2016
  ident: bib179
  article-title: Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression
  publication-title: J. Diabetes Res.
– volume: 154
  start-page: 62
  year: 2018
  end-page: 68
  ident: bib48
  article-title: Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes
  publication-title: Biochimie
– volume: 25
  start-page: 585
  year: 1961
  end-page: 621
  ident: bib71
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp. Cell Res.
– volume: 149
  start-page: 8
  year: 2015
  end-page: 18
  ident: bib111
  article-title: Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway
  publication-title: Mech. Ageing Dev.
– volume: 17
  start-page: 865
  year: 2018
  end-page: 886
  ident: bib110
  article-title: Mitochondria as a therapeutic target for common pathologies
  publication-title: Nat. Rev. Drug Discov.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib29
  article-title: Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells
  publication-title: Drug Chem. Toxicol.
– volume: 92
  start-page: 640
  year: 2017
  end-page: 652
  ident: bib173
  article-title: Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death
  publication-title: Mol. Pharmacol.
– volume: 15
  start-page: 572
  year: 2016
  end-page: 581
  ident: bib117
  article-title: Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence
  publication-title: Aging Cell
– volume: 36
  start-page: 632
  year: 1987
  end-page: 640
  ident: bib78
  article-title: Mechanism of metformin action in non-insulin-dependent diabetes
  publication-title: Diabetes
– volume: 17
  year: 2018
  ident: bib94
  article-title: Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults
  publication-title: Aging Cell
– volume: 17
  start-page: e12765
  year: 2018
  ident: bib55
  article-title: Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7
  publication-title: Aging Cell
– volume: 352
  start-page: 75
  year: 2017
  end-page: 83
  ident: bib35
  article-title: Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs
  publication-title: Exp. Cell Res.
– volume: 12
  start-page: 58
  year: 2017
  end-page: 69
  ident: bib126
  article-title: Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity
  publication-title: Redox Biol.
– volume: 178
  start-page: 1299
  year: 2019
  end-page: 1312.e29
  ident: bib127
  article-title: Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy
  publication-title: Cell
– volume: 29
  start-page: 335
  year: 2019
  end-page: 347.e5
  ident: bib146
  article-title: Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis
  publication-title: Cell Metab
– volume: 510
  start-page: 542
  year: 2014
  end-page: 546
  ident: bib102
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
– volume: 169
  start-page: 787
  year: 2015
  end-page: 788
  ident: bib44
  article-title: Association between long telomere length and insulin sensitization in adolescent girls with hyperinsulinemic androgen excess
  publication-title: JAMA Pediatr.
– volume: 85
  start-page: 37
  year: 2019
  end-page: 46
  ident: bib6
  article-title: The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth
  publication-title: Br. J. Clin. Pharmacol.
– volume: 809
  start-page: 24
  year: 2016
  end-page: 32
  ident: bib30
  article-title: The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes
  publication-title: Mutat. Res.
– volume: 2
  start-page: e1600031
  year: 2016
  ident: bib47
  article-title: Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription
  publication-title: Sci. Adv.
– volume: 143
  start-page: 3
  year: 2016
  end-page: 14
  ident: bib140
  article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging
  publication-title: Development
– volume: 167
  start-page: 1705
  year: 2016
  end-page: 1718.e13
  ident: bib169
  article-title: An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer
  publication-title: Cell
– volume: 14
  start-page: 698
  year: 2017
  end-page: 704
  ident: bib163
  article-title: Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and connexin43 downregulation in H9c2 cells
  publication-title: Int. J. Med. Sci.
– volume: 60
  start-page: 1566
  year: 2017
  end-page: 1576
  ident: bib12
  article-title: Metformin: historical overview
  publication-title: Diabetologia
– volume: 24
  start-page: 1395
  year: 2018
  end-page: 1406
  ident: bib76
  article-title: Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase
  publication-title: Nat. Med.
– volume: 35
  start-page: 3735
  year: 2016
  end-page: 3741
  ident: bib97
  article-title: Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair
  publication-title: Oncol. Rep.
– volume: 111
  start-page: E2501
  year: 2014
  end-page: E2509
  ident: bib41
  article-title: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 1236
  year: 2018
  ident: bib155
  article-title: Metformin and autoimmunity: a "new deal" of an old drug
  publication-title: Front. Immunol.
– volume: 24
  start-page: 521
  year: 2016
  end-page: 522
  ident: bib177
  article-title: Metformin activates AMPK through the lysosomal pathway
  publication-title: Cell Metab.
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  ident: bib100
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 65
  start-page: 20
  year: 2016
  end-page: 29
  ident: bib45
  article-title: Metformin-associated lactic acidosis: current perspectives on causes and risk
  publication-title: Metabolism
– volume: 22
  start-page: 820
  year: 2012
  end-page: 827
  ident: bib67
  article-title: Metformin pathways: pharmacokinetics and pharmacodynamics
  publication-title: Pharmacogenet. Genomics
– volume: 16
  start-page: 593
  year: 2015
  end-page: 610
  ident: bib19
  article-title: Epigenetic regulation of ageing: linking environmental inputs to genomic stability
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  start-page: e0208533
  year: 2018
  ident: bib62
  article-title: Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes
  publication-title: PLoS One
– volume: 26
  start-page: 305
  year: 2017
  end-page: 319
  ident: bib11
  article-title: Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration
  publication-title: Hum. Mol. Genet.
– volume: 20
  start-page: 33
  year: 2019
  end-page: 48
  ident: bib125
  article-title: Metformin as a geroprotector: experimental and clinical evidence
  publication-title: Biogerontology
– volume: 37
  start-page: 63
  year: 2018
  ident: bib165
  article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 18
  start-page: e13028
  year: 2019
  ident: bib54
  article-title: Reversal of epigenetic aging and immunosenescent trends in humans
  publication-title: Aging Cell
– volume: 60
  start-page: 168
  year: 2011
  end-page: 176
  ident: bib109
  article-title: OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects
  publication-title: Diabetes
– volume: 7
  start-page: F1000
  year: 2018
  ident: bib141
  article-title: The role of the gut microbiome during host ageing
  publication-title: F1000Res.
– volume: 71
  start-page: 4366
  year: 2011
  end-page: 4372
  ident: bib18
  article-title: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
  publication-title: Cancer Res.
– volume: 73
  start-page: 1294
  year: 1991
  end-page: 1301
  ident: bib46
  article-title: Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 20
  year: 2019
  ident: bib139
  article-title: Meta-analysis of microarray expression studies on metformin in cancer cell lines
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 390
  year: 2010
  end-page: 401
  ident: bib82
  article-title: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
  publication-title: Cell Metab.
– volume: 14
  start-page: 576
  year: 2018
  end-page: 590
  ident: bib60
  article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases
  publication-title: Nat. Rev. Endocrinol.
– volume: 9
  start-page: 165
  year: 2018
  ident: bib103
  article-title: Targeting mitochondria to counteract age-related cellular dysfunction
  publication-title: Genes
– volume: 8
  start-page: e61537
  year: 2013
  ident: bib138
  article-title: Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners
  publication-title: PLoS One
– volume: 5
  start-page: 99
  year: 2010
  end-page: 118
  ident: bib37
  article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu. Rev. Pathol.
– volume: 10
  start-page: 1499
  year: 2011
  end-page: 1501
  ident: bib158
  article-title: Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response
  publication-title: Cell Cycle
– volume: 49
  start-page: 1082
  year: 2010
  end-page: 1087
  ident: bib84
  article-title: Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats
  publication-title: Free Radic. Biol. Med.
– volume: 134
  start-page: 381
  year: 2013
  end-page: 390
  ident: bib112
  article-title: Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell
  publication-title: Mech. Ageing Dev.
– volume: 21
  start-page: 1406
  year: 2015
  end-page: 1415
  ident: bib86
  article-title: Proteostasis and aging
  publication-title: Nat. Med.
– volume: 2019
  start-page: 5980465
  year: 2019
  ident: bib123
  article-title: Metformin delays satellite cell activation and maintains quiescence
  publication-title: Stem Cells Int.
– volume: 19
  start-page: 121
  year: 2018
  end-page: 135
  ident: bib73
  article-title: AMPK: guardian of metabolism and mitochondrial homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 26
  start-page: 1056
  year: 2017
  end-page: 1069
  ident: bib77
  article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells
  publication-title: Hum. Mol. Genet.
– volume: 3
  start-page: e275
  year: 2012
  ident: bib143
  article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
  publication-title: Cell Death Dis.
– volume: 19
  start-page: 2991
  year: 2018
  end-page: 2999
  ident: bib133
  article-title: Metformin reshapes the methylation profile in breast and colorectal cancer cells
  publication-title: Asian Pac. J. Cancer Prev.
– volume: 15
  start-page: 196
  year: 2015
  end-page: 205
  ident: bib134
  article-title: Metformin and inflammation: its potential Beyond glucose-lowering effect
  publication-title: Endocr. Metab. Immune Disord. Drug Targets
– volume: 39
  start-page: 1287
  year: 2016
  end-page: 1291
  ident: bib14
  article-title: Should restrictions be relaxed for metformin use in chronic kidney disease? Yes, they should be relaxed! What’s the fuss?
  publication-title: Diabetes Care
– volume: 61
  start-page: 654
  year: 2016
  end-page: 666
  ident: bib150
  article-title: The mitochondrial basis of aging
  publication-title: Mol. Cell
– volume: 19
  start-page: 594
  year: 2018
  end-page: 610
  ident: bib53
  article-title: Cellular and epigenetic drivers of stem cell ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 21
  start-page: 1424
  year: 2015
  end-page: 1435
  ident: bib34
  article-title: Cellular senescence in aging and age-related disease: from mechanisms to therapy
  publication-title: Nat. Med.
– volume: 23
  start-page: 980
  year: 2016
  end-page: 989
  ident: bib107
  article-title: The somatotropic axis in human aging: framework for the current state of knowledge and future research
  publication-title: Cell Metab.
– volume: 23
  start-page: 570
  year: 2017
  ident: bib152
  article-title: Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction
  publication-title: Cell Host Microbe
– volume: 302
  start-page: 510
  year: 2002
  end-page: 515
  ident: bib162
  article-title: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 12
  start-page: e005418
  year: 2019
  ident: bib83
  article-title: Metformin enhances autophagy and provides cardioprotection in delta-sarcoglycan deficiency-induced dilated cardiomyopathy
  publication-title: Circ. Heart Fail.
– volume: 65
  start-page: 581
  year: 2019
  end-page: 590
  ident: bib65
  article-title: Metformin and aging: a review
  publication-title: Gerontology
– volume: 18
  start-page: 913
  year: 2017
  end-page: 929
  ident: bib21
  article-title: Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing
  publication-title: Biogerontology
– volume: 101
  start-page: 1685
  year: 2006
  end-page: 1692
  ident: bib151
  article-title: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
  publication-title: J. Appl. Physiol.
– volume: 157
  start-page: 548
  year: 2016
  end-page: 559
  ident: bib119
  article-title: Metformin protects kidney cells From insulin-mediated genotoxicity in vitro and in male Zucker diabetic fatty rats
  publication-title: Endocrinology
– volume: 40
  start-page: 31
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib26
  article-title: Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2017.08.003
– volume: 166
  start-page: 191
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib38
  article-title: Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M16-1901
– volume: 18
  start-page: 447
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib68
  article-title: Sirtuins, a promising target in slowing down the ageing process
  publication-title: Biogerontology
  doi: 10.1007/s10522-017-9685-9
– volume: 12
  start-page: 489
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib108
  article-title: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation
  publication-title: Aging Cell
  doi: 10.1111/acel.12075
– volume: 26
  start-page: 1056
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib77
  article-title: Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells
  publication-title: Hum. Mol. Genet.
– volume: 25
  start-page: 585
  year: 1961
  ident: 10.1016/j.cmet.2020.04.001_bib71
  article-title: The serial cultivation of human diploid cell strains
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(61)90192-6
– volume: 25
  start-page: 686
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib42
  article-title: Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial
  publication-title: Nutr. Metab. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2015.03.007
– volume: 8
  start-page: e53533
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib92
  article-title: Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053533
– volume: 17
  start-page: 865
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib110
  article-title: Mitochondria as a therapeutic target for common pathologies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.174
– volume: 5
  start-page: 536
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib3
  article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage
  publication-title: Cancer Prev. Res. (Phila.)
  doi: 10.1158/1940-6207.CAPR-11-0536
– volume: 571
  start-page: 183
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib27
  article-title: From discoveries in ageing research to therapeutics for healthy ageing
  publication-title: Nature
  doi: 10.1038/s41586-019-1365-2
– volume: 9
  start-page: 657
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib40
  article-title: Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00657
– volume: 85
  start-page: 823
  year: 2009
  ident: 10.1016/j.cmet.2020.04.001_bib9
  article-title: Short telomeres are sufficient to cause the degenerative defects associated with aging
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.10.028
– volume: 111
  start-page: E2501
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib41
  article-title: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1321776111
– volume: 60
  start-page: 1566
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib12
  article-title: Metformin: historical overview
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4318-z
– volume: 302
  start-page: 510
  year: 2002
  ident: 10.1016/j.cmet.2020.04.001_bib162
  article-title: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.102.034140
– volume: 3
  start-page: e02242
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib166
  article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
  publication-title: eLife
  doi: 10.7554/eLife.02242
– volume: 61
  start-page: 654
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib150
  article-title: The mitochondrial basis of aging
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.028
– volume: 49
  start-page: 1082
  year: 2010
  ident: 10.1016/j.cmet.2020.04.001_bib84
  article-title: Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.06.022
– volume: 149
  start-page: 8
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib111
  article-title: Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2015.05.004
– volume: 154
  start-page: 62
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib48
  article-title: Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2018.08.002
– volume: 8
  start-page: 1993
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib171
  article-title: Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2014.2466
– volume: 20
  start-page: 953
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib58
  article-title: Metformin: from mechanisms of action to therapies
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.09.018
– volume: 10
  start-page: 156
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib50
  article-title: Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals
  publication-title: Clin. Epigenet.
  doi: 10.1186/s13148-018-0593-x
– volume: 13
  start-page: 132
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib88
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2152
– volume: 7
  start-page: F1000
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib141
  article-title: The role of the gut microbiome during host ageing
  publication-title: F1000Res.
  doi: 10.12688/f1000research.15121.1
– volume: 2
  start-page: e1600031
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib47
  article-title: Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600031
– volume: 101
  start-page: 1685
  year: 2006
  ident: 10.1016/j.cmet.2020.04.001_bib151
  article-title: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00255.2006
– volume: 42
  start-page: S90
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib5
  article-title: Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019
  publication-title: Diabetes Care
  doi: 10.2337/dc19-S009
– volume: 116
  start-page: 6995
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib80
  article-title: Age-related inflammation triggers skeletal stem/progenitor cell dysfunction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1810692116
– volume: 2016
  start-page: 4847812
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib179
  article-title: Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression
  publication-title: J. Diabetes Res.
– volume: 19
  start-page: 594
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib53
  article-title: Cellular and epigenetic drivers of stem cell ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0020-3
– volume: 128
  start-page: 3662
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib79
  article-title: The role of mitochondria in aging
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI120842
– volume: 348
  start-page: 607
  year: 2000
  ident: 10.1016/j.cmet.2020.04.001_bib120
  article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem. J.
  doi: 10.1042/bj3480607
– volume: 8
  start-page: e61537
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib138
  article-title: Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061537
– volume: 15
  start-page: 572
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib117
  article-title: Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence
  publication-title: Aging Cell
  doi: 10.1111/acel.12469
– volume: 19
  start-page: 121
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib73
  article-title: AMPK: guardian of metabolism and mitochondrial homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.95
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib180
  article-title: Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction
  publication-title: Biogerontology
  doi: 10.1007/s10522-018-9769-1
– volume: 17
  start-page: e12765
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib55
  article-title: Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7
  publication-title: Aging Cell
  doi: 10.1111/acel.12765
– volume: 11
  start-page: 655
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib164
  article-title: Metformin exerts antidepressant effects by regulated DNA hydroxymethylation
  publication-title: Epigenomics
  doi: 10.2217/epi-2018-0187
– volume: 9
  start-page: 1236
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib155
  article-title: Metformin and autoimmunity: a "new deal" of an old drug
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01236
– volume: 9
  start-page: 753
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib57
  article-title: Metformin-induced mitochondrial Complex I inhibition: facts, uncertainties, and consequences
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00753
– volume: 153
  start-page: 1194
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib100
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 3
  start-page: 16
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib2
  article-title: Health benefits of late-onset metformin treatment every other week in mice
  publication-title: npj Aging Mech. Dis.
  doi: 10.1038/s41514-017-0018-7
– volume: 21
  start-page: 13
  year: 2020
  ident: 10.1016/j.cmet.2020.04.001_bib93
  article-title: Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells
  publication-title: Biogerontology
  doi: 10.1007/s10522-019-09838-x
– volume: 36
  start-page: 2345
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib178
  article-title: Metformin alters DNA methylation genome-wide via the H19/SAHH axis
  publication-title: Oncogene
  doi: 10.1038/onc.2016.391
– volume: 60
  start-page: 168
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib109
  article-title: OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects
  publication-title: Diabetes
  doi: 10.2337/db10-0805
– volume: 8
  start-page: 13832
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib154
  article-title: Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14640
– volume: 20
  start-page: 33
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib125
  article-title: Metformin as a geroprotector: experimental and clinical evidence
  publication-title: Biogerontology
  doi: 10.1007/s10522-018-9773-5
– volume: 275
  start-page: 223
  year: 2000
  ident: 10.1016/j.cmet.2020.04.001_bib51
  article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.1.223
– volume: 12
  start-page: e005418
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib83
  article-title: Metformin enhances autophagy and provides cardioprotection in delta-sarcoglycan deficiency-induced dilated cardiomyopathy
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.118.005418
– volume: 15
  start-page: 451
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib176
  article-title: Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.02.013
– volume: 65
  start-page: 2297
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib89
  article-title: The clinical potential of senolytic drugs
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.14969
– volume: 157
  start-page: 548
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib119
  article-title: Metformin protects kidney cells From insulin-mediated genotoxicity in vitro and in male Zucker diabetic fatty rats
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1572
– volume: 37
  start-page: 963
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib39
  article-title: Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism
  publication-title: Oncogene
  doi: 10.1038/onc.2017.367
– volume: 17
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib94
  article-title: Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults
  publication-title: Aging Cell
  doi: 10.1111/acel.12723
– volume: 171
  start-page: 2351
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib1
  article-title: Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12585
– volume: 135
  start-page: 30
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib130
  article-title: Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2017.10.020
– volume: 20
  start-page: 388
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib63
  article-title: Cellular senescence causes ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0128-0
– volume: 9
  start-page: 165
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib103
  article-title: Targeting mitochondria to counteract age-related cellular dysfunction
  publication-title: Genes
  doi: 10.3390/genes9030165
– volume: 8
  start-page: 5619
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib175
  article-title: Anti-tumor activity of metformin: from metabolic and epigenetic perspectives
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13639
– volume: 22
  start-page: 820
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib67
  article-title: Metformin pathways: pharmacokinetics and pharmacodynamics
  publication-title: Pharmacogenet. Genomics
  doi: 10.1097/FPC.0b013e3283559b22
– volume: 87
  start-page: 295
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib116
  article-title: Nuclear genomic instability and aging
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012239
– volume: 169
  start-page: 787
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib44
  article-title: Association between long telomere length and insulin sensitization in adolescent girls with hyperinsulinemic androgen excess
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2015.0439
– volume: 30
  start-page: 745
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib148
  article-title: Metformin as anti-aging therapy: is it for everyone?
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2019.07.015
– volume: 41
  start-page: 700
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib124
  article-title: The metabolic impact on histone acetylation and transcription in ageing
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.05.008
– volume: 440
  start-page: 57
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib32
  article-title: Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2016.11.011
– volume: 65
  start-page: 20
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib45
  article-title: Metformin-associated lactic acidosis: current perspectives on causes and risk
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2015.10.014
– volume: 19
  start-page: 2991
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib133
  article-title: Metformin reshapes the methylation profile in breast and colorectal cancer cells
  publication-title: Asian Pac. J. Cancer Prev.
– volume: 54
  start-page: 100914
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib8
  article-title: Telomere length and frailty in older adults-a systematic review and meta-analysis
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2019.100914
– volume: 352
  start-page: 75
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib35
  article-title: Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2017.01.017
– volume: 1
  start-page: 743
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib16
  article-title: Targeting aging WITH metformin (TAME)
  publication-title: Innov. Aging
  doi: 10.1093/geroni/igx004.2682
– volume: 64
  start-page: 2028
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib157
  article-title: Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis
  publication-title: Diabetes
  doi: 10.2337/db14-1225
– volume: 119
  start-page: 652
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib25
  article-title: Anti-inflammatory effects of metformin irrespective of diabetes status
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.308445
– volume: 17
  start-page: 159
  year: 1991
  ident: 10.1016/j.cmet.2020.04.001_bib61
  article-title: Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle
  publication-title: Diabete Metab
– volume: 11
  start-page: 230
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib135
  article-title: AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2011.12.005
– volume: 19
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib101
  article-title: Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS Clearance
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1093/ijnp/pyw047
– volume: 20
  start-page: 573
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib106
  article-title: The roles of DNA, RNA and histone methylation in ageing and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0143-1
– volume: 59
  start-page: 426
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib105
  article-title: Metformin and the gastrointestinal tract
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3844-9
– volume: 24
  start-page: 1246
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib172
  article-title: Senolytics improve physical function and increase lifespan in old age
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0092-9
– volume: 24
  start-page: 1395
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib76
  article-title: Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0159-7
– volume: 39
  start-page: 1287
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib14
  article-title: Should restrictions be relaxed for metformin use in chronic kidney disease? Yes, they should be relaxed! What’s the fuss?
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2534
– volume: 65
  start-page: 581
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib65
  article-title: Metformin and aging: a review
  publication-title: Gerontology
  doi: 10.1159/000502257
– volume: 23
  start-page: 570
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib152
  article-title: Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.03.006
– volume: 3
  start-page: 1028
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib69
  article-title: Genome protective effect of metformin as revealed by reduced level of constitutive DNA damage signaling
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100397
– volume: 35
  start-page: 3735
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib97
  article-title: Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4740
– volume: 9
  start-page: 5369
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib64
  article-title: Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41839-1
– volume: 12
  start-page: 58
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib126
  article-title: Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.02.007
– volume: 350
  start-page: 1193
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib22
  article-title: Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection
  publication-title: Science
  doi: 10.1126/science.aab3389
– volume: 60
  start-page: 1630
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib156
  article-title: Metformin and ageing: improving ageing outcomes beyond glycaemic control
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4349-5
– volume: 17
  start-page: 122
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib147
  article-title: Metformin restores parkin-mediated mitophagy, suppressed by cytosolic p53
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17010122
– volume: 510
  start-page: 542
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib102
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
  doi: 10.1038/nature13270
– volume: 92
  start-page: 640
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib173
  article-title: Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.117.109512
– volume: 33
  start-page: 794
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib52
  article-title: Metformin has direct protective effect on human cardiac mitochondria
  publication-title: FASEB J
  doi: 10.1096/fasebj.2019.33.1_supplement.794.4
– volume: 1864
  start-page: 1115
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib85
  article-title: Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2018.01.018
– volume: 809
  start-page: 24
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib30
  article-title: The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrgentox.2016.09.001
– volume: 23
  start-page: 980
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib107
  article-title: The somatotropic axis in human aging: framework for the current state of knowledge and future research
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.014
– volume: 6
  start-page: e31268
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib33
  article-title: Metformin extends C. elegans lifespan through lysosomal pathway
  publication-title: eLife
  doi: 10.7554/eLife.31268
– volume: 21
  start-page: 1424
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib34
  article-title: Cellular senescence in aging and age-related disease: from mechanisms to therapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.4000
– volume: 5
  start-page: 99
  year: 2010
  ident: 10.1016/j.cmet.2020.04.001_bib37
  article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-121808-102144
– volume: 167
  start-page: 1705
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib169
  article-title: An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.055
– volume: 7
  start-page: e2441
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib31
  article-title: Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.334
– volume: 29
  start-page: 697
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib20
  article-title: Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses
  publication-title: Genome Res.
  doi: 10.1101/gr.240093.118
– volume: 60
  start-page: 1639
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib72
  article-title: Repurposing metformin for the prevention of cancer and cancer recurrence
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4372-6
– volume: 5
  start-page: e193
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib90
  article-title: Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2016.2
– volume: 25
  start-page: 463
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib75
  article-title: Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.12.009
– volume: 23
  start-page: 1060
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib15
  article-title: Metformin as a tool to target aging
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.011
– volume: 67
  start-page: 10804
  year: 2007
  ident: 10.1016/j.cmet.2020.04.001_bib49
  article-title: Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-2310
– volume: 238
  start-page: 803
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib137
  article-title: Metformin's performance in in vitro and in vivo genetic toxicology studies
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.1177/1535370213480744
– volume: 5
  start-page: 988
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib56
  article-title: Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.10.014
– volume: 20
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib139
  article-title: Meta-analysis of microarray expression studies on metformin in cancer cell lines
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20133173
– volume: 9
  start-page: 155
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib96
  article-title: Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2017.1405209
– volume: 51
  start-page: 2420
  year: 2002
  ident: 10.1016/j.cmet.2020.04.001_bib70
  article-title: The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.8.2420
– volume: 18
  start-page: e12880
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib91
  article-title: Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults
  publication-title: Aging Cell
  doi: 10.1111/acel.12880
– volume: 18
  start-page: 872
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib145
  article-title: Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels-an ex vivo study
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18040872
– volume: 16
  start-page: 593
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib19
  article-title: Epigenetic regulation of ageing: linking environmental inputs to genomic stability
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4048
– volume: 13
  start-page: e0208533
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib62
  article-title: Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208533
– volume: 5
  start-page: e8758
  year: 2010
  ident: 10.1016/j.cmet.2020.04.001_bib118
  article-title: Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008758
– volume: 5
  start-page: 12
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib136
  article-title: Source of chronic inflammation in aging
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2018.00012
– volume: 24
  start-page: 93
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib168
  article-title: Metformin induces a senescence-associated gene signature in breast cancer cells
  publication-title: J. Health Care Poor Underserved
  doi: 10.1353/hpu.2013.0044
– year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib129
– volume: 123
  start-page: 980
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib95
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64099
– volume: 71
  start-page: 4366
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib18
  article-title: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1769
– volume: 20
  start-page: 421
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib74
  article-title: The proteostasis network and its decline in ageing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0101-y
– volume: 134
  start-page: 381
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib112
  article-title: Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2013.07.003
– volume: 3
  start-page: e275
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib143
  article-title: Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.13
– volume: 37
  start-page: 63
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib165
  article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0731-5
– volume: 25
  start-page: 473
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib115
  article-title: Metformin restores CNS remyelination capacity by rejuvenating aged stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.08.015
– volume: 479
  start-page: 232
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib13
  article-title: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
  publication-title: Nature
  doi: 10.1038/nature10600
– volume: 10
  start-page: 572
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib153
  article-title: Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00572
– volume: 9
  start-page: 706
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib161
  article-title: Role of the inflammation-autophagy-senescence integrative network in osteoarthritis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00706
– volume: 73
  start-page: 1294
  year: 1991
  ident: 10.1016/j.cmet.2020.04.001_bib46
  article-title: Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-73-6-1294
– volume: 6
  start-page: a025932
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib4
  article-title: Metformin: a hopeful promise in aging research
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a025932
– volume: 26
  start-page: 305
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib11
  article-title: Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration
  publication-title: Hum. Mol. Genet.
– volume: 40
  start-page: 54
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib43
  article-title: Metformin is associated with higher relative abundance of Mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut
  publication-title: Diabetes Care
  doi: 10.2337/dc16-1324
– volume: 178
  start-page: 1299
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib127
  article-title: Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.003
– volume: 21
  start-page: 1406
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib86
  article-title: Proteostasis and aging
  publication-title: Nat. Med.
  doi: 10.1038/nm.4001
– volume: 5
  start-page: eaax1912
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib132
  article-title: Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax1912
– volume: 27
  start-page: 101
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib17
  article-title: Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.019
– start-page: 1
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib29
  article-title: Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells
  publication-title: Drug Chem. Toxicol.
– volume: 9
  start-page: 400
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib131
  article-title: The therapeutic potential of metformin in neurodegenerative diseases
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2018.00400
– volume: 14
  start-page: 698
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib163
  article-title: Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and connexin43 downregulation in H9c2 cells
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.19800
– volume: 15
  start-page: 20180885
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib28
  article-title: Telomere attrition: metabolic regulation and signalling function?
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2018.0885
– volume: 18
  start-page: e13028
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib54
  article-title: Reversal of epigenetic aging and immunosenescent trends in humans
  publication-title: Aging Cell
  doi: 10.1111/acel.13028
– volume: 578
  start-page: 444
  year: 2020
  ident: 10.1016/j.cmet.2020.04.001_bib36
  article-title: GDF15 mediates the effects of metformin on body weight and energy balance
  publication-title: Nature
  doi: 10.1038/s41586-019-1911-y
– volume: 290
  start-page: 20348
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib87
  article-title: Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.662114
– volume: 43
  start-page: 1503
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib174
  article-title: Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.2077
– volume: 7
  start-page: e47699
  year: 2012
  ident: 10.1016/j.cmet.2020.04.001_bib144
  article-title: Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047699
– volume: 85
  start-page: 37
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib6
  article-title: The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.13780
– volume: 111
  start-page: E435
  year: 2014
  ident: 10.1016/j.cmet.2020.04.001_bib99
  article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311121111
– volume: 827
  start-page: 1
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib114
  article-title: Metformin: prevention of genomic instability and cancer: a review
  publication-title: Mutat. Res. Genet. Toxicol. Environ. Mutagen.
  doi: 10.1016/j.mrgentox.2018.01.007
– volume: 10
  start-page: 1499
  year: 2011
  ident: 10.1016/j.cmet.2020.04.001_bib158
  article-title: Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.9.15423
– volume: 14
  start-page: 576
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib60
  article-title: Inflammaging: a new immune–metabolic viewpoint for age-related diseases
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-018-0059-4
– volume: 11
  start-page: 741
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib98
  article-title: Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes
  publication-title: Aging
  doi: 10.18632/aging.101781
– volume: 19
  start-page: 290
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib170
  article-title: Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12812
– volume: 11
  start-page: 390
  year: 2010
  ident: 10.1016/j.cmet.2020.04.001_bib82
  article-title: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.03.014
– volume: 101
  start-page: 1754
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib10
  article-title: Long-term Metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-3754
– volume: 498
  start-page: 18
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib113
  article-title: Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.02.191
– volume: 137
  start-page: 422
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib128
  article-title: Repurposing metformin for cardiovascular disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.031735
– volume: 10
  start-page: 294
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib159
  article-title: Role of mitochondria in the mechanism(s) of action of metformin
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2019.00294
– volume: 49
  start-page: 735
  year: 2000
  ident: 10.1016/j.cmet.2020.04.001_bib122
  article-title: Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.5.735
– volume: 116
  start-page: 15122
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib167
  article-title: Telomere shortening rate predicts species life span
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1902452116
– volume: 2
  start-page: e1600584
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib121
  article-title: Epigenetics and aging
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600584
– volume: 75
  start-page: 645
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib160
  article-title: Genome instability and aging
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-030212-183715
– volume: 7
  start-page: 2769
  year: 2008
  ident: 10.1016/j.cmet.2020.04.001_bib7
  article-title: Metformin slows down aging and extends life span of female SHR mice
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.17.6625
– volume: 4
  start-page: 2192
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib104
  article-title: Metformin improves healthspan and lifespan in mice
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3192
– volume: 153
  start-page: 228
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib24
  article-title: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.035
– volume: 155
  start-page: 1624
  year: 2013
  ident: 10.1016/j.cmet.2020.04.001_bib66
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 24
  start-page: 521
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib177
  article-title: Metformin activates AMPK through the lysosomal pathway
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.09.003
– volume: 24
  start-page: 1919
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib149
  article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0222-4
– volume: 120
  start-page: 2355
  year: 2010
  ident: 10.1016/j.cmet.2020.04.001_bib59
  article-title: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI40671
– volume: 143
  start-page: 3
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib140
  article-title: When stem cells grow old: phenotypes and mechanisms of stem cell aging
  publication-title: Development
  doi: 10.1242/dev.130633
– volume: 29
  start-page: 335
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib146
  article-title: Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.09.019
– volume: 2019
  start-page: 5980465
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib123
  article-title: Metformin delays satellite cell activation and maintains quiescence
  publication-title: Stem Cells Int.
  doi: 10.1155/2019/5980465
– volume: 18
  start-page: 913
  year: 2017
  ident: 10.1016/j.cmet.2020.04.001_bib21
  article-title: Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing
  publication-title: Biogerontology
  doi: 10.1007/s10522-017-9724-6
– volume: 40
  start-page: 554
  year: 2019
  ident: 10.1016/j.cmet.2020.04.001_bib81
  article-title: Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study
  publication-title: EBiomedicine
  doi: 10.1016/j.ebiom.2018.12.052
– volume: 36
  start-page: 632
  year: 1987
  ident: 10.1016/j.cmet.2020.04.001_bib78
  article-title: Mechanism of metformin action in non-insulin-dependent diabetes
  publication-title: Diabetes
  doi: 10.2337/diab.36.5.632
– volume: 166
  start-page: 822
  year: 2016
  ident: 10.1016/j.cmet.2020.04.001_bib142
  article-title: Epigenetic mechanisms of longevity and aging
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.050
– volume: 20
  start-page: 1553
  year: 2018
  ident: 10.1016/j.cmet.2020.04.001_bib23
  article-title: Epigenetic effects of metformin: from molecular mechanisms to clinical implications
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13262
– volume: 15
  start-page: 196
  year: 2015
  ident: 10.1016/j.cmet.2020.04.001_bib134
  article-title: Metformin and inflammation: its potential Beyond glucose-lowering effect
  publication-title: Endocr. Metab. Immune Disord. Drug Targets
  doi: 10.2174/1871530315666150316124019
SSID ssj0036393
Score 2.7052677
SecondaryResourceType review_article
Snippet Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that...
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin- a biguanide that...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms aging
Aging - drug effects
Aging - metabolism
aging hallmarks
Animals
Autophagy - drug effects
Cell Communication - drug effects
Cellular Senescence - drug effects
health span
Humans
Hypoglycemic Agents - pharmacology
longevity
metabolism
metformin
Metformin - pharmacology
Mitochondria - drug effects
Mitochondria - metabolism
TAME
Title Benefits of Metformin in Attenuating the Hallmarks of Aging
URI https://dx.doi.org/10.1016/j.cmet.2020.04.001
https://www.ncbi.nlm.nih.gov/pubmed/32333835
https://www.proquest.com/docview/2394882211
https://pubmed.ncbi.nlm.nih.gov/PMC7347426
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et_VFBW9Stk1S2-JpV5RF0IsKewtJk2h1t7u43YP_3pm0XVyVPQg99DGFMElnvmm-mSHknNEccW8aWBXyAHcCAwWeKcghNLikibSZy1u7f7jsP_O7QTxYIddtLgzSKhvbX9t0Z62bO51Gm51JUXQeEVyDCY4oonpYmGCHGU9dEt-g11pjBh7YkexBOEDpJnGm5njlI4N8Shq6cqdNY5g_nNNv8PmTQ_nNKd1uko0GTfrdesBbZMWU22St7i_5uUOuemDJbFFN_bH1702FALUofTi6FWBlrPJdvvgAAf2-HA5H8uPdSXaxcdEueb69ebruB023hCDHpgRBho2npGSx5amEqI1KnlpAWwD4JGWSa53nicyMTpXSisqMw0kqI8uTLNTasj2yWo5Lc0B8rXQcGaVMkjBwXjLTVIdaWSYj_BFHPRK1ahJ5U0ocO1oMRcsZexOoWoGqFSFH4pxHLubvTOpCGkul41b7YmE5CLD0S987a6dKwHeCmx-yNOPZVGALeIgmIN71yH49dfNxMMowUo89kixM6lwAa3AvPimLV1eLGxUEIOfwn-M9Iut45fi_yTFZrT5m5gRQTqVO3TL-Ajcr-Y0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4xpmm8IDbG6AYjk7anKWpiJyTRxENhQ-2gvAykvhk7tkdYSRENQvyu_cHdJU5F2cQDElIeotiOrLN99539-Q7gE2c54d7UtyqIfDoJ9BVaJj9H12CbJdJm9b214dF2_yT6MYpHC_CnvQtDtEqn-xudXmtr96XrpNm9LIruTwLXqIJDRqgeJ6ZjVh6Y2xv026Y7g284yJ8Z2_9-vNf3XWoBP6cI_n5GWZqk5LGNUokuDpNRahGaIDqSjMtI6zxPZGZ0qpRWTGYRvqQytFGSBVpbjv99Bs8RfSSkDQaj3Vb9czT5Nasfe-dT99xNnYZUll8YInCyoI6v6jLR_Mca_ot275M271jB_RVYdvDV6zUSegULpnwNL5qElrer8HUXVactqqk3sd7QVISIi9LDp1chOKew4uUvDzGn15fj8YW8-l3X7FGmpDdw8iQyXIPFclKadfC00nFolDJJwtFaykwzHWhluQxp5491IGzFJHIXu5xSaIxFS1I7FyRaQaIVQURMvQ58mbW5bCJ3PFg7bqUv5uafQNPyYLuP7VAJXJh02iJLM7meCso5j-4LOtgdeNsM3awfnHHaGog7kMwN6qwCBf2eLymLszr4NwkIUdW7R_Z3C172j4eH4nBwdPAelqikJh8nG7BYXV2bTYRYlfpQT2kPTp96Df0FWfg3pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benefits+of+Metformin+in+Attenuating+the+Hallmarks+of+Aging&rft.jtitle=Cell+metabolism&rft.au=Kulkarni%2C+Ameya+S.&rft.au=Gubbi%2C+Sriram&rft.au=Barzilai%2C+Nir&rft.date=2020-07-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=1&rft.spage=15&rft.epage=30&rft_id=info:doi/10.1016%2Fj.cmet.2020.04.001&rft.externalDocID=S1550413120301832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon