Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping
The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measur...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 21; no. 1; pp. 99 - 111 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
2004
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10–20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10–20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10–20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10–20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10–20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data. |
---|---|
AbstractList | The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data. The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data. |
Author | Kohno, Satoru Takeo, Kazuhiro Okamoto, Masako Isobe, Seiichiro Dan, Haruka Suzuki, Tateo Oda, Ichiro Kohyama, Kaoru Dan, Ippeita Sakamoto, Kuniko Shimizu, Koji |
Author_xml | – sequence: 1 givenname: Masako surname: Okamoto fullname: Okamoto, Masako organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 2 givenname: Haruka surname: Dan fullname: Dan, Haruka organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 3 givenname: Kuniko surname: Sakamoto fullname: Sakamoto, Kuniko organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 4 givenname: Kazuhiro surname: Takeo fullname: Takeo, Kazuhiro organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan – sequence: 5 givenname: Koji surname: Shimizu fullname: Shimizu, Koji organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan – sequence: 6 givenname: Satoru surname: Kohno fullname: Kohno, Satoru organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan – sequence: 7 givenname: Ichiro surname: Oda fullname: Oda, Ichiro organization: Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan – sequence: 8 givenname: Seiichiro surname: Isobe fullname: Isobe, Seiichiro organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 9 givenname: Tateo surname: Suzuki fullname: Suzuki, Tateo organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 10 givenname: Kaoru surname: Kohyama fullname: Kohyama, Kaoru organization: National Food Research Institute, Tsukuba 305-8642, Japan – sequence: 11 givenname: Ippeita surname: Dan fullname: Dan, Ippeita email: dan@nfri.affrc.go.jp organization: National Food Research Institute, Tsukuba 305-8642, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14741647$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuO1DAQhiM0iHnAFZAlJHYJLredOBsEjHhJI7EZ1pbjVGbcJHZjOyP1jjuw53CcBKe70Ui96pVfX31S1e_L4sx5h0VBgFZAoX6zrhzOwdtJ32HFKF1VVFaU1U-KC6CtKFvRsLNlL1alBGjPi8sY15TSFrh8VpwDbzjUvLko_tzeB8SytxO6aL3TI9kE3-nOjjYma4h2OvnJmvxggnbWlwYDdmE5-xBw1CmXkQerSbpHYl3C4HZ3mQD699dvRkncxoQT8cFifu_J4ANJ2RZ3ygwOszOHmqy2jkx6s7Hu7nnxdNBjxBeH9ar4_unj7fWX8ubb56_X729KIxiksqXcNLwGg6xlTA419CD7VkADEmQ3ILbYIW9AcInMDBqYkLrhokMxdNKsrorXe29u_ueMManJRoPjqB36OSpJAWomeQZfHYFrP-eGx6hA0LqmHBqaqZcHau4m7NUm5KjCVv2fewbkHjDBxxhweESoWiJWa_UYsVoiVlSqHHEufXtUamzaDTxP1I6nCD7sBZgH-mAxqGhyLgZ7G9Ak1Xt7iuTdkcSM1i3f5AduT1P8A7Cj48M |
CitedBy_id | crossref_primary_10_3390_brainsci11050570 crossref_primary_10_1016_j_neuroimage_2003_12_003 crossref_primary_10_1176_appi_ajp_2021_20101429 crossref_primary_10_1007_s00406_020_01163_6 crossref_primary_10_1111_cns_14641 crossref_primary_10_1016_j_neuroimage_2006_03_044 crossref_primary_10_3390_brainsci12111462 crossref_primary_10_1111_jon_12432 crossref_primary_10_1016_j_clinph_2024_03_031 crossref_primary_10_1038_s41598_018_30609_0 crossref_primary_10_1016_j_pscychresns_2017_12_003 crossref_primary_10_1111_jpr_12080 crossref_primary_10_1016_j_neuropsychologia_2019_04_010 crossref_primary_10_1111_j_1472_9733_2011_01161_x crossref_primary_10_3389_fnins_2017_00367 crossref_primary_10_1111_j_1440_1819_2007_01607_x crossref_primary_10_1016_j_jneumeth_2014_04_020 crossref_primary_10_1371_journal_pone_0110414 crossref_primary_10_1016_j_neuroimage_2023_120244 crossref_primary_10_1016_j_bandc_2015_07_001 crossref_primary_10_1117_1_2804911 crossref_primary_10_1093_cercor_bhp163 crossref_primary_10_1371_journal_pone_0183818 crossref_primary_10_1371_journal_pone_0123972 crossref_primary_10_1177_1550059420934590 crossref_primary_10_1007_s11682_015_9447_8 crossref_primary_10_1080_17470919_2014_997370 crossref_primary_10_1016_j_jpsychires_2013_07_029 crossref_primary_10_1089_brain_2019_0710 crossref_primary_10_1109_TNSRE_2023_3241998 crossref_primary_10_3389_fnhum_2021_603069 crossref_primary_10_1016_j_neuroimage_2006_02_003 crossref_primary_10_1589_jpts_27_3891 crossref_primary_10_1016_j_clinph_2013_03_030 crossref_primary_10_1111_j_1460_9568_2007_05531_x crossref_primary_10_1016_j_neuroimage_2009_10_063 crossref_primary_10_1016_j_neuroimage_2017_12_091 crossref_primary_10_1364_BOE_438303 crossref_primary_10_1117_1_NPh_5_1_011005 crossref_primary_10_1016_j_bbr_2012_03_039 crossref_primary_10_3389_fnbeh_2021_601698 crossref_primary_10_3390_brainsci13040600 crossref_primary_10_1016_j_neuroimage_2011_07_093 crossref_primary_10_1016_j_brs_2021_05_004 crossref_primary_10_1016_j_neuroimage_2008_06_032 crossref_primary_10_1016_j_neuroimage_2012_02_074 crossref_primary_10_1111_desc_12595 crossref_primary_10_1016_j_brs_2018_05_002 crossref_primary_10_1016_j_neuroimage_2012_01_042 crossref_primary_10_1038_s41386_018_0252_0 crossref_primary_10_1002_hbm_24592 crossref_primary_10_1016_j_neures_2007_05_016 crossref_primary_10_1007_s00213_009_1640_2 crossref_primary_10_1113_JP287085 crossref_primary_10_1117_1_NPh_5_1_011014 crossref_primary_10_1016_j_nicl_2012_10_001 crossref_primary_10_1016_j_neuropsychologia_2017_01_013 crossref_primary_10_1016_j_resp_2024_104364 crossref_primary_10_1038_s41598_022_06519_7 crossref_primary_10_1093_brain_awn348 crossref_primary_10_1097_j_pain_0000000000002293 crossref_primary_10_1299_transjsme_24_00094 crossref_primary_10_1117_1_NPh_11_4_045015 crossref_primary_10_1016_j_bandc_2011_01_006 crossref_primary_10_1016_j_neures_2007_05_005 crossref_primary_10_1002_hbm_25874 crossref_primary_10_1109_THMS_2018_2789682 crossref_primary_10_1007_s00213_007_0814_z crossref_primary_10_1016_j_neuroimage_2008_05_013 crossref_primary_10_1152_jn_00357_2023 crossref_primary_10_1371_journal_pone_0088209 crossref_primary_10_1002_dev_22229 crossref_primary_10_1016_j_neulet_2011_08_023 crossref_primary_10_1589_rika_38_338 crossref_primary_10_1162_jocn_2008_20073 crossref_primary_10_3389_fpsyg_2018_01205 crossref_primary_10_1016_j_neuroimage_2014_11_012 crossref_primary_10_3389_fnins_2020_00594 crossref_primary_10_1007_s10758_015_9251_y crossref_primary_10_1016_j_neuropsychologia_2021_107954 crossref_primary_10_1113_JP278788 crossref_primary_10_3389_fnbeh_2015_00190 crossref_primary_10_1162_0898929054021157 crossref_primary_10_1038_s41598_021_04169_9 crossref_primary_10_1097_WNR_0b013e328334f235 crossref_primary_10_1016_j_microrel_2007_07_007 crossref_primary_10_1038_s41598_022_25185_3 crossref_primary_10_1016_j_neuroimage_2011_05_034 crossref_primary_10_3389_fpsyt_2017_00274 crossref_primary_10_1016_j_neuroimage_2009_02_028 crossref_primary_10_1016_j_ijpsycho_2008_07_007 crossref_primary_10_1016_j_neuroimage_2014_05_046 crossref_primary_10_1088_1741_2552_ac297d crossref_primary_10_1088_1741_2560_12_6_066008 crossref_primary_10_1088_0031_9155_57_10_2857 crossref_primary_10_1589_rika_35_527 crossref_primary_10_1002_hup_2678 crossref_primary_10_1016_j_brainres_2015_02_053 crossref_primary_10_1371_journal_pone_0075598 crossref_primary_10_1016_j_neuro_2022_10_004 crossref_primary_10_1016_j_schres_2013_06_036 crossref_primary_10_3390_sexes5030016 crossref_primary_10_1186_s40814_016_0099_2 crossref_primary_10_1016_j_gerinurse_2024_12_010 crossref_primary_10_1255_jnirs_970 crossref_primary_10_3390_brainsci13010119 crossref_primary_10_1016_j_neuroimage_2005_09_048 crossref_primary_10_1093_cercor_bhq082 crossref_primary_10_3389_fnrgo_2021_731160 crossref_primary_10_3390_jcm7120466 crossref_primary_10_1016_j_jad_2023_01_115 crossref_primary_10_1016_j_yebeh_2015_04_006 crossref_primary_10_3389_fnins_2020_00570 crossref_primary_10_1016_j_neuroimage_2013_08_027 crossref_primary_10_1016_j_neuroimage_2013_08_021 crossref_primary_10_1109_TNSRE_2019_2956464 crossref_primary_10_3389_fnins_2022_1043133 crossref_primary_10_1255_jnirs_969 crossref_primary_10_1016_j_brs_2024_02_012 crossref_primary_10_1016_j_jneuroling_2022_101063 crossref_primary_10_1167_iovs_62_4_9 crossref_primary_10_1097_WNR_0b013e3282f262de crossref_primary_10_1080_0092623X_2012_665815 crossref_primary_10_1016_j_neures_2007_12_001 crossref_primary_10_1016_j_bspc_2024_106915 crossref_primary_10_1038_jcbfm_2011_100 crossref_primary_10_1016_j_neuroscience_2009_01_015 crossref_primary_10_3389_fnimg_2022_815778 crossref_primary_10_1371_journal_pone_0131328 crossref_primary_10_3389_fnhum_2018_00243 crossref_primary_10_1016_j_neuroimage_2005_08_019 crossref_primary_10_1016_j_neuroimage_2016_08_012 crossref_primary_10_1016_j_jpsychires_2011_05_011 crossref_primary_10_1080_10447318_2023_2279419 crossref_primary_10_30773_pi_2021_0372 crossref_primary_10_1523_JNEUROSCI_1984_06_2007 crossref_primary_10_1016_j_pscychresns_2007_01_009 crossref_primary_10_1093_cercor_bhz237 crossref_primary_10_1016_j_schres_2014_01_031 crossref_primary_10_1016_j_neulet_2012_02_048 crossref_primary_10_1016_j_psychres_2021_114229 crossref_primary_10_3389_fncom_2022_822987 crossref_primary_10_1007_s00221_013_3693_z crossref_primary_10_1016_j_neuroimage_2011_09_087 crossref_primary_10_1093_cercor_bhx055 crossref_primary_10_1523_ENEURO_0209_19_2020 crossref_primary_10_1016_j_pscychresns_2006_11_007 crossref_primary_10_1016_j_ajp_2016_11_001 crossref_primary_10_1007_s00702_020_02228_5 crossref_primary_10_1002_hbm_24973 crossref_primary_10_3390_sym12111794 crossref_primary_10_1016_j_clinph_2013_05_010 crossref_primary_10_1111_psyp_13802 crossref_primary_10_1016_j_neuropsychologia_2008_11_014 crossref_primary_10_3390_s20164551 crossref_primary_10_1523_JNEUROSCI_1318_04_2004 crossref_primary_10_3389_fnins_2020_00724 crossref_primary_10_3233_THC_220447 crossref_primary_10_1016_j_bandc_2020_105585 crossref_primary_10_1176_appi_ajp_2019_19070720 crossref_primary_10_3389_fnagi_2016_00240 crossref_primary_10_1183_13993003_00541_2015 crossref_primary_10_1080_00918369_2019_1648079 crossref_primary_10_1002_hbm_21453 crossref_primary_10_1016_j_bandl_2013_05_007 crossref_primary_10_1016_j_pscychresns_2009_01_001 crossref_primary_10_1007_s10548_012_0239_9 crossref_primary_10_1016_j_dcn_2020_100784 crossref_primary_10_1016_j_ifacol_2020_12_2755 crossref_primary_10_1515_REVNEURO_2006_17_1_2_227 crossref_primary_10_1007_s00702_022_02466_9 crossref_primary_10_1016_j_bbr_2009_01_040 crossref_primary_10_1155_2014_894203 crossref_primary_10_1080_13803395_2020_1853065 crossref_primary_10_1109_ACCESS_2024_3445158 crossref_primary_10_1016_j_schres_2013_07_048 crossref_primary_10_1109_JBHI_2023_3295892 crossref_primary_10_1016_j_neuropsychologia_2017_10_022 crossref_primary_10_1016_j_neuropsychologia_2023_108588 crossref_primary_10_1152_jn_90519_2008 crossref_primary_10_1097_WNR_0b013e32830dd61c crossref_primary_10_1016_j_neuroimage_2017_12_003 crossref_primary_10_1038_s41598_017_18897_4 crossref_primary_10_1016_j_neuroimage_2016_06_054 crossref_primary_10_1038_s41467_025_57392_7 crossref_primary_10_1002_dev_21145 crossref_primary_10_1007_s11682_014_9326_8 crossref_primary_10_1093_cercor_bhz246 crossref_primary_10_1016_j_bspc_2021_103190 crossref_primary_10_1113_jphysiol_2005_084954 crossref_primary_10_1097_WNR_0b013e32834e664c crossref_primary_10_1109_JSTQE_2018_2833205 crossref_primary_10_1016_j_neuroimage_2005_07_025 crossref_primary_10_1016_j_bbr_2015_03_028 crossref_primary_10_3389_fpsyg_2020_01393 crossref_primary_10_1186_1744_9081_9_21 crossref_primary_10_1016_j_conb_2006_06_016 crossref_primary_10_1109_LRA_2017_2765002 crossref_primary_10_1016_j_neulet_2009_05_028 crossref_primary_10_1038_s41598_023_41403_y crossref_primary_10_1002_hbm_21236 crossref_primary_10_1016_j_pnpbp_2014_12_005 crossref_primary_10_1002_hbm_21237 crossref_primary_10_1016_j_brs_2021_11_008 crossref_primary_10_1016_j_tics_2015_04_009 crossref_primary_10_1016_j_neuroimage_2004_10_039 crossref_primary_10_1016_j_neuroimage_2018_08_005 crossref_primary_10_1371_journal_pone_0120828 crossref_primary_10_1159_000484519 crossref_primary_10_1155_2015_318917 crossref_primary_10_1177_0309364618805260 crossref_primary_10_1016_j_brs_2025_01_017 crossref_primary_10_1371_journal_pone_0193004 crossref_primary_10_3109_15622975_2011_575177 crossref_primary_10_1371_journal_pone_0256626 crossref_primary_10_3390_brainsci13060876 crossref_primary_10_1371_journal_pone_0071607 crossref_primary_10_1016_j_clinph_2007_04_004 crossref_primary_10_1016_j_cortex_2009_02_018 crossref_primary_10_1002_hbm_22754 crossref_primary_10_1016_j_neuroimage_2011_08_084 crossref_primary_10_1111_j_1469_8986_2007_00633_x crossref_primary_10_3389_fphys_2015_00416 crossref_primary_10_3389_fphys_2023_1165939 crossref_primary_10_1111_desc_12333 crossref_primary_10_3758_s13415_019_00703_5 crossref_primary_10_1016_j_neuroimage_2014_04_067 crossref_primary_10_1080_10749357_2019_1659639 crossref_primary_10_3389_fpsyg_2021_527335 crossref_primary_10_1007_s00426_017_0846_x crossref_primary_10_1523_JNEUROSCI_1130_15_2016 crossref_primary_10_2530_jslsm_jslsm_36_0028 crossref_primary_10_1007_s00429_022_02512_y crossref_primary_10_1016_j_neuroimage_2005_05_019 crossref_primary_10_1016_j_pbb_2014_02_003 crossref_primary_10_1167_jov_21_2_1 crossref_primary_10_1080_13506285_2024_2337953 crossref_primary_10_1016_j_neuropsychologia_2016_09_017 crossref_primary_10_2147_NDT_S327608 crossref_primary_10_3389_fneur_2018_00915 crossref_primary_10_1007_s11682_016_9508_7 crossref_primary_10_3389_fncir_2023_1214959 crossref_primary_10_1016_j_cortex_2014_01_008 crossref_primary_10_1017_S0033291722000198 crossref_primary_10_1093_cercor_bhac423 crossref_primary_10_1007_s10015_017_0406_x crossref_primary_10_1016_j_neuropsychologia_2008_05_012 crossref_primary_10_1017_S1461145708009553 crossref_primary_10_1016_j_bandc_2015_05_001 crossref_primary_10_1002_hbm_20360 crossref_primary_10_1016_j_bandc_2015_05_003 crossref_primary_10_1152_jn_00614_2018 crossref_primary_10_1016_j_infrared_2017_06_011 crossref_primary_10_1523_JNEUROSCI_1239_18_2018 crossref_primary_10_1016_j_cogsys_2024_101242 crossref_primary_10_1038_s41562_024_01901_z crossref_primary_10_3389_fnins_2023_1224800 crossref_primary_10_1016_j_neuroimage_2011_06_018 crossref_primary_10_1186_1471_2202_9_103 crossref_primary_10_1016_j_bbr_2010_02_027 crossref_primary_10_1080_00223891_2012_666597 crossref_primary_10_1007_s00221_010_2415_z crossref_primary_10_1016_j_neuroscience_2018_01_055 crossref_primary_10_3758_s13415_021_00869_x crossref_primary_10_3389_fnhum_2022_1006350 crossref_primary_10_1016_j_appet_2006_04_003 crossref_primary_10_1371_journal_pone_0064095 crossref_primary_10_1097_WNR_0000000000000265 crossref_primary_10_1016_j_brainres_2008_06_052 crossref_primary_10_1038_s41598_024_61819_4 crossref_primary_10_1016_j_brs_2021_04_018 crossref_primary_10_1080_00207450701750448 crossref_primary_10_1177_10538135241303348 crossref_primary_10_3389_fnhum_2018_00086 crossref_primary_10_1007_s10548_019_00731_x crossref_primary_10_1016_j_neuroimage_2022_119520 crossref_primary_10_1002_cre2_32 crossref_primary_10_3390_brainsci9020038 crossref_primary_10_1155_2014_573862 crossref_primary_10_3389_fnins_2016_00261 crossref_primary_10_1016_j_neuroimage_2011_03_068 crossref_primary_10_5535_arm_2013_37_5_603 crossref_primary_10_1016_j_neulet_2010_12_045 crossref_primary_10_1109_TNSRE_2020_2965628 crossref_primary_10_1016_j_schres_2018_10_007 crossref_primary_10_1016_j_neuroimage_2005_12_008 crossref_primary_10_1038_s41598_019_55553_5 crossref_primary_10_1364_AO_46_001658 crossref_primary_10_1177_1550059417709177 crossref_primary_10_1016_j_cognition_2020_104378 crossref_primary_10_1097_WNR_0000000000001615 crossref_primary_10_3758_s13415_016_0456_x crossref_primary_10_1364_BOE_4_002893 crossref_primary_10_3758_s13415_020_00786_5 crossref_primary_10_1016_j_jad_2024_08_082 crossref_primary_10_1097_WNR_0b013e328354036f crossref_primary_10_1016_j_pscychresns_2015_04_003 crossref_primary_10_1016_j_neuroimage_2011_03_071 crossref_primary_10_1016_j_neurobiolaging_2017_09_017 crossref_primary_10_23736_S0022_4707_24_16055_0 crossref_primary_10_1002_wcs_1343 crossref_primary_10_1038_srep16438 crossref_primary_10_3390_ani14111539 crossref_primary_10_7717_peerj_7418 crossref_primary_10_1016_j_cortex_2014_08_015 crossref_primary_10_1111_pcn_12190 crossref_primary_10_3389_fnhum_2015_00066 crossref_primary_10_1016_j_ijpsycho_2021_01_016 crossref_primary_10_1080_00140139_2018_1535093 crossref_primary_10_1016_j_neuroimage_2020_116901 crossref_primary_10_3389_fnhum_2023_1089276 crossref_primary_10_14814_phy2_12899 crossref_primary_10_1186_s11689_024_09582_5 crossref_primary_10_1186_s13063_016_1461_7 crossref_primary_10_1073_pnas_2101273118 crossref_primary_10_1117_1_OE_59_6_061602 crossref_primary_10_1016_j_neuroimage_2009_05_028 crossref_primary_10_1016_j_neures_2005_12_006 crossref_primary_10_1016_j_ynirp_2021_100049 crossref_primary_10_1016_j_cortex_2011_09_013 crossref_primary_10_1038_s44184_024_00073_y crossref_primary_10_3389_fnhum_2023_1191284 crossref_primary_10_1159_000437431 crossref_primary_10_1016_j_neuroimage_2010_08_016 crossref_primary_10_1098_rspb_2008_0986 crossref_primary_10_1016_j_neuroimage_2021_118147 crossref_primary_10_1016_j_tine_2014_07_001 crossref_primary_10_1007_s10548_009_0103_8 crossref_primary_10_1016_j_jad_2024_07_031 crossref_primary_10_3389_fnhum_2017_00456 crossref_primary_10_1155_2013_653572 crossref_primary_10_1016_j_jpsychires_2021_12_021 crossref_primary_10_1177_1099800417706141 crossref_primary_10_1177_1687814015575979 crossref_primary_10_3389_fpsyt_2018_00016 crossref_primary_10_1186_s13063_018_2773_6 crossref_primary_10_1016_j_bspc_2025_107503 crossref_primary_10_1007_s10802_017_0286_5 crossref_primary_10_1097_WNR_0b013e32836131ca crossref_primary_10_1016_j_brainresbull_2022_09_012 crossref_primary_10_1097_WNR_0000000000000571 crossref_primary_10_1016_j_brainresbull_2015_12_004 crossref_primary_10_1016_j_biopsycho_2016_10_001 crossref_primary_10_1016_j_pscychresns_2013_07_009 crossref_primary_10_1007_s00221_013_3547_8 crossref_primary_10_1016_j_neuroscience_2010_08_072 crossref_primary_10_1186_s13063_015_0683_4 crossref_primary_10_1093_cercor_bhae321 crossref_primary_10_3389_fphys_2022_828357 crossref_primary_10_1016_j_neuroimage_2025_121018 crossref_primary_10_1016_j_jpsychires_2017_02_018 crossref_primary_10_1016_j_chb_2021_107151 crossref_primary_10_1093_scan_nsy022 crossref_primary_10_1051_itmconf_20171205005 crossref_primary_10_1016_j_ijhcs_2020_102582 crossref_primary_10_1016_j_jpsychires_2014_06_009 crossref_primary_10_1016_j_neuroimage_2013_07_025 crossref_primary_10_1117_1_JBO_24_5_056008 crossref_primary_10_3389_fnins_2023_1229307 crossref_primary_10_1016_j_neulet_2014_05_040 crossref_primary_10_1007_s12548_015_0122_x crossref_primary_10_1117_1_JBO_19_8_086012 crossref_primary_10_1016_j_biopsych_2025_01_002 crossref_primary_10_1162_jocn_a_01814 crossref_primary_10_1016_j_nicl_2014_09_001 crossref_primary_10_11154_pain_25_127 crossref_primary_10_1088_0031_9155_55_13_009 crossref_primary_10_1016_j_jpsychires_2022_07_064 crossref_primary_10_1121_10_0034627 crossref_primary_10_1016_j_neures_2008_10_012 crossref_primary_10_1111_epi_12095 crossref_primary_10_1113_JP282387 crossref_primary_10_1371_journal_pone_0115772 crossref_primary_10_1080_09297049_2013_803524 crossref_primary_10_1111_psyp_14024 crossref_primary_10_1080_15622975_2023_2287735 crossref_primary_10_1016_j_neubiorev_2010_06_005 crossref_primary_10_1016_j_neuroimage_2016_03_009 crossref_primary_10_1016_j_jad_2019_04_001 crossref_primary_10_1097_WNR_0000000000001876 crossref_primary_10_1016_j_dcn_2011_05_002 crossref_primary_10_1017_pen_2019_9 crossref_primary_10_3233_JND_210690 crossref_primary_10_1038_s41598_021_81208_5 crossref_primary_10_1016_j_neuroimage_2010_09_090 crossref_primary_10_1016_j_neuroimage_2021_118100 crossref_primary_10_1080_09297049_2022_2047913 crossref_primary_10_1111_j_1467_7687_2008_00681_x crossref_primary_10_1016_j_brainres_2009_06_080 crossref_primary_10_1016_j_neuroscience_2018_06_025 crossref_primary_10_3389_fnhum_2016_00656 crossref_primary_10_1080_1357650X_2015_1037309 crossref_primary_10_5432_ijshs_IJSHS20080330 crossref_primary_10_1016_j_addbeh_2020_106673 crossref_primary_10_1523_JNEUROSCI_1644_10_2010 crossref_primary_10_1016_j_neurobiolaging_2011_12_022 crossref_primary_10_1016_j_ymeth_2007_02_001 crossref_primary_10_11596_asiajot_12_75 crossref_primary_10_1186_s13063_024_08258_8 crossref_primary_10_1162_imag_a_00480 crossref_primary_10_1016_j_neurobiolaging_2024_03_008 crossref_primary_10_1016_j_bbr_2024_115038 crossref_primary_10_1016_j_neuroimage_2007_07_050 crossref_primary_10_1162_jocn_a_00911 crossref_primary_10_1016_j_neuroimage_2018_06_032 crossref_primary_10_1111_cns_14257 crossref_primary_10_1177_2055668320964109 crossref_primary_10_1007_s11357_023_00816_3 crossref_primary_10_1109_ACCESS_2023_3262658 crossref_primary_10_1111_j_1601_183X_2009_00497_x crossref_primary_10_1016_j_neuroimage_2012_01_104 crossref_primary_10_3390_brainsci10120939 crossref_primary_10_1299_transjsme_23_00006 crossref_primary_10_1002_jbio_202100295 crossref_primary_10_1016_j_neuropsychologia_2005_12_007 crossref_primary_10_1016_j_jad_2024_10_089 crossref_primary_10_1016_j_jpsychires_2008_02_005 crossref_primary_10_1016_j_actpsy_2016_06_005 crossref_primary_10_1016_j_neulet_2018_10_022 crossref_primary_10_1016_j_neuroimage_2005_03_021 crossref_primary_10_1080_00224499_2015_1130211 crossref_primary_10_12659_MSM_882128 crossref_primary_10_1111_psyp_14462 crossref_primary_10_1016_j_bspc_2020_102222 crossref_primary_10_1016_j_jad_2022_08_024 crossref_primary_10_1111_jpr_12227 crossref_primary_10_3109_02699052_2011_608212 crossref_primary_10_1016_j_neuroimage_2015_09_062 crossref_primary_10_1038_s41597_024_04136_9 crossref_primary_10_11596_asiajot_12_53 crossref_primary_10_1007_s11682_018_9867_3 crossref_primary_10_1016_j_neuropsychologia_2020_107650 crossref_primary_10_1038_s41598_021_93961_8 crossref_primary_10_1117_1_3602853 crossref_primary_10_1111_ner_13342 crossref_primary_10_1016_j_neures_2007_03_014 crossref_primary_10_1016_j_neuroimage_2016_03_035 crossref_primary_10_1007_s00213_011_2318_0 crossref_primary_10_3389_fnrgo_2023_1129582 crossref_primary_10_1016_j_jneumeth_2011_07_024 crossref_primary_10_1152_jn_00641_2018 crossref_primary_10_1080_15622975_2018_1428356 crossref_primary_10_1016_j_pscychresns_2015_09_008 crossref_primary_10_1016_j_bandl_2013_01_004 crossref_primary_10_1016_j_brainres_2012_08_023 crossref_primary_10_1016_j_mex_2023_102357 crossref_primary_10_1016_j_dcn_2010_12_004 crossref_primary_10_1093_cercor_bhae152 crossref_primary_10_1371_journal_pone_0310513 crossref_primary_10_1016_j_neures_2011_01_001 crossref_primary_10_1016_j_neuroimage_2011_01_011 crossref_primary_10_1002_dev_20569 crossref_primary_10_3390_mi11070635 crossref_primary_10_1080_08927936_2017_1335115 crossref_primary_10_1126_sciadv_aar6904 crossref_primary_10_1038_s41598_017_09226_w crossref_primary_10_3389_fneur_2023_1280015 crossref_primary_10_1007_s40167_015_0027_y crossref_primary_10_1016_j_neuroimage_2024_120700 crossref_primary_10_1016_j_nicl_2017_02_008 crossref_primary_10_1097_WNR_0b013e3283000825 crossref_primary_10_1016_j_bbr_2014_06_052 crossref_primary_10_3389_fpsyt_2022_853428 crossref_primary_10_1016_j_neuroimage_2010_09_030 crossref_primary_10_1016_j_bandc_2016_03_003 crossref_primary_10_1016_j_jpsychires_2009_11_018 crossref_primary_10_1016_j_neuropsychologia_2010_03_012 crossref_primary_10_1111_pcn_12548 crossref_primary_10_1111_jabr_12009 crossref_primary_10_3389_fpsyt_2021_772339 crossref_primary_10_3109_17483107_2012_671439 crossref_primary_10_1016_j_neuropsychologia_2021_107787 crossref_primary_10_5057_ijae_IJAE_D_20_00024 crossref_primary_10_1016_j_jpsychires_2008_04_008 crossref_primary_10_3389_fnhum_2017_00431 crossref_primary_10_1002_jbio_201700308 crossref_primary_10_1016_j_brainres_2005_11_050 crossref_primary_10_1016_j_heares_2019_04_011 crossref_primary_10_1007_s11571_020_09589_3 crossref_primary_10_1364_BOE_5_002503 crossref_primary_10_1016_j_neuroimage_2005_01_018 crossref_primary_10_3389_fnhum_2016_00676 crossref_primary_10_1016_j_biopsych_2020_05_033 crossref_primary_10_1016_j_neurobiolaging_2024_02_011 crossref_primary_10_1155_2016_7053867 crossref_primary_10_1016_j_ijpsycho_2017_07_013 crossref_primary_10_1016_j_neuroimage_2004_08_001 crossref_primary_10_1038_s41598_019_49257_z crossref_primary_10_1016_j_neuropsychologia_2017_06_005 crossref_primary_10_1016_j_pscychresns_2013_05_011 crossref_primary_10_2463_jjmrm_2023_1804 crossref_primary_10_1109_ACCESS_2021_3050302 crossref_primary_10_1113_JP283408 crossref_primary_10_1002_hbm_26335 crossref_primary_10_1016_j_drugalcdep_2019_107650 crossref_primary_10_1016_j_neuroimage_2006_10_043 crossref_primary_10_1063_5_0021420 crossref_primary_10_3389_fnhum_2021_637589 crossref_primary_10_3389_fpsyg_2018_00742 crossref_primary_10_7554_eLife_63782 crossref_primary_10_1080_08990220_2017_1392298 crossref_primary_10_1007_s10548_009_0109_2 crossref_primary_10_1073_pnas_1903940116 crossref_primary_10_1002_hbm_70001 crossref_primary_10_1016_j_brainres_2010_04_048 crossref_primary_10_3389_fnhum_2017_00419 crossref_primary_10_1002_hbm_24220 crossref_primary_10_1038_s41598_020_71704_5 crossref_primary_10_1080_09297049_2023_2213463 crossref_primary_10_1038_s41598_022_08689_w crossref_primary_10_1093_cercor_bhs321 crossref_primary_10_1109_TBME_2018_2889316 crossref_primary_10_1016_j_braindev_2014_03_011 crossref_primary_10_1111_pedi_12992 crossref_primary_10_1007_s11858_010_0256_7 crossref_primary_10_1016_j_neuroimage_2018_04_022 crossref_primary_10_3389_fnhum_2018_00313 crossref_primary_10_1523_JNEUROSCI_5618_09_2010 crossref_primary_10_1142_S0129065717500526 crossref_primary_10_3389_fnins_2017_00482 crossref_primary_10_1038_s41598_024_69222_9 crossref_primary_10_1371_journal_pone_0259422 crossref_primary_10_1016_j_pscychresns_2011_01_016 crossref_primary_10_3389_fnins_2017_00004 crossref_primary_10_1016_j_biopsych_2018_12_002 crossref_primary_10_1016_j_bandl_2012_02_001 crossref_primary_10_1111_bdi_12252 crossref_primary_10_3390_brainsci13050748 crossref_primary_10_1002_brb3_2476 crossref_primary_10_1007_s11682_018_9827_y crossref_primary_10_1038_ncomms8544 crossref_primary_10_3389_fneur_2021_746599 crossref_primary_10_1016_j_bbr_2010_06_016 crossref_primary_10_1038_s41598_020_62761_x crossref_primary_10_3233_NRE_182566 crossref_primary_10_1117_1_1960907 crossref_primary_10_1016_j_neuroimage_2006_04_197 crossref_primary_10_1016_j_jad_2016_09_028 crossref_primary_10_1177_1545968320969937 crossref_primary_10_1038_srep43293 crossref_primary_10_3390_brainsci13091284 crossref_primary_10_1109_ACCESS_2019_2939475 crossref_primary_10_1186_s12883_015_0472_4 crossref_primary_10_1371_journal_pbio_3000469 crossref_primary_10_1371_journal_pone_0257029 crossref_primary_10_1016_j_bandl_2017_03_005 crossref_primary_10_1007_s00484_012_0583_1 crossref_primary_10_3389_fnins_2021_705741 crossref_primary_10_1186_s13011_022_00459_1 crossref_primary_10_1117_1_JBO_19_2_026011 crossref_primary_10_1117_1_NPh_8_2_025009 crossref_primary_10_1111_jpr_12194 crossref_primary_10_1016_j_neuroimage_2013_02_026 crossref_primary_10_3390_jcm11185480 crossref_primary_10_1016_j_expneurol_2013_10_005 crossref_primary_10_1123_japa_2020_0130 crossref_primary_10_1117_1_NPh_4_1_015003 crossref_primary_10_9759_hppt_14_137 crossref_primary_10_3389_fneur_2023_1216468 crossref_primary_10_1097_WNR_0000000000001272 crossref_primary_10_1016_j_neuroimage_2013_04_090 crossref_primary_10_1016_j_neuroimage_2007_04_037 crossref_primary_10_1016_j_neuroimage_2023_120379 crossref_primary_10_1089_neu_2013_3306 crossref_primary_10_1002_dneu_20618 crossref_primary_10_1016_j_neuroimage_2013_04_098 crossref_primary_10_1093_cercor_bhab432 crossref_primary_10_1002_hbm_25318 crossref_primary_10_1016_j_neuroimage_2013_04_097 crossref_primary_10_11596_asiajot_20_77 crossref_primary_10_1016_j_aap_2016_01_016 crossref_primary_10_1016_j_biopsycho_2019_107743 crossref_primary_10_1093_cercor_bhp090 crossref_primary_10_4264_numa_70_145 crossref_primary_10_1016_j_neuroimage_2006_09_024 crossref_primary_10_3390_ijerph16071119 crossref_primary_10_1016_j_neuropsychologia_2015_11_005 crossref_primary_10_1155_2023_7768980 crossref_primary_10_3389_fnhum_2020_00075 crossref_primary_10_1016_j_clinph_2009_01_023 crossref_primary_10_3390_brainsci13010029 crossref_primary_10_1038_s41598_022_14146_5 crossref_primary_10_1016_j_pnpbp_2022_110634 crossref_primary_10_1155_2019_9167028 crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_602_24 crossref_primary_10_1117_1_2815720 crossref_primary_10_1371_journal_pone_0201486 crossref_primary_10_1007_s10803_024_06306_5 crossref_primary_10_1002_hbm_21382 crossref_primary_10_1109_TBME_2020_2971679 crossref_primary_10_1093_cercor_bhr023 crossref_primary_10_1371_journal_pone_0006881 crossref_primary_10_1016_j_nicl_2025_103733 crossref_primary_10_1016_j_bbr_2016_12_040 crossref_primary_10_1152_jn_00223_2011 crossref_primary_10_1016_j_pscychresns_2008_10_003 crossref_primary_10_1016_j_neuroimage_2013_04_070 crossref_primary_10_1016_j_jpsychires_2007_11_011 crossref_primary_10_5057_kansei_20_1_14 crossref_primary_10_1007_s00221_008_1643_y crossref_primary_10_1155_2016_6168245 crossref_primary_10_1007_s00221_007_1200_0 crossref_primary_10_1016_j_brainres_2008_11_077 crossref_primary_10_1016_j_brs_2020_05_012 crossref_primary_10_3389_fpsyt_2022_876136 crossref_primary_10_1002_hbm_24405 crossref_primary_10_1371_journal_pone_0108685 crossref_primary_10_1016_j_neuroimage_2006_09_001 crossref_primary_10_1179_174313208X319143 crossref_primary_10_1016_j_schres_2009_10_003 crossref_primary_10_4236_nm_2012_34043 crossref_primary_10_1093_cercor_bht230 crossref_primary_10_3389_fnbeh_2022_884490 crossref_primary_10_1016_j_jad_2020_12_048 crossref_primary_10_3389_fnhum_2020_00057 crossref_primary_10_1371_journal_pone_0066319 crossref_primary_10_1016_j_bios_2019_04_046 crossref_primary_10_1016_j_clinph_2024_08_005 crossref_primary_10_1038_srep22500 crossref_primary_10_1016_j_actpsy_2024_104363 crossref_primary_10_20900_jpbs_20240001 crossref_primary_10_3390_ijerph18105500 crossref_primary_10_17430_1003278 crossref_primary_10_1016_j_neuroimage_2012_06_011 crossref_primary_10_1016_j_brs_2023_11_011 crossref_primary_10_1002_hbm_25764 crossref_primary_10_1080_01691864_2014_899162 crossref_primary_10_1016_j_bandc_2017_02_003 crossref_primary_10_1371_journal_pone_0247685 crossref_primary_10_1007_s00221_015_4545_9 crossref_primary_10_3389_fnins_2021_771056 crossref_primary_10_1117_1_NPh_4_2_021107 crossref_primary_10_1016_j_nicl_2015_06_011 crossref_primary_10_1038_s41598_018_27153_2 crossref_primary_10_1117_1_NPh_10_2_023515 crossref_primary_10_1016_j_neulet_2016_05_069 crossref_primary_10_1016_j_bandc_2020_105601 crossref_primary_10_1097_WNR_0b013e3282f3476f crossref_primary_10_1016_j_neuropsychologia_2010_12_009 crossref_primary_10_1016_j_braindev_2014_01_003 crossref_primary_10_1016_j_schres_2023_12_028 crossref_primary_10_1155_2021_4158580 crossref_primary_10_1113_JP286004 crossref_primary_10_1007_s00213_018_4952_2 crossref_primary_10_1101_lm_048033_118 crossref_primary_10_1117_1_1851512 crossref_primary_10_1016_j_neulet_2011_11_009 crossref_primary_10_1016_j_bbr_2010_04_017 crossref_primary_10_1155_2016_9826596 crossref_primary_10_1007_s10339_014_0641_1 crossref_primary_10_1016_j_jpsychires_2015_01_009 crossref_primary_10_1016_j_cortex_2015_04_015 crossref_primary_10_1080_17470919_2015_1088469 crossref_primary_10_1142_S1793545817500109 crossref_primary_10_1371_journal_pone_0120731 crossref_primary_10_1371_journal_pone_0115162 crossref_primary_10_1002_brb3_1788 crossref_primary_10_4103_1673_5374_295333 crossref_primary_10_3233_NRE_210034 crossref_primary_10_1002_aur_2082 crossref_primary_10_3389_fnins_2024_1322071 crossref_primary_10_1111_adb_12005 crossref_primary_10_1016_j_neuroimage_2021_118324 crossref_primary_10_1016_j_neuroimage_2006_08_014 crossref_primary_10_1016_j_neulet_2008_01_046 crossref_primary_10_1523_JNEUROSCI_0954_23_2023 crossref_primary_10_1007_s00221_019_05665_1 crossref_primary_10_1016_j_neuropsychologia_2013_10_018 crossref_primary_10_1016_j_neuroimage_2015_12_047 crossref_primary_10_1016_j_brainres_2022_147998 crossref_primary_10_3389_fnagi_2024_1389488 crossref_primary_10_1016_j_heares_2020_108069 crossref_primary_10_1016_j_nicl_2018_101622 crossref_primary_10_1113_JP280966 crossref_primary_10_1016_j_neuroscience_2016_11_032 crossref_primary_10_1589_jpts_31_242 crossref_primary_10_1016_j_brainres_2011_01_090 crossref_primary_10_1016_j_neuropsychologia_2009_09_036 crossref_primary_10_1186_2040_7378_3_4 crossref_primary_10_3389_fnrgo_2024_1331083 crossref_primary_10_1093_cercor_bhac114 crossref_primary_10_1007_s11596_014_1334_9 crossref_primary_10_1111_desc_12628 crossref_primary_10_1007_s00221_020_05995_5 crossref_primary_10_1016_j_ijpsycho_2011_02_004 crossref_primary_10_1097_WNR_0000000000000347 crossref_primary_10_1016_j_jneumeth_2016_02_024 crossref_primary_10_1080_09084282_2011_595450 crossref_primary_10_1016_j_archger_2014_07_003 crossref_primary_10_1097_MD_0000000000038753 crossref_primary_10_1038_s41598_020_67162_8 crossref_primary_10_1186_s40810_016_0016_1 crossref_primary_10_1002_hbm_21115 crossref_primary_10_1162_jocn_a_00108 crossref_primary_10_1007_s10548_015_0443_5 crossref_primary_10_1371_journal_pone_0061926 crossref_primary_10_1371_journal_pone_0140552 crossref_primary_10_1016_j_neuroimage_2012_09_042 crossref_primary_10_1186_s12888_023_04694_z crossref_primary_10_1016_j_brainres_2011_01_073 crossref_primary_10_1016_j_neuroimage_2017_09_044 crossref_primary_10_1016_j_neures_2014_01_003 crossref_primary_10_1097_WNR_0000000000002112 crossref_primary_10_1016_j_brs_2008_09_005 crossref_primary_10_1300_J184v10n04_05 crossref_primary_10_1016_j_jqsrt_2016_11_018 crossref_primary_10_1016_j_neuroimage_2008_02_032 crossref_primary_10_1111_desc_13541 crossref_primary_10_1371_journal_pone_0004621 crossref_primary_10_1038_s41598_019_41739_4 crossref_primary_10_1016_j_neuropsychologia_2015_07_013 crossref_primary_10_1016_j_cortex_2016_11_016 crossref_primary_10_1589_rika_25_109 crossref_primary_10_3389_fnrgo_2023_1207484 crossref_primary_10_1016_j_pnpbp_2010_07_021 crossref_primary_10_1016_j_jad_2015_01_042 crossref_primary_10_1016_j_brs_2022_07_045 crossref_primary_10_3389_fnhum_2021_711054 crossref_primary_10_1016_j_ijpsycho_2007_03_004 crossref_primary_10_1016_j_neuroimage_2019_116161 crossref_primary_10_1117_1_NPh_2_3_035002 crossref_primary_10_1016_j_jneumeth_2016_03_003 crossref_primary_10_1016_j_physbeh_2019_112721 crossref_primary_10_1093_cercor_bhn096 crossref_primary_10_1016_j_neuroimage_2005_12_021 crossref_primary_10_1093_cercor_bhy086 crossref_primary_10_1073_pnas_0809747106 crossref_primary_10_1016_j_neuropsychologia_2018_04_033 crossref_primary_10_1109_TCDS_2020_3001642 crossref_primary_10_1016_j_neuroimage_2008_03_055 crossref_primary_10_1016_j_bandc_2009_11_005 crossref_primary_10_3389_fnhum_2021_680847 crossref_primary_10_4236_jbbs_2016_612044 crossref_primary_10_1016_j_bbr_2020_112865 crossref_primary_10_1002_lio2_185 crossref_primary_10_1093_cercor_bhn081 crossref_primary_10_1155_2014_591023 crossref_primary_10_1097_WNR_0b013e32832aa975 crossref_primary_10_1371_journal_pone_0158070 crossref_primary_10_1589_jpts_29_702 crossref_primary_10_1016_j_pscychresns_2011_12_008 crossref_primary_10_1186_1471_2202_11_91 crossref_primary_10_1007_s10548_015_0454_2 crossref_primary_10_1016_j_neuropsychologia_2009_07_017 crossref_primary_10_1016_j_jash_2015_06_007 crossref_primary_10_2974_kmj_62_271 crossref_primary_10_1177_1545968311412053 crossref_primary_10_1016_j_neuroimage_2020_117597 crossref_primary_10_1016_j_pscychresns_2025_111964 crossref_primary_10_1093_cercor_bhad417 crossref_primary_10_1371_journal_pone_0256780 crossref_primary_10_1002_pchj_67 crossref_primary_10_1179_1743132812Y_0000000047 crossref_primary_10_1016_j_neuroimage_2010_06_064 crossref_primary_10_1080_13554794_2014_890731 crossref_primary_10_1080_08990220_2019_1699044 crossref_primary_10_3389_fnins_2019_01071 crossref_primary_10_3389_fpsyg_2020_542093 crossref_primary_10_1016_j_psychres_2023_115285 crossref_primary_10_1016_j_neures_2011_10_008 crossref_primary_10_1109_TNSRE_2005_847377 crossref_primary_10_1038_s41598_017_04357_6 crossref_primary_10_1155_2022_3878771 crossref_primary_10_3390_sym12040538 crossref_primary_10_1038_s41598_017_10024_7 crossref_primary_10_1038_srep42858 crossref_primary_10_1088_1741_2560_11_5_056010 crossref_primary_10_1089_brain_2024_0043 crossref_primary_10_25259_SNI_210_2023 crossref_primary_10_1186_s10194_024_01754_x crossref_primary_10_1152_jn_01273_2005 crossref_primary_10_1098_rstb_2010_0184 crossref_primary_10_4236_psych_2014_58094 crossref_primary_10_1016_j_jpain_2019_05_011 crossref_primary_10_1016_j_apmr_2023_05_012 crossref_primary_10_1117_1_NPh_10_3_035005 crossref_primary_10_1155_2015_707625 crossref_primary_10_1186_s12984_020_00739_6 crossref_primary_10_1016_j_neulet_2014_12_034 crossref_primary_10_1016_j_neuroimage_2013_05_106 crossref_primary_10_1117_1_NPh_1_1_015004 crossref_primary_10_1016_j_neuroimage_2010_01_068 crossref_primary_10_1016_j_neuropsychologia_2012_02_015 crossref_primary_10_1016_j_jpsychires_2012_08_001 crossref_primary_10_1016_j_cortex_2018_08_012 crossref_primary_10_1016_j_neuroimage_2014_08_034 crossref_primary_10_1111_pcn_12052 crossref_primary_10_1111_j_1440_1819_2008_01882_x crossref_primary_10_1007_s00213_012_2885_8 crossref_primary_10_1044_2016_JSLHR_H_15_0435 crossref_primary_10_1016_j_bbr_2011_12_038 crossref_primary_10_1016_j_chemosphere_2023_138153 crossref_primary_10_1117_1_2166632 crossref_primary_10_1088_1741_2552_aae4b9 crossref_primary_10_1589_jpts_35_502 crossref_primary_10_1007_s10548_013_0304_z crossref_primary_10_1089_brain_2024_0015 crossref_primary_10_1179_1074935714Z_0000000032 crossref_primary_10_1080_15374416_2012_719458 crossref_primary_10_1117_1_NPh_5_3_035010 crossref_primary_10_1016_j_neuroscience_2020_06_007 crossref_primary_10_3390_nu11092019 crossref_primary_10_1523_ENEURO_0504_21_2022 crossref_primary_10_1038_s41598_022_11324_3 crossref_primary_10_1016_j_jad_2017_07_031 crossref_primary_10_1002_hbm_20303 crossref_primary_10_1016_j_brain_2023_100086 crossref_primary_10_1155_2014_360179 crossref_primary_10_5057_isase_2020_C000027 crossref_primary_10_1007_s00221_008_1518_2 crossref_primary_10_1371_journal_pone_0020021 crossref_primary_10_1177_1550059413476031 crossref_primary_10_1016_j_brainres_2008_05_079 crossref_primary_10_1155_2015_373769 crossref_primary_10_3389_fnhum_2017_00147 crossref_primary_10_1371_journal_pone_0003912 crossref_primary_10_1016_j_bbr_2015_04_053 crossref_primary_10_1016_j_neuroscience_2018_10_040 crossref_primary_10_1093_cercor_bhaa077 crossref_primary_10_1162_imag_a_00167 crossref_primary_10_3390_brainsci10040247 crossref_primary_10_1038_s41598_022_14458_6 crossref_primary_10_3389_fnagi_2021_595288 crossref_primary_10_1016_j_bandl_2011_03_010 crossref_primary_10_1016_j_neuropsychologia_2009_09_028 crossref_primary_10_1016_j_schres_2008_12_010 crossref_primary_10_1016_j_clinph_2011_10_006 crossref_primary_10_1038_s41598_019_49917_0 crossref_primary_10_1186_s12868_024_00864_1 crossref_primary_10_1016_j_neures_2010_01_010 crossref_primary_10_1016_j_clinph_2007_02_003 crossref_primary_10_3390_bioengineering10101112 crossref_primary_10_1016_j_bandc_2019_05_001 crossref_primary_10_1016_j_pscychresns_2014_04_012 crossref_primary_10_1016_j_neuroimage_2009_12_023 crossref_primary_10_1289_EHP2049 crossref_primary_10_1364_OE_18_026550 crossref_primary_10_3389_fbioe_2022_841389 crossref_primary_10_3109_15622975_2011_564654 crossref_primary_10_1038_s41598_017_07897_z crossref_primary_10_1016_j_neuropsychologia_2012_11_023 crossref_primary_10_2340_jrm_v56_40111 crossref_primary_10_1016_j_neures_2008_03_011 crossref_primary_10_1016_j_neuroimage_2006_06_047 crossref_primary_10_1155_2018_7403471 crossref_primary_10_3389_fped_2017_00271 crossref_primary_10_1016_j_learninstruc_2014_11_003 crossref_primary_10_1080_00918369_2018_1550331 crossref_primary_10_1016_j_biopsycho_2022_108359 crossref_primary_10_1109_ACCESS_2021_3074220 crossref_primary_10_1007_s11517_012_0922_8 crossref_primary_10_3233_RNN_150518 crossref_primary_10_1002_brb3_980 crossref_primary_10_1016_j_neulet_2022_136967 crossref_primary_10_1152_jn_00947_2016 crossref_primary_10_1111_psyp_14564 crossref_primary_10_1007_s00429_021_02333_5 crossref_primary_10_3389_fnhum_2024_1366443 crossref_primary_10_1016_j_bandc_2023_105995 crossref_primary_10_1016_j_neuroimage_2020_116657 crossref_primary_10_1016_j_neuropsychologia_2015_10_002 crossref_primary_10_1007_s00221_009_2113_x crossref_primary_10_1016_j_neures_2007_06_1466 crossref_primary_10_20965_jrm_2017_p0746 crossref_primary_10_3389_fnins_2018_00176 crossref_primary_10_1038_s41598_021_01654_z crossref_primary_10_1038_s41598_018_21634_0 crossref_primary_10_1118_1_3190557 crossref_primary_10_1016_j_cognition_2021_104711 crossref_primary_10_1038_s41598_022_08322_w crossref_primary_10_1016_j_neures_2007_06_1480 crossref_primary_10_1263_jbb_103_207 crossref_primary_10_1016_j_bandc_2012_04_006 crossref_primary_10_1007_s00521_011_0744_x crossref_primary_10_1016_j_neuroimage_2013_12_011 crossref_primary_10_1016_j_neures_2012_02_004 crossref_primary_10_1016_j_pscychresns_2012_01_007 crossref_primary_10_1016_j_bandl_2011_05_002 crossref_primary_10_1093_scan_nsx012 crossref_primary_10_1111_psyp_13019 crossref_primary_10_1016_j_foodqual_2022_104689 crossref_primary_10_1097_WNR_0b013e32832fa65f crossref_primary_10_1002_hbm_25173 crossref_primary_10_1080_00222895_2017_1400947 crossref_primary_10_3389_fnhum_2021_726087 crossref_primary_10_1016_j_bspc_2018_05_018 crossref_primary_10_3389_fnins_2022_1079078 crossref_primary_10_1016_j_neuroscience_2021_01_007 crossref_primary_10_1016_j_brs_2023_04_006 crossref_primary_10_1111_acer_14654 crossref_primary_10_1016_j_neuroimage_2012_03_049 crossref_primary_10_1007_s12021_024_09714_1 crossref_primary_10_1038_srep05023 crossref_primary_10_3389_fnhum_2023_1205858 crossref_primary_10_1111_pcn_12684 crossref_primary_10_3389_fnhum_2015_00110 crossref_primary_10_1038_srep17471 crossref_primary_10_1016_j_schres_2016_01_045 crossref_primary_10_1177_0022034512450880 crossref_primary_10_1007_s00429_014_0878_6 crossref_primary_10_1371_journal_pone_0102306 crossref_primary_10_1038_s41593_023_01457_7 crossref_primary_10_1177_1087054711429702 crossref_primary_10_1097_WNR_0b013e3282f4aa2a crossref_primary_10_1016_j_jad_2015_04_010 crossref_primary_10_3389_fnhum_2021_674851 crossref_primary_10_1136_bmjopen_2021_050413 crossref_primary_10_1073_pnas_1512044113 crossref_primary_10_1162_jocn_2009_21126 crossref_primary_10_1162_jocn_2009_21377 crossref_primary_10_1016_j_neuroimage_2008_07_014 crossref_primary_10_4103_1673_5374_313058 crossref_primary_10_1371_journal_pone_0035080 crossref_primary_10_1097_WNN_0b013e3181684d87 crossref_primary_10_1589_rika_28_577 crossref_primary_10_1097_TGR_0000000000000399 crossref_primary_10_1007_s11858_015_0754_8 crossref_primary_10_1016_j_neuroimage_2013_04_112 crossref_primary_10_3389_fnhum_2014_00301 crossref_primary_10_1016_j_neuroimage_2007_12_037 crossref_primary_10_1523_JNEUROSCI_0975_23_2023 crossref_primary_10_1007_s40167_018_0064_4 crossref_primary_10_1364_BOE_507294 crossref_primary_10_3988_jcn_2013_9_2_75 crossref_primary_10_1111_ejn_15164 crossref_primary_10_1016_j_pnpbp_2009_01_014 crossref_primary_10_1016_j_brainresbull_2015_09_006 crossref_primary_10_1016_j_neuroimage_2010_01_026 crossref_primary_10_3389_fnhum_2018_00505 crossref_primary_10_1016_j_braindev_2024_03_006 crossref_primary_10_3389_fneur_2018_00350 crossref_primary_10_3389_fpsyg_2022_801531 crossref_primary_10_34133_2021_9821787 crossref_primary_10_1017_S0033291721001859 crossref_primary_10_1371_journal_pone_0240301 crossref_primary_10_3389_fnins_2023_1198222 crossref_primary_10_1016_j_pscychresns_2017_03_013 crossref_primary_10_1016_j_pnpbp_2024_111225 crossref_primary_10_1080_17470919_2013_861359 crossref_primary_10_1016_j_mhpa_2023_100534 crossref_primary_10_1155_2023_3836418 crossref_primary_10_4236_jbbs_2014_412053 crossref_primary_10_1016_j_neuroimage_2012_03_009 crossref_primary_10_1016_j_schres_2015_07_043 crossref_primary_10_3233_NRE_230355 crossref_primary_10_1097_WNR_0b013e32832d2d36 crossref_primary_10_1007_s10803_017_3222_1 crossref_primary_10_1111_j_1460_9568_2008_06459_x crossref_primary_10_1016_j_jad_2025_02_116 crossref_primary_10_3233_THC_202580 crossref_primary_10_1002_hbm_25367 crossref_primary_10_1002_brb3_70038 crossref_primary_10_1371_journal_pone_0005495 crossref_primary_10_1016_j_brs_2017_02_011 crossref_primary_10_3389_fphys_2020_01042 crossref_primary_10_1589_jpts_20_141 crossref_primary_10_1080_00140139_2015_1076057 crossref_primary_10_1016_j_neuroimage_2013_11_003 crossref_primary_10_3389_fnins_2017_00394 crossref_primary_10_1016_j_bandl_2013_09_008 crossref_primary_10_1016_j_brainres_2011_06_052 crossref_primary_10_1088_1741_2552_ab50b2 |
Cites_doi | 10.1016/S0140-6736(85)92413-4 10.1016/S0304-3940(98)00754-X 10.1111/j.1749-6632.1991.tb51572.x 10.1016/0013-4694(86)90003-9 10.1016/0013-4694(74)90172-2 10.1097/00004691-199010000-00006 10.1038/nrn756 10.1118/1.596777 10.1016/S0166-2236(97)01132-6 10.1016/S0926-6410(00)00006-9 10.1016/S0304-3940(01)01518-X 10.1002/hbm.460030303 10.1212/01.WNL.0000038744.30298.D4 10.1148/radiology.176.2.2367656 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1155/2000/421719 10.1097/00004691-199101000-00004 10.1016/0013-4694(87)90206-9 10.1117/1.429973 10.1016/0304-3940(96)12376-4 10.1016/0013-4694(89)90073-4 10.1364/AO.36.000021 10.1006/nimg.2000.0688 10.1006/nimg.2001.0905 10.1016/0013-4694(93)90062-Z 10.1002/hbm.1021 10.1016/0013-4694(89)90227-7 10.1097/00004691-200208000-00006 10.1016/0013-4694(93)90061-Y |
ContentType | Journal Article |
Copyright | 2003 Elsevier Inc. Copyright Elsevier Limited Jan 1, 2004 |
Copyright_xml | – notice: 2003 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 1, 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2003.08.026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database (Proquest) Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 111 |
ExternalDocumentID | 3244217511 14741647 10_1016_j_neuroimage_2003_08_026 S1053811903005366 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c521t-904c7461ce29228f61d18d95171818bfee9ebe471548e2cfa1258a745be5fb8c3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 |
IngestDate | Tue Aug 05 10:56:54 EDT 2025 Wed Aug 13 07:39:59 EDT 2025 Wed Feb 19 01:43:38 EST 2025 Thu Apr 24 22:57:26 EDT 2025 Tue Jul 01 00:49:11 EDT 2025 Fri Feb 23 02:29:07 EST 2024 Tue Aug 26 16:31:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transcranial magnetic stimulation Human brain mapping Probabilistic anatomical platform Near-infrared spectroscopy |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-904c7461ce29228f61d18d95171818bfee9ebe471548e2cfa1258a745be5fb8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 14741647 |
PQID | 1506604170 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_80116284 proquest_journals_1506604170 pubmed_primary_14741647 crossref_primary_10_1016_j_neuroimage_2003_08_026 crossref_citationtrail_10_1016_j_neuroimage_2003_08_026 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_08_026 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_08_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004 2004-1-00 2004-Jan 20040101 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 2004 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Homan, Herman, Purdy (BIB12) 1987; 66 Jalinous (BIB16) 1991; 8 Watanabe, Maki, Kawaguchi, Takashiro, Yamashita, Koizumi, Mayanagi (BIB38) 1998; 256 Brodmann (BIB5) 1912; 41 Mazziotta, Toga, Evans, Fox, Lancaster, Woods (BIB21) 2000 Isobe, Kusaka, Nagano, Okubo, Yasuda, Kondo, Itoh, Onishi (BIB14) 2001; 299 Barker, Jalinous, Freeston (BIB1) 1985; 1 Hoshi, Oda, Wada, Ito, Yamashita, Oda, Ohta, Yamada, Tamura (BIB13) 2000; 9 Villringer, Chance (BIB35) 1997; 20 Talairach, Tournoux (BIB30) 1988 Villringer, Dirnagl (BIB36) 1995; 7 Farrell, Patterson, Wilson (BIB7) 1992; 19 Friston, Ashburner, Frith, Poline, Heather, Frackowiak (BIB9) 1995; 2 Jack, Marsh, Hirschorn, Shabrough, Cascino, Karwoski, Robb (BIB15) 1990; 176 Towle, Bolanos, Suarez, Tan, Grzeszczuk, Levin, Cakmur, Frank, Spire (BIB32) 1993; 86 Gevins, Illes (BIB10) 1991; 620 Van den Elsen, Viergever (BIB34) 1991 Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (BIB19) 2000; 10 Miyai, Tanabe, Sase, Eda, Oda, Konishi, Tsunazawa, Suzuki, Yanagida, Kubota (BIB22) 2001; 14 Myslobodsky, Coppola, Bar-Ziv, Weinberger (BIB25) 1990; 7 Tsunazawa, Eda, Takada (BIB33) 1994 Mai, Assheuer, Paxinos (BIB20) 1997 Curra, Modugno, Inghilleri, Manfredi, Hallett, Berardelli (BIB6) 2002; 59 Watanabe, Yamashita, Maki, Ito, Koizumi (BIB37) 1996; 205 Morris, Lüders, Lesser, Dinner, Klem (BIB23) 1986; 63 Brodmann (BIB4) 1909 Steinmetz, Furst, Meyer (BIB40) 1989; 72 Lagerlund, Sharbrough, Jack, Erickson, Strelow, Cicora, Busacker (BIB18) 1993; 86 Myslobodsky, Bar-Ziv (BIB24) 1989; 72 Rorden, Brett (BIB28) 2000; 12 Terao, Ugawa (BIB31) 2002; 19 Blume, Buza, Okazaki (BIB2) 1974; 36 Takahashi, Ogata, Atsumi, Yamamoto, Shiotsuka, Maki, Yamashita, Yamamoto, Koizumi, Hirasawa, Igawa (BIB29) 2000; 5 Ono, Kubik, Abernathey (BIB27) 1990 Feng, Zeng, Chance (BIB8) 1993; 1888 Jasper (BIB17) 1958; 10 Gratton, Goodman-Wood, Fabiani (BIB11) 2001; 13 Brett, Johnsrude, Owen (BIB3) 2002; 3 Okada, Firbank, Schweiger, Arridge, Cope, Delpy (BIB26) 1997; 36 Zilles, Kawashima, Dabringhaus, Fukuda, Schormann (BIB39) 2001; 13 Watanabe (10.1016/j.neuroimage.2003.08.026_BIB38) 1998; 256 Zilles (10.1016/j.neuroimage.2003.08.026_BIB39) 2001; 13 Friston (10.1016/j.neuroimage.2003.08.026_BIB9) 1995; 2 Jalinous (10.1016/j.neuroimage.2003.08.026_BIB16) 1991; 8 Gevins (10.1016/j.neuroimage.2003.08.026_BIB10) 1991; 620 Feng (10.1016/j.neuroimage.2003.08.026_BIB8) 1993; 1888 Terao (10.1016/j.neuroimage.2003.08.026_BIB31) 2002; 19 Towle (10.1016/j.neuroimage.2003.08.026_BIB32) 1993; 86 Tsunazawa (10.1016/j.neuroimage.2003.08.026_BIB33) 1994 Myslobodsky (10.1016/j.neuroimage.2003.08.026_BIB24) 1989; 72 Brodmann (10.1016/j.neuroimage.2003.08.026_BIB5) 1912; 41 Hoshi (10.1016/j.neuroimage.2003.08.026_BIB13) 2000; 9 Myslobodsky (10.1016/j.neuroimage.2003.08.026_BIB25) 1990; 7 Morris (10.1016/j.neuroimage.2003.08.026_BIB23) 1986; 63 Lancaster (10.1016/j.neuroimage.2003.08.026_BIB19) 2000; 10 Mazziotta (10.1016/j.neuroimage.2003.08.026_BIB21) 2000 Jasper (10.1016/j.neuroimage.2003.08.026_BIB17) 1958; 10 Mai (10.1016/j.neuroimage.2003.08.026_BIB20) 1997 Brodmann (10.1016/j.neuroimage.2003.08.026_BIB4) 1909 Gratton (10.1016/j.neuroimage.2003.08.026_BIB11) 2001; 13 Van den Elsen (10.1016/j.neuroimage.2003.08.026_BIB34) 1991 Watanabe (10.1016/j.neuroimage.2003.08.026_BIB37) 1996; 205 Blume (10.1016/j.neuroimage.2003.08.026_BIB2) 1974; 36 Brett (10.1016/j.neuroimage.2003.08.026_BIB3) 2002; 3 Okada (10.1016/j.neuroimage.2003.08.026_BIB26) 1997; 36 Talairach (10.1016/j.neuroimage.2003.08.026_BIB30) 1988 Barker (10.1016/j.neuroimage.2003.08.026_BIB1) 1985; 1 Miyai (10.1016/j.neuroimage.2003.08.026_BIB22) 2001; 14 Steinmetz (10.1016/j.neuroimage.2003.08.026_BIB40) 1989; 72 Farrell (10.1016/j.neuroimage.2003.08.026_BIB7) 1992; 19 Isobe (10.1016/j.neuroimage.2003.08.026_BIB14) 2001; 299 Homan (10.1016/j.neuroimage.2003.08.026_BIB12) 1987; 66 Jack (10.1016/j.neuroimage.2003.08.026_BIB15) 1990; 176 Villringer (10.1016/j.neuroimage.2003.08.026_BIB36) 1995; 7 Curra (10.1016/j.neuroimage.2003.08.026_BIB6) 2002; 59 Rorden (10.1016/j.neuroimage.2003.08.026_BIB28) 2000; 12 Villringer (10.1016/j.neuroimage.2003.08.026_BIB35) 1997; 20 Ono (10.1016/j.neuroimage.2003.08.026_BIB27) 1990 Lagerlund (10.1016/j.neuroimage.2003.08.026_BIB18) 1993; 86 Takahashi (10.1016/j.neuroimage.2003.08.026_BIB29) 2000; 5 |
References_xml | – volume: 9 start-page: 339 year: 2000 end-page: 342 ident: BIB13 article-title: Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography publication-title: Brain Res. Cogn. Brain Res. – volume: 176 start-page: 413 year: 1990 end-page: 418 ident: BIB15 article-title: EEG scalp electrode projection onto 3-dimensional surface rendered images of the brain publication-title: Radiology – volume: 10 start-page: 120 year: 2000 end-page: 131 ident: BIB19 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. – start-page: 142 year: 1991 end-page: 154 ident: BIB34 article-title: Marker guided registration of electromagnetic dipole data with tomographic images publication-title: Information Processing in Medical Imaging – volume: 20 start-page: 435 year: 1997 end-page: 442 ident: BIB35 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. – volume: 205 start-page: 41 year: 1996 end-page: 44 ident: BIB37 article-title: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans publication-title: Neurosci. Lett. – volume: 14 start-page: 1186 year: 2001 end-page: 1192 ident: BIB22 article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study publication-title: NeuroImage – volume: 59 start-page: 1851 year: 2002 end-page: 1859 ident: BIB6 article-title: Transcranial magnetic stimulation techniques in clinical investigation publication-title: Neurology – volume: 19 start-page: 879 year: 1992 end-page: 888 ident: BIB7 article-title: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo publication-title: Med. Phys. – volume: 66 start-page: 376 year: 1987 end-page: 382 ident: BIB12 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 36 start-page: 21 year: 1997 end-page: 31 ident: BIB26 article-title: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head publication-title: Appl. Opt. – volume: 1888 start-page: 88 year: 1993 ident: BIB8 article-title: Monte Carlo simulations of photon migration path distributions in multiple scattering media publication-title: SPIE (Photon migration and imaging in random media and tissues) – volume: 3 start-page: 243 year: 2002 end-page: 249 ident: BIB3 article-title: The problem of functional localization in the human brain publication-title: Nat. Rev. Neurosci. – volume: 72 start-page: 499 year: 1989 end-page: 506 ident: BIB40 article-title: Craniocerebral topography within the international 10–20 system publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 10 start-page: 367 year: 1958 end-page: 380 ident: BIB17 article-title: The ten–twenty electrode system of the International Federation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 7 start-page: 240 year: 1995 end-page: 276 ident: BIB36 article-title: Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging publication-title: Cerebrovasc. Brain Metab. Rev. – volume: 8 start-page: 10 year: 1991 end-page: 25 ident: BIB16 article-title: Technical and practical aspects of magnetic nerve stimulation publication-title: J. Clin. Neurophysiol. – volume: 86 start-page: 7 year: 1993 end-page: 14 ident: BIB18 article-title: Determination of 10–20 system electrode locations using magnetic resonance image scanning with markers publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 12 start-page: 191 year: 2000 end-page: 200 ident: BIB28 article-title: Stereotaxic display of brain lesions publication-title: Behav. Neurol. – volume: 620 start-page: 22 year: 1991 end-page: 44 ident: BIB10 article-title: Neurocognitive networks of the human brain publication-title: Ann. N.Y. Acad. Sci. – year: 1988 ident: BIB30 article-title: Co-planar Stereotaxic Atlas of the Human Brain – volume: 256 start-page: 49 year: 1998 end-page: 52 ident: BIB38 article-title: Non-invasive assessment of language dominance with near-infrared spectroscopic mapping publication-title: Neurosci. Lett. – volume: 1 start-page: 1106 year: 1985 end-page: 1107 ident: BIB1 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet – year: 1909 ident: BIB4 article-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues – volume: 41 start-page: 157 year: 1912 end-page: 216 ident: BIB5 article-title: Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde publication-title: Anat. Anz. – volume: 2 start-page: 165 year: 1995 end-page: 189 ident: BIB9 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. – volume: 86 start-page: 1 year: 1993 end-page: 6 ident: BIB32 article-title: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 63 start-page: 107 year: 1986 end-page: 111 ident: BIB23 article-title: The value of closely spaced scalp electrodes in the localization of epileptiform foci: a study of 26 patients with complex partial seizures publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 19 start-page: 322 year: 2002 end-page: 343 ident: BIB31 article-title: Basic mechanisms of TMS publication-title: J. Clin. Neurophysiol. – volume: 13 start-page: 262 year: 2001 end-page: 271 ident: BIB39 article-title: Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences publication-title: NeuroImage – year: 1990 ident: BIB27 article-title: Atlas of the Cerebral Sulci – year: 1997 ident: BIB20 article-title: Atlas of the Human Brain – start-page: 35 year: 1994 end-page: 38 ident: BIB33 article-title: Analytical formula describing the effect of deep optical absorber in multiple scattering media publication-title: Optical Methods in Biomedical and Environmental Sciences – volume: 7 start-page: 507 year: 1990 end-page: 518 ident: BIB25 article-title: Adequacy of the international 10–20 electrode system for computed neurophysiologic topography publication-title: J. Clin. Neurophysiol. – volume: 5 start-page: 93 year: 2000 end-page: 96 ident: BIB29 article-title: Activation of the visual cortex imaged by 24-channel near-infrared spectroscopy publication-title: J. Biomed. Opt. – start-page: 141 year: 2000 end-page: 156 ident: BIB21 article-title: A probabilistic approach for mapping the human brain publication-title: Brain Mapping: The Systems – volume: 13 start-page: 13 year: 2001 end-page: 25 ident: BIB11 article-title: Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study publication-title: Hum. Brain Mapp. – volume: 299 start-page: 221 year: 2001 end-page: 224 ident: BIB14 article-title: Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement publication-title: Neurosci. Lett. – volume: 36 start-page: 303 year: 1974 end-page: 307 ident: BIB2 article-title: Anatomic correlates of the ten–twenty electrode placement system in infants publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 72 start-page: 362 year: 1989 end-page: 366 ident: BIB24 article-title: Locations of occipital EEG electrodes verified by computed tomography publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 1 start-page: 1106 issue: 8437 year: 1985 ident: 10.1016/j.neuroimage.2003.08.026_BIB1 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet doi: 10.1016/S0140-6736(85)92413-4 – start-page: 142 year: 1991 ident: 10.1016/j.neuroimage.2003.08.026_BIB34 article-title: Marker guided registration of electromagnetic dipole data with tomographic images – volume: 256 start-page: 49 year: 1998 ident: 10.1016/j.neuroimage.2003.08.026_BIB38 article-title: Non-invasive assessment of language dominance with near-infrared spectroscopic mapping publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(98)00754-X – volume: 620 start-page: 22 year: 1991 ident: 10.1016/j.neuroimage.2003.08.026_BIB10 article-title: Neurocognitive networks of the human brain publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1991.tb51572.x – start-page: 141 year: 2000 ident: 10.1016/j.neuroimage.2003.08.026_BIB21 article-title: A probabilistic approach for mapping the human brain – volume: 1888 start-page: 88 year: 1993 ident: 10.1016/j.neuroimage.2003.08.026_BIB8 article-title: Monte Carlo simulations of photon migration path distributions in multiple scattering media publication-title: SPIE (Photon migration and imaging in random media and tissues) – volume: 63 start-page: 107 year: 1986 ident: 10.1016/j.neuroimage.2003.08.026_BIB23 article-title: The value of closely spaced scalp electrodes in the localization of epileptiform foci: a study of 26 patients with complex partial seizures publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(86)90003-9 – volume: 36 start-page: 303 year: 1974 ident: 10.1016/j.neuroimage.2003.08.026_BIB2 article-title: Anatomic correlates of the ten–twenty electrode placement system in infants publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(74)90172-2 – volume: 7 start-page: 507 year: 1990 ident: 10.1016/j.neuroimage.2003.08.026_BIB25 article-title: Adequacy of the international 10–20 electrode system for computed neurophysiologic topography publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199010000-00006 – volume: 3 start-page: 243 year: 2002 ident: 10.1016/j.neuroimage.2003.08.026_BIB3 article-title: The problem of functional localization in the human brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn756 – volume: 19 start-page: 879 year: 1992 ident: 10.1016/j.neuroimage.2003.08.026_BIB7 article-title: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo publication-title: Med. Phys. doi: 10.1118/1.596777 – volume: 20 start-page: 435 year: 1997 ident: 10.1016/j.neuroimage.2003.08.026_BIB35 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01132-6 – year: 1909 ident: 10.1016/j.neuroimage.2003.08.026_BIB4 – volume: 9 start-page: 339 year: 2000 ident: 10.1016/j.neuroimage.2003.08.026_BIB13 article-title: Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography publication-title: Brain Res. Cogn. Brain Res. doi: 10.1016/S0926-6410(00)00006-9 – volume: 299 start-page: 221 year: 2001 ident: 10.1016/j.neuroimage.2003.08.026_BIB14 article-title: Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(01)01518-X – year: 1988 ident: 10.1016/j.neuroimage.2003.08.026_BIB30 – volume: 10 start-page: 367 year: 1958 ident: 10.1016/j.neuroimage.2003.08.026_BIB17 article-title: The ten–twenty electrode system of the International Federation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 7 start-page: 240 year: 1995 ident: 10.1016/j.neuroimage.2003.08.026_BIB36 article-title: Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging publication-title: Cerebrovasc. Brain Metab. Rev. – volume: 2 start-page: 165 year: 1995 ident: 10.1016/j.neuroimage.2003.08.026_BIB9 article-title: Spatial registration and normalization of images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030303 – volume: 59 start-page: 1851 year: 2002 ident: 10.1016/j.neuroimage.2003.08.026_BIB6 article-title: Transcranial magnetic stimulation techniques in clinical investigation publication-title: Neurology doi: 10.1212/01.WNL.0000038744.30298.D4 – year: 1990 ident: 10.1016/j.neuroimage.2003.08.026_BIB27 – volume: 176 start-page: 413 year: 1990 ident: 10.1016/j.neuroimage.2003.08.026_BIB15 article-title: EEG scalp electrode projection onto 3-dimensional surface rendered images of the brain publication-title: Radiology doi: 10.1148/radiology.176.2.2367656 – volume: 10 start-page: 120 year: 2000 ident: 10.1016/j.neuroimage.2003.08.026_BIB19 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 41 start-page: 157 year: 1912 ident: 10.1016/j.neuroimage.2003.08.026_BIB5 article-title: Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde publication-title: Anat. Anz. – volume: 12 start-page: 191 year: 2000 ident: 10.1016/j.neuroimage.2003.08.026_BIB28 article-title: Stereotaxic display of brain lesions publication-title: Behav. Neurol. doi: 10.1155/2000/421719 – volume: 8 start-page: 10 year: 1991 ident: 10.1016/j.neuroimage.2003.08.026_BIB16 article-title: Technical and practical aspects of magnetic nerve stimulation publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199101000-00004 – volume: 66 start-page: 376 year: 1987 ident: 10.1016/j.neuroimage.2003.08.026_BIB12 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90206-9 – year: 1997 ident: 10.1016/j.neuroimage.2003.08.026_BIB20 – volume: 5 start-page: 93 year: 2000 ident: 10.1016/j.neuroimage.2003.08.026_BIB29 article-title: Activation of the visual cortex imaged by 24-channel near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.429973 – volume: 205 start-page: 41 year: 1996 ident: 10.1016/j.neuroimage.2003.08.026_BIB37 article-title: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(96)12376-4 – volume: 72 start-page: 362 year: 1989 ident: 10.1016/j.neuroimage.2003.08.026_BIB24 article-title: Locations of occipital EEG electrodes verified by computed tomography publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(89)90073-4 – volume: 36 start-page: 21 year: 1997 ident: 10.1016/j.neuroimage.2003.08.026_BIB26 article-title: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head publication-title: Appl. Opt. doi: 10.1364/AO.36.000021 – volume: 13 start-page: 262 year: 2001 ident: 10.1016/j.neuroimage.2003.08.026_BIB39 article-title: Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences publication-title: NeuroImage doi: 10.1006/nimg.2000.0688 – volume: 14 start-page: 1186 year: 2001 ident: 10.1016/j.neuroimage.2003.08.026_BIB22 article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study publication-title: NeuroImage doi: 10.1006/nimg.2001.0905 – volume: 86 start-page: 7 year: 1993 ident: 10.1016/j.neuroimage.2003.08.026_BIB18 article-title: Determination of 10–20 system electrode locations using magnetic resonance image scanning with markers publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90062-Z – start-page: 35 year: 1994 ident: 10.1016/j.neuroimage.2003.08.026_BIB33 article-title: Analytical formula describing the effect of deep optical absorber in multiple scattering media – volume: 13 start-page: 13 year: 2001 ident: 10.1016/j.neuroimage.2003.08.026_BIB11 article-title: Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1021 – volume: 72 start-page: 499 year: 1989 ident: 10.1016/j.neuroimage.2003.08.026_BIB40 article-title: Craniocerebral topography within the international 10–20 system publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(89)90227-7 – volume: 19 start-page: 322 year: 2002 ident: 10.1016/j.neuroimage.2003.08.026_BIB31 article-title: Basic mechanisms of TMS publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200208000-00006 – volume: 86 start-page: 1 year: 1993 ident: 10.1016/j.neuroimage.2003.08.026_BIB32 article-title: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90061-Y |
SSID | ssj0009148 |
Score | 2.3977218 |
Snippet | The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Adult Brain Brain Mapping - methods Cerebral Cortex - anatomy & histology Electrodes Electroencephalography - standards Female Human brain mapping Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional Internationality Japan Magnetic Resonance Imaging - standards Male Medical imaging Methods Middle Aged Models, Statistical Near-infrared spectroscopy NMR Nuclear magnetic resonance Probabilistic anatomical platform Reference Standards Software Standard deviation Statistics as Topic Studies Transcranial magnetic stimulation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QLyIb9dnDl6DTZu2WTyIiCLCelphbyFNU1nRdt1d_TX-WGeSdNeDyh5LOoV0Jpmvmen3EXKuSwF5ragYBIdkwuqI6SwVzCRC2jIy3Dguvd5jdv8kHgbpIBy4TUJbZbsnuo26bAyekV8gE14WCZ5HV6N3hqpRWF0NEhrLZBWpy7ClKx_kc9JdLvyvcGnCJNwQOnl8f5fjixy-wap1rKCOyBMpFn5PT3_BT5eG7jbJRsCP9No7fIss2XqbrPVChXyHfPXBOZaVSNrvCTcoasY4Hl2kZKa6hs9sxxFADeSpYcOMHWP1GK5RqcP3xtHPoaaADenw54khzAvinXr2Z9ogRTIAVgq4l04x57kHwm2YLINFgRIU9E0jDcTzLnm6u-3f3LOgwMAMCh2wbiRMLjJubNyNY1llvOSyBFAGGY2Dh63tQhBAfoPvHhubSgNckjoXaWHTqpAm2SMrdVPbA0JNlcjUJoXWMF5ForDIQyPLiusyMdx2SN6-eGUCPTmqZLyqtg_tRc1dhuqZiUIBzTjrED6zHHmKjgVsuq1vVfsLKmyaCvLIAraXM9sAUzz8WND6uA0lFbaLiZoHd4eczYZhoWP1Rte2-ZgoiSUzABMdsu8DcD5ZgbBa5If_P_qIrPu2Izw_OiYr0_GHPQFENS1O3bL5Bgk-JIY priority: 102 providerName: ProQuest |
Title | Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903005366 https://dx.doi.org/10.1016/j.neuroimage.2003.08.026 https://www.ncbi.nlm.nih.gov/pubmed/14741647 https://www.proquest.com/docview/1506604170 https://www.proquest.com/docview/80116284 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6kBAXVN5LS_GBq9k4dhxHPZWq1QLqCkEr7c1yHAcF0WzVbjki_gP3_jh-CTO2swsSSCtxSZTHREk8nu9LPP6GkJe2kYBrdcvAOTST3mbMqkIyJ6T2Tea4C1p6p1M1OZdvZ8VsgxwNc2EwrTLF_hjTQ7ROe8bpbY4vu278EZgBwA0AGiquC6U2yXYuKgWuvX345t1kutLe5TLOiCsEQ4OU0BPTvIJsZHcBnTeIgwY9T1Ra-DtK_YuFBjQ62SH3Eo2kh_FO75MN3z8gd07TQPlDcnsGbeRZg9r9UXeDYumYIKeLyszU9vC1HaQCqAO46ubM-SscRIZtLNgRU-To185SoIi0-_3HITzXz-8_8oxGGWg6R61kYK4UCDBdIPiFS8KJiJrJpsZaFPTCoh7Ep0fk_OT47GjCUikG5rDiAasy6UqpuPN5lee6VbzhugF2BtDGoam9r8AbAOjgA8jnrrXAm7QtZVH7oq21E4_JVj_v_VNCXSt04UVtLRxvM1l7FKTRTcttIxz3I1IOr964pFOO5TK-mCEh7bNZNRqW0RQGK2nmakT40vIyanWsYVMNrWuGuagQPQ0Ayhq2B0vbP3x2Teu9wZlMihvXBvUeVSZ5mY3Ii-Vh6PE4jGN7P7-5NhrHzoBVjMiT6IKrh5XIr2X57L9ubJfcjelJ-J9pj2wtrm78c2Bei3qfbL76xmFZzsr91Mtg_fp4-v7DL7wjNpw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrQRcKj7LlkJ9gKNFnDiJI4QQH622tLtCaCv1ZhzHQYtoUrpbEP-F38BvZCZ2djkA2kuPq-xYcTyeebbH7wE8MZXEvFbWHJ1DcelMxE2WSm4TqVwVWWE7Lr3xJBudyHen6ekG_OrvwlBZZR8Tu0BdtZb2yJ8RE14WSZFHL8-_clKNotPVXkLDu8WR-_Edl2zzF4dvcXyfxvHB_vTNiAdVAW6JvJ8XkbS5zIR1cRHHqs5EJVSFQAOjtMC3dq7AjmHMRizvYlsbhADK5DItXVqXyibY7jXYlAkuZQaw-Xp_8v7DiuZXSH_5Lk24EqIItUO-oqxjqJydYZzoeEg76lAidfh7QvwX4O0S38Et2AqIlb3yLnYbNlxzB66Pw5n8Xfg5RXdwvCKZAE_xwUilpmPuJRJoZhpc2HesBMxiZpy13LoLOq_G36QN4qvx2LeZYYhG2ezPPUrsF84w5vmmWUukzAiRGSJttqAs2zWIf6P0HCxKEr1gZ4aIJz7dg5MrGZ37MGjaxj0AZutEpS4pjcHndSRLR8w3qqqFqRIr3BDy_sNrGwjRSZfji-4r3z7r1ZCRXmeiSbIzzoYglpbnnhRkDZuiH1vdX3rFMK0xc61h-3xpG4CRBzxrWu_2rqRDgJrr1XQawt7yMYYWOi8yjWsv51rRIR3ClyFsewdcdVYSkJf5zv-b3oMbo-n4WB8fTo4ewk1f9ES7V7swWFxcukeI5xbl4zCJGHy86nn7G2f7YlE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcUPleWqgPcLQaJ07iqEIIUVYtpRWHVtqbcRwHLaJJ6W6p-C_8En4dM7azywHQXnpcZceS4_l4scfvAbwwjcS6VrccnUNx6UzCTZFLbjOpXJNYYT2X3vFJcXAm30_yyRr8Gu7CUFvlkBN9om56S3vku8SEVyRSlMluG9siPu6PX19846QgRSetg5xGcJEj9-MaP99mrw73ca1fpun43enbAx4VBrglIn9eJdKWshDWpVWaqrYQjVANgg7M2AJn4FyFk8T8jbjepbY1CAeUKWVeu7ytlc1w3Ftwu8xyQTFWTsol4a-Q4RpennElRBW7iEJvmeeqnJ5jxvCMpJ5ElOgd_l4a_wV9fQkcb8LdiF3Zm-Bs92DNdfdh4ziezj-An6foGI43JBgQyD4Y6dV4Dl-ig2amw098z0_ALNbIac-tu6STa_xNKiGhL499nxqGuJRN_9ytxHlhrLHAPM16omdGsMwQc7M51Vs_IP6NCnW0qEn-gp0boqD4_BDObmRtHsF613fuCTDbZip3WW0MPm8TWTviwFFNK0yTWeFGUA4vXttIjU4KHV_10AP3RS-XjJQ7M03inWkxArGwvAj0ICvYVMPa6uH6KyZsjTVsBdu9hW2ESAH6rGi9PbiSjqlqppeBNYKdxWNMMnRyZDrXX820ouM6BDIjeBwccDlZSZBelk__P_QObGC06g-HJ0dbcCd0P9E21jaszy-v3DMEdvP6uY8gBp9uOmR_A7TfZSE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+probabilistic+anatomical+cranio-cerebral+correlation+via+the+international+10%E2%80%9320+system+oriented+for+transcranial+functional+brain+mapping&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Okamoto%2C+Masako&rft.au=Dan%2C+Haruka&rft.au=Sakamoto%2C+Kuniko&rft.au=Takeo%2C+Kazuhiro&rft.date=2004&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=21&rft.issue=1&rft.spage=99&rft.epage=111&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.08.026&rft.externalDocID=S1053811903005366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |