Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping

The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measur...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 21; no. 1; pp. 99 - 111
Main Authors Okamoto, Masako, Dan, Haruka, Sakamoto, Kuniko, Takeo, Kazuhiro, Shimizu, Koji, Kohno, Satoru, Oda, Ichiro, Isobe, Seiichiro, Suzuki, Tateo, Kohyama, Kaoru, Dan, Ippeita
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2004
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10–20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10–20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10–20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10–20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10–20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.
AbstractList The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.
The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.
Author Kohno, Satoru
Takeo, Kazuhiro
Okamoto, Masako
Isobe, Seiichiro
Dan, Haruka
Suzuki, Tateo
Oda, Ichiro
Kohyama, Kaoru
Dan, Ippeita
Sakamoto, Kuniko
Shimizu, Koji
Author_xml – sequence: 1
  givenname: Masako
  surname: Okamoto
  fullname: Okamoto, Masako
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 2
  givenname: Haruka
  surname: Dan
  fullname: Dan, Haruka
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 3
  givenname: Kuniko
  surname: Sakamoto
  fullname: Sakamoto, Kuniko
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 4
  givenname: Kazuhiro
  surname: Takeo
  fullname: Takeo, Kazuhiro
  organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan
– sequence: 5
  givenname: Koji
  surname: Shimizu
  fullname: Shimizu, Koji
  organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan
– sequence: 6
  givenname: Satoru
  surname: Kohno
  fullname: Kohno, Satoru
  organization: Medical Systems Division, Shimadzu Corporation, Kyoto 604-8511, Japan
– sequence: 7
  givenname: Ichiro
  surname: Oda
  fullname: Oda, Ichiro
  organization: Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
– sequence: 8
  givenname: Seiichiro
  surname: Isobe
  fullname: Isobe, Seiichiro
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 9
  givenname: Tateo
  surname: Suzuki
  fullname: Suzuki, Tateo
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 10
  givenname: Kaoru
  surname: Kohyama
  fullname: Kohyama, Kaoru
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
– sequence: 11
  givenname: Ippeita
  surname: Dan
  fullname: Dan, Ippeita
  email: dan@nfri.affrc.go.jp
  organization: National Food Research Institute, Tsukuba 305-8642, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14741647$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuO1DAQhiM0iHnAFZAlJHYJLredOBsEjHhJI7EZ1pbjVGbcJHZjOyP1jjuw53CcBKe70Ui96pVfX31S1e_L4sx5h0VBgFZAoX6zrhzOwdtJ32HFKF1VVFaU1U-KC6CtKFvRsLNlL1alBGjPi8sY15TSFrh8VpwDbzjUvLko_tzeB8SytxO6aL3TI9kE3-nOjjYma4h2OvnJmvxggnbWlwYDdmE5-xBw1CmXkQerSbpHYl3C4HZ3mQD699dvRkncxoQT8cFifu_J4ANJ2RZ3ygwOszOHmqy2jkx6s7Hu7nnxdNBjxBeH9ar4_unj7fWX8ubb56_X729KIxiksqXcNLwGg6xlTA419CD7VkADEmQ3ILbYIW9AcInMDBqYkLrhokMxdNKsrorXe29u_ueMManJRoPjqB36OSpJAWomeQZfHYFrP-eGx6hA0LqmHBqaqZcHau4m7NUm5KjCVv2fewbkHjDBxxhweESoWiJWa_UYsVoiVlSqHHEufXtUamzaDTxP1I6nCD7sBZgH-mAxqGhyLgZ7G9Ak1Xt7iuTdkcSM1i3f5AduT1P8A7Cj48M
CitedBy_id crossref_primary_10_3390_brainsci11050570
crossref_primary_10_1016_j_neuroimage_2003_12_003
crossref_primary_10_1176_appi_ajp_2021_20101429
crossref_primary_10_1007_s00406_020_01163_6
crossref_primary_10_1111_cns_14641
crossref_primary_10_1016_j_neuroimage_2006_03_044
crossref_primary_10_3390_brainsci12111462
crossref_primary_10_1111_jon_12432
crossref_primary_10_1016_j_clinph_2024_03_031
crossref_primary_10_1038_s41598_018_30609_0
crossref_primary_10_1016_j_pscychresns_2017_12_003
crossref_primary_10_1111_jpr_12080
crossref_primary_10_1016_j_neuropsychologia_2019_04_010
crossref_primary_10_1111_j_1472_9733_2011_01161_x
crossref_primary_10_3389_fnins_2017_00367
crossref_primary_10_1111_j_1440_1819_2007_01607_x
crossref_primary_10_1016_j_jneumeth_2014_04_020
crossref_primary_10_1371_journal_pone_0110414
crossref_primary_10_1016_j_neuroimage_2023_120244
crossref_primary_10_1016_j_bandc_2015_07_001
crossref_primary_10_1117_1_2804911
crossref_primary_10_1093_cercor_bhp163
crossref_primary_10_1371_journal_pone_0183818
crossref_primary_10_1371_journal_pone_0123972
crossref_primary_10_1177_1550059420934590
crossref_primary_10_1007_s11682_015_9447_8
crossref_primary_10_1080_17470919_2014_997370
crossref_primary_10_1016_j_jpsychires_2013_07_029
crossref_primary_10_1089_brain_2019_0710
crossref_primary_10_1109_TNSRE_2023_3241998
crossref_primary_10_3389_fnhum_2021_603069
crossref_primary_10_1016_j_neuroimage_2006_02_003
crossref_primary_10_1589_jpts_27_3891
crossref_primary_10_1016_j_clinph_2013_03_030
crossref_primary_10_1111_j_1460_9568_2007_05531_x
crossref_primary_10_1016_j_neuroimage_2009_10_063
crossref_primary_10_1016_j_neuroimage_2017_12_091
crossref_primary_10_1364_BOE_438303
crossref_primary_10_1117_1_NPh_5_1_011005
crossref_primary_10_1016_j_bbr_2012_03_039
crossref_primary_10_3389_fnbeh_2021_601698
crossref_primary_10_3390_brainsci13040600
crossref_primary_10_1016_j_neuroimage_2011_07_093
crossref_primary_10_1016_j_brs_2021_05_004
crossref_primary_10_1016_j_neuroimage_2008_06_032
crossref_primary_10_1016_j_neuroimage_2012_02_074
crossref_primary_10_1111_desc_12595
crossref_primary_10_1016_j_brs_2018_05_002
crossref_primary_10_1016_j_neuroimage_2012_01_042
crossref_primary_10_1038_s41386_018_0252_0
crossref_primary_10_1002_hbm_24592
crossref_primary_10_1016_j_neures_2007_05_016
crossref_primary_10_1007_s00213_009_1640_2
crossref_primary_10_1113_JP287085
crossref_primary_10_1117_1_NPh_5_1_011014
crossref_primary_10_1016_j_nicl_2012_10_001
crossref_primary_10_1016_j_neuropsychologia_2017_01_013
crossref_primary_10_1016_j_resp_2024_104364
crossref_primary_10_1038_s41598_022_06519_7
crossref_primary_10_1093_brain_awn348
crossref_primary_10_1097_j_pain_0000000000002293
crossref_primary_10_1299_transjsme_24_00094
crossref_primary_10_1117_1_NPh_11_4_045015
crossref_primary_10_1016_j_bandc_2011_01_006
crossref_primary_10_1016_j_neures_2007_05_005
crossref_primary_10_1002_hbm_25874
crossref_primary_10_1109_THMS_2018_2789682
crossref_primary_10_1007_s00213_007_0814_z
crossref_primary_10_1016_j_neuroimage_2008_05_013
crossref_primary_10_1152_jn_00357_2023
crossref_primary_10_1371_journal_pone_0088209
crossref_primary_10_1002_dev_22229
crossref_primary_10_1016_j_neulet_2011_08_023
crossref_primary_10_1589_rika_38_338
crossref_primary_10_1162_jocn_2008_20073
crossref_primary_10_3389_fpsyg_2018_01205
crossref_primary_10_1016_j_neuroimage_2014_11_012
crossref_primary_10_3389_fnins_2020_00594
crossref_primary_10_1007_s10758_015_9251_y
crossref_primary_10_1016_j_neuropsychologia_2021_107954
crossref_primary_10_1113_JP278788
crossref_primary_10_3389_fnbeh_2015_00190
crossref_primary_10_1162_0898929054021157
crossref_primary_10_1038_s41598_021_04169_9
crossref_primary_10_1097_WNR_0b013e328334f235
crossref_primary_10_1016_j_microrel_2007_07_007
crossref_primary_10_1038_s41598_022_25185_3
crossref_primary_10_1016_j_neuroimage_2011_05_034
crossref_primary_10_3389_fpsyt_2017_00274
crossref_primary_10_1016_j_neuroimage_2009_02_028
crossref_primary_10_1016_j_ijpsycho_2008_07_007
crossref_primary_10_1016_j_neuroimage_2014_05_046
crossref_primary_10_1088_1741_2552_ac297d
crossref_primary_10_1088_1741_2560_12_6_066008
crossref_primary_10_1088_0031_9155_57_10_2857
crossref_primary_10_1589_rika_35_527
crossref_primary_10_1002_hup_2678
crossref_primary_10_1016_j_brainres_2015_02_053
crossref_primary_10_1371_journal_pone_0075598
crossref_primary_10_1016_j_neuro_2022_10_004
crossref_primary_10_1016_j_schres_2013_06_036
crossref_primary_10_3390_sexes5030016
crossref_primary_10_1186_s40814_016_0099_2
crossref_primary_10_1016_j_gerinurse_2024_12_010
crossref_primary_10_1255_jnirs_970
crossref_primary_10_3390_brainsci13010119
crossref_primary_10_1016_j_neuroimage_2005_09_048
crossref_primary_10_1093_cercor_bhq082
crossref_primary_10_3389_fnrgo_2021_731160
crossref_primary_10_3390_jcm7120466
crossref_primary_10_1016_j_jad_2023_01_115
crossref_primary_10_1016_j_yebeh_2015_04_006
crossref_primary_10_3389_fnins_2020_00570
crossref_primary_10_1016_j_neuroimage_2013_08_027
crossref_primary_10_1016_j_neuroimage_2013_08_021
crossref_primary_10_1109_TNSRE_2019_2956464
crossref_primary_10_3389_fnins_2022_1043133
crossref_primary_10_1255_jnirs_969
crossref_primary_10_1016_j_brs_2024_02_012
crossref_primary_10_1016_j_jneuroling_2022_101063
crossref_primary_10_1167_iovs_62_4_9
crossref_primary_10_1097_WNR_0b013e3282f262de
crossref_primary_10_1080_0092623X_2012_665815
crossref_primary_10_1016_j_neures_2007_12_001
crossref_primary_10_1016_j_bspc_2024_106915
crossref_primary_10_1038_jcbfm_2011_100
crossref_primary_10_1016_j_neuroscience_2009_01_015
crossref_primary_10_3389_fnimg_2022_815778
crossref_primary_10_1371_journal_pone_0131328
crossref_primary_10_3389_fnhum_2018_00243
crossref_primary_10_1016_j_neuroimage_2005_08_019
crossref_primary_10_1016_j_neuroimage_2016_08_012
crossref_primary_10_1016_j_jpsychires_2011_05_011
crossref_primary_10_1080_10447318_2023_2279419
crossref_primary_10_30773_pi_2021_0372
crossref_primary_10_1523_JNEUROSCI_1984_06_2007
crossref_primary_10_1016_j_pscychresns_2007_01_009
crossref_primary_10_1093_cercor_bhz237
crossref_primary_10_1016_j_schres_2014_01_031
crossref_primary_10_1016_j_neulet_2012_02_048
crossref_primary_10_1016_j_psychres_2021_114229
crossref_primary_10_3389_fncom_2022_822987
crossref_primary_10_1007_s00221_013_3693_z
crossref_primary_10_1016_j_neuroimage_2011_09_087
crossref_primary_10_1093_cercor_bhx055
crossref_primary_10_1523_ENEURO_0209_19_2020
crossref_primary_10_1016_j_pscychresns_2006_11_007
crossref_primary_10_1016_j_ajp_2016_11_001
crossref_primary_10_1007_s00702_020_02228_5
crossref_primary_10_1002_hbm_24973
crossref_primary_10_3390_sym12111794
crossref_primary_10_1016_j_clinph_2013_05_010
crossref_primary_10_1111_psyp_13802
crossref_primary_10_1016_j_neuropsychologia_2008_11_014
crossref_primary_10_3390_s20164551
crossref_primary_10_1523_JNEUROSCI_1318_04_2004
crossref_primary_10_3389_fnins_2020_00724
crossref_primary_10_3233_THC_220447
crossref_primary_10_1016_j_bandc_2020_105585
crossref_primary_10_1176_appi_ajp_2019_19070720
crossref_primary_10_3389_fnagi_2016_00240
crossref_primary_10_1183_13993003_00541_2015
crossref_primary_10_1080_00918369_2019_1648079
crossref_primary_10_1002_hbm_21453
crossref_primary_10_1016_j_bandl_2013_05_007
crossref_primary_10_1016_j_pscychresns_2009_01_001
crossref_primary_10_1007_s10548_012_0239_9
crossref_primary_10_1016_j_dcn_2020_100784
crossref_primary_10_1016_j_ifacol_2020_12_2755
crossref_primary_10_1515_REVNEURO_2006_17_1_2_227
crossref_primary_10_1007_s00702_022_02466_9
crossref_primary_10_1016_j_bbr_2009_01_040
crossref_primary_10_1155_2014_894203
crossref_primary_10_1080_13803395_2020_1853065
crossref_primary_10_1109_ACCESS_2024_3445158
crossref_primary_10_1016_j_schres_2013_07_048
crossref_primary_10_1109_JBHI_2023_3295892
crossref_primary_10_1016_j_neuropsychologia_2017_10_022
crossref_primary_10_1016_j_neuropsychologia_2023_108588
crossref_primary_10_1152_jn_90519_2008
crossref_primary_10_1097_WNR_0b013e32830dd61c
crossref_primary_10_1016_j_neuroimage_2017_12_003
crossref_primary_10_1038_s41598_017_18897_4
crossref_primary_10_1016_j_neuroimage_2016_06_054
crossref_primary_10_1038_s41467_025_57392_7
crossref_primary_10_1002_dev_21145
crossref_primary_10_1007_s11682_014_9326_8
crossref_primary_10_1093_cercor_bhz246
crossref_primary_10_1016_j_bspc_2021_103190
crossref_primary_10_1113_jphysiol_2005_084954
crossref_primary_10_1097_WNR_0b013e32834e664c
crossref_primary_10_1109_JSTQE_2018_2833205
crossref_primary_10_1016_j_neuroimage_2005_07_025
crossref_primary_10_1016_j_bbr_2015_03_028
crossref_primary_10_3389_fpsyg_2020_01393
crossref_primary_10_1186_1744_9081_9_21
crossref_primary_10_1016_j_conb_2006_06_016
crossref_primary_10_1109_LRA_2017_2765002
crossref_primary_10_1016_j_neulet_2009_05_028
crossref_primary_10_1038_s41598_023_41403_y
crossref_primary_10_1002_hbm_21236
crossref_primary_10_1016_j_pnpbp_2014_12_005
crossref_primary_10_1002_hbm_21237
crossref_primary_10_1016_j_brs_2021_11_008
crossref_primary_10_1016_j_tics_2015_04_009
crossref_primary_10_1016_j_neuroimage_2004_10_039
crossref_primary_10_1016_j_neuroimage_2018_08_005
crossref_primary_10_1371_journal_pone_0120828
crossref_primary_10_1159_000484519
crossref_primary_10_1155_2015_318917
crossref_primary_10_1177_0309364618805260
crossref_primary_10_1016_j_brs_2025_01_017
crossref_primary_10_1371_journal_pone_0193004
crossref_primary_10_3109_15622975_2011_575177
crossref_primary_10_1371_journal_pone_0256626
crossref_primary_10_3390_brainsci13060876
crossref_primary_10_1371_journal_pone_0071607
crossref_primary_10_1016_j_clinph_2007_04_004
crossref_primary_10_1016_j_cortex_2009_02_018
crossref_primary_10_1002_hbm_22754
crossref_primary_10_1016_j_neuroimage_2011_08_084
crossref_primary_10_1111_j_1469_8986_2007_00633_x
crossref_primary_10_3389_fphys_2015_00416
crossref_primary_10_3389_fphys_2023_1165939
crossref_primary_10_1111_desc_12333
crossref_primary_10_3758_s13415_019_00703_5
crossref_primary_10_1016_j_neuroimage_2014_04_067
crossref_primary_10_1080_10749357_2019_1659639
crossref_primary_10_3389_fpsyg_2021_527335
crossref_primary_10_1007_s00426_017_0846_x
crossref_primary_10_1523_JNEUROSCI_1130_15_2016
crossref_primary_10_2530_jslsm_jslsm_36_0028
crossref_primary_10_1007_s00429_022_02512_y
crossref_primary_10_1016_j_neuroimage_2005_05_019
crossref_primary_10_1016_j_pbb_2014_02_003
crossref_primary_10_1167_jov_21_2_1
crossref_primary_10_1080_13506285_2024_2337953
crossref_primary_10_1016_j_neuropsychologia_2016_09_017
crossref_primary_10_2147_NDT_S327608
crossref_primary_10_3389_fneur_2018_00915
crossref_primary_10_1007_s11682_016_9508_7
crossref_primary_10_3389_fncir_2023_1214959
crossref_primary_10_1016_j_cortex_2014_01_008
crossref_primary_10_1017_S0033291722000198
crossref_primary_10_1093_cercor_bhac423
crossref_primary_10_1007_s10015_017_0406_x
crossref_primary_10_1016_j_neuropsychologia_2008_05_012
crossref_primary_10_1017_S1461145708009553
crossref_primary_10_1016_j_bandc_2015_05_001
crossref_primary_10_1002_hbm_20360
crossref_primary_10_1016_j_bandc_2015_05_003
crossref_primary_10_1152_jn_00614_2018
crossref_primary_10_1016_j_infrared_2017_06_011
crossref_primary_10_1523_JNEUROSCI_1239_18_2018
crossref_primary_10_1016_j_cogsys_2024_101242
crossref_primary_10_1038_s41562_024_01901_z
crossref_primary_10_3389_fnins_2023_1224800
crossref_primary_10_1016_j_neuroimage_2011_06_018
crossref_primary_10_1186_1471_2202_9_103
crossref_primary_10_1016_j_bbr_2010_02_027
crossref_primary_10_1080_00223891_2012_666597
crossref_primary_10_1007_s00221_010_2415_z
crossref_primary_10_1016_j_neuroscience_2018_01_055
crossref_primary_10_3758_s13415_021_00869_x
crossref_primary_10_3389_fnhum_2022_1006350
crossref_primary_10_1016_j_appet_2006_04_003
crossref_primary_10_1371_journal_pone_0064095
crossref_primary_10_1097_WNR_0000000000000265
crossref_primary_10_1016_j_brainres_2008_06_052
crossref_primary_10_1038_s41598_024_61819_4
crossref_primary_10_1016_j_brs_2021_04_018
crossref_primary_10_1080_00207450701750448
crossref_primary_10_1177_10538135241303348
crossref_primary_10_3389_fnhum_2018_00086
crossref_primary_10_1007_s10548_019_00731_x
crossref_primary_10_1016_j_neuroimage_2022_119520
crossref_primary_10_1002_cre2_32
crossref_primary_10_3390_brainsci9020038
crossref_primary_10_1155_2014_573862
crossref_primary_10_3389_fnins_2016_00261
crossref_primary_10_1016_j_neuroimage_2011_03_068
crossref_primary_10_5535_arm_2013_37_5_603
crossref_primary_10_1016_j_neulet_2010_12_045
crossref_primary_10_1109_TNSRE_2020_2965628
crossref_primary_10_1016_j_schres_2018_10_007
crossref_primary_10_1016_j_neuroimage_2005_12_008
crossref_primary_10_1038_s41598_019_55553_5
crossref_primary_10_1364_AO_46_001658
crossref_primary_10_1177_1550059417709177
crossref_primary_10_1016_j_cognition_2020_104378
crossref_primary_10_1097_WNR_0000000000001615
crossref_primary_10_3758_s13415_016_0456_x
crossref_primary_10_1364_BOE_4_002893
crossref_primary_10_3758_s13415_020_00786_5
crossref_primary_10_1016_j_jad_2024_08_082
crossref_primary_10_1097_WNR_0b013e328354036f
crossref_primary_10_1016_j_pscychresns_2015_04_003
crossref_primary_10_1016_j_neuroimage_2011_03_071
crossref_primary_10_1016_j_neurobiolaging_2017_09_017
crossref_primary_10_23736_S0022_4707_24_16055_0
crossref_primary_10_1002_wcs_1343
crossref_primary_10_1038_srep16438
crossref_primary_10_3390_ani14111539
crossref_primary_10_7717_peerj_7418
crossref_primary_10_1016_j_cortex_2014_08_015
crossref_primary_10_1111_pcn_12190
crossref_primary_10_3389_fnhum_2015_00066
crossref_primary_10_1016_j_ijpsycho_2021_01_016
crossref_primary_10_1080_00140139_2018_1535093
crossref_primary_10_1016_j_neuroimage_2020_116901
crossref_primary_10_3389_fnhum_2023_1089276
crossref_primary_10_14814_phy2_12899
crossref_primary_10_1186_s11689_024_09582_5
crossref_primary_10_1186_s13063_016_1461_7
crossref_primary_10_1073_pnas_2101273118
crossref_primary_10_1117_1_OE_59_6_061602
crossref_primary_10_1016_j_neuroimage_2009_05_028
crossref_primary_10_1016_j_neures_2005_12_006
crossref_primary_10_1016_j_ynirp_2021_100049
crossref_primary_10_1016_j_cortex_2011_09_013
crossref_primary_10_1038_s44184_024_00073_y
crossref_primary_10_3389_fnhum_2023_1191284
crossref_primary_10_1159_000437431
crossref_primary_10_1016_j_neuroimage_2010_08_016
crossref_primary_10_1098_rspb_2008_0986
crossref_primary_10_1016_j_neuroimage_2021_118147
crossref_primary_10_1016_j_tine_2014_07_001
crossref_primary_10_1007_s10548_009_0103_8
crossref_primary_10_1016_j_jad_2024_07_031
crossref_primary_10_3389_fnhum_2017_00456
crossref_primary_10_1155_2013_653572
crossref_primary_10_1016_j_jpsychires_2021_12_021
crossref_primary_10_1177_1099800417706141
crossref_primary_10_1177_1687814015575979
crossref_primary_10_3389_fpsyt_2018_00016
crossref_primary_10_1186_s13063_018_2773_6
crossref_primary_10_1016_j_bspc_2025_107503
crossref_primary_10_1007_s10802_017_0286_5
crossref_primary_10_1097_WNR_0b013e32836131ca
crossref_primary_10_1016_j_brainresbull_2022_09_012
crossref_primary_10_1097_WNR_0000000000000571
crossref_primary_10_1016_j_brainresbull_2015_12_004
crossref_primary_10_1016_j_biopsycho_2016_10_001
crossref_primary_10_1016_j_pscychresns_2013_07_009
crossref_primary_10_1007_s00221_013_3547_8
crossref_primary_10_1016_j_neuroscience_2010_08_072
crossref_primary_10_1186_s13063_015_0683_4
crossref_primary_10_1093_cercor_bhae321
crossref_primary_10_3389_fphys_2022_828357
crossref_primary_10_1016_j_neuroimage_2025_121018
crossref_primary_10_1016_j_jpsychires_2017_02_018
crossref_primary_10_1016_j_chb_2021_107151
crossref_primary_10_1093_scan_nsy022
crossref_primary_10_1051_itmconf_20171205005
crossref_primary_10_1016_j_ijhcs_2020_102582
crossref_primary_10_1016_j_jpsychires_2014_06_009
crossref_primary_10_1016_j_neuroimage_2013_07_025
crossref_primary_10_1117_1_JBO_24_5_056008
crossref_primary_10_3389_fnins_2023_1229307
crossref_primary_10_1016_j_neulet_2014_05_040
crossref_primary_10_1007_s12548_015_0122_x
crossref_primary_10_1117_1_JBO_19_8_086012
crossref_primary_10_1016_j_biopsych_2025_01_002
crossref_primary_10_1162_jocn_a_01814
crossref_primary_10_1016_j_nicl_2014_09_001
crossref_primary_10_11154_pain_25_127
crossref_primary_10_1088_0031_9155_55_13_009
crossref_primary_10_1016_j_jpsychires_2022_07_064
crossref_primary_10_1121_10_0034627
crossref_primary_10_1016_j_neures_2008_10_012
crossref_primary_10_1111_epi_12095
crossref_primary_10_1113_JP282387
crossref_primary_10_1371_journal_pone_0115772
crossref_primary_10_1080_09297049_2013_803524
crossref_primary_10_1111_psyp_14024
crossref_primary_10_1080_15622975_2023_2287735
crossref_primary_10_1016_j_neubiorev_2010_06_005
crossref_primary_10_1016_j_neuroimage_2016_03_009
crossref_primary_10_1016_j_jad_2019_04_001
crossref_primary_10_1097_WNR_0000000000001876
crossref_primary_10_1016_j_dcn_2011_05_002
crossref_primary_10_1017_pen_2019_9
crossref_primary_10_3233_JND_210690
crossref_primary_10_1038_s41598_021_81208_5
crossref_primary_10_1016_j_neuroimage_2010_09_090
crossref_primary_10_1016_j_neuroimage_2021_118100
crossref_primary_10_1080_09297049_2022_2047913
crossref_primary_10_1111_j_1467_7687_2008_00681_x
crossref_primary_10_1016_j_brainres_2009_06_080
crossref_primary_10_1016_j_neuroscience_2018_06_025
crossref_primary_10_3389_fnhum_2016_00656
crossref_primary_10_1080_1357650X_2015_1037309
crossref_primary_10_5432_ijshs_IJSHS20080330
crossref_primary_10_1016_j_addbeh_2020_106673
crossref_primary_10_1523_JNEUROSCI_1644_10_2010
crossref_primary_10_1016_j_neurobiolaging_2011_12_022
crossref_primary_10_1016_j_ymeth_2007_02_001
crossref_primary_10_11596_asiajot_12_75
crossref_primary_10_1186_s13063_024_08258_8
crossref_primary_10_1162_imag_a_00480
crossref_primary_10_1016_j_neurobiolaging_2024_03_008
crossref_primary_10_1016_j_bbr_2024_115038
crossref_primary_10_1016_j_neuroimage_2007_07_050
crossref_primary_10_1162_jocn_a_00911
crossref_primary_10_1016_j_neuroimage_2018_06_032
crossref_primary_10_1111_cns_14257
crossref_primary_10_1177_2055668320964109
crossref_primary_10_1007_s11357_023_00816_3
crossref_primary_10_1109_ACCESS_2023_3262658
crossref_primary_10_1111_j_1601_183X_2009_00497_x
crossref_primary_10_1016_j_neuroimage_2012_01_104
crossref_primary_10_3390_brainsci10120939
crossref_primary_10_1299_transjsme_23_00006
crossref_primary_10_1002_jbio_202100295
crossref_primary_10_1016_j_neuropsychologia_2005_12_007
crossref_primary_10_1016_j_jad_2024_10_089
crossref_primary_10_1016_j_jpsychires_2008_02_005
crossref_primary_10_1016_j_actpsy_2016_06_005
crossref_primary_10_1016_j_neulet_2018_10_022
crossref_primary_10_1016_j_neuroimage_2005_03_021
crossref_primary_10_1080_00224499_2015_1130211
crossref_primary_10_12659_MSM_882128
crossref_primary_10_1111_psyp_14462
crossref_primary_10_1016_j_bspc_2020_102222
crossref_primary_10_1016_j_jad_2022_08_024
crossref_primary_10_1111_jpr_12227
crossref_primary_10_3109_02699052_2011_608212
crossref_primary_10_1016_j_neuroimage_2015_09_062
crossref_primary_10_1038_s41597_024_04136_9
crossref_primary_10_11596_asiajot_12_53
crossref_primary_10_1007_s11682_018_9867_3
crossref_primary_10_1016_j_neuropsychologia_2020_107650
crossref_primary_10_1038_s41598_021_93961_8
crossref_primary_10_1117_1_3602853
crossref_primary_10_1111_ner_13342
crossref_primary_10_1016_j_neures_2007_03_014
crossref_primary_10_1016_j_neuroimage_2016_03_035
crossref_primary_10_1007_s00213_011_2318_0
crossref_primary_10_3389_fnrgo_2023_1129582
crossref_primary_10_1016_j_jneumeth_2011_07_024
crossref_primary_10_1152_jn_00641_2018
crossref_primary_10_1080_15622975_2018_1428356
crossref_primary_10_1016_j_pscychresns_2015_09_008
crossref_primary_10_1016_j_bandl_2013_01_004
crossref_primary_10_1016_j_brainres_2012_08_023
crossref_primary_10_1016_j_mex_2023_102357
crossref_primary_10_1016_j_dcn_2010_12_004
crossref_primary_10_1093_cercor_bhae152
crossref_primary_10_1371_journal_pone_0310513
crossref_primary_10_1016_j_neures_2011_01_001
crossref_primary_10_1016_j_neuroimage_2011_01_011
crossref_primary_10_1002_dev_20569
crossref_primary_10_3390_mi11070635
crossref_primary_10_1080_08927936_2017_1335115
crossref_primary_10_1126_sciadv_aar6904
crossref_primary_10_1038_s41598_017_09226_w
crossref_primary_10_3389_fneur_2023_1280015
crossref_primary_10_1007_s40167_015_0027_y
crossref_primary_10_1016_j_neuroimage_2024_120700
crossref_primary_10_1016_j_nicl_2017_02_008
crossref_primary_10_1097_WNR_0b013e3283000825
crossref_primary_10_1016_j_bbr_2014_06_052
crossref_primary_10_3389_fpsyt_2022_853428
crossref_primary_10_1016_j_neuroimage_2010_09_030
crossref_primary_10_1016_j_bandc_2016_03_003
crossref_primary_10_1016_j_jpsychires_2009_11_018
crossref_primary_10_1016_j_neuropsychologia_2010_03_012
crossref_primary_10_1111_pcn_12548
crossref_primary_10_1111_jabr_12009
crossref_primary_10_3389_fpsyt_2021_772339
crossref_primary_10_3109_17483107_2012_671439
crossref_primary_10_1016_j_neuropsychologia_2021_107787
crossref_primary_10_5057_ijae_IJAE_D_20_00024
crossref_primary_10_1016_j_jpsychires_2008_04_008
crossref_primary_10_3389_fnhum_2017_00431
crossref_primary_10_1002_jbio_201700308
crossref_primary_10_1016_j_brainres_2005_11_050
crossref_primary_10_1016_j_heares_2019_04_011
crossref_primary_10_1007_s11571_020_09589_3
crossref_primary_10_1364_BOE_5_002503
crossref_primary_10_1016_j_neuroimage_2005_01_018
crossref_primary_10_3389_fnhum_2016_00676
crossref_primary_10_1016_j_biopsych_2020_05_033
crossref_primary_10_1016_j_neurobiolaging_2024_02_011
crossref_primary_10_1155_2016_7053867
crossref_primary_10_1016_j_ijpsycho_2017_07_013
crossref_primary_10_1016_j_neuroimage_2004_08_001
crossref_primary_10_1038_s41598_019_49257_z
crossref_primary_10_1016_j_neuropsychologia_2017_06_005
crossref_primary_10_1016_j_pscychresns_2013_05_011
crossref_primary_10_2463_jjmrm_2023_1804
crossref_primary_10_1109_ACCESS_2021_3050302
crossref_primary_10_1113_JP283408
crossref_primary_10_1002_hbm_26335
crossref_primary_10_1016_j_drugalcdep_2019_107650
crossref_primary_10_1016_j_neuroimage_2006_10_043
crossref_primary_10_1063_5_0021420
crossref_primary_10_3389_fnhum_2021_637589
crossref_primary_10_3389_fpsyg_2018_00742
crossref_primary_10_7554_eLife_63782
crossref_primary_10_1080_08990220_2017_1392298
crossref_primary_10_1007_s10548_009_0109_2
crossref_primary_10_1073_pnas_1903940116
crossref_primary_10_1002_hbm_70001
crossref_primary_10_1016_j_brainres_2010_04_048
crossref_primary_10_3389_fnhum_2017_00419
crossref_primary_10_1002_hbm_24220
crossref_primary_10_1038_s41598_020_71704_5
crossref_primary_10_1080_09297049_2023_2213463
crossref_primary_10_1038_s41598_022_08689_w
crossref_primary_10_1093_cercor_bhs321
crossref_primary_10_1109_TBME_2018_2889316
crossref_primary_10_1016_j_braindev_2014_03_011
crossref_primary_10_1111_pedi_12992
crossref_primary_10_1007_s11858_010_0256_7
crossref_primary_10_1016_j_neuroimage_2018_04_022
crossref_primary_10_3389_fnhum_2018_00313
crossref_primary_10_1523_JNEUROSCI_5618_09_2010
crossref_primary_10_1142_S0129065717500526
crossref_primary_10_3389_fnins_2017_00482
crossref_primary_10_1038_s41598_024_69222_9
crossref_primary_10_1371_journal_pone_0259422
crossref_primary_10_1016_j_pscychresns_2011_01_016
crossref_primary_10_3389_fnins_2017_00004
crossref_primary_10_1016_j_biopsych_2018_12_002
crossref_primary_10_1016_j_bandl_2012_02_001
crossref_primary_10_1111_bdi_12252
crossref_primary_10_3390_brainsci13050748
crossref_primary_10_1002_brb3_2476
crossref_primary_10_1007_s11682_018_9827_y
crossref_primary_10_1038_ncomms8544
crossref_primary_10_3389_fneur_2021_746599
crossref_primary_10_1016_j_bbr_2010_06_016
crossref_primary_10_1038_s41598_020_62761_x
crossref_primary_10_3233_NRE_182566
crossref_primary_10_1117_1_1960907
crossref_primary_10_1016_j_neuroimage_2006_04_197
crossref_primary_10_1016_j_jad_2016_09_028
crossref_primary_10_1177_1545968320969937
crossref_primary_10_1038_srep43293
crossref_primary_10_3390_brainsci13091284
crossref_primary_10_1109_ACCESS_2019_2939475
crossref_primary_10_1186_s12883_015_0472_4
crossref_primary_10_1371_journal_pbio_3000469
crossref_primary_10_1371_journal_pone_0257029
crossref_primary_10_1016_j_bandl_2017_03_005
crossref_primary_10_1007_s00484_012_0583_1
crossref_primary_10_3389_fnins_2021_705741
crossref_primary_10_1186_s13011_022_00459_1
crossref_primary_10_1117_1_JBO_19_2_026011
crossref_primary_10_1117_1_NPh_8_2_025009
crossref_primary_10_1111_jpr_12194
crossref_primary_10_1016_j_neuroimage_2013_02_026
crossref_primary_10_3390_jcm11185480
crossref_primary_10_1016_j_expneurol_2013_10_005
crossref_primary_10_1123_japa_2020_0130
crossref_primary_10_1117_1_NPh_4_1_015003
crossref_primary_10_9759_hppt_14_137
crossref_primary_10_3389_fneur_2023_1216468
crossref_primary_10_1097_WNR_0000000000001272
crossref_primary_10_1016_j_neuroimage_2013_04_090
crossref_primary_10_1016_j_neuroimage_2007_04_037
crossref_primary_10_1016_j_neuroimage_2023_120379
crossref_primary_10_1089_neu_2013_3306
crossref_primary_10_1002_dneu_20618
crossref_primary_10_1016_j_neuroimage_2013_04_098
crossref_primary_10_1093_cercor_bhab432
crossref_primary_10_1002_hbm_25318
crossref_primary_10_1016_j_neuroimage_2013_04_097
crossref_primary_10_11596_asiajot_20_77
crossref_primary_10_1016_j_aap_2016_01_016
crossref_primary_10_1016_j_biopsycho_2019_107743
crossref_primary_10_1093_cercor_bhp090
crossref_primary_10_4264_numa_70_145
crossref_primary_10_1016_j_neuroimage_2006_09_024
crossref_primary_10_3390_ijerph16071119
crossref_primary_10_1016_j_neuropsychologia_2015_11_005
crossref_primary_10_1155_2023_7768980
crossref_primary_10_3389_fnhum_2020_00075
crossref_primary_10_1016_j_clinph_2009_01_023
crossref_primary_10_3390_brainsci13010029
crossref_primary_10_1038_s41598_022_14146_5
crossref_primary_10_1016_j_pnpbp_2022_110634
crossref_primary_10_1155_2019_9167028
crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_602_24
crossref_primary_10_1117_1_2815720
crossref_primary_10_1371_journal_pone_0201486
crossref_primary_10_1007_s10803_024_06306_5
crossref_primary_10_1002_hbm_21382
crossref_primary_10_1109_TBME_2020_2971679
crossref_primary_10_1093_cercor_bhr023
crossref_primary_10_1371_journal_pone_0006881
crossref_primary_10_1016_j_nicl_2025_103733
crossref_primary_10_1016_j_bbr_2016_12_040
crossref_primary_10_1152_jn_00223_2011
crossref_primary_10_1016_j_pscychresns_2008_10_003
crossref_primary_10_1016_j_neuroimage_2013_04_070
crossref_primary_10_1016_j_jpsychires_2007_11_011
crossref_primary_10_5057_kansei_20_1_14
crossref_primary_10_1007_s00221_008_1643_y
crossref_primary_10_1155_2016_6168245
crossref_primary_10_1007_s00221_007_1200_0
crossref_primary_10_1016_j_brainres_2008_11_077
crossref_primary_10_1016_j_brs_2020_05_012
crossref_primary_10_3389_fpsyt_2022_876136
crossref_primary_10_1002_hbm_24405
crossref_primary_10_1371_journal_pone_0108685
crossref_primary_10_1016_j_neuroimage_2006_09_001
crossref_primary_10_1179_174313208X319143
crossref_primary_10_1016_j_schres_2009_10_003
crossref_primary_10_4236_nm_2012_34043
crossref_primary_10_1093_cercor_bht230
crossref_primary_10_3389_fnbeh_2022_884490
crossref_primary_10_1016_j_jad_2020_12_048
crossref_primary_10_3389_fnhum_2020_00057
crossref_primary_10_1371_journal_pone_0066319
crossref_primary_10_1016_j_bios_2019_04_046
crossref_primary_10_1016_j_clinph_2024_08_005
crossref_primary_10_1038_srep22500
crossref_primary_10_1016_j_actpsy_2024_104363
crossref_primary_10_20900_jpbs_20240001
crossref_primary_10_3390_ijerph18105500
crossref_primary_10_17430_1003278
crossref_primary_10_1016_j_neuroimage_2012_06_011
crossref_primary_10_1016_j_brs_2023_11_011
crossref_primary_10_1002_hbm_25764
crossref_primary_10_1080_01691864_2014_899162
crossref_primary_10_1016_j_bandc_2017_02_003
crossref_primary_10_1371_journal_pone_0247685
crossref_primary_10_1007_s00221_015_4545_9
crossref_primary_10_3389_fnins_2021_771056
crossref_primary_10_1117_1_NPh_4_2_021107
crossref_primary_10_1016_j_nicl_2015_06_011
crossref_primary_10_1038_s41598_018_27153_2
crossref_primary_10_1117_1_NPh_10_2_023515
crossref_primary_10_1016_j_neulet_2016_05_069
crossref_primary_10_1016_j_bandc_2020_105601
crossref_primary_10_1097_WNR_0b013e3282f3476f
crossref_primary_10_1016_j_neuropsychologia_2010_12_009
crossref_primary_10_1016_j_braindev_2014_01_003
crossref_primary_10_1016_j_schres_2023_12_028
crossref_primary_10_1155_2021_4158580
crossref_primary_10_1113_JP286004
crossref_primary_10_1007_s00213_018_4952_2
crossref_primary_10_1101_lm_048033_118
crossref_primary_10_1117_1_1851512
crossref_primary_10_1016_j_neulet_2011_11_009
crossref_primary_10_1016_j_bbr_2010_04_017
crossref_primary_10_1155_2016_9826596
crossref_primary_10_1007_s10339_014_0641_1
crossref_primary_10_1016_j_jpsychires_2015_01_009
crossref_primary_10_1016_j_cortex_2015_04_015
crossref_primary_10_1080_17470919_2015_1088469
crossref_primary_10_1142_S1793545817500109
crossref_primary_10_1371_journal_pone_0120731
crossref_primary_10_1371_journal_pone_0115162
crossref_primary_10_1002_brb3_1788
crossref_primary_10_4103_1673_5374_295333
crossref_primary_10_3233_NRE_210034
crossref_primary_10_1002_aur_2082
crossref_primary_10_3389_fnins_2024_1322071
crossref_primary_10_1111_adb_12005
crossref_primary_10_1016_j_neuroimage_2021_118324
crossref_primary_10_1016_j_neuroimage_2006_08_014
crossref_primary_10_1016_j_neulet_2008_01_046
crossref_primary_10_1523_JNEUROSCI_0954_23_2023
crossref_primary_10_1007_s00221_019_05665_1
crossref_primary_10_1016_j_neuropsychologia_2013_10_018
crossref_primary_10_1016_j_neuroimage_2015_12_047
crossref_primary_10_1016_j_brainres_2022_147998
crossref_primary_10_3389_fnagi_2024_1389488
crossref_primary_10_1016_j_heares_2020_108069
crossref_primary_10_1016_j_nicl_2018_101622
crossref_primary_10_1113_JP280966
crossref_primary_10_1016_j_neuroscience_2016_11_032
crossref_primary_10_1589_jpts_31_242
crossref_primary_10_1016_j_brainres_2011_01_090
crossref_primary_10_1016_j_neuropsychologia_2009_09_036
crossref_primary_10_1186_2040_7378_3_4
crossref_primary_10_3389_fnrgo_2024_1331083
crossref_primary_10_1093_cercor_bhac114
crossref_primary_10_1007_s11596_014_1334_9
crossref_primary_10_1111_desc_12628
crossref_primary_10_1007_s00221_020_05995_5
crossref_primary_10_1016_j_ijpsycho_2011_02_004
crossref_primary_10_1097_WNR_0000000000000347
crossref_primary_10_1016_j_jneumeth_2016_02_024
crossref_primary_10_1080_09084282_2011_595450
crossref_primary_10_1016_j_archger_2014_07_003
crossref_primary_10_1097_MD_0000000000038753
crossref_primary_10_1038_s41598_020_67162_8
crossref_primary_10_1186_s40810_016_0016_1
crossref_primary_10_1002_hbm_21115
crossref_primary_10_1162_jocn_a_00108
crossref_primary_10_1007_s10548_015_0443_5
crossref_primary_10_1371_journal_pone_0061926
crossref_primary_10_1371_journal_pone_0140552
crossref_primary_10_1016_j_neuroimage_2012_09_042
crossref_primary_10_1186_s12888_023_04694_z
crossref_primary_10_1016_j_brainres_2011_01_073
crossref_primary_10_1016_j_neuroimage_2017_09_044
crossref_primary_10_1016_j_neures_2014_01_003
crossref_primary_10_1097_WNR_0000000000002112
crossref_primary_10_1016_j_brs_2008_09_005
crossref_primary_10_1300_J184v10n04_05
crossref_primary_10_1016_j_jqsrt_2016_11_018
crossref_primary_10_1016_j_neuroimage_2008_02_032
crossref_primary_10_1111_desc_13541
crossref_primary_10_1371_journal_pone_0004621
crossref_primary_10_1038_s41598_019_41739_4
crossref_primary_10_1016_j_neuropsychologia_2015_07_013
crossref_primary_10_1016_j_cortex_2016_11_016
crossref_primary_10_1589_rika_25_109
crossref_primary_10_3389_fnrgo_2023_1207484
crossref_primary_10_1016_j_pnpbp_2010_07_021
crossref_primary_10_1016_j_jad_2015_01_042
crossref_primary_10_1016_j_brs_2022_07_045
crossref_primary_10_3389_fnhum_2021_711054
crossref_primary_10_1016_j_ijpsycho_2007_03_004
crossref_primary_10_1016_j_neuroimage_2019_116161
crossref_primary_10_1117_1_NPh_2_3_035002
crossref_primary_10_1016_j_jneumeth_2016_03_003
crossref_primary_10_1016_j_physbeh_2019_112721
crossref_primary_10_1093_cercor_bhn096
crossref_primary_10_1016_j_neuroimage_2005_12_021
crossref_primary_10_1093_cercor_bhy086
crossref_primary_10_1073_pnas_0809747106
crossref_primary_10_1016_j_neuropsychologia_2018_04_033
crossref_primary_10_1109_TCDS_2020_3001642
crossref_primary_10_1016_j_neuroimage_2008_03_055
crossref_primary_10_1016_j_bandc_2009_11_005
crossref_primary_10_3389_fnhum_2021_680847
crossref_primary_10_4236_jbbs_2016_612044
crossref_primary_10_1016_j_bbr_2020_112865
crossref_primary_10_1002_lio2_185
crossref_primary_10_1093_cercor_bhn081
crossref_primary_10_1155_2014_591023
crossref_primary_10_1097_WNR_0b013e32832aa975
crossref_primary_10_1371_journal_pone_0158070
crossref_primary_10_1589_jpts_29_702
crossref_primary_10_1016_j_pscychresns_2011_12_008
crossref_primary_10_1186_1471_2202_11_91
crossref_primary_10_1007_s10548_015_0454_2
crossref_primary_10_1016_j_neuropsychologia_2009_07_017
crossref_primary_10_1016_j_jash_2015_06_007
crossref_primary_10_2974_kmj_62_271
crossref_primary_10_1177_1545968311412053
crossref_primary_10_1016_j_neuroimage_2020_117597
crossref_primary_10_1016_j_pscychresns_2025_111964
crossref_primary_10_1093_cercor_bhad417
crossref_primary_10_1371_journal_pone_0256780
crossref_primary_10_1002_pchj_67
crossref_primary_10_1179_1743132812Y_0000000047
crossref_primary_10_1016_j_neuroimage_2010_06_064
crossref_primary_10_1080_13554794_2014_890731
crossref_primary_10_1080_08990220_2019_1699044
crossref_primary_10_3389_fnins_2019_01071
crossref_primary_10_3389_fpsyg_2020_542093
crossref_primary_10_1016_j_psychres_2023_115285
crossref_primary_10_1016_j_neures_2011_10_008
crossref_primary_10_1109_TNSRE_2005_847377
crossref_primary_10_1038_s41598_017_04357_6
crossref_primary_10_1155_2022_3878771
crossref_primary_10_3390_sym12040538
crossref_primary_10_1038_s41598_017_10024_7
crossref_primary_10_1038_srep42858
crossref_primary_10_1088_1741_2560_11_5_056010
crossref_primary_10_1089_brain_2024_0043
crossref_primary_10_25259_SNI_210_2023
crossref_primary_10_1186_s10194_024_01754_x
crossref_primary_10_1152_jn_01273_2005
crossref_primary_10_1098_rstb_2010_0184
crossref_primary_10_4236_psych_2014_58094
crossref_primary_10_1016_j_jpain_2019_05_011
crossref_primary_10_1016_j_apmr_2023_05_012
crossref_primary_10_1117_1_NPh_10_3_035005
crossref_primary_10_1155_2015_707625
crossref_primary_10_1186_s12984_020_00739_6
crossref_primary_10_1016_j_neulet_2014_12_034
crossref_primary_10_1016_j_neuroimage_2013_05_106
crossref_primary_10_1117_1_NPh_1_1_015004
crossref_primary_10_1016_j_neuroimage_2010_01_068
crossref_primary_10_1016_j_neuropsychologia_2012_02_015
crossref_primary_10_1016_j_jpsychires_2012_08_001
crossref_primary_10_1016_j_cortex_2018_08_012
crossref_primary_10_1016_j_neuroimage_2014_08_034
crossref_primary_10_1111_pcn_12052
crossref_primary_10_1111_j_1440_1819_2008_01882_x
crossref_primary_10_1007_s00213_012_2885_8
crossref_primary_10_1044_2016_JSLHR_H_15_0435
crossref_primary_10_1016_j_bbr_2011_12_038
crossref_primary_10_1016_j_chemosphere_2023_138153
crossref_primary_10_1117_1_2166632
crossref_primary_10_1088_1741_2552_aae4b9
crossref_primary_10_1589_jpts_35_502
crossref_primary_10_1007_s10548_013_0304_z
crossref_primary_10_1089_brain_2024_0015
crossref_primary_10_1179_1074935714Z_0000000032
crossref_primary_10_1080_15374416_2012_719458
crossref_primary_10_1117_1_NPh_5_3_035010
crossref_primary_10_1016_j_neuroscience_2020_06_007
crossref_primary_10_3390_nu11092019
crossref_primary_10_1523_ENEURO_0504_21_2022
crossref_primary_10_1038_s41598_022_11324_3
crossref_primary_10_1016_j_jad_2017_07_031
crossref_primary_10_1002_hbm_20303
crossref_primary_10_1016_j_brain_2023_100086
crossref_primary_10_1155_2014_360179
crossref_primary_10_5057_isase_2020_C000027
crossref_primary_10_1007_s00221_008_1518_2
crossref_primary_10_1371_journal_pone_0020021
crossref_primary_10_1177_1550059413476031
crossref_primary_10_1016_j_brainres_2008_05_079
crossref_primary_10_1155_2015_373769
crossref_primary_10_3389_fnhum_2017_00147
crossref_primary_10_1371_journal_pone_0003912
crossref_primary_10_1016_j_bbr_2015_04_053
crossref_primary_10_1016_j_neuroscience_2018_10_040
crossref_primary_10_1093_cercor_bhaa077
crossref_primary_10_1162_imag_a_00167
crossref_primary_10_3390_brainsci10040247
crossref_primary_10_1038_s41598_022_14458_6
crossref_primary_10_3389_fnagi_2021_595288
crossref_primary_10_1016_j_bandl_2011_03_010
crossref_primary_10_1016_j_neuropsychologia_2009_09_028
crossref_primary_10_1016_j_schres_2008_12_010
crossref_primary_10_1016_j_clinph_2011_10_006
crossref_primary_10_1038_s41598_019_49917_0
crossref_primary_10_1186_s12868_024_00864_1
crossref_primary_10_1016_j_neures_2010_01_010
crossref_primary_10_1016_j_clinph_2007_02_003
crossref_primary_10_3390_bioengineering10101112
crossref_primary_10_1016_j_bandc_2019_05_001
crossref_primary_10_1016_j_pscychresns_2014_04_012
crossref_primary_10_1016_j_neuroimage_2009_12_023
crossref_primary_10_1289_EHP2049
crossref_primary_10_1364_OE_18_026550
crossref_primary_10_3389_fbioe_2022_841389
crossref_primary_10_3109_15622975_2011_564654
crossref_primary_10_1038_s41598_017_07897_z
crossref_primary_10_1016_j_neuropsychologia_2012_11_023
crossref_primary_10_2340_jrm_v56_40111
crossref_primary_10_1016_j_neures_2008_03_011
crossref_primary_10_1016_j_neuroimage_2006_06_047
crossref_primary_10_1155_2018_7403471
crossref_primary_10_3389_fped_2017_00271
crossref_primary_10_1016_j_learninstruc_2014_11_003
crossref_primary_10_1080_00918369_2018_1550331
crossref_primary_10_1016_j_biopsycho_2022_108359
crossref_primary_10_1109_ACCESS_2021_3074220
crossref_primary_10_1007_s11517_012_0922_8
crossref_primary_10_3233_RNN_150518
crossref_primary_10_1002_brb3_980
crossref_primary_10_1016_j_neulet_2022_136967
crossref_primary_10_1152_jn_00947_2016
crossref_primary_10_1111_psyp_14564
crossref_primary_10_1007_s00429_021_02333_5
crossref_primary_10_3389_fnhum_2024_1366443
crossref_primary_10_1016_j_bandc_2023_105995
crossref_primary_10_1016_j_neuroimage_2020_116657
crossref_primary_10_1016_j_neuropsychologia_2015_10_002
crossref_primary_10_1007_s00221_009_2113_x
crossref_primary_10_1016_j_neures_2007_06_1466
crossref_primary_10_20965_jrm_2017_p0746
crossref_primary_10_3389_fnins_2018_00176
crossref_primary_10_1038_s41598_021_01654_z
crossref_primary_10_1038_s41598_018_21634_0
crossref_primary_10_1118_1_3190557
crossref_primary_10_1016_j_cognition_2021_104711
crossref_primary_10_1038_s41598_022_08322_w
crossref_primary_10_1016_j_neures_2007_06_1480
crossref_primary_10_1263_jbb_103_207
crossref_primary_10_1016_j_bandc_2012_04_006
crossref_primary_10_1007_s00521_011_0744_x
crossref_primary_10_1016_j_neuroimage_2013_12_011
crossref_primary_10_1016_j_neures_2012_02_004
crossref_primary_10_1016_j_pscychresns_2012_01_007
crossref_primary_10_1016_j_bandl_2011_05_002
crossref_primary_10_1093_scan_nsx012
crossref_primary_10_1111_psyp_13019
crossref_primary_10_1016_j_foodqual_2022_104689
crossref_primary_10_1097_WNR_0b013e32832fa65f
crossref_primary_10_1002_hbm_25173
crossref_primary_10_1080_00222895_2017_1400947
crossref_primary_10_3389_fnhum_2021_726087
crossref_primary_10_1016_j_bspc_2018_05_018
crossref_primary_10_3389_fnins_2022_1079078
crossref_primary_10_1016_j_neuroscience_2021_01_007
crossref_primary_10_1016_j_brs_2023_04_006
crossref_primary_10_1111_acer_14654
crossref_primary_10_1016_j_neuroimage_2012_03_049
crossref_primary_10_1007_s12021_024_09714_1
crossref_primary_10_1038_srep05023
crossref_primary_10_3389_fnhum_2023_1205858
crossref_primary_10_1111_pcn_12684
crossref_primary_10_3389_fnhum_2015_00110
crossref_primary_10_1038_srep17471
crossref_primary_10_1016_j_schres_2016_01_045
crossref_primary_10_1177_0022034512450880
crossref_primary_10_1007_s00429_014_0878_6
crossref_primary_10_1371_journal_pone_0102306
crossref_primary_10_1038_s41593_023_01457_7
crossref_primary_10_1177_1087054711429702
crossref_primary_10_1097_WNR_0b013e3282f4aa2a
crossref_primary_10_1016_j_jad_2015_04_010
crossref_primary_10_3389_fnhum_2021_674851
crossref_primary_10_1136_bmjopen_2021_050413
crossref_primary_10_1073_pnas_1512044113
crossref_primary_10_1162_jocn_2009_21126
crossref_primary_10_1162_jocn_2009_21377
crossref_primary_10_1016_j_neuroimage_2008_07_014
crossref_primary_10_4103_1673_5374_313058
crossref_primary_10_1371_journal_pone_0035080
crossref_primary_10_1097_WNN_0b013e3181684d87
crossref_primary_10_1589_rika_28_577
crossref_primary_10_1097_TGR_0000000000000399
crossref_primary_10_1007_s11858_015_0754_8
crossref_primary_10_1016_j_neuroimage_2013_04_112
crossref_primary_10_3389_fnhum_2014_00301
crossref_primary_10_1016_j_neuroimage_2007_12_037
crossref_primary_10_1523_JNEUROSCI_0975_23_2023
crossref_primary_10_1007_s40167_018_0064_4
crossref_primary_10_1364_BOE_507294
crossref_primary_10_3988_jcn_2013_9_2_75
crossref_primary_10_1111_ejn_15164
crossref_primary_10_1016_j_pnpbp_2009_01_014
crossref_primary_10_1016_j_brainresbull_2015_09_006
crossref_primary_10_1016_j_neuroimage_2010_01_026
crossref_primary_10_3389_fnhum_2018_00505
crossref_primary_10_1016_j_braindev_2024_03_006
crossref_primary_10_3389_fneur_2018_00350
crossref_primary_10_3389_fpsyg_2022_801531
crossref_primary_10_34133_2021_9821787
crossref_primary_10_1017_S0033291721001859
crossref_primary_10_1371_journal_pone_0240301
crossref_primary_10_3389_fnins_2023_1198222
crossref_primary_10_1016_j_pscychresns_2017_03_013
crossref_primary_10_1016_j_pnpbp_2024_111225
crossref_primary_10_1080_17470919_2013_861359
crossref_primary_10_1016_j_mhpa_2023_100534
crossref_primary_10_1155_2023_3836418
crossref_primary_10_4236_jbbs_2014_412053
crossref_primary_10_1016_j_neuroimage_2012_03_009
crossref_primary_10_1016_j_schres_2015_07_043
crossref_primary_10_3233_NRE_230355
crossref_primary_10_1097_WNR_0b013e32832d2d36
crossref_primary_10_1007_s10803_017_3222_1
crossref_primary_10_1111_j_1460_9568_2008_06459_x
crossref_primary_10_1016_j_jad_2025_02_116
crossref_primary_10_3233_THC_202580
crossref_primary_10_1002_hbm_25367
crossref_primary_10_1002_brb3_70038
crossref_primary_10_1371_journal_pone_0005495
crossref_primary_10_1016_j_brs_2017_02_011
crossref_primary_10_3389_fphys_2020_01042
crossref_primary_10_1589_jpts_20_141
crossref_primary_10_1080_00140139_2015_1076057
crossref_primary_10_1016_j_neuroimage_2013_11_003
crossref_primary_10_3389_fnins_2017_00394
crossref_primary_10_1016_j_bandl_2013_09_008
crossref_primary_10_1016_j_brainres_2011_06_052
crossref_primary_10_1088_1741_2552_ab50b2
Cites_doi 10.1016/S0140-6736(85)92413-4
10.1016/S0304-3940(98)00754-X
10.1111/j.1749-6632.1991.tb51572.x
10.1016/0013-4694(86)90003-9
10.1016/0013-4694(74)90172-2
10.1097/00004691-199010000-00006
10.1038/nrn756
10.1118/1.596777
10.1016/S0166-2236(97)01132-6
10.1016/S0926-6410(00)00006-9
10.1016/S0304-3940(01)01518-X
10.1002/hbm.460030303
10.1212/01.WNL.0000038744.30298.D4
10.1148/radiology.176.2.2367656
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1155/2000/421719
10.1097/00004691-199101000-00004
10.1016/0013-4694(87)90206-9
10.1117/1.429973
10.1016/0304-3940(96)12376-4
10.1016/0013-4694(89)90073-4
10.1364/AO.36.000021
10.1006/nimg.2000.0688
10.1006/nimg.2001.0905
10.1016/0013-4694(93)90062-Z
10.1002/hbm.1021
10.1016/0013-4694(89)90227-7
10.1097/00004691-200208000-00006
10.1016/0013-4694(93)90061-Y
ContentType Journal Article
Copyright 2003 Elsevier Inc.
Copyright Elsevier Limited Jan 1, 2004
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 1, 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2003.08.026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database (Proquest)
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 111
ExternalDocumentID 3244217511
14741647
10_1016_j_neuroimage_2003_08_026
S1053811903005366
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c521t-904c7461ce29228f61d18d95171818bfee9ebe471548e2cfa1258a745be5fb8c3
IEDL.DBID AIKHN
ISSN 1053-8119
IngestDate Tue Aug 05 10:56:54 EDT 2025
Wed Aug 13 07:39:59 EDT 2025
Wed Feb 19 01:43:38 EST 2025
Thu Apr 24 22:57:26 EDT 2025
Tue Jul 01 00:49:11 EDT 2025
Fri Feb 23 02:29:07 EST 2024
Tue Aug 26 16:31:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transcranial magnetic stimulation
Human brain mapping
Probabilistic anatomical platform
Near-infrared spectroscopy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-904c7461ce29228f61d18d95171818bfee9ebe471548e2cfa1258a745be5fb8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 14741647
PQID 1506604170
PQPubID 2031077
PageCount 13
ParticipantIDs proquest_miscellaneous_80116284
proquest_journals_1506604170
pubmed_primary_14741647
crossref_primary_10_1016_j_neuroimage_2003_08_026
crossref_citationtrail_10_1016_j_neuroimage_2003_08_026
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_08_026
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004
2004-1-00
2004-Jan
20040101
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Homan, Herman, Purdy (BIB12) 1987; 66
Jalinous (BIB16) 1991; 8
Watanabe, Maki, Kawaguchi, Takashiro, Yamashita, Koizumi, Mayanagi (BIB38) 1998; 256
Brodmann (BIB5) 1912; 41
Mazziotta, Toga, Evans, Fox, Lancaster, Woods (BIB21) 2000
Isobe, Kusaka, Nagano, Okubo, Yasuda, Kondo, Itoh, Onishi (BIB14) 2001; 299
Barker, Jalinous, Freeston (BIB1) 1985; 1
Hoshi, Oda, Wada, Ito, Yamashita, Oda, Ohta, Yamada, Tamura (BIB13) 2000; 9
Villringer, Chance (BIB35) 1997; 20
Talairach, Tournoux (BIB30) 1988
Villringer, Dirnagl (BIB36) 1995; 7
Farrell, Patterson, Wilson (BIB7) 1992; 19
Friston, Ashburner, Frith, Poline, Heather, Frackowiak (BIB9) 1995; 2
Jack, Marsh, Hirschorn, Shabrough, Cascino, Karwoski, Robb (BIB15) 1990; 176
Towle, Bolanos, Suarez, Tan, Grzeszczuk, Levin, Cakmur, Frank, Spire (BIB32) 1993; 86
Gevins, Illes (BIB10) 1991; 620
Van den Elsen, Viergever (BIB34) 1991
Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (BIB19) 2000; 10
Miyai, Tanabe, Sase, Eda, Oda, Konishi, Tsunazawa, Suzuki, Yanagida, Kubota (BIB22) 2001; 14
Myslobodsky, Coppola, Bar-Ziv, Weinberger (BIB25) 1990; 7
Tsunazawa, Eda, Takada (BIB33) 1994
Mai, Assheuer, Paxinos (BIB20) 1997
Curra, Modugno, Inghilleri, Manfredi, Hallett, Berardelli (BIB6) 2002; 59
Watanabe, Yamashita, Maki, Ito, Koizumi (BIB37) 1996; 205
Morris, Lüders, Lesser, Dinner, Klem (BIB23) 1986; 63
Brodmann (BIB4) 1909
Steinmetz, Furst, Meyer (BIB40) 1989; 72
Lagerlund, Sharbrough, Jack, Erickson, Strelow, Cicora, Busacker (BIB18) 1993; 86
Myslobodsky, Bar-Ziv (BIB24) 1989; 72
Rorden, Brett (BIB28) 2000; 12
Terao, Ugawa (BIB31) 2002; 19
Blume, Buza, Okazaki (BIB2) 1974; 36
Takahashi, Ogata, Atsumi, Yamamoto, Shiotsuka, Maki, Yamashita, Yamamoto, Koizumi, Hirasawa, Igawa (BIB29) 2000; 5
Ono, Kubik, Abernathey (BIB27) 1990
Feng, Zeng, Chance (BIB8) 1993; 1888
Jasper (BIB17) 1958; 10
Gratton, Goodman-Wood, Fabiani (BIB11) 2001; 13
Brett, Johnsrude, Owen (BIB3) 2002; 3
Okada, Firbank, Schweiger, Arridge, Cope, Delpy (BIB26) 1997; 36
Zilles, Kawashima, Dabringhaus, Fukuda, Schormann (BIB39) 2001; 13
Watanabe (10.1016/j.neuroimage.2003.08.026_BIB38) 1998; 256
Zilles (10.1016/j.neuroimage.2003.08.026_BIB39) 2001; 13
Friston (10.1016/j.neuroimage.2003.08.026_BIB9) 1995; 2
Jalinous (10.1016/j.neuroimage.2003.08.026_BIB16) 1991; 8
Gevins (10.1016/j.neuroimage.2003.08.026_BIB10) 1991; 620
Feng (10.1016/j.neuroimage.2003.08.026_BIB8) 1993; 1888
Terao (10.1016/j.neuroimage.2003.08.026_BIB31) 2002; 19
Towle (10.1016/j.neuroimage.2003.08.026_BIB32) 1993; 86
Tsunazawa (10.1016/j.neuroimage.2003.08.026_BIB33) 1994
Myslobodsky (10.1016/j.neuroimage.2003.08.026_BIB24) 1989; 72
Brodmann (10.1016/j.neuroimage.2003.08.026_BIB5) 1912; 41
Hoshi (10.1016/j.neuroimage.2003.08.026_BIB13) 2000; 9
Myslobodsky (10.1016/j.neuroimage.2003.08.026_BIB25) 1990; 7
Morris (10.1016/j.neuroimage.2003.08.026_BIB23) 1986; 63
Lancaster (10.1016/j.neuroimage.2003.08.026_BIB19) 2000; 10
Mazziotta (10.1016/j.neuroimage.2003.08.026_BIB21) 2000
Jasper (10.1016/j.neuroimage.2003.08.026_BIB17) 1958; 10
Mai (10.1016/j.neuroimage.2003.08.026_BIB20) 1997
Brodmann (10.1016/j.neuroimage.2003.08.026_BIB4) 1909
Gratton (10.1016/j.neuroimage.2003.08.026_BIB11) 2001; 13
Van den Elsen (10.1016/j.neuroimage.2003.08.026_BIB34) 1991
Watanabe (10.1016/j.neuroimage.2003.08.026_BIB37) 1996; 205
Blume (10.1016/j.neuroimage.2003.08.026_BIB2) 1974; 36
Brett (10.1016/j.neuroimage.2003.08.026_BIB3) 2002; 3
Okada (10.1016/j.neuroimage.2003.08.026_BIB26) 1997; 36
Talairach (10.1016/j.neuroimage.2003.08.026_BIB30) 1988
Barker (10.1016/j.neuroimage.2003.08.026_BIB1) 1985; 1
Miyai (10.1016/j.neuroimage.2003.08.026_BIB22) 2001; 14
Steinmetz (10.1016/j.neuroimage.2003.08.026_BIB40) 1989; 72
Farrell (10.1016/j.neuroimage.2003.08.026_BIB7) 1992; 19
Isobe (10.1016/j.neuroimage.2003.08.026_BIB14) 2001; 299
Homan (10.1016/j.neuroimage.2003.08.026_BIB12) 1987; 66
Jack (10.1016/j.neuroimage.2003.08.026_BIB15) 1990; 176
Villringer (10.1016/j.neuroimage.2003.08.026_BIB36) 1995; 7
Curra (10.1016/j.neuroimage.2003.08.026_BIB6) 2002; 59
Rorden (10.1016/j.neuroimage.2003.08.026_BIB28) 2000; 12
Villringer (10.1016/j.neuroimage.2003.08.026_BIB35) 1997; 20
Ono (10.1016/j.neuroimage.2003.08.026_BIB27) 1990
Lagerlund (10.1016/j.neuroimage.2003.08.026_BIB18) 1993; 86
Takahashi (10.1016/j.neuroimage.2003.08.026_BIB29) 2000; 5
References_xml – volume: 9
  start-page: 339
  year: 2000
  end-page: 342
  ident: BIB13
  article-title: Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 176
  start-page: 413
  year: 1990
  end-page: 418
  ident: BIB15
  article-title: EEG scalp electrode projection onto 3-dimensional surface rendered images of the brain
  publication-title: Radiology
– volume: 10
  start-page: 120
  year: 2000
  end-page: 131
  ident: BIB19
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
– start-page: 142
  year: 1991
  end-page: 154
  ident: BIB34
  article-title: Marker guided registration of electromagnetic dipole data with tomographic images
  publication-title: Information Processing in Medical Imaging
– volume: 20
  start-page: 435
  year: 1997
  end-page: 442
  ident: BIB35
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
– volume: 205
  start-page: 41
  year: 1996
  end-page: 44
  ident: BIB37
  article-title: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans
  publication-title: Neurosci. Lett.
– volume: 14
  start-page: 1186
  year: 2001
  end-page: 1192
  ident: BIB22
  article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study
  publication-title: NeuroImage
– volume: 59
  start-page: 1851
  year: 2002
  end-page: 1859
  ident: BIB6
  article-title: Transcranial magnetic stimulation techniques in clinical investigation
  publication-title: Neurology
– volume: 19
  start-page: 879
  year: 1992
  end-page: 888
  ident: BIB7
  article-title: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo
  publication-title: Med. Phys.
– volume: 66
  start-page: 376
  year: 1987
  end-page: 382
  ident: BIB12
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 36
  start-page: 21
  year: 1997
  end-page: 31
  ident: BIB26
  article-title: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head
  publication-title: Appl. Opt.
– volume: 1888
  start-page: 88
  year: 1993
  ident: BIB8
  article-title: Monte Carlo simulations of photon migration path distributions in multiple scattering media
  publication-title: SPIE (Photon migration and imaging in random media and tissues)
– volume: 3
  start-page: 243
  year: 2002
  end-page: 249
  ident: BIB3
  article-title: The problem of functional localization in the human brain
  publication-title: Nat. Rev. Neurosci.
– volume: 72
  start-page: 499
  year: 1989
  end-page: 506
  ident: BIB40
  article-title: Craniocerebral topography within the international 10–20 system
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 10
  start-page: 367
  year: 1958
  end-page: 380
  ident: BIB17
  article-title: The ten–twenty electrode system of the International Federation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 7
  start-page: 240
  year: 1995
  end-page: 276
  ident: BIB36
  article-title: Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging
  publication-title: Cerebrovasc. Brain Metab. Rev.
– volume: 8
  start-page: 10
  year: 1991
  end-page: 25
  ident: BIB16
  article-title: Technical and practical aspects of magnetic nerve stimulation
  publication-title: J. Clin. Neurophysiol.
– volume: 86
  start-page: 7
  year: 1993
  end-page: 14
  ident: BIB18
  article-title: Determination of 10–20 system electrode locations using magnetic resonance image scanning with markers
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  ident: BIB28
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
– volume: 620
  start-page: 22
  year: 1991
  end-page: 44
  ident: BIB10
  article-title: Neurocognitive networks of the human brain
  publication-title: Ann. N.Y. Acad. Sci.
– year: 1988
  ident: BIB30
  article-title: Co-planar Stereotaxic Atlas of the Human Brain
– volume: 256
  start-page: 49
  year: 1998
  end-page: 52
  ident: BIB38
  article-title: Non-invasive assessment of language dominance with near-infrared spectroscopic mapping
  publication-title: Neurosci. Lett.
– volume: 1
  start-page: 1106
  year: 1985
  end-page: 1107
  ident: BIB1
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
– year: 1909
  ident: BIB4
  article-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues
– volume: 41
  start-page: 157
  year: 1912
  end-page: 216
  ident: BIB5
  article-title: Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde
  publication-title: Anat. Anz.
– volume: 2
  start-page: 165
  year: 1995
  end-page: 189
  ident: BIB9
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
– volume: 86
  start-page: 1
  year: 1993
  end-page: 6
  ident: BIB32
  article-title: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 63
  start-page: 107
  year: 1986
  end-page: 111
  ident: BIB23
  article-title: The value of closely spaced scalp electrodes in the localization of epileptiform foci: a study of 26 patients with complex partial seizures
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 19
  start-page: 322
  year: 2002
  end-page: 343
  ident: BIB31
  article-title: Basic mechanisms of TMS
  publication-title: J. Clin. Neurophysiol.
– volume: 13
  start-page: 262
  year: 2001
  end-page: 271
  ident: BIB39
  article-title: Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences
  publication-title: NeuroImage
– year: 1990
  ident: BIB27
  article-title: Atlas of the Cerebral Sulci
– year: 1997
  ident: BIB20
  article-title: Atlas of the Human Brain
– start-page: 35
  year: 1994
  end-page: 38
  ident: BIB33
  article-title: Analytical formula describing the effect of deep optical absorber in multiple scattering media
  publication-title: Optical Methods in Biomedical and Environmental Sciences
– volume: 7
  start-page: 507
  year: 1990
  end-page: 518
  ident: BIB25
  article-title: Adequacy of the international 10–20 electrode system for computed neurophysiologic topography
  publication-title: J. Clin. Neurophysiol.
– volume: 5
  start-page: 93
  year: 2000
  end-page: 96
  ident: BIB29
  article-title: Activation of the visual cortex imaged by 24-channel near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
– start-page: 141
  year: 2000
  end-page: 156
  ident: BIB21
  article-title: A probabilistic approach for mapping the human brain
  publication-title: Brain Mapping: The Systems
– volume: 13
  start-page: 13
  year: 2001
  end-page: 25
  ident: BIB11
  article-title: Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study
  publication-title: Hum. Brain Mapp.
– volume: 299
  start-page: 221
  year: 2001
  end-page: 224
  ident: BIB14
  article-title: Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement
  publication-title: Neurosci. Lett.
– volume: 36
  start-page: 303
  year: 1974
  end-page: 307
  ident: BIB2
  article-title: Anatomic correlates of the ten–twenty electrode placement system in infants
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 72
  start-page: 362
  year: 1989
  end-page: 366
  ident: BIB24
  article-title: Locations of occipital EEG electrodes verified by computed tomography
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 1
  start-page: 1106
  issue: 8437
  year: 1985
  ident: 10.1016/j.neuroimage.2003.08.026_BIB1
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– start-page: 142
  year: 1991
  ident: 10.1016/j.neuroimage.2003.08.026_BIB34
  article-title: Marker guided registration of electromagnetic dipole data with tomographic images
– volume: 256
  start-page: 49
  year: 1998
  ident: 10.1016/j.neuroimage.2003.08.026_BIB38
  article-title: Non-invasive assessment of language dominance with near-infrared spectroscopic mapping
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(98)00754-X
– volume: 620
  start-page: 22
  year: 1991
  ident: 10.1016/j.neuroimage.2003.08.026_BIB10
  article-title: Neurocognitive networks of the human brain
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1991.tb51572.x
– start-page: 141
  year: 2000
  ident: 10.1016/j.neuroimage.2003.08.026_BIB21
  article-title: A probabilistic approach for mapping the human brain
– volume: 1888
  start-page: 88
  year: 1993
  ident: 10.1016/j.neuroimage.2003.08.026_BIB8
  article-title: Monte Carlo simulations of photon migration path distributions in multiple scattering media
  publication-title: SPIE (Photon migration and imaging in random media and tissues)
– volume: 63
  start-page: 107
  year: 1986
  ident: 10.1016/j.neuroimage.2003.08.026_BIB23
  article-title: The value of closely spaced scalp electrodes in the localization of epileptiform foci: a study of 26 patients with complex partial seizures
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(86)90003-9
– volume: 36
  start-page: 303
  year: 1974
  ident: 10.1016/j.neuroimage.2003.08.026_BIB2
  article-title: Anatomic correlates of the ten–twenty electrode placement system in infants
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(74)90172-2
– volume: 7
  start-page: 507
  year: 1990
  ident: 10.1016/j.neuroimage.2003.08.026_BIB25
  article-title: Adequacy of the international 10–20 electrode system for computed neurophysiologic topography
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199010000-00006
– volume: 3
  start-page: 243
  year: 2002
  ident: 10.1016/j.neuroimage.2003.08.026_BIB3
  article-title: The problem of functional localization in the human brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn756
– volume: 19
  start-page: 879
  year: 1992
  ident: 10.1016/j.neuroimage.2003.08.026_BIB7
  article-title: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo
  publication-title: Med. Phys.
  doi: 10.1118/1.596777
– volume: 20
  start-page: 435
  year: 1997
  ident: 10.1016/j.neuroimage.2003.08.026_BIB35
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01132-6
– year: 1909
  ident: 10.1016/j.neuroimage.2003.08.026_BIB4
– volume: 9
  start-page: 339
  year: 2000
  ident: 10.1016/j.neuroimage.2003.08.026_BIB13
  article-title: Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/S0926-6410(00)00006-9
– volume: 299
  start-page: 221
  year: 2001
  ident: 10.1016/j.neuroimage.2003.08.026_BIB14
  article-title: Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(01)01518-X
– year: 1988
  ident: 10.1016/j.neuroimage.2003.08.026_BIB30
– volume: 10
  start-page: 367
  year: 1958
  ident: 10.1016/j.neuroimage.2003.08.026_BIB17
  article-title: The ten–twenty electrode system of the International Federation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 7
  start-page: 240
  year: 1995
  ident: 10.1016/j.neuroimage.2003.08.026_BIB36
  article-title: Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging
  publication-title: Cerebrovasc. Brain Metab. Rev.
– volume: 2
  start-page: 165
  year: 1995
  ident: 10.1016/j.neuroimage.2003.08.026_BIB9
  article-title: Spatial registration and normalization of images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030303
– volume: 59
  start-page: 1851
  year: 2002
  ident: 10.1016/j.neuroimage.2003.08.026_BIB6
  article-title: Transcranial magnetic stimulation techniques in clinical investigation
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000038744.30298.D4
– year: 1990
  ident: 10.1016/j.neuroimage.2003.08.026_BIB27
– volume: 176
  start-page: 413
  year: 1990
  ident: 10.1016/j.neuroimage.2003.08.026_BIB15
  article-title: EEG scalp electrode projection onto 3-dimensional surface rendered images of the brain
  publication-title: Radiology
  doi: 10.1148/radiology.176.2.2367656
– volume: 10
  start-page: 120
  year: 2000
  ident: 10.1016/j.neuroimage.2003.08.026_BIB19
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– volume: 41
  start-page: 157
  year: 1912
  ident: 10.1016/j.neuroimage.2003.08.026_BIB5
  article-title: Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde
  publication-title: Anat. Anz.
– volume: 12
  start-page: 191
  year: 2000
  ident: 10.1016/j.neuroimage.2003.08.026_BIB28
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
  doi: 10.1155/2000/421719
– volume: 8
  start-page: 10
  year: 1991
  ident: 10.1016/j.neuroimage.2003.08.026_BIB16
  article-title: Technical and practical aspects of magnetic nerve stimulation
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199101000-00004
– volume: 66
  start-page: 376
  year: 1987
  ident: 10.1016/j.neuroimage.2003.08.026_BIB12
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90206-9
– year: 1997
  ident: 10.1016/j.neuroimage.2003.08.026_BIB20
– volume: 5
  start-page: 93
  year: 2000
  ident: 10.1016/j.neuroimage.2003.08.026_BIB29
  article-title: Activation of the visual cortex imaged by 24-channel near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.429973
– volume: 205
  start-page: 41
  year: 1996
  ident: 10.1016/j.neuroimage.2003.08.026_BIB37
  article-title: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(96)12376-4
– volume: 72
  start-page: 362
  year: 1989
  ident: 10.1016/j.neuroimage.2003.08.026_BIB24
  article-title: Locations of occipital EEG electrodes verified by computed tomography
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(89)90073-4
– volume: 36
  start-page: 21
  year: 1997
  ident: 10.1016/j.neuroimage.2003.08.026_BIB26
  article-title: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.000021
– volume: 13
  start-page: 262
  year: 2001
  ident: 10.1016/j.neuroimage.2003.08.026_BIB39
  article-title: Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0688
– volume: 14
  start-page: 1186
  year: 2001
  ident: 10.1016/j.neuroimage.2003.08.026_BIB22
  article-title: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0905
– volume: 86
  start-page: 7
  year: 1993
  ident: 10.1016/j.neuroimage.2003.08.026_BIB18
  article-title: Determination of 10–20 system electrode locations using magnetic resonance image scanning with markers
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90062-Z
– start-page: 35
  year: 1994
  ident: 10.1016/j.neuroimage.2003.08.026_BIB33
  article-title: Analytical formula describing the effect of deep optical absorber in multiple scattering media
– volume: 13
  start-page: 13
  year: 2001
  ident: 10.1016/j.neuroimage.2003.08.026_BIB11
  article-title: Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1021
– volume: 72
  start-page: 499
  year: 1989
  ident: 10.1016/j.neuroimage.2003.08.026_BIB40
  article-title: Craniocerebral topography within the international 10–20 system
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(89)90227-7
– volume: 19
  start-page: 322
  year: 2002
  ident: 10.1016/j.neuroimage.2003.08.026_BIB31
  article-title: Basic mechanisms of TMS
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200208000-00006
– volume: 86
  start-page: 1
  year: 1993
  ident: 10.1016/j.neuroimage.2003.08.026_BIB32
  article-title: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90061-Y
SSID ssj0009148
Score 2.3977218
Snippet The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Adult
Brain
Brain Mapping - methods
Cerebral Cortex - anatomy & histology
Electrodes
Electroencephalography - standards
Female
Human brain mapping
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Internationality
Japan
Magnetic Resonance Imaging - standards
Male
Medical imaging
Methods
Middle Aged
Models, Statistical
Near-infrared spectroscopy
NMR
Nuclear magnetic resonance
Probabilistic anatomical platform
Reference Standards
Software
Standard deviation
Statistics as Topic
Studies
Transcranial magnetic stimulation
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QLyIb9dnDl6DTZu2WTyIiCLCelphbyFNU1nRdt1d_TX-WGeSdNeDyh5LOoV0Jpmvmen3EXKuSwF5ragYBIdkwuqI6SwVzCRC2jIy3Dguvd5jdv8kHgbpIBy4TUJbZbsnuo26bAyekV8gE14WCZ5HV6N3hqpRWF0NEhrLZBWpy7ClKx_kc9JdLvyvcGnCJNwQOnl8f5fjixy-wap1rKCOyBMpFn5PT3_BT5eG7jbJRsCP9No7fIss2XqbrPVChXyHfPXBOZaVSNrvCTcoasY4Hl2kZKa6hs9sxxFADeSpYcOMHWP1GK5RqcP3xtHPoaaADenw54khzAvinXr2Z9ogRTIAVgq4l04x57kHwm2YLINFgRIU9E0jDcTzLnm6u-3f3LOgwMAMCh2wbiRMLjJubNyNY1llvOSyBFAGGY2Dh63tQhBAfoPvHhubSgNckjoXaWHTqpAm2SMrdVPbA0JNlcjUJoXWMF5ForDIQyPLiusyMdx2SN6-eGUCPTmqZLyqtg_tRc1dhuqZiUIBzTjrED6zHHmKjgVsuq1vVfsLKmyaCvLIAraXM9sAUzz8WND6uA0lFbaLiZoHd4eczYZhoWP1Rte2-ZgoiSUzABMdsu8DcD5ZgbBa5If_P_qIrPu2Izw_OiYr0_GHPQFENS1O3bL5Bgk-JIY
  priority: 102
  providerName: ProQuest
Title Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811903005366
https://dx.doi.org/10.1016/j.neuroimage.2003.08.026
https://www.ncbi.nlm.nih.gov/pubmed/14741647
https://www.proquest.com/docview/1506604170
https://www.proquest.com/docview/80116284
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6kBAXVN5LS_GBq9k4dhxHPZWq1QLqCkEr7c1yHAcF0WzVbjki_gP3_jh-CTO2swsSSCtxSZTHREk8nu9LPP6GkJe2kYBrdcvAOTST3mbMqkIyJ6T2Tea4C1p6p1M1OZdvZ8VsgxwNc2EwrTLF_hjTQ7ROe8bpbY4vu278EZgBwA0AGiquC6U2yXYuKgWuvX345t1kutLe5TLOiCsEQ4OU0BPTvIJsZHcBnTeIgwY9T1Ra-DtK_YuFBjQ62SH3Eo2kh_FO75MN3z8gd07TQPlDcnsGbeRZg9r9UXeDYumYIKeLyszU9vC1HaQCqAO46ubM-SscRIZtLNgRU-To185SoIi0-_3HITzXz-8_8oxGGWg6R61kYK4UCDBdIPiFS8KJiJrJpsZaFPTCoh7Ep0fk_OT47GjCUikG5rDiAasy6UqpuPN5lee6VbzhugF2BtDGoam9r8AbAOjgA8jnrrXAm7QtZVH7oq21E4_JVj_v_VNCXSt04UVtLRxvM1l7FKTRTcttIxz3I1IOr964pFOO5TK-mCEh7bNZNRqW0RQGK2nmakT40vIyanWsYVMNrWuGuagQPQ0Ayhq2B0vbP3x2Teu9wZlMihvXBvUeVSZ5mY3Ii-Vh6PE4jGN7P7-5NhrHzoBVjMiT6IKrh5XIr2X57L9ubJfcjelJ-J9pj2wtrm78c2Bei3qfbL76xmFZzsr91Mtg_fp4-v7DL7wjNpw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrQRcKj7LlkJ9gKNFnDiJI4QQH622tLtCaCv1ZhzHQYtoUrpbEP-F38BvZCZ2djkA2kuPq-xYcTyeebbH7wE8MZXEvFbWHJ1DcelMxE2WSm4TqVwVWWE7Lr3xJBudyHen6ekG_OrvwlBZZR8Tu0BdtZb2yJ8RE14WSZFHL8-_clKNotPVXkLDu8WR-_Edl2zzF4dvcXyfxvHB_vTNiAdVAW6JvJ8XkbS5zIR1cRHHqs5EJVSFQAOjtMC3dq7AjmHMRizvYlsbhADK5DItXVqXyibY7jXYlAkuZQaw-Xp_8v7DiuZXSH_5Lk24EqIItUO-oqxjqJydYZzoeEg76lAidfh7QvwX4O0S38Et2AqIlb3yLnYbNlxzB66Pw5n8Xfg5RXdwvCKZAE_xwUilpmPuJRJoZhpc2HesBMxiZpy13LoLOq_G36QN4qvx2LeZYYhG2ezPPUrsF84w5vmmWUukzAiRGSJttqAs2zWIf6P0HCxKEr1gZ4aIJz7dg5MrGZ37MGjaxj0AZutEpS4pjcHndSRLR8w3qqqFqRIr3BDy_sNrGwjRSZfji-4r3z7r1ZCRXmeiSbIzzoYglpbnnhRkDZuiH1vdX3rFMK0xc61h-3xpG4CRBzxrWu_2rqRDgJrr1XQawt7yMYYWOi8yjWsv51rRIR3ClyFsewdcdVYSkJf5zv-b3oMbo-n4WB8fTo4ewk1f9ES7V7swWFxcukeI5xbl4zCJGHy86nn7G2f7YlE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcUPleWqgPcLQaJ07iqEIIUVYtpRWHVtqbcRwHLaJJ6W6p-C_8En4dM7azywHQXnpcZceS4_l4scfvAbwwjcS6VrccnUNx6UzCTZFLbjOpXJNYYT2X3vFJcXAm30_yyRr8Gu7CUFvlkBN9om56S3vku8SEVyRSlMluG9siPu6PX19846QgRSetg5xGcJEj9-MaP99mrw73ca1fpun43enbAx4VBrglIn9eJdKWshDWpVWaqrYQjVANgg7M2AJn4FyFk8T8jbjepbY1CAeUKWVeu7ytlc1w3Ftwu8xyQTFWTsol4a-Q4RpennElRBW7iEJvmeeqnJ5jxvCMpJ5ElOgd_l4a_wV9fQkcb8LdiF3Zm-Bs92DNdfdh4ziezj-An6foGI43JBgQyD4Y6dV4Dl-ig2amw098z0_ALNbIac-tu6STa_xNKiGhL499nxqGuJRN_9ytxHlhrLHAPM16omdGsMwQc7M51Vs_IP6NCnW0qEn-gp0boqD4_BDObmRtHsF613fuCTDbZip3WW0MPm8TWTviwFFNK0yTWeFGUA4vXttIjU4KHV_10AP3RS-XjJQ7M03inWkxArGwvAj0ICvYVMPa6uH6KyZsjTVsBdu9hW2ESAH6rGi9PbiSjqlqppeBNYKdxWNMMnRyZDrXX820ouM6BDIjeBwccDlZSZBelk__P_QObGC06g-HJ0dbcCd0P9E21jaszy-v3DMEdvP6uY8gBp9uOmR_A7TfZSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+probabilistic+anatomical+cranio-cerebral+correlation+via+the+international+10%E2%80%9320+system+oriented+for+transcranial+functional+brain+mapping&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Okamoto%2C+Masako&rft.au=Dan%2C+Haruka&rft.au=Sakamoto%2C+Kuniko&rft.au=Takeo%2C+Kazuhiro&rft.date=2004&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=21&rft.issue=1&rft.spage=99&rft.epage=111&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.08.026&rft.externalDocID=S1053811903005366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon