Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections

The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice in...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 38; pp. 201 - 212
Main Authors Diao, Zhenli, Han, Dongsheng, Zhang, Rui, Li, Jinming
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.05.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use.•mNGS will become an important tool in the field of infectious disease diagnosis in the next decade. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
AbstractList Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use.•mNGS will become an important tool in the field of infectious disease diagnosis in the next decade. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
The typical workflow of mNGS in clinical laboratory. • The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. • The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use. • mNGS will become an important tool in the field of infectious disease diagnosis in the next decade. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
Background: Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on.Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting.Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.
Author Han, Dongsheng
Zhang, Rui
Li, Jinming
Diao, Zhenli
Author_xml – sequence: 1
  givenname: Zhenli
  surname: Diao
  fullname: Diao, Zhenli
  organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China
– sequence: 2
  givenname: Dongsheng
  surname: Han
  fullname: Han, Dongsheng
  organization: Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
– sequence: 3
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  email: ruizhang@nccl.org.cn
  organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China
– sequence: 4
  givenname: Jinming
  surname: Li
  fullname: Li, Jinming
  email: jmli@nccl.org.cn
  organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35572406$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAPykUuCPfmyJYSEKj4qFXGBs-XYk9Qhay-2t9B_j7NbVpRDfbHHfu_NeOY9L06cd1gULxmtGGXdm7maVcAKKLCKiooyeFKcARW0ZADNyfFcw2lxEeNM86o5F4w9K07rtu2hod1ZEb9gUhM6v7E6Eoe_U5kjDCpZ70jEnzt02rqJJIwpkqR-IEk3SOLKItbtA2PV5Hy0kfiRLP4XBhIwbm1W8eGOpKB0ytgR9aoaXxRPR7VEvLjfz4vvHz98u_xcXn_9dHX5_rrULbBUCqi7XkOt6aB6EINgfMCuGVsjml5w5Eb3_Who2_MWEISi2rDBIHRUdVzX9XlxddA1Xs1yG-xGhTvplZX7Cx8mqUKyekHZiJbRXjW8M9iIGjkHBUbQHBvsQGStdwet7W7YoNHo8q-WB6IPX5y9kZO_lYIK1rO1mNf3AsHnpsYkNzZqXBbl0O-ihK5rGaN1DRn66t9cxyR_p5YBcADo4GMMOB4hjMrVHXKWqzvk6g5JhczuyCT-H0nbtB9zrtcuj1PfHqiYp3VrMciobfYFGhvyTHM77WP0PzOO1zk
CitedBy_id crossref_primary_10_1038_s41598_022_22503_7
crossref_primary_10_3389_fmicb_2024_1441476
crossref_primary_10_3389_fmed_2023_1150746
crossref_primary_10_1186_s12941_022_00545_z
crossref_primary_10_3389_fcimb_2024_1456407
crossref_primary_10_3390_microorganisms13030682
crossref_primary_10_1007_s00604_023_05663_9
crossref_primary_10_1016_j_jctube_2024_100476
crossref_primary_10_1099_jmm_0_001808
crossref_primary_10_3389_fcimb_2023_1192931
crossref_primary_10_3389_fcimb_2022_961746
crossref_primary_10_3389_fcimb_2023_1138174
crossref_primary_10_1186_s12879_024_10437_6
crossref_primary_10_2147_IDR_S509879
crossref_primary_10_1093_gigascience_giaf004
crossref_primary_10_3389_fmed_2023_1321515
crossref_primary_10_2147_IDR_S424061
crossref_primary_10_1093_bib_bbae597
crossref_primary_10_2147_IDR_S451564
crossref_primary_10_1128_spectrum_00719_24
crossref_primary_10_3389_fcimb_2024_1367885
crossref_primary_10_3389_fmed_2024_1447703
crossref_primary_10_1186_s12864_023_09338_w
crossref_primary_10_3390_mps7030036
crossref_primary_10_1002_jmv_28753
crossref_primary_10_1186_s12879_023_08929_y
crossref_primary_10_1186_s12887_023_04199_4
crossref_primary_10_3389_fcimb_2024_1330788
crossref_primary_10_1016_j_jare_2023_12_007
crossref_primary_10_1186_s12879_024_10144_2
crossref_primary_10_1155_2023_6318548
crossref_primary_10_1186_s12879_024_09230_2
crossref_primary_10_1186_s12941_024_00670_x
crossref_primary_10_1186_s12879_024_09507_6
crossref_primary_10_1038_s41390_023_02776_y
crossref_primary_10_3390_antibiotics12010140
crossref_primary_10_3389_fcimb_2023_1209724
crossref_primary_10_3390_vetsci10120690
crossref_primary_10_1186_s12879_024_10206_5
crossref_primary_10_12998_wjcc_v11_i25_6019
crossref_primary_10_3389_fpubh_2023_1177069
crossref_primary_10_1007_s13760_023_02345_4
crossref_primary_10_3390_ijms252413609
crossref_primary_10_2147_IDR_S484768
crossref_primary_10_3389_fcimb_2024_1397733
crossref_primary_10_2147_IDR_S483156
crossref_primary_10_3389_fcimb_2022_969126
crossref_primary_10_1186_s40001_024_01806_7
crossref_primary_10_3389_fcimb_2024_1401448
crossref_primary_10_3389_fmicb_2025_1528696
crossref_primary_10_1016_j_diagmicrobio_2024_116620
crossref_primary_10_1177_03000605241275375
crossref_primary_10_1007_s11046_023_00791_5
crossref_primary_10_3389_fmicb_2023_1237993
crossref_primary_10_1186_s13256_024_04936_y
crossref_primary_10_2147_IDR_S419892
crossref_primary_10_1089_omi_2024_0130
crossref_primary_10_3389_fcimb_2022_1083497
crossref_primary_10_1186_s12941_024_00767_3
crossref_primary_10_1080_23744235_2024_2402921
crossref_primary_10_3390_jcm12051838
crossref_primary_10_3390_medicina60020289
crossref_primary_10_1007_s40291_023_00669_8
crossref_primary_10_1016_j_mimet_2024_107021
crossref_primary_10_2174_0113892010246350231030042340
crossref_primary_10_1002_jhm_13174
crossref_primary_10_1111_1751_7915_14364
crossref_primary_10_2147_IDR_S504392
crossref_primary_10_3389_fmicb_2023_1186424
crossref_primary_10_1016_j_idcr_2024_e02102
crossref_primary_10_3389_fmicb_2022_927842
crossref_primary_10_1097_QCO_0000000000000909
crossref_primary_10_1186_s12866_025_03890_z
crossref_primary_10_3390_ijms25063333
crossref_primary_10_1166_jno_2023_3419
crossref_primary_10_1186_s12890_024_03237_w
crossref_primary_10_1515_biol_2022_0865
crossref_primary_10_1186_s12902_025_01837_z
crossref_primary_10_3389_fcimb_2023_1253020
crossref_primary_10_12677_ACM_2024_141293
crossref_primary_10_3389_fcimb_2024_1366472
crossref_primary_10_1016_j_jinf_2025_106434
crossref_primary_10_3389_fcimb_2024_1451440
crossref_primary_10_1016_j_jinf_2024_106148
crossref_primary_10_3389_fcimb_2023_1228631
crossref_primary_10_2147_IDR_S419873
crossref_primary_10_1016_j_mmcr_2024_100674
crossref_primary_10_2147_IDR_S421383
crossref_primary_10_3201_eid3014_240306
crossref_primary_10_1302_2046_3758_138_BJR_2023_0420_R1
crossref_primary_10_33073_pjm_2024_007
crossref_primary_10_1186_s12967_025_06342_4
crossref_primary_10_1016_j_heliyon_2024_e33130
crossref_primary_10_3390_foods12112140
crossref_primary_10_1128_spectrum_02013_24
crossref_primary_10_1016_j_psj_2023_102852
crossref_primary_10_1186_s12879_024_09914_9
crossref_primary_10_3389_fimmu_2024_1443468
crossref_primary_10_2147_JAA_S461138
crossref_primary_10_1155_cjid_6619016
crossref_primary_10_3389_fcimb_2025_1517046
crossref_primary_10_3389_fcimb_2023_1200157
crossref_primary_10_3390_jof8050480
crossref_primary_10_3389_fcimb_2023_1295962
crossref_primary_10_3389_fped_2023_1189838
crossref_primary_10_1038_s42003_024_05840_3
crossref_primary_10_1002_SMMD_20230031
crossref_primary_10_3389_fcimb_2023_1220943
crossref_primary_10_3390_biomedicines13010142
crossref_primary_10_3390_ani14020253
crossref_primary_10_1111_crj_13603
crossref_primary_10_1165_rcmb_2022_0208TR
crossref_primary_10_1016_j_micpath_2025_107492
crossref_primary_10_3389_fimmu_2024_1430179
crossref_primary_10_1038_s41598_025_94840_2
Cites_doi 10.1016/j.jmoldx.2019.10.007
10.1261/rna.075945.120
10.1186/s40168-018-0426-3
10.1186/s12879-018-3446-5
10.1371/journal.pone.0042882
10.1186/s13059-016-0969-1
10.1002/smtd.202000792
10.1038/s41598-019-49372-x
10.1038/nrg.2016.49
10.1038/nmeth.4666
10.1128/JCM.01182-18
10.1101/gr.238170.118
10.1016/j.jcv.2020.104691
10.1016/j.jmoldx.2021.06.007
10.5858/arpa.2016-0539-RA
10.1001/jamaneurol.2018.0463
10.1038/nature10242
10.1080/14737159.2018.1487292
10.2147/IDR.S235182
10.1128/mBio.00010-20
10.1093/cid/ciy693
10.1371/journal.pone.0223952
10.1371/journal.pone.0232610
10.1016/S1473-3099(17)30396-1
10.1186/s12890-020-1098-x
10.1146/annurev-pathmechdis-012418-012751
10.1093/nar/gky066
10.1128/mSphereDirect.00069-18
10.1038/s41576-019-0113-7
10.1128/JCM.00273-11
10.1093/cid/ciy802
10.1126/science.1181498
10.1093/cid/ciy821
10.1186/s40168-018-0605-2
10.1093/clinchem/hvaa183
10.3389/fcimb.2020.00182
10.1093/cid/ciaa1516
10.1056/NEJMoa2001017
10.1164/rccm.201706-1097LE
10.1080/1040841X.2019.1681933
10.1038/s41587-019-0156-5
10.1128/JCM.03050-15
10.3389/fcimb.2018.00205
10.1007/s10096-020-03996-4
10.1007/s15010-020-01429-0
10.1002/cpmb.11
10.1007/s10096-019-03734-5
10.1128/JCM.01739-19
10.1073/pnas.1809700115
10.1186/s13073-016-0326-8
10.1101/2020.09.09.20178764
10.1093/clinchem/hvaa172
10.1093/bib/bbx120
10.1186/s40168-019-0678-6
10.3389/fmicb.2020.00514
10.1186/1471-2164-15-110
10.1038/nmeth.2483
10.1056/NEJMoa1401268
10.1016/j.csbj.2021.02.020
10.1186/s12890-019-1022-4
10.1016/j.cub.2020.05.023
10.1038/nmeth.3444
10.1086/586749
10.1016/j.jinf.2018.08.013
10.1093/cid/cix881
10.1016/j.jinf.2020.08.004
10.1038/s41467-019-11306-6
10.1128/JCM.03060-15
10.1186/s13059-016-0904-5
10.1186/s13059-016-1103-0
10.1186/s13073-015-0220-9
10.1126/scitranslmed.aad6873
10.1111/1755-0998.13011
10.1371/journal.pone.0076096
ContentType Journal Article
Copyright 2022
2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2022
Copyright_xml – notice: 2022
– notice: 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
– notice: 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.jare.2021.09.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
EISSN 2090-1224
EndPage 212
ExternalDocumentID oai_doaj_org_article_495107a486de493e882a2d9086dde629
PMC9091713
35572406
10_1016_j_jare_2021_09_012
S2090123221001934
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-92367c23c0ba729b918be64f5d94798e8dc77fd057852e29a0cd1bde260a68c33
IEDL.DBID IXB
ISSN 2090-1232
2090-1224
IngestDate Wed Aug 27 01:23:29 EDT 2025
Thu Aug 21 18:26:38 EDT 2025
Fri Jul 11 11:36:28 EDT 2025
Wed Feb 19 02:25:46 EST 2025
Tue Jul 01 03:01:31 EDT 2025
Thu Apr 24 23:00:46 EDT 2025
Fri Feb 23 02:41:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metagenomics
Pneumonia
WGS
PT
RoC
DNase
DASH
RVP
RT-PCR
CSF
NCBI
IQC
DNBs
mNGS
ARGs
PMA
RMB
Fil
QIA
Respiratory
NEB
IQR
Mol
TATs
Next generation sequencing
CAP
LRIs
LDTs
MTB
SMRT
NPA
RT-PCR, Reverse-transcription PCR
mNGS, Metagenomic next-generation sequencing
IQC, Internal quality control
NPA, nasopharyngeal aspirate
RVP, respiratory virus panel
NEB, NEBNext® Microbiome DNA Enrichment Kit
PT, Proficiency testing
RoC, Receiver-operating curve
NCBI, National Center for Biotechnology Information
IQR, Interquartile range
Mol, MolYsis™ Basic
MTB, M. tuberculosis
PMA, Propidium monoazide
WGS, Whole-genome sequencing
LRIs, Lower respiratory tract infections
CSF, Cerebrospinal fluid
TATs, Typical turnaround times
DNase, Deoxyribonuclease
CAP, Community-acquired pneumonia
DNBs, DNA nanoballs
ARGs, antibiotic resistance genes
RMB, renminbi
SMRT, single-molecule real-time sequencing
Fil, 5-μM filtration
LDTs, Laboratory-developed tests
DASH, Depletion of Abundant Sequences by Hybridization
QIA, QIAamp DNA Microbiome Kit
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-92367c23c0ba729b918be64f5d94798e8dc77fd057852e29a0cd1bde260a68c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
They contributed equally to the manuscript.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2090123221001934
PMID 35572406
PQID 2665110332
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_495107a486de493e882a2d9086dde629
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9091713
proquest_miscellaneous_2665110332
pubmed_primary_35572406
crossref_primary_10_1016_j_jare_2021_09_012
crossref_citationtrail_10_1016_j_jare_2021_09_012
elsevier_sciencedirect_doi_10_1016_j_jare_2021_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi: 10.1164/rccm.201706-1097LE. PubMed PMID: 28686513; PubMed Central PMCID: PMCPMC5821905. eng.
Larsson, Stanley, Sinha, Weissman, Sandberg (b0240) 2018; 15
Chen, Cao, Wei, Qian, Liang, Dong (b0030) 2020; 48
Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Feb;39(2):369-374. doi: 10.1007/s10096-019-03734-5. PubMed PMID: 31813078; PubMed Central PMCID: PMCPMC7102353.
Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239. doi: 10.1186/s13059-016-1103-0. PubMed PMID: 27887629; PubMed Central PMCID: PMCPMC5124260. eng.
Zhou, Larkin, Zhao, Ma, Yao, Wu (b0335) 2021
Flygare, Simmon, Miller, Qiao, Kennedy, Di Sera (b0295) 2016; 17
Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity. Critical reviews in microbiology. 2019 Sep-Nov;45(5-6):668-685. doi: 10.1080/1040841x.2019.1681933. PubMed PMID: 31691607; eng.
Wilson, O'Donovan, Gelfand (b0250) 2018 Aug 1; 75
Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. PubMed PMID: 30423048.
Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome medicine. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9. PubMed PMID: 26416663; PubMed Central PMCID: PMCPMC4587849. eng.
Ransom, Potter, Dantas (b0110) 2020 Oct 1; 66
Miller S, Chiu C, Rodino KG, et al. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? Journal of clinical microbiology. 2020 Feb 24;58(3). doi: 10.1128/JCM.01739-19. PubMed PMID: 31619533; PubMed Central PMCID: PMCPMC7041574.
Grumaz, Stevens, Grumaz, Decker, Weigand, Hofer (b0325) 2016; 8
Bal, Pichon, Picard, Casalegno, Valette, Schuffenecker (b0255) 2018; 18
Yee, Breitwieser, Hao, Opene, Workman, Tamma (b0395) 2021; 40
Scientific TF. Ion GeneStudio S5 Next-Generation Sequencing Series Specifications 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing/ion-s5-specifications.html.
Quail, Smith, Jackson, Leonard, Skelly, Swerdlow (b0245) 2014; 15
Graf, Simmon, Tardif, Hymas, Flygare, Eilbeck (b0340) 2016; 54
institution BG. MGISEQ-200 2021. Available from: https://www.mgi-tech.com/products/instruments_info/14/.
Estimates of the global (b0005) 2017 Nov; 17
Simner, Miller, Carroll (b0120) 2018 Feb 10; 66
Prezza, Heckel, Dietrich, Homberger, Westermann, Vogel (b0230) 2020; 26
Davis, Proctor, Holmes, Relman, Callahan (b0260) 2018; 6
Goodacre N, Aljanahi A, Nandakumar S, et al. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018 Mar-Apr;3(2). doi: 10.1128/mSphereDirect.00069-18. PubMed PMID: 29564396; PubMed Central PMCID: PMCPMC5853486. eng.
Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019 Jul 19;20(4):1125-1136. doi: 10.1093/bib/bbx120. PubMed PMID: 29028872; PubMed Central PMCID: PMCPMC6781581.
Filkins, Bryson, Miller (b0130) 2020 Nov 1; 66
illumina. NextSeq 1000 & NextSeq 2000 Systems 2021. Available from: https://www.illumina.com.cn/systems/sequencing-platforms/nextseq-1000-2000.html
Schlaberg, Chiu, Miller, Procop, Weinstock (b0345) 2017; 141
van Boheemen, van Rijn, Pappas, Carbo, Vorderman, Sidorov (b0095) 2020; 22
Charles, Whitby, Fuller, Stirling, Wright, Korman (b0055) 2008; 46
Tsalik EL, Henao R, Nichols M, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med. 2016 Jan 20;8(322):322ra11. doi: 10.1126/scitranslmed.aad6873. PubMed PMID: 26791949; PubMed Central PMCID: PMCPMC4905578.
Greninger AL. The challenge of diagnostic metagenomics. Expert review of molecular diagnostics. 2018 Jul;18(7):605-615. doi: 10.1080/14737159.2018.1487292. PubMed PMID: 29898605; eng.
Goodwin, McPherson, McCombie (b0125) 2016; 17
institution BG. MGISEQ-2000 2021. Available from: https://www.mgi-tech.com/products/instruments_info/13/.
Gu, Crawford, O’Donovan, Wilson, Chow, Retallack (b0220) 2016; 17
Wang, Han, Feng (b0035) 2019; 19
Ciuffreda, Rodríguez-Pérez, Flores (b0090) 2021; 19
Adiconis, Borges-Rivera, Satija, DeLuca, Busby, Berlin (b0215) 2013; 10
Chen H, Yin Y, Gao H, et al. Clinical Utility of In-house Metagenomic Next-generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clin Infect Dis. 2020 Dec 23;71(Suppl 4):S416-s426. doi: 10.1093/cid/ciaa1516. PubMed PMID: 33367583; eng.
Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small methods. 2021 Jan 4;5(1):2000792. doi: 10.1002/smtd.202000792. PubMed PMID: 33614906; PubMed Central PMCID: PMCPMC7883231. eng.
Sichtig, Minogue, Yan, Stefan, Hall, Tallon (b0310) 2019; 10
Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 2020 Apr 21;11(2). doi: 10.1128/mBio.00010-20. PubMed PMID: 32317317; PubMed Central PMCID: PMCPMC7175087. eng.
Highlander SK, Feehery GR, Yigit E, et al. A Method for Selectively Enriching Microbial DNA from Contaminating Vertebrate Host DNA. PloS one. 2013;8(10). doi: 10.1371/journal.pone.0076096.
Miller, Naccache, Samayoa, Messacar, Arevalo, Federman (b0290) 2019; 29
Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. Journal of clinical microbiology. 2019 Feb;57(2). doi: 10.1128/jcm.01182-18. PubMed PMID: 30429253; PubMed Central PMCID: PMCPMC6355540. eng.
Fisher T. Ion GeneStudio™ S5 system 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing.html.
Gu, Liu, Ru, Lin, Yu, Ye (b0060) 2020; 20
Takeuchi, Kawada, Horiba, Okuno, Okumura, Suzuki (b0330) 2019; 9
Yang M, Cousineau A, Liu X, et al. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in microbiology. 2020;11:514. doi: 10.3389/fmicb.2020.00514. PubMed PMID: 32328039; PubMed Central PMCID: PMCPMC7160302. eng.
Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. PubMed PMID: 30355154; PubMed Central PMCID: PMCPMC6345613.
Zhou, Chen, Hu, Li, Song, Liu (b0375) 2020; 30
Shi, Han, Tang, Chen, Ye, Wu (b0065) 2020; 81
Wang K, Li P, Lin Y, et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front Cell Infect Microbiol. 2020;10:182. doi: 10.3389/fcimb.2020.00182. PubMed PMID: 32432051; PubMed Central PMCID: PMCPMC7214676. eng.
Yang, Yang, Ren, Xiong, Wu, Dong (b0185) 2011; 49
Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia. PloS one. 2020;15(6):e0232610. doi: 10.1371/journal.pone.0232610. PubMed PMID: 32497137; PubMed Central PMCID: PMCPMC7272011.
Hasan, Rawat, Tang, Jithesh, Thomas, Tan (b0195) 2016; 54
Weyrich, Farrer, Eisenhofer, Arriola, Young, Selway (b0235) 2019; 19
Huang J, Jiang E, Yang D, et al. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist. 2020;13:567-576. doi: 10.2147/IDR.S235182. PubMed PMID: 32110067; PubMed Central PMCID: PMCPMC7036976.
Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PloS one. 2012;7(8):e42882. doi: 10.1371/journal.pone.0042882. PubMed PMID: 22900061; PubMed Central PMCID: PMCPMC3416766.
Zinter, Mayday, Ryckman, Jelliffe-Pawlowski, DeRisi (b0265) 2019; 7
Li, Gao, Meng, Wang, Li, Chen (b0025) 2018; 8
Marotz, Sanders, Zuniga, Zaramela, Knight, Zengler (b0190) 2018; 6
Charalampous, Kay, Richardson, Aydin, Baldan, Jeanes (b0015) 2019; 37
Zinter MS, Dvorak CC, Mayday MY, et al. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis. 2019 May 17;68(11):1847-1855. doi: 10.1093/cid/ciy802. PubMed PMID: 30239621; PubMed Central PMCID: PMCPMC6784263.
Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine. 2015 Jul 30;373(5):415-27. doi: 10.1056/NEJMoa1500245. PubMed PMID: 26172429; PubMed Central PMCID: PMCPMC4728150. eng.
Rothberg, Hinz, Rearick, Schultz, Mileski, Davey (b0150) 2011; 475
Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America. 2018 Dec 26;115(52):E12353-e12362. doi: 10.1073/pnas
Zhou (10.1016/j.jare.2021.09.012_b0335) 2021
Sichtig (10.1016/j.jare.2021.09.012_b0310) 2019; 10
Loman (10.1016/j.jare.2021.09.012_b0170) 2015; 12
10.1016/j.jare.2021.09.012_b0305
Schlaberg (10.1016/j.jare.2021.09.012_b0345) 2017; 141
10.1016/j.jare.2021.09.012_b0225
10.1016/j.jare.2021.09.012_b0105
Zhu (10.1016/j.jare.2021.09.012_b0050) 2020; 382
10.1016/j.jare.2021.09.012_b0155
Yang (10.1016/j.jare.2021.09.012_b0185) 2011; 49
10.1016/j.jare.2021.09.012_b0275
10.1016/j.jare.2021.09.012_b0355
Yee (10.1016/j.jare.2021.09.012_b0395) 2021; 40
10.1016/j.jare.2021.09.012_b0075
10.1016/j.jare.2021.09.012_b0350
10.1016/j.jare.2021.09.012_b0070
Rothberg (10.1016/j.jare.2021.09.012_b0150) 2011; 475
Davis (10.1016/j.jare.2021.09.012_b0260) 2018; 6
Ransom (10.1016/j.jare.2021.09.012_b0110) 2020; 66
10.1016/j.jare.2021.09.012_b0270
10.1016/j.jare.2021.09.012_b0390
Zhou (10.1016/j.jare.2021.09.012_b0375) 2020; 30
Wang (10.1016/j.jare.2021.09.012_b0035) 2019; 19
Flygare (10.1016/j.jare.2021.09.012_b0295) 2016; 17
van Boheemen (10.1016/j.jare.2021.09.012_b0095) 2020; 22
Li (10.1016/j.jare.2021.09.012_b0025) 2018; 8
Simner (10.1016/j.jare.2021.09.012_b0120) 2018; 66
10.1016/j.jare.2021.09.012_b0115
Chen (10.1016/j.jare.2021.09.012_b0030) 2020; 48
López-Labrador (10.1016/j.jare.2021.09.012_b0165) 2021; 134
Ciuffreda (10.1016/j.jare.2021.09.012_b0090) 2021; 19
10.1016/j.jare.2021.09.012_b0315
10.1016/j.jare.2021.09.012_b0045
10.1016/j.jare.2021.09.012_b0320
Takeuchi (10.1016/j.jare.2021.09.012_b0330) 2019; 9
10.1016/j.jare.2021.09.012_b0200
10.1016/j.jare.2021.09.012_b0365
10.1016/j.jare.2021.09.012_b0085
Marotz (10.1016/j.jare.2021.09.012_b0190) 2018; 6
10.1016/j.jare.2021.09.012_b0360
10.1016/j.jare.2021.09.012_b0040
Filkins (10.1016/j.jare.2021.09.012_b0130) 2020; 66
Drmanac (10.1016/j.jare.2021.09.012_b0145) 2010; 327
10.1016/j.jare.2021.09.012_b0285
Zinter (10.1016/j.jare.2021.09.012_b0265) 2019; 7
10.1016/j.jare.2021.09.012_b0080
10.1016/j.jare.2021.09.012_b0160
10.1016/j.jare.2021.09.012_b0280
Weyrich (10.1016/j.jare.2021.09.012_b0235) 2019; 19
Adiconis (10.1016/j.jare.2021.09.012_b0215) 2013; 10
Grumaz (10.1016/j.jare.2021.09.012_b0325) 2016; 8
Gu (10.1016/j.jare.2021.09.012_b0220) 2016; 17
Prezza (10.1016/j.jare.2021.09.012_b0230) 2020; 26
10.1016/j.jare.2021.09.012_b0405
10.1016/j.jare.2021.09.012_b0400
10.1016/j.jare.2021.09.012_b0205
10.1016/j.jare.2021.09.012_b0210
10.1016/j.jare.2021.09.012_b0135
10.1016/j.jare.2021.09.012_b0370
10.1016/j.jare.2021.09.012_b0010
10.1016/j.jare.2021.09.012_b0175
Charalampous (10.1016/j.jare.2021.09.012_b0015) 2019; 37
Miller (10.1016/j.jare.2021.09.012_b0290) 2019; 29
Wilson (10.1016/j.jare.2021.09.012_b0020) 2014; 370
Larsson (10.1016/j.jare.2021.09.012_b0240) 2018; 15
Bal (10.1016/j.jare.2021.09.012_b0255) 2018; 18
Goodwin (10.1016/j.jare.2021.09.012_b0125) 2016; 17
Shi (10.1016/j.jare.2021.09.012_b0065) 2020; 81
10.1016/j.jare.2021.09.012_b0100
10.1016/j.jare.2021.09.012_b0385
10.1016/j.jare.2021.09.012_b0300
Charles (10.1016/j.jare.2021.09.012_b0055) 2008; 46
Quail (10.1016/j.jare.2021.09.012_b0245) 2014; 15
10.1016/j.jare.2021.09.012_b0140
Gu (10.1016/j.jare.2021.09.012_b0060) 2020; 20
Estimates of the global (10.1016/j.jare.2021.09.012_b0005) 2017; 17
10.1016/j.jare.2021.09.012_b0180
Wilson (10.1016/j.jare.2021.09.012_b0250) 2018; 75
10.1016/j.jare.2021.09.012_b0380
Hasan (10.1016/j.jare.2021.09.012_b0195) 2016; 54
Graf (10.1016/j.jare.2021.09.012_b0340) 2016; 54
References_xml – volume: 29
  start-page: 831
  year: 2019
  end-page: 842
  ident: b0290
  article-title: Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid
  publication-title: Genome Res
– volume: 54
  start-page: 919
  year: 2016
  end-page: 927
  ident: b0195
  article-title: Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing
  publication-title: J Clin Microbiol
– reference: Fisher T. Ion GeneStudio™ S5 system 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing.html.
– reference: van Rijn AL, van Boheemen S, Sidorov I, et al. The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease. PloS one. 2019;14(10):e0223952. doi: 10.1371/journal.pone.0223952. PubMed PMID: 31647831; PubMed Central PMCID: PMCPMC6812800.
– volume: 10
  start-page: 623
  year: 2013
  end-page: 629
  ident: b0215
  article-title: Comparative analysis of RNA sequencing methods for degraded or low-input samples
  publication-title: Nat Methods
– reference: Fang N, Akinci-Tolun R. Depletion of Ribosomal RNA Sequences from Single-Cell RNA-Sequencing Library. Curr Protoc Mol Biol. 2016 Jul 1;115:7 27 1-7 27 20. doi: 10.1002/cpmb.11. PubMed PMID: 27366895.
– volume: 49
  start-page: 3463
  year: 2011
  end-page: 3469
  ident: b0185
  article-title: Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach
  publication-title: J Clin Microbiol
– reference: Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity. Critical reviews in microbiology. 2019 Sep-Nov;45(5-6):668-685. doi: 10.1080/1040841x.2019.1681933. PubMed PMID: 31691607; eng.
– volume: 475
  start-page: 348
  year: 2011
  end-page: 352
  ident: b0150
  article-title: An integrated semiconductor device enabling non-optical genome sequencing
  publication-title: Nature
– reference: Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019 Jul 19;20(4):1125-1136. doi: 10.1093/bib/bbx120. PubMed PMID: 29028872; PubMed Central PMCID: PMCPMC6781581.
– volume: 40
  start-page: 95
  year: 2021
  end-page: 102
  ident: b0395
  article-title: Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms
  publication-title: Eur J Clin Microbiol Infect Disofficial publication of the European Society of Clinical Microbiology.
– volume: 8
  year: 2018
  ident: b0025
  article-title: Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing
  publication-title: Front Cell Infect Microbiol
– volume: 26
  start-page: 1069
  year: 2020
  end-page: 1078
  ident: b0230
  article-title: Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads
  publication-title: RNA (New York, NY).
– reference: institution BG. MGISEQ-200 2021. Available from: https://www.mgi-tech.com/products/instruments_info/14/.
– reference: Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome medicine. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9. PubMed PMID: 26416663; PubMed Central PMCID: PMCPMC4587849. eng.
– reference: Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America. 2018 Dec 26;115(52):E12353-e12362. doi: 10.1073/pnas.1809700115. PubMed PMID: 30482864; PubMed Central PMCID: PMCPMC6310811. eng.
– reference: Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 2020 Apr 21;11(2). doi: 10.1128/mBio.00010-20. PubMed PMID: 32317317; PubMed Central PMCID: PMCPMC7175087. eng.
– reference: Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. PubMed PMID: 30423048.
– reference: Tsalik EL, Henao R, Nichols M, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med. 2016 Jan 20;8(322):322ra11. doi: 10.1126/scitranslmed.aad6873. PubMed PMID: 26791949; PubMed Central PMCID: PMCPMC4905578.
– reference: Zinter MS, Dvorak CC, Mayday MY, et al. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis. 2019 May 17;68(11):1847-1855. doi: 10.1093/cid/ciy802. PubMed PMID: 30239621; PubMed Central PMCID: PMCPMC6784263.
– volume: 20
  year: 2020
  ident: b0060
  article-title: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases
  publication-title: BMC Pulm Med.
– volume: 22
  start-page: 196
  year: 2020
  end-page: 207
  ident: b0095
  article-title: Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients
  publication-title: J Mol Diagn
– reference: Saha S, Ramesh A, Kalantar K, et al. Unbiased Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive Chikungunya Virus Outbreak and Other Unrealized Pathogens. mBio. 2019 Dec 17;10(6). doi: 10.1128/mBio.02877-19. PubMed PMID: 31848287; PubMed Central PMCID: PMCPMC6918088. eng.
– reference: illumina. NextSeq 1000 & NextSeq 2000 Systems 2021. Available from: https://www.illumina.com.cn/systems/sequencing-platforms/nextseq-1000-2000.html
– reference: institution BG. MGISEQ-2000 2021. Available from: https://www.mgi-tech.com/products/instruments_info/13/.
– reference: Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019 Jun;20(6):341-355. doi: 10.1038/s41576-019-0113-7. PubMed PMID: 30918369; PubMed Central PMCID: PMCPMC6858796.
– reference: Goodacre N, Aljanahi A, Nandakumar S, et al. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018 Mar-Apr;3(2). doi: 10.1128/mSphereDirect.00069-18. PubMed PMID: 29564396; PubMed Central PMCID: PMCPMC5853486. eng.
– volume: 17
  start-page: 333
  year: 2016
  end-page: 351
  ident: b0125
  article-title: Coming of age: ten years of next-generation sequencing technologies
  publication-title: Nat Rev Genet
– reference: Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia. PloS one. 2020;15(6):e0232610. doi: 10.1371/journal.pone.0232610. PubMed PMID: 32497137; PubMed Central PMCID: PMCPMC7272011.
– reference: Babiker A, Bradley HL, Stittleburg VD, et al. Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. Journal of clinical microbiology. 2020 Oct 16. doi: 10.1128/JCM.02142-20. PubMed PMID: 33067271.
– volume: 19
  start-page: 1497
  year: 2021
  end-page: 1511
  ident: b0090
  article-title: Nanopore sequencing and its application to the study of microbial communities
  publication-title: Comput Struct Biotechnol J
– volume: 327
  start-page: 78
  year: 2010
  end-page: 81
  ident: b0145
  article-title: Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays
  publication-title: Science (New York, NY).
– reference: Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi: 10.1164/rccm.201706-1097LE. PubMed PMID: 28686513; PubMed Central PMCID: PMCPMC5821905. eng.
– volume: 17
  year: 2016
  ident: b0220
  article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications
  publication-title: Genome Biol
– volume: 12
  start-page: 733
  year: 2015 Aug
  end-page: 735
  ident: b0170
  article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data
  publication-title: Nat Methods
– reference: Highlander SK, Feehery GR, Yigit E, et al. A Method for Selectively Enriching Microbial DNA from Contaminating Vertebrate Host DNA. PloS one. 2013;8(10). doi: 10.1371/journal.pone.0076096.
– volume: 37
  start-page: 783
  year: 2019
  end-page: 792
  ident: b0015
  article-title: Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection
  publication-title: Nat Biotechnol
– volume: 15
  start-page: 305
  year: 2018
  end-page: 307
  ident: b0240
  article-title: Computational correction of index switching in multiplexed sequencing libraries
  publication-title: Nat Methods
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: b0050
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: The New England journal of medicine.
– reference: Chen H, Yin Y, Gao H, et al. Clinical Utility of In-house Metagenomic Next-generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clin Infect Dis. 2020 Dec 23;71(Suppl 4):S416-s426. doi: 10.1093/cid/ciaa1516. PubMed PMID: 33367583; eng.
– reference: Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small methods. 2021 Jan 4;5(1):2000792. doi: 10.1002/smtd.202000792. PubMed PMID: 33614906; PubMed Central PMCID: PMCPMC7883231. eng.
– volume: 6
  year: 2018
  ident: b0260
  article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
  publication-title: Microbiome.
– year: 2021
  ident: b0335
  article-title: Clinical Impact of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage in the Diagnosis and Management of Pneumonia: A Multicenter Prospective Observational Study
  publication-title: J Mol Diagn
– volume: 7
  year: 2019
  ident: b0265
  article-title: Towards precision quantification of contamination in metagenomic sequencing experiments
  publication-title: Microbiome.
– volume: 17
  year: 2016
  ident: b0295
  article-title: Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling
  publication-title: Genome Biol
– volume: 66
  start-page: 778
  year: 2018 Feb 10
  end-page: 788
  ident: b0120
  article-title: Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases
  publication-title: Clin Infect Dis
– volume: 17
  start-page: 1133
  year: 2017 Nov
  end-page: 1161
  ident: b0005
  article-title: regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015
  publication-title: Lancet Infect Dis
– reference: Greninger AL. The challenge of diagnostic metagenomics. Expert review of molecular diagnostics. 2018 Jul;18(7):605-615. doi: 10.1080/14737159.2018.1487292. PubMed PMID: 29898605; eng.
– reference: Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Feb;39(2):369-374. doi: 10.1007/s10096-019-03734-5. PubMed PMID: 31813078; PubMed Central PMCID: PMCPMC7102353.
– volume: 134
  start-page: 104691
  year: 2021
  ident: b0165
  article-title: Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure
  publication-title: J Clin Virol
– volume: 6
  year: 2018
  ident: b0190
  article-title: Improving saliva shotgun metagenomics by chemical host DNA depletion
  publication-title: Microbiome.
– reference: Wang K, Li P, Lin Y, et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front Cell Infect Microbiol. 2020;10:182. doi: 10.3389/fcimb.2020.00182. PubMed PMID: 32432051; PubMed Central PMCID: PMCPMC7214676. eng.
– reference: Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. PubMed PMID: 30355154; PubMed Central PMCID: PMCPMC6345613.
– reference: Huang J, Jiang E, Yang D, et al. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist. 2020;13:567-576. doi: 10.2147/IDR.S235182. PubMed PMID: 32110067; PubMed Central PMCID: PMCPMC7036976.
– reference: Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine. 2015 Jul 30;373(5):415-27. doi: 10.1056/NEJMoa1500245. PubMed PMID: 26172429; PubMed Central PMCID: PMCPMC4728150. eng.
– reference: Miller S, Chiu C, Rodino KG, et al. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? Journal of clinical microbiology. 2020 Feb 24;58(3). doi: 10.1128/JCM.01739-19. PubMed PMID: 31619533; PubMed Central PMCID: PMCPMC7041574.
– volume: 9
  year: 2019
  ident: b0330
  article-title: Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure
  publication-title: Sci Rep
– volume: 8
  year: 2016
  ident: b0325
  article-title: Next-generation sequencing diagnostics of bacteremia in septic patients
  publication-title: Genome Med
– volume: 19
  year: 2019
  ident: b0035
  article-title: Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis
  publication-title: BMC Pulmonary Medicine.
– volume: 46
  start-page: 1513
  year: 2008
  end-page: 1521
  ident: b0055
  article-title: The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy
  publication-title: Clin Infect Dis
– volume: 18
  year: 2018
  ident: b0255
  article-title: Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow
  publication-title: BMC Infect Dis
– volume: 141
  start-page: 776
  year: 2017
  end-page: 786
  ident: b0345
  article-title: Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection
  publication-title: Arch Pathol Lab Med
– volume: 30
  start-page: 2196
  year: 2020
  end-page: 2203.e3
  ident: b0375
  article-title: A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein
  publication-title: Current biology : CB.
– volume: 15
  start-page: 110
  year: 2014
  ident: b0245
  article-title: SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing
  publication-title: BMC Genomics
– volume: 66
  start-page: 1278
  year: 2020 Oct 1
  end-page: 1289
  ident: b0110
  article-title: Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes!
  publication-title: Clin Chem
– volume: 19
  start-page: 982
  year: 2019
  end-page: 996
  ident: b0235
  article-title: Laboratory contamination over time during low-biomass sample analysis
  publication-title: Mol Ecol Resour
– volume: 10
  year: 2019
  ident: b0310
  article-title: FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science
  publication-title: Nat Commun
– reference: Yang M, Cousineau A, Liu X, et al. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in microbiology. 2020;11:514. doi: 10.3389/fmicb.2020.00514. PubMed PMID: 32328039; PubMed Central PMCID: PMCPMC7160302. eng.
– reference: Zhang Y, Ai JW, Cui P, et al. A cluster of cases of pneumocystis pneumonia identified by shotgun metagenomics approach. J Infect. 2019 Feb;78(2):158-169. doi: 10.1016/j.jinf.2018.08.013. PubMed PMID: 30149030; eng.
– volume: 48
  start-page: 535
  year: 2020
  end-page: 542
  ident: b0030
  article-title: Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci
  publication-title: Infection
– volume: 75
  start-page: 947
  year: 2018 Aug 1
  end-page: 955
  ident: b0250
  article-title: Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing
  publication-title: JAMA neurology.
– volume: 66
  start-page: 1381
  year: 2020 Nov 1
  end-page: 1395
  ident: b0130
  article-title: Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations
  publication-title: Clin Chem
– volume: 81
  start-page: 567
  year: 2020
  end-page: 574
  ident: b0065
  article-title: Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis
  publication-title: J Infect
– reference: Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019 May 30;68(12):1993-2002. doi: 10.1093/cid/ciy821. PubMed PMID: 30445563; PubMed Central PMCID: PMCPMC6541733.
– reference: Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. Journal of clinical microbiology. 2019 Feb;57(2). doi: 10.1128/jcm.01182-18. PubMed PMID: 30429253; PubMed Central PMCID: PMCPMC6355540. eng.
– reference: Ardui S, Ameur A, Vermeesch JR, et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic acids research. 2018 Mar 16;46(5):2159-2168. doi: 10.1093/nar/gky066. PubMed PMID: 29401301; PubMed Central PMCID: PMCPMC5861413. eng.
– reference: Scientific TF. Ion GeneStudio S5 Next-Generation Sequencing Series Specifications 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing/ion-s5-specifications.html.
– volume: 370
  start-page: 2408
  year: 2014
  end-page: 2417
  ident: b0020
  article-title: Actionable diagnosis of neuroleptospirosis by next-generation sequencing
  publication-title: The New England journal of medicine.
– reference: Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239. doi: 10.1186/s13059-016-1103-0. PubMed PMID: 27887629; PubMed Central PMCID: PMCPMC5124260. eng.
– reference: Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PloS one. 2012;7(8):e42882. doi: 10.1371/journal.pone.0042882. PubMed PMID: 22900061; PubMed Central PMCID: PMCPMC3416766.
– volume: 54
  start-page: 1000
  year: 2016
  end-page: 1007
  ident: b0340
  article-title: Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel
  publication-title: J Clin Microbiol
– volume: 22
  start-page: 196
  issue: 2
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0095
  article-title: Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2019.10.007
– volume: 26
  start-page: 1069
  issue: 8
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0230
  article-title: Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads
  publication-title: RNA (New York, NY).
  doi: 10.1261/rna.075945.120
– volume: 6
  issue: 1
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0190
  article-title: Improving saliva shotgun metagenomics by chemical host DNA depletion
  publication-title: Microbiome.
  doi: 10.1186/s40168-018-0426-3
– volume: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0255
  article-title: Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-018-3446-5
– ident: 10.1016/j.jare.2021.09.012_b0205
  doi: 10.1371/journal.pone.0042882
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0295
  article-title: Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0969-1
– ident: 10.1016/j.jare.2021.09.012_b0140
  doi: 10.1002/smtd.202000792
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0330
  article-title: Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49372-x
– volume: 17
  start-page: 333
  issue: 6
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0125
  article-title: Coming of age: ten years of next-generation sequencing technologies
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.49
– volume: 15
  start-page: 305
  issue: 5
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0240
  article-title: Computational correction of index switching in multiplexed sequencing libraries
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4666
– ident: 10.1016/j.jare.2021.09.012_b0300
  doi: 10.1128/JCM.01182-18
– volume: 29
  start-page: 831
  issue: 5
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0290
  article-title: Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid
  publication-title: Genome Res
  doi: 10.1101/gr.238170.118
– volume: 134
  start-page: 104691
  year: 2021
  ident: 10.1016/j.jare.2021.09.012_b0165
  article-title: Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2020.104691
– year: 2021
  ident: 10.1016/j.jare.2021.09.012_b0335
  article-title: Clinical Impact of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage in the Diagnosis and Management of Pneumonia: A Multicenter Prospective Observational Study
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2021.06.007
– ident: 10.1016/j.jare.2021.09.012_b0370
– volume: 141
  start-page: 776
  issue: 6
  year: 2017
  ident: 10.1016/j.jare.2021.09.012_b0345
  article-title: Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2016-0539-RA
– volume: 75
  start-page: 947
  issue: 8
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0250
  article-title: Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing
  publication-title: JAMA neurology.
  doi: 10.1001/jamaneurol.2018.0463
– volume: 475
  start-page: 348
  issue: 7356
  year: 2011
  ident: 10.1016/j.jare.2021.09.012_b0150
  article-title: An integrated semiconductor device enabling non-optical genome sequencing
  publication-title: Nature
  doi: 10.1038/nature10242
– ident: 10.1016/j.jare.2021.09.012_b0320
  doi: 10.1080/14737159.2018.1487292
– ident: 10.1016/j.jare.2021.09.012_b0270
  doi: 10.2147/IDR.S235182
– ident: 10.1016/j.jare.2021.09.012_b0225
  doi: 10.1128/mBio.00010-20
– ident: 10.1016/j.jare.2021.09.012_b0010
– ident: 10.1016/j.jare.2021.09.012_b0040
  doi: 10.1093/cid/ciy693
– ident: 10.1016/j.jare.2021.09.012_b0355
  doi: 10.1371/journal.pone.0223952
– ident: 10.1016/j.jare.2021.09.012_b0275
  doi: 10.1371/journal.pone.0232610
– volume: 17
  start-page: 1133
  issue: 11
  year: 2017
  ident: 10.1016/j.jare.2021.09.012_b0005
  article-title: regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(17)30396-1
– ident: 10.1016/j.jare.2021.09.012_b0390
– volume: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0060
  article-title: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases
  publication-title: BMC Pulm Med.
  doi: 10.1186/s12890-020-1098-x
– ident: 10.1016/j.jare.2021.09.012_b0180
  doi: 10.1146/annurev-pathmechdis-012418-012751
– ident: 10.1016/j.jare.2021.09.012_b0400
  doi: 10.1093/nar/gky066
– ident: 10.1016/j.jare.2021.09.012_b0155
– ident: 10.1016/j.jare.2021.09.012_b0315
  doi: 10.1128/mSphereDirect.00069-18
– ident: 10.1016/j.jare.2021.09.012_b0280
  doi: 10.1038/s41576-019-0113-7
– volume: 49
  start-page: 3463
  issue: 10
  year: 2011
  ident: 10.1016/j.jare.2021.09.012_b0185
  article-title: Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00273-11
– ident: 10.1016/j.jare.2021.09.012_b0135
  doi: 10.1093/cid/ciy802
– ident: 10.1016/j.jare.2021.09.012_b0380
– volume: 327
  start-page: 78
  issue: 5961
  year: 2010
  ident: 10.1016/j.jare.2021.09.012_b0145
  article-title: Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays
  publication-title: Science (New York, NY).
  doi: 10.1126/science.1181498
– ident: 10.1016/j.jare.2021.09.012_b0080
  doi: 10.1093/cid/ciy821
– volume: 6
  issue: 1
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0260
  article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
  publication-title: Microbiome.
  doi: 10.1186/s40168-018-0605-2
– volume: 66
  start-page: 1381
  issue: 11
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0130
  article-title: Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations
  publication-title: Clin Chem
  doi: 10.1093/clinchem/hvaa183
– ident: 10.1016/j.jare.2021.09.012_b0115
  doi: 10.3389/fcimb.2020.00182
– ident: 10.1016/j.jare.2021.09.012_b0070
  doi: 10.1093/cid/ciaa1516
– volume: 382
  start-page: 727
  issue: 8
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0050
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: The New England journal of medicine.
  doi: 10.1056/NEJMoa2001017
– ident: 10.1016/j.jare.2021.09.012_b0085
  doi: 10.1164/rccm.201706-1097LE
– ident: 10.1016/j.jare.2021.09.012_b0350
  doi: 10.1080/1040841X.2019.1681933
– volume: 37
  start-page: 783
  issue: 7
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0015
  article-title: Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0156-5
– volume: 54
  start-page: 919
  issue: 4
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0195
  article-title: Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.03050-15
– volume: 8
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0025
  article-title: Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2018.00205
– volume: 40
  start-page: 95
  issue: 1
  year: 2021
  ident: 10.1016/j.jare.2021.09.012_b0395
  article-title: Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms
  publication-title: Eur J Clin Microbiol Infect Disofficial publication of the European Society of Clinical Microbiology.
  doi: 10.1007/s10096-020-03996-4
– volume: 48
  start-page: 535
  issue: 4
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0030
  article-title: Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci
  publication-title: Infection
  doi: 10.1007/s15010-020-01429-0
– ident: 10.1016/j.jare.2021.09.012_b0210
  doi: 10.1002/cpmb.11
– ident: 10.1016/j.jare.2021.09.012_b0360
  doi: 10.1007/s10096-019-03734-5
– ident: 10.1016/j.jare.2021.09.012_b0285
  doi: 10.1128/JCM.01739-19
– ident: 10.1016/j.jare.2021.09.012_b0045
  doi: 10.1073/pnas.1809700115
– volume: 8
  issue: 1
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0325
  article-title: Next-generation sequencing diagnostics of bacteremia in septic patients
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0326-8
– ident: 10.1016/j.jare.2021.09.012_b0075
  doi: 10.1101/2020.09.09.20178764
– volume: 66
  start-page: 1278
  issue: 10
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0110
  article-title: Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes!
  publication-title: Clin Chem
  doi: 10.1093/clinchem/hvaa172
– ident: 10.1016/j.jare.2021.09.012_b0305
  doi: 10.1093/bib/bbx120
– volume: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0265
  article-title: Towards precision quantification of contamination in metagenomic sequencing experiments
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0678-6
– ident: 10.1016/j.jare.2021.09.012_b0100
  doi: 10.3389/fmicb.2020.00514
– volume: 15
  start-page: 110
  issue: 1
  year: 2014
  ident: 10.1016/j.jare.2021.09.012_b0245
  article-title: SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-110
– ident: 10.1016/j.jare.2021.09.012_b0385
– volume: 10
  start-page: 623
  issue: 7
  year: 2013
  ident: 10.1016/j.jare.2021.09.012_b0215
  article-title: Comparative analysis of RNA sequencing methods for degraded or low-input samples
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2483
– volume: 370
  start-page: 2408
  issue: 25
  year: 2014
  ident: 10.1016/j.jare.2021.09.012_b0020
  article-title: Actionable diagnosis of neuroleptospirosis by next-generation sequencing
  publication-title: The New England journal of medicine.
  doi: 10.1056/NEJMoa1401268
– volume: 19
  start-page: 1497
  year: 2021
  ident: 10.1016/j.jare.2021.09.012_b0090
  article-title: Nanopore sequencing and its application to the study of microbial communities
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.02.020
– volume: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0035
  article-title: Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis
  publication-title: BMC Pulmonary Medicine.
  doi: 10.1186/s12890-019-1022-4
– volume: 30
  start-page: 2196
  issue: 11
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0375
  article-title: A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein
  publication-title: Current biology : CB.
  doi: 10.1016/j.cub.2020.05.023
– ident: 10.1016/j.jare.2021.09.012_b0365
– volume: 12
  start-page: 733
  issue: 8
  year: 2015
  ident: 10.1016/j.jare.2021.09.012_b0170
  article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3444
– volume: 46
  start-page: 1513
  issue: 10
  year: 2008
  ident: 10.1016/j.jare.2021.09.012_b0055
  article-title: The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy
  publication-title: Clin Infect Dis
  doi: 10.1086/586749
– ident: 10.1016/j.jare.2021.09.012_b0405
  doi: 10.1016/j.jinf.2018.08.013
– volume: 66
  start-page: 778
  issue: 5
  year: 2018
  ident: 10.1016/j.jare.2021.09.012_b0120
  article-title: Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix881
– volume: 81
  start-page: 567
  issue: 4
  year: 2020
  ident: 10.1016/j.jare.2021.09.012_b0065
  article-title: Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis
  publication-title: J Infect
  doi: 10.1016/j.jinf.2020.08.004
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0310
  article-title: FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11306-6
– volume: 54
  start-page: 1000
  issue: 4
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0340
  article-title: Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.03060-15
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.jare.2021.09.012_b0220
  article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0904-5
– ident: 10.1016/j.jare.2021.09.012_b0160
  doi: 10.1186/s13059-016-1103-0
– ident: 10.1016/j.jare.2021.09.012_b0175
  doi: 10.1186/s13073-015-0220-9
– ident: 10.1016/j.jare.2021.09.012_b0105
  doi: 10.1126/scitranslmed.aad6873
– volume: 19
  start-page: 982
  issue: 4
  year: 2019
  ident: 10.1016/j.jare.2021.09.012_b0235
  article-title: Laboratory contamination over time during low-biomass sample analysis
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13011
– ident: 10.1016/j.jare.2021.09.012_b0200
  doi: 10.1371/journal.pone.0076096
SSID ssj0000388911
Score 2.5847692
SecondaryResourceType review_article
Snippet The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis,...
Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer...
The typical workflow of mNGS in clinical laboratory. • The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome...
Background: Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms High-Throughput Nucleotide Sequencing
Humans
Medicine
Metagenome
Metagenomics
Microbiota - genetics
mNGS
Next generation sequencing
Pneumonia
Respiratory
Respiratory Tract Infections - diagnosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMcttCde0DZgdGyTkXgAoYj4RxP7cUNME9J4olLfLMd2tuxHOjXZ_8-d45RmSOOFx9ZOW-fu6o-Vu-8R8rGwWkrn6yyo4DJpdZEpXvOM-VzF87PnWO98-bO4WMgfy_lyq9UX5oQN8sDDjfsqEQFKK1Xhg9QiABFa7jWQOARmwWPpHux5W4ep-B8slNKx-S4MYvqB4KliZkjuurFr1MjkLIqcMj7ZlaJ4_2Rz-hs-n-ZQbm1K57vkVaJJejqsYo-8CO0-2Uvx2tFPSVT682vSXYbeoiDrfeM62uJ59yoOomFoSqiGbYwCevYd7e1toMCGtMOraNPGF37Iy2s6uqrpHfZXo-s_j-ppjxVXdEzvars3ZHH-_de3iyw1XMgc9jXINMq5OS5cXlmA7kozVYVC1nOvZalVUN6VZe1zFMjhgWubO88qH-BMZAvlhHhLdtpVG94RClzhKqALyXQFEDBXgIaOF7WrQ85C5WeEjTfcuKRGjk0x7syYdnZj0EgGjWRybcBIM_Jlc83DoMXx7OwztONmJupoxzfAu0zyLvMv75qR-egFJiHJgBrwUc2zX_5hdBkD8YoPYWwbVo-dASACxs2FgDkHgwttfiKwX4mENSPlxLkma5iOtM111ATXEAMlE4f_Y9HvyUuORR4xrfOI7PTrx3AM6NVXJzHKfgNgzCsT
  priority: 102
  providerName: Directory of Open Access Journals
Title Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections
URI https://dx.doi.org/10.1016/j.jare.2021.09.012
https://www.ncbi.nlm.nih.gov/pubmed/35572406
https://www.proquest.com/docview/2665110332
https://pubmed.ncbi.nlm.nih.gov/PMC9091713
https://doaj.org/article/495107a486de493e882a2d9086dde629
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKM8FujISBxCKNn5sYh_biqqiKgegYm-WYzslbclWm_T_d8ZxFgJSDxyT2ImTGXu-cWa-IeRdYbWUztdZUMFl0uoiU7zmGfO5iv6z55jvfPalODmXn1fL1Q45GnNhMKwyrf3Dmh5X63Rmkb7m4qZpFt94riMg4EgjpAVyggqpYhLf6nC7z4JsJzqW4cX2GXZIuTNDmNel3SBbJmeR7pTxiX2KNP4TM_UvDP07mvIP83T8mDxKuJIeDEPfIzuhfUL20szt6PtEL_3hKenOQm-RmvVX4zraoud7ES-iiGgKrQaDRgGE9h3t7VWggBJph71o08YDP0ToNR1d1_QaK63Rze-f9rTH3Cs6Bnq13TNyfvzp-9FJlkovZA4rHGQaid0cFy6vLMDvSjNVhULWS69lqVVQ3pVl7XOkyuGBa5s7zyofwDuyhXJCPCe77boNLwkFhOEqwBmS6QrgwFIBSHS8qF0dchYqPyNs_ODGJV5yLI9xbcYAtEuDQjIoJJNrA0KakY_bPjcDK8e9rQ9RjtuWyKgdT6w3FyaplJEINUsrVeGD1CKA52G51-DxgQEouJ6R5agFZqKgcKvm3oe_HVXGwMzF3zG2DevbzgA0ArSbCwFtXgwqtB0ioMASsdaMlBPlmrzD9Erb_Izs4BoQYMnEq_8c72vykGOGR4zpfEN2-81t2Afc1Vdz8uDg9OuP03nct5jHaXYHVcwuzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFUZ7LoxiJAwhFGzvexD7SqtUWur3QSnuzHNtpU0q22qT_nxnHWRqQeugxiZ04mbHnm3jmG0I-5UYJYV2VeOltIozKE8krnjCXyuA_O475zouTfH4mvi9nyy2yP-TCYFhlXPv7NT2s1vHMNH7N6XVdT3_yVAVAwJFGSGXiAXkIaKDA2Xm03Nv8aEG6ExXq8GKHBHvE5Jk-zuvSrJEuk7PAd8r4yEAFHv-Rnfofh_4bTnnLPh0-JU8isKTf-rHvkC3fPCM7ceq29HPkl_7ynLQL3xnkZv1d25Y26Pqeh4soIxpjq8GiUUChXUs788tTgIm0xV60bsKB60P06pauKnqFpdbo-u-uPe0w-YoOkV5N-4KcHR6c7s-TWHshsVjiIFHI7GZ5ZtPSAP4uFZOlz0U1c0oUSnrpbFFULkWuHO65Mql1rHQe3COTS5tlL8l2s2r8a0IBYtgSgIZgqgQ8MJOAEi3PK1v5lPnSTQgbPri2kZgc62Nc6SEC7VKjkDQKSadKg5Am5Oumz3VPy3Fn6z2U46YlUmqHE6v1uY46pQVizcIImTsvVObB9TDcKXD5wALkXE3IbNACPdJQuFV958M_DiqjYerifoxp_Oqm1YCNAO6mWQZtXvUqtBkiwMACwdaEFCPlGr3D-EpTXwR6cAUQsGDZm3uO9wN5ND9dHOvjo5Mfb8ljjukeIcDzHdnu1jf-PYCwrtwNk-wP59QvVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomics+next-generation+sequencing+tests+take+the+stage+in+the+diagnosis+of+lower+respiratory+tract+infections&rft.jtitle=Journal+of+advanced+research&rft.au=Diao%2C+Zhenli&rft.au=Han%2C+Dongsheng&rft.au=Zhang%2C+Rui&rft.au=Li%2C+Jinming&rft.date=2022-05-01&rft.eissn=2090-1224&rft.volume=38&rft.spage=201&rft_id=info:doi/10.1016%2Fj.jare.2021.09.012&rft_id=info%3Apmid%2F35572406&rft.externalDocID=35572406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon