Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections
The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice in...
Saved in:
Published in | Journal of advanced research Vol. 38; pp. 201 - 212 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The typical workflow of mNGS in clinical laboratory.
[Display omitted]
•The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use.•mNGS will become an important tool in the field of infectious disease diagnosis in the next decade.
Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on.
Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting.
Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. |
---|---|
AbstractList | Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. The typical workflow of mNGS in clinical laboratory. [Display omitted] •The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance.•The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use.•mNGS will become an important tool in the field of infectious disease diagnosis in the next decade. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. The typical workflow of mNGS in clinical laboratory. • The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. • The workflow of mNGS used in clinical practice involves the wet-lab pipeline and dry-lab pipeline, the complex workflow poses challenges for its extensive use. • mNGS will become an important tool in the field of infectious disease diagnosis in the next decade. Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. Background: Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on.Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting.Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis. |
Author | Han, Dongsheng Zhang, Rui Li, Jinming Diao, Zhenli |
Author_xml | – sequence: 1 givenname: Zhenli surname: Diao fullname: Diao, Zhenli organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China – sequence: 2 givenname: Dongsheng surname: Han fullname: Han, Dongsheng organization: Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China – sequence: 3 givenname: Rui surname: Zhang fullname: Zhang, Rui email: ruizhang@nccl.org.cn organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China – sequence: 4 givenname: Jinming surname: Li fullname: Li, Jinming email: jmli@nccl.org.cn organization: National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35572406$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAPykUuCPfmyJYSEKj4qFXGBs-XYk9Qhay-2t9B_j7NbVpRDfbHHfu_NeOY9L06cd1gULxmtGGXdm7maVcAKKLCKiooyeFKcARW0ZADNyfFcw2lxEeNM86o5F4w9K07rtu2hod1ZEb9gUhM6v7E6Eoe_U5kjDCpZ70jEnzt02rqJJIwpkqR-IEk3SOLKItbtA2PV5Hy0kfiRLP4XBhIwbm1W8eGOpKB0ytgR9aoaXxRPR7VEvLjfz4vvHz98u_xcXn_9dHX5_rrULbBUCqi7XkOt6aB6EINgfMCuGVsjml5w5Eb3_Who2_MWEISi2rDBIHRUdVzX9XlxddA1Xs1yG-xGhTvplZX7Cx8mqUKyekHZiJbRXjW8M9iIGjkHBUbQHBvsQGStdwet7W7YoNHo8q-WB6IPX5y9kZO_lYIK1rO1mNf3AsHnpsYkNzZqXBbl0O-ihK5rGaN1DRn66t9cxyR_p5YBcADo4GMMOB4hjMrVHXKWqzvk6g5JhczuyCT-H0nbtB9zrtcuj1PfHqiYp3VrMciobfYFGhvyTHM77WP0PzOO1zk |
CitedBy_id | crossref_primary_10_1038_s41598_022_22503_7 crossref_primary_10_3389_fmicb_2024_1441476 crossref_primary_10_3389_fmed_2023_1150746 crossref_primary_10_1186_s12941_022_00545_z crossref_primary_10_3389_fcimb_2024_1456407 crossref_primary_10_3390_microorganisms13030682 crossref_primary_10_1007_s00604_023_05663_9 crossref_primary_10_1016_j_jctube_2024_100476 crossref_primary_10_1099_jmm_0_001808 crossref_primary_10_3389_fcimb_2023_1192931 crossref_primary_10_3389_fcimb_2022_961746 crossref_primary_10_3389_fcimb_2023_1138174 crossref_primary_10_1186_s12879_024_10437_6 crossref_primary_10_2147_IDR_S509879 crossref_primary_10_1093_gigascience_giaf004 crossref_primary_10_3389_fmed_2023_1321515 crossref_primary_10_2147_IDR_S424061 crossref_primary_10_1093_bib_bbae597 crossref_primary_10_2147_IDR_S451564 crossref_primary_10_1128_spectrum_00719_24 crossref_primary_10_3389_fcimb_2024_1367885 crossref_primary_10_3389_fmed_2024_1447703 crossref_primary_10_1186_s12864_023_09338_w crossref_primary_10_3390_mps7030036 crossref_primary_10_1002_jmv_28753 crossref_primary_10_1186_s12879_023_08929_y crossref_primary_10_1186_s12887_023_04199_4 crossref_primary_10_3389_fcimb_2024_1330788 crossref_primary_10_1016_j_jare_2023_12_007 crossref_primary_10_1186_s12879_024_10144_2 crossref_primary_10_1155_2023_6318548 crossref_primary_10_1186_s12879_024_09230_2 crossref_primary_10_1186_s12941_024_00670_x crossref_primary_10_1186_s12879_024_09507_6 crossref_primary_10_1038_s41390_023_02776_y crossref_primary_10_3390_antibiotics12010140 crossref_primary_10_3389_fcimb_2023_1209724 crossref_primary_10_3390_vetsci10120690 crossref_primary_10_1186_s12879_024_10206_5 crossref_primary_10_12998_wjcc_v11_i25_6019 crossref_primary_10_3389_fpubh_2023_1177069 crossref_primary_10_1007_s13760_023_02345_4 crossref_primary_10_3390_ijms252413609 crossref_primary_10_2147_IDR_S484768 crossref_primary_10_3389_fcimb_2024_1397733 crossref_primary_10_2147_IDR_S483156 crossref_primary_10_3389_fcimb_2022_969126 crossref_primary_10_1186_s40001_024_01806_7 crossref_primary_10_3389_fcimb_2024_1401448 crossref_primary_10_3389_fmicb_2025_1528696 crossref_primary_10_1016_j_diagmicrobio_2024_116620 crossref_primary_10_1177_03000605241275375 crossref_primary_10_1007_s11046_023_00791_5 crossref_primary_10_3389_fmicb_2023_1237993 crossref_primary_10_1186_s13256_024_04936_y crossref_primary_10_2147_IDR_S419892 crossref_primary_10_1089_omi_2024_0130 crossref_primary_10_3389_fcimb_2022_1083497 crossref_primary_10_1186_s12941_024_00767_3 crossref_primary_10_1080_23744235_2024_2402921 crossref_primary_10_3390_jcm12051838 crossref_primary_10_3390_medicina60020289 crossref_primary_10_1007_s40291_023_00669_8 crossref_primary_10_1016_j_mimet_2024_107021 crossref_primary_10_2174_0113892010246350231030042340 crossref_primary_10_1002_jhm_13174 crossref_primary_10_1111_1751_7915_14364 crossref_primary_10_2147_IDR_S504392 crossref_primary_10_3389_fmicb_2023_1186424 crossref_primary_10_1016_j_idcr_2024_e02102 crossref_primary_10_3389_fmicb_2022_927842 crossref_primary_10_1097_QCO_0000000000000909 crossref_primary_10_1186_s12866_025_03890_z crossref_primary_10_3390_ijms25063333 crossref_primary_10_1166_jno_2023_3419 crossref_primary_10_1186_s12890_024_03237_w crossref_primary_10_1515_biol_2022_0865 crossref_primary_10_1186_s12902_025_01837_z crossref_primary_10_3389_fcimb_2023_1253020 crossref_primary_10_12677_ACM_2024_141293 crossref_primary_10_3389_fcimb_2024_1366472 crossref_primary_10_1016_j_jinf_2025_106434 crossref_primary_10_3389_fcimb_2024_1451440 crossref_primary_10_1016_j_jinf_2024_106148 crossref_primary_10_3389_fcimb_2023_1228631 crossref_primary_10_2147_IDR_S419873 crossref_primary_10_1016_j_mmcr_2024_100674 crossref_primary_10_2147_IDR_S421383 crossref_primary_10_3201_eid3014_240306 crossref_primary_10_1302_2046_3758_138_BJR_2023_0420_R1 crossref_primary_10_33073_pjm_2024_007 crossref_primary_10_1186_s12967_025_06342_4 crossref_primary_10_1016_j_heliyon_2024_e33130 crossref_primary_10_3390_foods12112140 crossref_primary_10_1128_spectrum_02013_24 crossref_primary_10_1016_j_psj_2023_102852 crossref_primary_10_1186_s12879_024_09914_9 crossref_primary_10_3389_fimmu_2024_1443468 crossref_primary_10_2147_JAA_S461138 crossref_primary_10_1155_cjid_6619016 crossref_primary_10_3389_fcimb_2025_1517046 crossref_primary_10_3389_fcimb_2023_1200157 crossref_primary_10_3390_jof8050480 crossref_primary_10_3389_fcimb_2023_1295962 crossref_primary_10_3389_fped_2023_1189838 crossref_primary_10_1038_s42003_024_05840_3 crossref_primary_10_1002_SMMD_20230031 crossref_primary_10_3389_fcimb_2023_1220943 crossref_primary_10_3390_biomedicines13010142 crossref_primary_10_3390_ani14020253 crossref_primary_10_1111_crj_13603 crossref_primary_10_1165_rcmb_2022_0208TR crossref_primary_10_1016_j_micpath_2025_107492 crossref_primary_10_3389_fimmu_2024_1430179 crossref_primary_10_1038_s41598_025_94840_2 |
Cites_doi | 10.1016/j.jmoldx.2019.10.007 10.1261/rna.075945.120 10.1186/s40168-018-0426-3 10.1186/s12879-018-3446-5 10.1371/journal.pone.0042882 10.1186/s13059-016-0969-1 10.1002/smtd.202000792 10.1038/s41598-019-49372-x 10.1038/nrg.2016.49 10.1038/nmeth.4666 10.1128/JCM.01182-18 10.1101/gr.238170.118 10.1016/j.jcv.2020.104691 10.1016/j.jmoldx.2021.06.007 10.5858/arpa.2016-0539-RA 10.1001/jamaneurol.2018.0463 10.1038/nature10242 10.1080/14737159.2018.1487292 10.2147/IDR.S235182 10.1128/mBio.00010-20 10.1093/cid/ciy693 10.1371/journal.pone.0223952 10.1371/journal.pone.0232610 10.1016/S1473-3099(17)30396-1 10.1186/s12890-020-1098-x 10.1146/annurev-pathmechdis-012418-012751 10.1093/nar/gky066 10.1128/mSphereDirect.00069-18 10.1038/s41576-019-0113-7 10.1128/JCM.00273-11 10.1093/cid/ciy802 10.1126/science.1181498 10.1093/cid/ciy821 10.1186/s40168-018-0605-2 10.1093/clinchem/hvaa183 10.3389/fcimb.2020.00182 10.1093/cid/ciaa1516 10.1056/NEJMoa2001017 10.1164/rccm.201706-1097LE 10.1080/1040841X.2019.1681933 10.1038/s41587-019-0156-5 10.1128/JCM.03050-15 10.3389/fcimb.2018.00205 10.1007/s10096-020-03996-4 10.1007/s15010-020-01429-0 10.1002/cpmb.11 10.1007/s10096-019-03734-5 10.1128/JCM.01739-19 10.1073/pnas.1809700115 10.1186/s13073-016-0326-8 10.1101/2020.09.09.20178764 10.1093/clinchem/hvaa172 10.1093/bib/bbx120 10.1186/s40168-019-0678-6 10.3389/fmicb.2020.00514 10.1186/1471-2164-15-110 10.1038/nmeth.2483 10.1056/NEJMoa1401268 10.1016/j.csbj.2021.02.020 10.1186/s12890-019-1022-4 10.1016/j.cub.2020.05.023 10.1038/nmeth.3444 10.1086/586749 10.1016/j.jinf.2018.08.013 10.1093/cid/cix881 10.1016/j.jinf.2020.08.004 10.1038/s41467-019-11306-6 10.1128/JCM.03060-15 10.1186/s13059-016-0904-5 10.1186/s13059-016-1103-0 10.1186/s13073-015-0220-9 10.1126/scitranslmed.aad6873 10.1111/1755-0998.13011 10.1371/journal.pone.0076096 |
ContentType | Journal Article |
Copyright | 2022 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2022 |
Copyright_xml | – notice: 2022 – notice: 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. – notice: 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2021.09.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine |
EISSN | 2090-1224 |
EndPage | 212 |
ExternalDocumentID | oai_doaj_org_article_495107a486de493e882a2d9086dde629 PMC9091713 35572406 10_1016_j_jare_2021_09_012 S2090123221001934 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-92367c23c0ba729b918be64f5d94798e8dc77fd057852e29a0cd1bde260a68c33 |
IEDL.DBID | IXB |
ISSN | 2090-1232 2090-1224 |
IngestDate | Wed Aug 27 01:23:29 EDT 2025 Thu Aug 21 18:26:38 EDT 2025 Fri Jul 11 11:36:28 EDT 2025 Wed Feb 19 02:25:46 EST 2025 Tue Jul 01 03:01:31 EDT 2025 Thu Apr 24 23:00:46 EDT 2025 Fri Feb 23 02:41:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metagenomics Pneumonia WGS PT RoC DNase DASH RVP RT-PCR CSF NCBI IQC DNBs mNGS ARGs PMA RMB Fil QIA Respiratory NEB IQR Mol TATs Next generation sequencing CAP LRIs LDTs MTB SMRT NPA RT-PCR, Reverse-transcription PCR mNGS, Metagenomic next-generation sequencing IQC, Internal quality control NPA, nasopharyngeal aspirate RVP, respiratory virus panel NEB, NEBNext® Microbiome DNA Enrichment Kit PT, Proficiency testing RoC, Receiver-operating curve NCBI, National Center for Biotechnology Information IQR, Interquartile range Mol, MolYsis™ Basic MTB, M. tuberculosis PMA, Propidium monoazide WGS, Whole-genome sequencing LRIs, Lower respiratory tract infections CSF, Cerebrospinal fluid TATs, Typical turnaround times DNase, Deoxyribonuclease CAP, Community-acquired pneumonia DNBs, DNA nanoballs ARGs, antibiotic resistance genes RMB, renminbi SMRT, single-molecule real-time sequencing Fil, 5-μM filtration LDTs, Laboratory-developed tests DASH, Depletion of Abundant Sequences by Hybridization QIA, QIAamp DNA Microbiome Kit |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-92367c23c0ba729b918be64f5d94798e8dc77fd057852e29a0cd1bde260a68c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 They contributed equally to the manuscript. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2090123221001934 |
PMID | 35572406 |
PQID | 2665110332 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_495107a486de493e882a2d9086dde629 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9091713 proquest_miscellaneous_2665110332 pubmed_primary_35572406 crossref_primary_10_1016_j_jare_2021_09_012 crossref_citationtrail_10_1016_j_jare_2021_09_012 elsevier_sciencedirect_doi_10_1016_j_jare_2021_09_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi: 10.1164/rccm.201706-1097LE. PubMed PMID: 28686513; PubMed Central PMCID: PMCPMC5821905. eng. Larsson, Stanley, Sinha, Weissman, Sandberg (b0240) 2018; 15 Chen, Cao, Wei, Qian, Liang, Dong (b0030) 2020; 48 Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Feb;39(2):369-374. doi: 10.1007/s10096-019-03734-5. PubMed PMID: 31813078; PubMed Central PMCID: PMCPMC7102353. Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239. doi: 10.1186/s13059-016-1103-0. PubMed PMID: 27887629; PubMed Central PMCID: PMCPMC5124260. eng. Zhou, Larkin, Zhao, Ma, Yao, Wu (b0335) 2021 Flygare, Simmon, Miller, Qiao, Kennedy, Di Sera (b0295) 2016; 17 Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity. Critical reviews in microbiology. 2019 Sep-Nov;45(5-6):668-685. doi: 10.1080/1040841x.2019.1681933. PubMed PMID: 31691607; eng. Wilson, O'Donovan, Gelfand (b0250) 2018 Aug 1; 75 Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. PubMed PMID: 30423048. Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome medicine. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9. PubMed PMID: 26416663; PubMed Central PMCID: PMCPMC4587849. eng. Ransom, Potter, Dantas (b0110) 2020 Oct 1; 66 Miller S, Chiu C, Rodino KG, et al. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? Journal of clinical microbiology. 2020 Feb 24;58(3). doi: 10.1128/JCM.01739-19. PubMed PMID: 31619533; PubMed Central PMCID: PMCPMC7041574. Grumaz, Stevens, Grumaz, Decker, Weigand, Hofer (b0325) 2016; 8 Bal, Pichon, Picard, Casalegno, Valette, Schuffenecker (b0255) 2018; 18 Yee, Breitwieser, Hao, Opene, Workman, Tamma (b0395) 2021; 40 Scientific TF. Ion GeneStudio S5 Next-Generation Sequencing Series Specifications 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing/ion-s5-specifications.html. Quail, Smith, Jackson, Leonard, Skelly, Swerdlow (b0245) 2014; 15 Graf, Simmon, Tardif, Hymas, Flygare, Eilbeck (b0340) 2016; 54 institution BG. MGISEQ-200 2021. Available from: https://www.mgi-tech.com/products/instruments_info/14/. Estimates of the global (b0005) 2017 Nov; 17 Simner, Miller, Carroll (b0120) 2018 Feb 10; 66 Prezza, Heckel, Dietrich, Homberger, Westermann, Vogel (b0230) 2020; 26 Davis, Proctor, Holmes, Relman, Callahan (b0260) 2018; 6 Goodacre N, Aljanahi A, Nandakumar S, et al. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018 Mar-Apr;3(2). doi: 10.1128/mSphereDirect.00069-18. PubMed PMID: 29564396; PubMed Central PMCID: PMCPMC5853486. eng. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019 Jul 19;20(4):1125-1136. doi: 10.1093/bib/bbx120. PubMed PMID: 29028872; PubMed Central PMCID: PMCPMC6781581. Filkins, Bryson, Miller (b0130) 2020 Nov 1; 66 illumina. NextSeq 1000 & NextSeq 2000 Systems 2021. Available from: https://www.illumina.com.cn/systems/sequencing-platforms/nextseq-1000-2000.html Schlaberg, Chiu, Miller, Procop, Weinstock (b0345) 2017; 141 van Boheemen, van Rijn, Pappas, Carbo, Vorderman, Sidorov (b0095) 2020; 22 Charles, Whitby, Fuller, Stirling, Wright, Korman (b0055) 2008; 46 Tsalik EL, Henao R, Nichols M, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med. 2016 Jan 20;8(322):322ra11. doi: 10.1126/scitranslmed.aad6873. PubMed PMID: 26791949; PubMed Central PMCID: PMCPMC4905578. Greninger AL. The challenge of diagnostic metagenomics. Expert review of molecular diagnostics. 2018 Jul;18(7):605-615. doi: 10.1080/14737159.2018.1487292. PubMed PMID: 29898605; eng. Goodwin, McPherson, McCombie (b0125) 2016; 17 institution BG. MGISEQ-2000 2021. Available from: https://www.mgi-tech.com/products/instruments_info/13/. Gu, Crawford, O’Donovan, Wilson, Chow, Retallack (b0220) 2016; 17 Wang, Han, Feng (b0035) 2019; 19 Ciuffreda, Rodríguez-Pérez, Flores (b0090) 2021; 19 Adiconis, Borges-Rivera, Satija, DeLuca, Busby, Berlin (b0215) 2013; 10 Chen H, Yin Y, Gao H, et al. Clinical Utility of In-house Metagenomic Next-generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clin Infect Dis. 2020 Dec 23;71(Suppl 4):S416-s426. doi: 10.1093/cid/ciaa1516. PubMed PMID: 33367583; eng. Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small methods. 2021 Jan 4;5(1):2000792. doi: 10.1002/smtd.202000792. PubMed PMID: 33614906; PubMed Central PMCID: PMCPMC7883231. eng. Sichtig, Minogue, Yan, Stefan, Hall, Tallon (b0310) 2019; 10 Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 2020 Apr 21;11(2). doi: 10.1128/mBio.00010-20. PubMed PMID: 32317317; PubMed Central PMCID: PMCPMC7175087. eng. Highlander SK, Feehery GR, Yigit E, et al. A Method for Selectively Enriching Microbial DNA from Contaminating Vertebrate Host DNA. PloS one. 2013;8(10). doi: 10.1371/journal.pone.0076096. Miller, Naccache, Samayoa, Messacar, Arevalo, Federman (b0290) 2019; 29 Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. Journal of clinical microbiology. 2019 Feb;57(2). doi: 10.1128/jcm.01182-18. PubMed PMID: 30429253; PubMed Central PMCID: PMCPMC6355540. eng. Fisher T. Ion GeneStudio™ S5 system 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing.html. Gu, Liu, Ru, Lin, Yu, Ye (b0060) 2020; 20 Takeuchi, Kawada, Horiba, Okuno, Okumura, Suzuki (b0330) 2019; 9 Yang M, Cousineau A, Liu X, et al. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in microbiology. 2020;11:514. doi: 10.3389/fmicb.2020.00514. PubMed PMID: 32328039; PubMed Central PMCID: PMCPMC7160302. eng. Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. PubMed PMID: 30355154; PubMed Central PMCID: PMCPMC6345613. Zhou, Chen, Hu, Li, Song, Liu (b0375) 2020; 30 Shi, Han, Tang, Chen, Ye, Wu (b0065) 2020; 81 Wang K, Li P, Lin Y, et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front Cell Infect Microbiol. 2020;10:182. doi: 10.3389/fcimb.2020.00182. PubMed PMID: 32432051; PubMed Central PMCID: PMCPMC7214676. eng. Yang, Yang, Ren, Xiong, Wu, Dong (b0185) 2011; 49 Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia. PloS one. 2020;15(6):e0232610. doi: 10.1371/journal.pone.0232610. PubMed PMID: 32497137; PubMed Central PMCID: PMCPMC7272011. Hasan, Rawat, Tang, Jithesh, Thomas, Tan (b0195) 2016; 54 Weyrich, Farrer, Eisenhofer, Arriola, Young, Selway (b0235) 2019; 19 Huang J, Jiang E, Yang D, et al. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist. 2020;13:567-576. doi: 10.2147/IDR.S235182. PubMed PMID: 32110067; PubMed Central PMCID: PMCPMC7036976. Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PloS one. 2012;7(8):e42882. doi: 10.1371/journal.pone.0042882. PubMed PMID: 22900061; PubMed Central PMCID: PMCPMC3416766. Zinter, Mayday, Ryckman, Jelliffe-Pawlowski, DeRisi (b0265) 2019; 7 Li, Gao, Meng, Wang, Li, Chen (b0025) 2018; 8 Marotz, Sanders, Zuniga, Zaramela, Knight, Zengler (b0190) 2018; 6 Charalampous, Kay, Richardson, Aydin, Baldan, Jeanes (b0015) 2019; 37 Zinter MS, Dvorak CC, Mayday MY, et al. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis. 2019 May 17;68(11):1847-1855. doi: 10.1093/cid/ciy802. PubMed PMID: 30239621; PubMed Central PMCID: PMCPMC6784263. Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine. 2015 Jul 30;373(5):415-27. doi: 10.1056/NEJMoa1500245. PubMed PMID: 26172429; PubMed Central PMCID: PMCPMC4728150. eng. Rothberg, Hinz, Rearick, Schultz, Mileski, Davey (b0150) 2011; 475 Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America. 2018 Dec 26;115(52):E12353-e12362. doi: 10.1073/pnas Zhou (10.1016/j.jare.2021.09.012_b0335) 2021 Sichtig (10.1016/j.jare.2021.09.012_b0310) 2019; 10 Loman (10.1016/j.jare.2021.09.012_b0170) 2015; 12 10.1016/j.jare.2021.09.012_b0305 Schlaberg (10.1016/j.jare.2021.09.012_b0345) 2017; 141 10.1016/j.jare.2021.09.012_b0225 10.1016/j.jare.2021.09.012_b0105 Zhu (10.1016/j.jare.2021.09.012_b0050) 2020; 382 10.1016/j.jare.2021.09.012_b0155 Yang (10.1016/j.jare.2021.09.012_b0185) 2011; 49 10.1016/j.jare.2021.09.012_b0275 10.1016/j.jare.2021.09.012_b0355 Yee (10.1016/j.jare.2021.09.012_b0395) 2021; 40 10.1016/j.jare.2021.09.012_b0075 10.1016/j.jare.2021.09.012_b0350 10.1016/j.jare.2021.09.012_b0070 Rothberg (10.1016/j.jare.2021.09.012_b0150) 2011; 475 Davis (10.1016/j.jare.2021.09.012_b0260) 2018; 6 Ransom (10.1016/j.jare.2021.09.012_b0110) 2020; 66 10.1016/j.jare.2021.09.012_b0270 10.1016/j.jare.2021.09.012_b0390 Zhou (10.1016/j.jare.2021.09.012_b0375) 2020; 30 Wang (10.1016/j.jare.2021.09.012_b0035) 2019; 19 Flygare (10.1016/j.jare.2021.09.012_b0295) 2016; 17 van Boheemen (10.1016/j.jare.2021.09.012_b0095) 2020; 22 Li (10.1016/j.jare.2021.09.012_b0025) 2018; 8 Simner (10.1016/j.jare.2021.09.012_b0120) 2018; 66 10.1016/j.jare.2021.09.012_b0115 Chen (10.1016/j.jare.2021.09.012_b0030) 2020; 48 López-Labrador (10.1016/j.jare.2021.09.012_b0165) 2021; 134 Ciuffreda (10.1016/j.jare.2021.09.012_b0090) 2021; 19 10.1016/j.jare.2021.09.012_b0315 10.1016/j.jare.2021.09.012_b0045 10.1016/j.jare.2021.09.012_b0320 Takeuchi (10.1016/j.jare.2021.09.012_b0330) 2019; 9 10.1016/j.jare.2021.09.012_b0200 10.1016/j.jare.2021.09.012_b0365 10.1016/j.jare.2021.09.012_b0085 Marotz (10.1016/j.jare.2021.09.012_b0190) 2018; 6 10.1016/j.jare.2021.09.012_b0360 10.1016/j.jare.2021.09.012_b0040 Filkins (10.1016/j.jare.2021.09.012_b0130) 2020; 66 Drmanac (10.1016/j.jare.2021.09.012_b0145) 2010; 327 10.1016/j.jare.2021.09.012_b0285 Zinter (10.1016/j.jare.2021.09.012_b0265) 2019; 7 10.1016/j.jare.2021.09.012_b0080 10.1016/j.jare.2021.09.012_b0160 10.1016/j.jare.2021.09.012_b0280 Weyrich (10.1016/j.jare.2021.09.012_b0235) 2019; 19 Adiconis (10.1016/j.jare.2021.09.012_b0215) 2013; 10 Grumaz (10.1016/j.jare.2021.09.012_b0325) 2016; 8 Gu (10.1016/j.jare.2021.09.012_b0220) 2016; 17 Prezza (10.1016/j.jare.2021.09.012_b0230) 2020; 26 10.1016/j.jare.2021.09.012_b0405 10.1016/j.jare.2021.09.012_b0400 10.1016/j.jare.2021.09.012_b0205 10.1016/j.jare.2021.09.012_b0210 10.1016/j.jare.2021.09.012_b0135 10.1016/j.jare.2021.09.012_b0370 10.1016/j.jare.2021.09.012_b0010 10.1016/j.jare.2021.09.012_b0175 Charalampous (10.1016/j.jare.2021.09.012_b0015) 2019; 37 Miller (10.1016/j.jare.2021.09.012_b0290) 2019; 29 Wilson (10.1016/j.jare.2021.09.012_b0020) 2014; 370 Larsson (10.1016/j.jare.2021.09.012_b0240) 2018; 15 Bal (10.1016/j.jare.2021.09.012_b0255) 2018; 18 Goodwin (10.1016/j.jare.2021.09.012_b0125) 2016; 17 Shi (10.1016/j.jare.2021.09.012_b0065) 2020; 81 10.1016/j.jare.2021.09.012_b0100 10.1016/j.jare.2021.09.012_b0385 10.1016/j.jare.2021.09.012_b0300 Charles (10.1016/j.jare.2021.09.012_b0055) 2008; 46 Quail (10.1016/j.jare.2021.09.012_b0245) 2014; 15 10.1016/j.jare.2021.09.012_b0140 Gu (10.1016/j.jare.2021.09.012_b0060) 2020; 20 Estimates of the global (10.1016/j.jare.2021.09.012_b0005) 2017; 17 10.1016/j.jare.2021.09.012_b0180 Wilson (10.1016/j.jare.2021.09.012_b0250) 2018; 75 10.1016/j.jare.2021.09.012_b0380 Hasan (10.1016/j.jare.2021.09.012_b0195) 2016; 54 Graf (10.1016/j.jare.2021.09.012_b0340) 2016; 54 |
References_xml | – volume: 29 start-page: 831 year: 2019 end-page: 842 ident: b0290 article-title: Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid publication-title: Genome Res – volume: 54 start-page: 919 year: 2016 end-page: 927 ident: b0195 article-title: Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing publication-title: J Clin Microbiol – reference: Fisher T. Ion GeneStudio™ S5 system 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing.html. – reference: van Rijn AL, van Boheemen S, Sidorov I, et al. The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease. PloS one. 2019;14(10):e0223952. doi: 10.1371/journal.pone.0223952. PubMed PMID: 31647831; PubMed Central PMCID: PMCPMC6812800. – volume: 10 start-page: 623 year: 2013 end-page: 629 ident: b0215 article-title: Comparative analysis of RNA sequencing methods for degraded or low-input samples publication-title: Nat Methods – reference: Fang N, Akinci-Tolun R. Depletion of Ribosomal RNA Sequences from Single-Cell RNA-Sequencing Library. Curr Protoc Mol Biol. 2016 Jul 1;115:7 27 1-7 27 20. doi: 10.1002/cpmb.11. PubMed PMID: 27366895. – volume: 49 start-page: 3463 year: 2011 end-page: 3469 ident: b0185 article-title: Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach publication-title: J Clin Microbiol – reference: Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity. Critical reviews in microbiology. 2019 Sep-Nov;45(5-6):668-685. doi: 10.1080/1040841x.2019.1681933. PubMed PMID: 31691607; eng. – volume: 475 start-page: 348 year: 2011 end-page: 352 ident: b0150 article-title: An integrated semiconductor device enabling non-optical genome sequencing publication-title: Nature – reference: Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019 Jul 19;20(4):1125-1136. doi: 10.1093/bib/bbx120. PubMed PMID: 29028872; PubMed Central PMCID: PMCPMC6781581. – volume: 40 start-page: 95 year: 2021 end-page: 102 ident: b0395 article-title: Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms publication-title: Eur J Clin Microbiol Infect Disofficial publication of the European Society of Clinical Microbiology. – volume: 8 year: 2018 ident: b0025 article-title: Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing publication-title: Front Cell Infect Microbiol – volume: 26 start-page: 1069 year: 2020 end-page: 1078 ident: b0230 article-title: Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads publication-title: RNA (New York, NY). – reference: institution BG. MGISEQ-200 2021. Available from: https://www.mgi-tech.com/products/instruments_info/14/. – reference: Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome medicine. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9. PubMed PMID: 26416663; PubMed Central PMCID: PMCPMC4587849. eng. – reference: Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America. 2018 Dec 26;115(52):E12353-e12362. doi: 10.1073/pnas.1809700115. PubMed PMID: 30482864; PubMed Central PMCID: PMCPMC6310811. eng. – reference: Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 2020 Apr 21;11(2). doi: 10.1128/mBio.00010-20. PubMed PMID: 32317317; PubMed Central PMCID: PMCPMC7175087. eng. – reference: Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. PubMed PMID: 30423048. – reference: Tsalik EL, Henao R, Nichols M, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med. 2016 Jan 20;8(322):322ra11. doi: 10.1126/scitranslmed.aad6873. PubMed PMID: 26791949; PubMed Central PMCID: PMCPMC4905578. – reference: Zinter MS, Dvorak CC, Mayday MY, et al. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis. 2019 May 17;68(11):1847-1855. doi: 10.1093/cid/ciy802. PubMed PMID: 30239621; PubMed Central PMCID: PMCPMC6784263. – volume: 20 year: 2020 ident: b0060 article-title: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases publication-title: BMC Pulm Med. – volume: 22 start-page: 196 year: 2020 end-page: 207 ident: b0095 article-title: Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients publication-title: J Mol Diagn – reference: Saha S, Ramesh A, Kalantar K, et al. Unbiased Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive Chikungunya Virus Outbreak and Other Unrealized Pathogens. mBio. 2019 Dec 17;10(6). doi: 10.1128/mBio.02877-19. PubMed PMID: 31848287; PubMed Central PMCID: PMCPMC6918088. eng. – reference: illumina. NextSeq 1000 & NextSeq 2000 Systems 2021. Available from: https://www.illumina.com.cn/systems/sequencing-platforms/nextseq-1000-2000.html – reference: institution BG. MGISEQ-2000 2021. Available from: https://www.mgi-tech.com/products/instruments_info/13/. – reference: Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019 Jun;20(6):341-355. doi: 10.1038/s41576-019-0113-7. PubMed PMID: 30918369; PubMed Central PMCID: PMCPMC6858796. – reference: Goodacre N, Aljanahi A, Nandakumar S, et al. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018 Mar-Apr;3(2). doi: 10.1128/mSphereDirect.00069-18. PubMed PMID: 29564396; PubMed Central PMCID: PMCPMC5853486. eng. – volume: 17 start-page: 333 year: 2016 end-page: 351 ident: b0125 article-title: Coming of age: ten years of next-generation sequencing technologies publication-title: Nat Rev Genet – reference: Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia. PloS one. 2020;15(6):e0232610. doi: 10.1371/journal.pone.0232610. PubMed PMID: 32497137; PubMed Central PMCID: PMCPMC7272011. – reference: Babiker A, Bradley HL, Stittleburg VD, et al. Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. Journal of clinical microbiology. 2020 Oct 16. doi: 10.1128/JCM.02142-20. PubMed PMID: 33067271. – volume: 19 start-page: 1497 year: 2021 end-page: 1511 ident: b0090 article-title: Nanopore sequencing and its application to the study of microbial communities publication-title: Comput Struct Biotechnol J – volume: 327 start-page: 78 year: 2010 end-page: 81 ident: b0145 article-title: Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays publication-title: Science (New York, NY). – reference: Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi: 10.1164/rccm.201706-1097LE. PubMed PMID: 28686513; PubMed Central PMCID: PMCPMC5821905. eng. – volume: 17 year: 2016 ident: b0220 article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications publication-title: Genome Biol – volume: 12 start-page: 733 year: 2015 Aug end-page: 735 ident: b0170 article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data publication-title: Nat Methods – reference: Highlander SK, Feehery GR, Yigit E, et al. A Method for Selectively Enriching Microbial DNA from Contaminating Vertebrate Host DNA. PloS one. 2013;8(10). doi: 10.1371/journal.pone.0076096. – volume: 37 start-page: 783 year: 2019 end-page: 792 ident: b0015 article-title: Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection publication-title: Nat Biotechnol – volume: 15 start-page: 305 year: 2018 end-page: 307 ident: b0240 article-title: Computational correction of index switching in multiplexed sequencing libraries publication-title: Nat Methods – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: b0050 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: The New England journal of medicine. – reference: Chen H, Yin Y, Gao H, et al. Clinical Utility of In-house Metagenomic Next-generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clin Infect Dis. 2020 Dec 23;71(Suppl 4):S416-s426. doi: 10.1093/cid/ciaa1516. PubMed PMID: 33367583; eng. – reference: Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small methods. 2021 Jan 4;5(1):2000792. doi: 10.1002/smtd.202000792. PubMed PMID: 33614906; PubMed Central PMCID: PMCPMC7883231. eng. – volume: 6 year: 2018 ident: b0260 article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data publication-title: Microbiome. – year: 2021 ident: b0335 article-title: Clinical Impact of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage in the Diagnosis and Management of Pneumonia: A Multicenter Prospective Observational Study publication-title: J Mol Diagn – volume: 7 year: 2019 ident: b0265 article-title: Towards precision quantification of contamination in metagenomic sequencing experiments publication-title: Microbiome. – volume: 17 year: 2016 ident: b0295 article-title: Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling publication-title: Genome Biol – volume: 66 start-page: 778 year: 2018 Feb 10 end-page: 788 ident: b0120 article-title: Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases publication-title: Clin Infect Dis – volume: 17 start-page: 1133 year: 2017 Nov end-page: 1161 ident: b0005 article-title: regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015 publication-title: Lancet Infect Dis – reference: Greninger AL. The challenge of diagnostic metagenomics. Expert review of molecular diagnostics. 2018 Jul;18(7):605-615. doi: 10.1080/14737159.2018.1487292. PubMed PMID: 29898605; eng. – reference: Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Feb;39(2):369-374. doi: 10.1007/s10096-019-03734-5. PubMed PMID: 31813078; PubMed Central PMCID: PMCPMC7102353. – volume: 134 start-page: 104691 year: 2021 ident: b0165 article-title: Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure publication-title: J Clin Virol – volume: 6 year: 2018 ident: b0190 article-title: Improving saliva shotgun metagenomics by chemical host DNA depletion publication-title: Microbiome. – reference: Wang K, Li P, Lin Y, et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front Cell Infect Microbiol. 2020;10:182. doi: 10.3389/fcimb.2020.00182. PubMed PMID: 32432051; PubMed Central PMCID: PMCPMC7214676. eng. – reference: Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. PubMed PMID: 30355154; PubMed Central PMCID: PMCPMC6345613. – reference: Huang J, Jiang E, Yang D, et al. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist. 2020;13:567-576. doi: 10.2147/IDR.S235182. PubMed PMID: 32110067; PubMed Central PMCID: PMCPMC7036976. – reference: Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine. 2015 Jul 30;373(5):415-27. doi: 10.1056/NEJMoa1500245. PubMed PMID: 26172429; PubMed Central PMCID: PMCPMC4728150. eng. – reference: Miller S, Chiu C, Rodino KG, et al. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? Journal of clinical microbiology. 2020 Feb 24;58(3). doi: 10.1128/JCM.01739-19. PubMed PMID: 31619533; PubMed Central PMCID: PMCPMC7041574. – volume: 9 year: 2019 ident: b0330 article-title: Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure publication-title: Sci Rep – volume: 8 year: 2016 ident: b0325 article-title: Next-generation sequencing diagnostics of bacteremia in septic patients publication-title: Genome Med – volume: 19 year: 2019 ident: b0035 article-title: Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis publication-title: BMC Pulmonary Medicine. – volume: 46 start-page: 1513 year: 2008 end-page: 1521 ident: b0055 article-title: The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy publication-title: Clin Infect Dis – volume: 18 year: 2018 ident: b0255 article-title: Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow publication-title: BMC Infect Dis – volume: 141 start-page: 776 year: 2017 end-page: 786 ident: b0345 article-title: Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection publication-title: Arch Pathol Lab Med – volume: 30 start-page: 2196 year: 2020 end-page: 2203.e3 ident: b0375 article-title: A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein publication-title: Current biology : CB. – volume: 15 start-page: 110 year: 2014 ident: b0245 article-title: SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing publication-title: BMC Genomics – volume: 66 start-page: 1278 year: 2020 Oct 1 end-page: 1289 ident: b0110 article-title: Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! publication-title: Clin Chem – volume: 19 start-page: 982 year: 2019 end-page: 996 ident: b0235 article-title: Laboratory contamination over time during low-biomass sample analysis publication-title: Mol Ecol Resour – volume: 10 year: 2019 ident: b0310 article-title: FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science publication-title: Nat Commun – reference: Yang M, Cousineau A, Liu X, et al. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in microbiology. 2020;11:514. doi: 10.3389/fmicb.2020.00514. PubMed PMID: 32328039; PubMed Central PMCID: PMCPMC7160302. eng. – reference: Zhang Y, Ai JW, Cui P, et al. A cluster of cases of pneumocystis pneumonia identified by shotgun metagenomics approach. J Infect. 2019 Feb;78(2):158-169. doi: 10.1016/j.jinf.2018.08.013. PubMed PMID: 30149030; eng. – volume: 48 start-page: 535 year: 2020 end-page: 542 ident: b0030 article-title: Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci publication-title: Infection – volume: 75 start-page: 947 year: 2018 Aug 1 end-page: 955 ident: b0250 article-title: Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing publication-title: JAMA neurology. – volume: 66 start-page: 1381 year: 2020 Nov 1 end-page: 1395 ident: b0130 article-title: Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations publication-title: Clin Chem – volume: 81 start-page: 567 year: 2020 end-page: 574 ident: b0065 article-title: Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis publication-title: J Infect – reference: Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019 May 30;68(12):1993-2002. doi: 10.1093/cid/ciy821. PubMed PMID: 30445563; PubMed Central PMCID: PMCPMC6541733. – reference: Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. Journal of clinical microbiology. 2019 Feb;57(2). doi: 10.1128/jcm.01182-18. PubMed PMID: 30429253; PubMed Central PMCID: PMCPMC6355540. eng. – reference: Ardui S, Ameur A, Vermeesch JR, et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic acids research. 2018 Mar 16;46(5):2159-2168. doi: 10.1093/nar/gky066. PubMed PMID: 29401301; PubMed Central PMCID: PMCPMC5861413. eng. – reference: Scientific TF. Ion GeneStudio S5 Next-Generation Sequencing Series Specifications 2021. Available from: https://www.thermofisher.cn/cn/zh/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing/ion-s5-specifications.html. – volume: 370 start-page: 2408 year: 2014 end-page: 2417 ident: b0020 article-title: Actionable diagnosis of neuroleptospirosis by next-generation sequencing publication-title: The New England journal of medicine. – reference: Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239. doi: 10.1186/s13059-016-1103-0. PubMed PMID: 27887629; PubMed Central PMCID: PMCPMC5124260. eng. – reference: Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PloS one. 2012;7(8):e42882. doi: 10.1371/journal.pone.0042882. PubMed PMID: 22900061; PubMed Central PMCID: PMCPMC3416766. – volume: 54 start-page: 1000 year: 2016 end-page: 1007 ident: b0340 article-title: Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel publication-title: J Clin Microbiol – volume: 22 start-page: 196 issue: 2 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0095 article-title: Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2019.10.007 – volume: 26 start-page: 1069 issue: 8 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0230 article-title: Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads publication-title: RNA (New York, NY). doi: 10.1261/rna.075945.120 – volume: 6 issue: 1 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0190 article-title: Improving saliva shotgun metagenomics by chemical host DNA depletion publication-title: Microbiome. doi: 10.1186/s40168-018-0426-3 – volume: 18 issue: 1 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0255 article-title: Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow publication-title: BMC Infect Dis doi: 10.1186/s12879-018-3446-5 – ident: 10.1016/j.jare.2021.09.012_b0205 doi: 10.1371/journal.pone.0042882 – volume: 17 issue: 1 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0295 article-title: Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling publication-title: Genome Biol doi: 10.1186/s13059-016-0969-1 – ident: 10.1016/j.jare.2021.09.012_b0140 doi: 10.1002/smtd.202000792 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0330 article-title: Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure publication-title: Sci Rep doi: 10.1038/s41598-019-49372-x – volume: 17 start-page: 333 issue: 6 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0125 article-title: Coming of age: ten years of next-generation sequencing technologies publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.49 – volume: 15 start-page: 305 issue: 5 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0240 article-title: Computational correction of index switching in multiplexed sequencing libraries publication-title: Nat Methods doi: 10.1038/nmeth.4666 – ident: 10.1016/j.jare.2021.09.012_b0300 doi: 10.1128/JCM.01182-18 – volume: 29 start-page: 831 issue: 5 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0290 article-title: Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid publication-title: Genome Res doi: 10.1101/gr.238170.118 – volume: 134 start-page: 104691 year: 2021 ident: 10.1016/j.jare.2021.09.012_b0165 article-title: Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure publication-title: J Clin Virol doi: 10.1016/j.jcv.2020.104691 – year: 2021 ident: 10.1016/j.jare.2021.09.012_b0335 article-title: Clinical Impact of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage in the Diagnosis and Management of Pneumonia: A Multicenter Prospective Observational Study publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2021.06.007 – ident: 10.1016/j.jare.2021.09.012_b0370 – volume: 141 start-page: 776 issue: 6 year: 2017 ident: 10.1016/j.jare.2021.09.012_b0345 article-title: Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2016-0539-RA – volume: 75 start-page: 947 issue: 8 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0250 article-title: Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing publication-title: JAMA neurology. doi: 10.1001/jamaneurol.2018.0463 – volume: 475 start-page: 348 issue: 7356 year: 2011 ident: 10.1016/j.jare.2021.09.012_b0150 article-title: An integrated semiconductor device enabling non-optical genome sequencing publication-title: Nature doi: 10.1038/nature10242 – ident: 10.1016/j.jare.2021.09.012_b0320 doi: 10.1080/14737159.2018.1487292 – ident: 10.1016/j.jare.2021.09.012_b0270 doi: 10.2147/IDR.S235182 – ident: 10.1016/j.jare.2021.09.012_b0225 doi: 10.1128/mBio.00010-20 – ident: 10.1016/j.jare.2021.09.012_b0010 – ident: 10.1016/j.jare.2021.09.012_b0040 doi: 10.1093/cid/ciy693 – ident: 10.1016/j.jare.2021.09.012_b0355 doi: 10.1371/journal.pone.0223952 – ident: 10.1016/j.jare.2021.09.012_b0275 doi: 10.1371/journal.pone.0232610 – volume: 17 start-page: 1133 issue: 11 year: 2017 ident: 10.1016/j.jare.2021.09.012_b0005 article-title: regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(17)30396-1 – ident: 10.1016/j.jare.2021.09.012_b0390 – volume: 20 issue: 1 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0060 article-title: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases publication-title: BMC Pulm Med. doi: 10.1186/s12890-020-1098-x – ident: 10.1016/j.jare.2021.09.012_b0180 doi: 10.1146/annurev-pathmechdis-012418-012751 – ident: 10.1016/j.jare.2021.09.012_b0400 doi: 10.1093/nar/gky066 – ident: 10.1016/j.jare.2021.09.012_b0155 – ident: 10.1016/j.jare.2021.09.012_b0315 doi: 10.1128/mSphereDirect.00069-18 – ident: 10.1016/j.jare.2021.09.012_b0280 doi: 10.1038/s41576-019-0113-7 – volume: 49 start-page: 3463 issue: 10 year: 2011 ident: 10.1016/j.jare.2021.09.012_b0185 article-title: Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach publication-title: J Clin Microbiol doi: 10.1128/JCM.00273-11 – ident: 10.1016/j.jare.2021.09.012_b0135 doi: 10.1093/cid/ciy802 – ident: 10.1016/j.jare.2021.09.012_b0380 – volume: 327 start-page: 78 issue: 5961 year: 2010 ident: 10.1016/j.jare.2021.09.012_b0145 article-title: Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays publication-title: Science (New York, NY). doi: 10.1126/science.1181498 – ident: 10.1016/j.jare.2021.09.012_b0080 doi: 10.1093/cid/ciy821 – volume: 6 issue: 1 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0260 article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data publication-title: Microbiome. doi: 10.1186/s40168-018-0605-2 – volume: 66 start-page: 1381 issue: 11 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0130 article-title: Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations publication-title: Clin Chem doi: 10.1093/clinchem/hvaa183 – ident: 10.1016/j.jare.2021.09.012_b0115 doi: 10.3389/fcimb.2020.00182 – ident: 10.1016/j.jare.2021.09.012_b0070 doi: 10.1093/cid/ciaa1516 – volume: 382 start-page: 727 issue: 8 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0050 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: The New England journal of medicine. doi: 10.1056/NEJMoa2001017 – ident: 10.1016/j.jare.2021.09.012_b0085 doi: 10.1164/rccm.201706-1097LE – ident: 10.1016/j.jare.2021.09.012_b0350 doi: 10.1080/1040841X.2019.1681933 – volume: 37 start-page: 783 issue: 7 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0015 article-title: Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0156-5 – volume: 54 start-page: 919 issue: 4 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0195 article-title: Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing publication-title: J Clin Microbiol doi: 10.1128/JCM.03050-15 – volume: 8 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0025 article-title: Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2018.00205 – volume: 40 start-page: 95 issue: 1 year: 2021 ident: 10.1016/j.jare.2021.09.012_b0395 article-title: Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms publication-title: Eur J Clin Microbiol Infect Disofficial publication of the European Society of Clinical Microbiology. doi: 10.1007/s10096-020-03996-4 – volume: 48 start-page: 535 issue: 4 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0030 article-title: Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci publication-title: Infection doi: 10.1007/s15010-020-01429-0 – ident: 10.1016/j.jare.2021.09.012_b0210 doi: 10.1002/cpmb.11 – ident: 10.1016/j.jare.2021.09.012_b0360 doi: 10.1007/s10096-019-03734-5 – ident: 10.1016/j.jare.2021.09.012_b0285 doi: 10.1128/JCM.01739-19 – ident: 10.1016/j.jare.2021.09.012_b0045 doi: 10.1073/pnas.1809700115 – volume: 8 issue: 1 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0325 article-title: Next-generation sequencing diagnostics of bacteremia in septic patients publication-title: Genome Med doi: 10.1186/s13073-016-0326-8 – ident: 10.1016/j.jare.2021.09.012_b0075 doi: 10.1101/2020.09.09.20178764 – volume: 66 start-page: 1278 issue: 10 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0110 article-title: Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! publication-title: Clin Chem doi: 10.1093/clinchem/hvaa172 – ident: 10.1016/j.jare.2021.09.012_b0305 doi: 10.1093/bib/bbx120 – volume: 7 issue: 1 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0265 article-title: Towards precision quantification of contamination in metagenomic sequencing experiments publication-title: Microbiome. doi: 10.1186/s40168-019-0678-6 – ident: 10.1016/j.jare.2021.09.012_b0100 doi: 10.3389/fmicb.2020.00514 – volume: 15 start-page: 110 issue: 1 year: 2014 ident: 10.1016/j.jare.2021.09.012_b0245 article-title: SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing publication-title: BMC Genomics doi: 10.1186/1471-2164-15-110 – ident: 10.1016/j.jare.2021.09.012_b0385 – volume: 10 start-page: 623 issue: 7 year: 2013 ident: 10.1016/j.jare.2021.09.012_b0215 article-title: Comparative analysis of RNA sequencing methods for degraded or low-input samples publication-title: Nat Methods doi: 10.1038/nmeth.2483 – volume: 370 start-page: 2408 issue: 25 year: 2014 ident: 10.1016/j.jare.2021.09.012_b0020 article-title: Actionable diagnosis of neuroleptospirosis by next-generation sequencing publication-title: The New England journal of medicine. doi: 10.1056/NEJMoa1401268 – volume: 19 start-page: 1497 year: 2021 ident: 10.1016/j.jare.2021.09.012_b0090 article-title: Nanopore sequencing and its application to the study of microbial communities publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.02.020 – volume: 19 issue: 1 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0035 article-title: Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis publication-title: BMC Pulmonary Medicine. doi: 10.1186/s12890-019-1022-4 – volume: 30 start-page: 2196 issue: 11 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0375 article-title: A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein publication-title: Current biology : CB. doi: 10.1016/j.cub.2020.05.023 – ident: 10.1016/j.jare.2021.09.012_b0365 – volume: 12 start-page: 733 issue: 8 year: 2015 ident: 10.1016/j.jare.2021.09.012_b0170 article-title: A complete bacterial genome assembled de novo using only nanopore sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.3444 – volume: 46 start-page: 1513 issue: 10 year: 2008 ident: 10.1016/j.jare.2021.09.012_b0055 article-title: The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy publication-title: Clin Infect Dis doi: 10.1086/586749 – ident: 10.1016/j.jare.2021.09.012_b0405 doi: 10.1016/j.jinf.2018.08.013 – volume: 66 start-page: 778 issue: 5 year: 2018 ident: 10.1016/j.jare.2021.09.012_b0120 article-title: Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases publication-title: Clin Infect Dis doi: 10.1093/cid/cix881 – volume: 81 start-page: 567 issue: 4 year: 2020 ident: 10.1016/j.jare.2021.09.012_b0065 article-title: Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis publication-title: J Infect doi: 10.1016/j.jinf.2020.08.004 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0310 article-title: FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science publication-title: Nat Commun doi: 10.1038/s41467-019-11306-6 – volume: 54 start-page: 1000 issue: 4 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0340 article-title: Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel publication-title: J Clin Microbiol doi: 10.1128/JCM.03060-15 – volume: 17 issue: 1 year: 2016 ident: 10.1016/j.jare.2021.09.012_b0220 article-title: Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications publication-title: Genome Biol doi: 10.1186/s13059-016-0904-5 – ident: 10.1016/j.jare.2021.09.012_b0160 doi: 10.1186/s13059-016-1103-0 – ident: 10.1016/j.jare.2021.09.012_b0175 doi: 10.1186/s13073-015-0220-9 – ident: 10.1016/j.jare.2021.09.012_b0105 doi: 10.1126/scitranslmed.aad6873 – volume: 19 start-page: 982 issue: 4 year: 2019 ident: 10.1016/j.jare.2021.09.012_b0235 article-title: Laboratory contamination over time during low-biomass sample analysis publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13011 – ident: 10.1016/j.jare.2021.09.012_b0200 doi: 10.1371/journal.pone.0076096 |
SSID | ssj0000388911 |
Score | 2.5847692 |
SecondaryResourceType | review_article |
Snippet | The typical workflow of mNGS in clinical laboratory.
[Display omitted]
•The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis,... Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer... The typical workflow of mNGS in clinical laboratory. • The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome... Background: Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | High-Throughput Nucleotide Sequencing Humans Medicine Metagenome Metagenomics Microbiota - genetics mNGS Next generation sequencing Pneumonia Respiratory Respiratory Tract Infections - diagnosis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMcttCde0DZgdGyTkXgAoYj4RxP7cUNME9J4olLfLMd2tuxHOjXZ_8-d45RmSOOFx9ZOW-fu6o-Vu-8R8rGwWkrn6yyo4DJpdZEpXvOM-VzF87PnWO98-bO4WMgfy_lyq9UX5oQN8sDDjfsqEQFKK1Xhg9QiABFa7jWQOARmwWPpHux5W4ep-B8slNKx-S4MYvqB4KliZkjuurFr1MjkLIqcMj7ZlaJ4_2Rz-hs-n-ZQbm1K57vkVaJJejqsYo-8CO0-2Uvx2tFPSVT682vSXYbeoiDrfeM62uJ59yoOomFoSqiGbYwCevYd7e1toMCGtMOraNPGF37Iy2s6uqrpHfZXo-s_j-ppjxVXdEzvars3ZHH-_de3iyw1XMgc9jXINMq5OS5cXlmA7kozVYVC1nOvZalVUN6VZe1zFMjhgWubO88qH-BMZAvlhHhLdtpVG94RClzhKqALyXQFEDBXgIaOF7WrQ85C5WeEjTfcuKRGjk0x7syYdnZj0EgGjWRybcBIM_Jlc83DoMXx7OwztONmJupoxzfAu0zyLvMv75qR-egFJiHJgBrwUc2zX_5hdBkD8YoPYWwbVo-dASACxs2FgDkHgwttfiKwX4mENSPlxLkma5iOtM111ATXEAMlE4f_Y9HvyUuORR4xrfOI7PTrx3AM6NVXJzHKfgNgzCsT priority: 102 providerName: Directory of Open Access Journals |
Title | Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections |
URI | https://dx.doi.org/10.1016/j.jare.2021.09.012 https://www.ncbi.nlm.nih.gov/pubmed/35572406 https://www.proquest.com/docview/2665110332 https://pubmed.ncbi.nlm.nih.gov/PMC9091713 https://doaj.org/article/495107a486de493e882a2d9086dde629 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKM8FujISBxCKNn5sYh_biqqiKgegYm-WYzslbclWm_T_d8ZxFgJSDxyT2ImTGXu-cWa-IeRdYbWUztdZUMFl0uoiU7zmGfO5iv6z55jvfPalODmXn1fL1Q45GnNhMKwyrf3Dmh5X63Rmkb7m4qZpFt94riMg4EgjpAVyggqpYhLf6nC7z4JsJzqW4cX2GXZIuTNDmNel3SBbJmeR7pTxiX2KNP4TM_UvDP07mvIP83T8mDxKuJIeDEPfIzuhfUL20szt6PtEL_3hKenOQm-RmvVX4zraoud7ES-iiGgKrQaDRgGE9h3t7VWggBJph71o08YDP0ToNR1d1_QaK63Rze-f9rTH3Cs6Bnq13TNyfvzp-9FJlkovZA4rHGQaid0cFy6vLMDvSjNVhULWS69lqVVQ3pVl7XOkyuGBa5s7zyofwDuyhXJCPCe77boNLwkFhOEqwBmS6QrgwFIBSHS8qF0dchYqPyNs_ODGJV5yLI9xbcYAtEuDQjIoJJNrA0KakY_bPjcDK8e9rQ9RjtuWyKgdT6w3FyaplJEINUsrVeGD1CKA52G51-DxgQEouJ6R5agFZqKgcKvm3oe_HVXGwMzF3zG2DevbzgA0ArSbCwFtXgwqtB0ioMASsdaMlBPlmrzD9Erb_Izs4BoQYMnEq_8c72vykGOGR4zpfEN2-81t2Afc1Vdz8uDg9OuP03nct5jHaXYHVcwuzQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFUZ7LoxiJAwhFGzvexD7SqtUWur3QSnuzHNtpU0q22qT_nxnHWRqQeugxiZ04mbHnm3jmG0I-5UYJYV2VeOltIozKE8krnjCXyuA_O475zouTfH4mvi9nyy2yP-TCYFhlXPv7NT2s1vHMNH7N6XVdT3_yVAVAwJFGSGXiAXkIaKDA2Xm03Nv8aEG6ExXq8GKHBHvE5Jk-zuvSrJEuk7PAd8r4yEAFHv-Rnfofh_4bTnnLPh0-JU8isKTf-rHvkC3fPCM7ceq29HPkl_7ynLQL3xnkZv1d25Y26Pqeh4soIxpjq8GiUUChXUs788tTgIm0xV60bsKB60P06pauKnqFpdbo-u-uPe0w-YoOkV5N-4KcHR6c7s-TWHshsVjiIFHI7GZ5ZtPSAP4uFZOlz0U1c0oUSnrpbFFULkWuHO65Mql1rHQe3COTS5tlL8l2s2r8a0IBYtgSgIZgqgQ8MJOAEi3PK1v5lPnSTQgbPri2kZgc62Nc6SEC7VKjkDQKSadKg5Am5Oumz3VPy3Fn6z2U46YlUmqHE6v1uY46pQVizcIImTsvVObB9TDcKXD5wALkXE3IbNACPdJQuFV958M_DiqjYerifoxp_Oqm1YCNAO6mWQZtXvUqtBkiwMACwdaEFCPlGr3D-EpTXwR6cAUQsGDZm3uO9wN5ND9dHOvjo5Mfb8ljjukeIcDzHdnu1jf-PYCwrtwNk-wP59QvVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomics+next-generation+sequencing+tests+take+the+stage+in+the+diagnosis+of+lower+respiratory+tract+infections&rft.jtitle=Journal+of+advanced+research&rft.au=Diao%2C+Zhenli&rft.au=Han%2C+Dongsheng&rft.au=Zhang%2C+Rui&rft.au=Li%2C+Jinming&rft.date=2022-05-01&rft.eissn=2090-1224&rft.volume=38&rft.spage=201&rft_id=info:doi/10.1016%2Fj.jare.2021.09.012&rft_id=info%3Apmid%2F35572406&rft.externalDocID=35572406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |