TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the lat...
Saved in:
Published in | iScience Vol. 19; pp. 267 - 280 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.09.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.
[Display omitted]
•Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification•TMEM88 does not require Dishevelled to inhibit Wnt signaling•TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB•Expression of TMEM88 promotes association of the signalosome to the MVB
Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research |
---|---|
AbstractList | Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.
•
Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification
•
TMEM88 does not require Dishevelled to inhibit Wnt signaling
•
TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB
•
Expression of TMEM88 promotes association of the signalosome to the MVB
Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. : Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research Subject Areas: Molecular Mechanism of Behavior, Cell Biology, Stem Cells Research Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. [Display omitted] •Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification•TMEM88 does not require Dishevelled to inhibit Wnt signaling•TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB•Expression of TMEM88 promotes association of the signalosome to the MVB Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research |
Author | Lee, Heejin Evans, Todd |
AuthorAffiliation | 1 Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA |
AuthorAffiliation_xml | – name: 1 Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA |
Author_xml | – sequence: 1 givenname: Heejin surname: Lee fullname: Lee, Heejin organization: Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA – sequence: 2 givenname: Todd surname: Evans fullname: Evans, Todd email: tre2003@med.cornell.edu organization: Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31401350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UtFqFDEUDVKxde0P-CDz6MuON8nMZAZE0FJ1YRcFKz7GTHJnm2UmqUl2oX692W6trQ-FQJKbc84N95zn5Mh5h4S8pFBSoM2bTWmjtiUD2pUgSuDdE3LC6rabA1Ts6N75mJzGuAEAllfVNc_IMacVUF7DCfl5sTpftW2xcJe2tykWP1wqvtm1U6N166K_Lr4GP_m0v_x78tFPWCy9zqjfKlnviuSL1XZMdofR6u2oQvHBG4vxBXk6qDHi6e0-I98_nl-cfZ4vv3xanL1fznXNaJq32tQt7VpT9QpF3RimKVMKVNUYCn3VDKxHANEidMboTgjOGfSNxoEDNgOfkcVB13i1kVfBTipcS6-svCn4sJYqJKtHlIMRglYtDH3HKy76jmqK9dBhrVQjcmlG3h20rrb9hEajS0GND0Qfvjh7Kdd-JxuRB17xLPD6ViD4X1uMSU7ZLRxH5dBvo2RMMMZow9sMfXW_112TvxZlADsAdPAxBhzuIBTkPgpyI_dRkPsoSBAyRyGT2v9I2qYbo_J_7fg49e2BitmtncUgMwKdRmMD6pTHaR-j_wEKU8-O |
CitedBy_id | crossref_primary_10_1093_biolre_ioad124 crossref_primary_10_1111_dgd_12718 crossref_primary_10_1016_j_yexcr_2020_112193 crossref_primary_10_1016_j_addr_2020_12_010 crossref_primary_10_1016_j_celrep_2021_110095 crossref_primary_10_1038_s44161_023_00215_z crossref_primary_10_1038_s41467_024_52221_9 crossref_primary_10_1111_jcmm_15119 crossref_primary_10_3390_ijms26010089 crossref_primary_10_1016_j_jgg_2022_04_016 crossref_primary_10_3389_fonc_2022_906372 crossref_primary_10_1158_2159_8290_CD_21_0190 crossref_primary_10_1093_lifemedi_lnad044 crossref_primary_10_1038_s41598_020_78019_5 crossref_primary_10_1016_j_isci_2022_104159 crossref_primary_10_3389_fonc_2023_1244740 crossref_primary_10_1002_bies_202400110 crossref_primary_10_1111_apha_13912 crossref_primary_10_1371_journal_pone_0296003 crossref_primary_10_1002_jbt_22835 |
Cites_doi | 10.1126/science.1137065 10.1016/j.devcel.2009.06.016 10.1016/j.celrep.2012.09.026 10.1242/dev.093567 10.1016/j.molcel.2013.12.010 10.1111/j.1600-0854.2007.00662.x 10.1074/jbc.M110.193383 10.1038/s41421-018-0051-0 10.1186/1471-2121-7-28 10.1083/jcb.201002049 10.1016/j.devcel.2006.07.003 10.1016/j.cell.2017.05.016 10.1016/S1097-2765(03)00484-2 10.1073/pnas.94.19.10330 10.1242/jcs.091991 10.18632/oncotarget.4379 10.1006/bbrc.2001.5430 10.1073/pnas.1118777109 10.1016/B978-0-12-385952-5.00003-8 10.1073/pnas.0610155104 10.1016/j.cell.2010.11.034 10.1016/j.molcel.2015.03.015 10.1158/0008-5472.CAN-14-3828 10.1002/jcp.25853 10.1007/s00018-017-2654-2 10.1128/MCB.01010-15 10.20892/j.issn.2095-3941.2017.0061 10.1073/pnas.0605768103 10.1126/science.1232389 10.1006/exnr.1999.7033 10.1016/S0960-9822(03)00240-9 10.1073/pnas.0702859104 10.1016/j.cell.2012.05.012 10.1146/annurev.cellbio.23.090506.123319 10.1038/ncb2313 10.1016/j.cell.2012.05.002 10.1242/dev.094789 10.1073/pnas.1424576112 10.1016/j.devcel.2008.04.015 10.1242/jcs.195685 10.1016/j.devcel.2018.02.013 10.1242/jcs.155424 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.07.039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 280 |
ExternalDocumentID | oai_doaj_org_article_fd771480fb93437b91c1e5f9e5aa6734 PMC6700443 31401350 10_1016_j_isci_2019_07_039 S2589004219302664 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-8cd58198d4bae756d2c12aa0a46d10b46f2be0078e09ddc9773320b6cef30e6f3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:14:36 EDT 2025 Thu Aug 21 17:43:03 EDT 2025 Fri Jul 11 12:30:09 EDT 2025 Thu Jan 02 22:59:03 EST 2025 Tue Jul 01 01:03:26 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Tue May 16 22:28:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular Mechanism of Behavior Stem Cells Research Cell Biology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-8cd58198d4bae756d2c12aa0a46d10b46f2be0078e09ddc9773320b6cef30e6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/fd771480fb93437b91c1e5f9e5aa6734 |
PMID | 31401350 |
PQID | 2272221638 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd771480fb93437b91c1e5f9e5aa6734 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700443 proquest_miscellaneous_2272221638 pubmed_primary_31401350 crossref_primary_10_1016_j_isci_2019_07_039 crossref_citationtrail_10_1016_j_isci_2019_07_039 elsevier_sciencedirect_doi_10_1016_j_isci_2019_07_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-27 |
PublicationDateYYYYMMDD | 2019-09-27 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Vinyoles, Del Valle-Perez, Curto, Vinas-Castells, Alba-Castellon, Garcia de Herreros, Dunach (bib37) 2014; 53 Gammons, Rutherford, Steinhart, Angers, Bienz (bib10) 2016; 129 Gagliardi, Piddini, Vincent (bib9) 2008; 9 Lee, Finkelstein, Li, Wu, Shi, Zheng (bib17) 2010; 285 Ge, Wang, Hu, Pan, Min, Niu, Zhang, Li, Xu (bib11) 2018; 233 Naito, Shiojima, Akazawa, Hidaka, Morisaki, Kikuchi, Komuro (bib24) 2006; 103 Metcalfe, Bienz (bib23) 2011; 124 Nusse, Clevers (bib26) 2017; 169 Dobrowolski, Vick, Ploper, Gumper, Snitkin, Sabatini, De Robertis (bib7) 2012; 2 Ma, Feng, Yu, Lin, Zhang, Shi, Zhang, Zhang, Li, Zheng (bib20) 2017; 14 Okada, Lansford, Weimann, Fraser, McConnell (bib27) 1999; 156 Davidson, Adams, Goodson, McDonald, Potter, Berndt, Biechele, Taylor, Moon (bib6) 2012; 109 Jiang, Charlat, Zamponi, Yang, Cong (bib13) 2015; 58 Saito-Diaz, Benchabane, Tiwari, Tian, Li, Thompson, Hyde, Sawyer, Jodoin, Santos (bib32) 2018; 44 Matsuda, Cepko (bib22) 2007; 104 Yao, Maeda, Takada, Noda (bib40) 2001; 286 Novikov, Evans (bib25) 2013; 140 Taelman, Dobrowolski, Plouhinec, Fuentealba, Vorwald, Gumper, Sabatini, De Robertis (bib33) 2010; 143 Li, Liu, Liu, Wang, Wei, Qi, Wang, Fu, Chen (bib19) 2018; 4 Ploper, Taelman, Robert, Perez, Titz, Chen, Graeber, von Euw, Ribas, De Robertis (bib30) 2015; 112 Clevers, Nusse (bib5) 2012; 149 Blitzer, Nusse (bib2) 2006; 7 Yu, Zhang, Zhang, Jiang, Mao, Jin (bib41) 2015; 6 Romero, von Zastrow, Friedman (bib31) 2011; 62 Gagliardi, Hernandez, McGough, Vincent (bib8) 2014; 127 Kwon, Cheng, King, Andersen, Shenje, Nigam, Srivastava (bib16) 2011; 13 Piper, Katzmann (bib29) 2007; 23 Tamai, Zeng, Liu, Zhang, Harada, Chang, He (bib34) 2004; 13 Chairoungdua, Smith, Pochard, Hull, Caplan (bib4) 2010; 190 Li, Ng, Boersema, Low, Karthaus, Gerlach, Mohammed, Heck, Maurice, Mahmoudi (bib18) 2012; 149 Yamamoto, Sakane, Yamamoto, Michiue, Kikuchi (bib39) 2008; 15 Bilic, Huang, Davidson, Zimmermann, Cruciat, Bienz, Niehrs (bib1) 2007; 316 Yamamoto, Komekado, Kikuchi (bib38) 2006; 11 Ilyas, Tomlinson, Rowan, Pignatelli, Bodmer (bib12) 1997; 94 Kim, Huang, Zhao, Zhang, Zhang, Semonov, MacDonald, Zhang, Garcia Abreu, Peng (bib14) 2013; 340 MacDonald, Tamai, He (bib21) 2009; 17 Palpant, Pabon, Rabinowitz, Hadland, Stoick-Cooper, Paige, Bernstein, Moon, Murry (bib28) 2013; 140 Brunt, Scholpp (bib3) 2018; 75 Ueno, Weidinger, Osugi, Kohn, Golob, Pabon, Reinecke, Moon, Murry (bib35) 2007; 104 Kumar, Chalamalasetty, Kennedy, Thomas, Inala, Garriock, Yamaguchi (bib15) 2016; 36 Veeman, Slusarski, Kaykas, Louie, Moon (bib36) 2003; 13 Zhang, Yu, Jiang, Miao, Wang, Zhang, Liu, Fan, Lin, Dong (bib42) 2015; 75 Romero (10.1016/j.isci.2019.07.039_bib31) 2011; 62 Gagliardi (10.1016/j.isci.2019.07.039_bib9) 2008; 9 Naito (10.1016/j.isci.2019.07.039_bib24) 2006; 103 Novikov (10.1016/j.isci.2019.07.039_bib25) 2013; 140 Taelman (10.1016/j.isci.2019.07.039_bib33) 2010; 143 Yu (10.1016/j.isci.2019.07.039_bib41) 2015; 6 Ueno (10.1016/j.isci.2019.07.039_bib35) 2007; 104 Davidson (10.1016/j.isci.2019.07.039_bib6) 2012; 109 Zhang (10.1016/j.isci.2019.07.039_bib42) 2015; 75 Vinyoles (10.1016/j.isci.2019.07.039_bib37) 2014; 53 Saito-Diaz (10.1016/j.isci.2019.07.039_bib32) 2018; 44 Dobrowolski (10.1016/j.isci.2019.07.039_bib7) 2012; 2 Brunt (10.1016/j.isci.2019.07.039_bib3) 2018; 75 Clevers (10.1016/j.isci.2019.07.039_bib5) 2012; 149 Kwon (10.1016/j.isci.2019.07.039_bib16) 2011; 13 Okada (10.1016/j.isci.2019.07.039_bib27) 1999; 156 Veeman (10.1016/j.isci.2019.07.039_bib36) 2003; 13 Yamamoto (10.1016/j.isci.2019.07.039_bib38) 2006; 11 Matsuda (10.1016/j.isci.2019.07.039_bib22) 2007; 104 Bilic (10.1016/j.isci.2019.07.039_bib1) 2007; 316 Li (10.1016/j.isci.2019.07.039_bib18) 2012; 149 Blitzer (10.1016/j.isci.2019.07.039_bib2) 2006; 7 Metcalfe (10.1016/j.isci.2019.07.039_bib23) 2011; 124 Lee (10.1016/j.isci.2019.07.039_bib17) 2010; 285 Ma (10.1016/j.isci.2019.07.039_bib20) 2017; 14 Ilyas (10.1016/j.isci.2019.07.039_bib12) 1997; 94 Chairoungdua (10.1016/j.isci.2019.07.039_bib4) 2010; 190 Gammons (10.1016/j.isci.2019.07.039_bib10) 2016; 129 Jiang (10.1016/j.isci.2019.07.039_bib13) 2015; 58 Kim (10.1016/j.isci.2019.07.039_bib14) 2013; 340 Ploper (10.1016/j.isci.2019.07.039_bib30) 2015; 112 Tamai (10.1016/j.isci.2019.07.039_bib34) 2004; 13 Yamamoto (10.1016/j.isci.2019.07.039_bib39) 2008; 15 Gagliardi (10.1016/j.isci.2019.07.039_bib8) 2014; 127 Piper (10.1016/j.isci.2019.07.039_bib29) 2007; 23 MacDonald (10.1016/j.isci.2019.07.039_bib21) 2009; 17 Palpant (10.1016/j.isci.2019.07.039_bib28) 2013; 140 Li (10.1016/j.isci.2019.07.039_bib19) 2018; 4 Kumar (10.1016/j.isci.2019.07.039_bib15) 2016; 36 Yao (10.1016/j.isci.2019.07.039_bib40) 2001; 286 Nusse (10.1016/j.isci.2019.07.039_bib26) 2017; 169 Ge (10.1016/j.isci.2019.07.039_bib11) 2018; 233 |
References_xml | – volume: 109 start-page: 4485 year: 2012 end-page: 4490 ident: bib6 article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 285 start-page: 41549 year: 2010 end-page: 41556 ident: bib17 article-title: Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein publication-title: J. Biol. Chem. – volume: 169 start-page: 985 year: 2017 end-page: 999 ident: bib26 article-title: Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell – volume: 13 start-page: 1244 year: 2011 end-page: 1251 ident: bib16 article-title: Notch post-translationally regulates beta-catenin protein in stem and progenitor cells publication-title: Nat. Cell Biol. – volume: 286 start-page: 771 year: 2001 end-page: 778 ident: bib40 article-title: Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled publication-title: Biochem. Biophys. Res. Commun. – volume: 15 start-page: 37 year: 2008 end-page: 48 ident: bib39 article-title: Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling publication-title: Dev. Cell – volume: 36 start-page: 1793 year: 2016 end-page: 1802 ident: bib15 article-title: Zfp703 is a Wnt/beta-catenin feedback suppressor targeting the beta-catenin/Tcf1 complex publication-title: Mol. Cell. Biol. – volume: 62 start-page: 279 year: 2011 end-page: 314 ident: bib31 article-title: Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity publication-title: Adv. Pharmacol. – volume: 94 start-page: 10330 year: 1997 end-page: 10334 ident: bib12 article-title: Beta-catenin mutations in cell lines established from human colorectal cancers publication-title: Proc. Natl. Acad. Sci. U S A – volume: 233 start-page: 79 year: 2018 end-page: 87 ident: bib11 article-title: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway publication-title: J. Cell. Physiol. – volume: 129 start-page: 3892 year: 2016 end-page: 3902 ident: bib10 article-title: Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay publication-title: J. Cell Sci. – volume: 124 start-page: 3537 year: 2011 end-page: 3544 ident: bib23 article-title: Inhibition of GSK3 by Wnt signalling–two contrasting models publication-title: J. Cell Sci. – volume: 140 start-page: 3799 year: 2013 end-page: 3808 ident: bib28 article-title: Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development publication-title: Development – volume: 127 start-page: 4918 year: 2014 end-page: 4926 ident: bib8 article-title: Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal beta-catenin/Armadillo publication-title: J. Cell Sci. – volume: 75 start-page: 4527 year: 2015 end-page: 4537 ident: bib42 article-title: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS publication-title: Cancer Res. – volume: 104 start-page: 9685 year: 2007 end-page: 9690 ident: bib35 article-title: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells publication-title: Proc. Natl. Acad. Sci. U S A – volume: 17 start-page: 9 year: 2009 end-page: 26 ident: bib21 article-title: Wnt/beta-catenin signaling: components, mechanisms, and diseases publication-title: Dev. Cell – volume: 103 start-page: 19812 year: 2006 end-page: 19817 ident: bib24 article-title: Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis publication-title: Proc. Natl. Acad. Sci. U S A – volume: 58 start-page: 522 year: 2015 end-page: 533 ident: bib13 article-title: Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases publication-title: Mol. Cell – volume: 13 start-page: 680 year: 2003 end-page: 685 ident: bib36 article-title: Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements publication-title: Curr. Biol. – volume: 7 start-page: 28 year: 2006 ident: bib2 article-title: A critical role for endocytosis in Wnt signaling publication-title: BMC Cell Biol. – volume: 156 start-page: 394 year: 1999 end-page: 406 ident: bib27 article-title: Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein publication-title: Exp. Neurol. – volume: 112 start-page: E420 year: 2015 end-page: E429 ident: bib30 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proc. Natl. Acad. Sci. U S A – volume: 44 start-page: 566 year: 2018 end-page: 581.e8 ident: bib32 article-title: APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway publication-title: Dev. Cell – volume: 316 start-page: 1619 year: 2007 end-page: 1622 ident: bib1 article-title: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation publication-title: Science – volume: 14 start-page: 377 year: 2017 end-page: 386 ident: bib20 article-title: Promoter methylation of Wnt/beta-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer publication-title: Cancer Biol. Med. – volume: 23 start-page: 519 year: 2007 end-page: 547 ident: bib29 article-title: Biogenesis and function of multivesicular bodies publication-title: Annu. Rev. Cell Dev. Biol. – volume: 149 start-page: 1192 year: 2012 end-page: 1205 ident: bib5 article-title: Wnt/beta-catenin signaling and disease publication-title: Cell – volume: 53 start-page: 444 year: 2014 end-page: 457 ident: bib37 article-title: Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6 publication-title: Mol. Cell – volume: 9 start-page: 1 year: 2008 end-page: 9 ident: bib9 article-title: Endocytosis: a positive or a negative influence on Wnt signalling? publication-title: Traffic – volume: 190 start-page: 1079 year: 2010 end-page: 1091 ident: bib4 article-title: Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling publication-title: J. Cell Biol. – volume: 6 start-page: 25034 year: 2015 end-page: 25045 ident: bib41 article-title: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl publication-title: Oncotarget – volume: 149 start-page: 1245 year: 2012 end-page: 1256 ident: bib18 article-title: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex publication-title: Cell – volume: 140 start-page: 3787 year: 2013 end-page: 3798 ident: bib25 article-title: Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling publication-title: Development – volume: 2 start-page: 1316 year: 2012 end-page: 1328 ident: bib7 article-title: Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment publication-title: Cell Rep. – volume: 13 start-page: 149 year: 2004 end-page: 156 ident: bib34 article-title: A mechanism for Wnt coreceptor activation publication-title: Mol. Cell – volume: 340 start-page: 867 year: 2013 end-page: 870 ident: bib14 article-title: Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies publication-title: Science – volume: 4 start-page: 49 year: 2018 ident: bib19 article-title: A growth factor-free culture system underscores the coordination between Wnt and BMP signaling in Lgr5(+) intestinal stem cell maintenance publication-title: Cell Discov. – volume: 104 start-page: 1027 year: 2007 end-page: 1032 ident: bib22 article-title: Controlled expression of transgenes introduced by in vivo electroporation publication-title: Proc. Natl. Acad. Sci. U S A – volume: 11 start-page: 213 year: 2006 end-page: 223 ident: bib38 article-title: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin publication-title: Dev. Cell – volume: 143 start-page: 1136 year: 2010 end-page: 1148 ident: bib33 article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes publication-title: Cell – volume: 75 start-page: 785 year: 2018 end-page: 795 ident: bib3 article-title: The function of endocytosis in Wnt signaling publication-title: Cell Mol. Life Sci. – volume: 316 start-page: 1619 year: 2007 ident: 10.1016/j.isci.2019.07.039_bib1 article-title: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation publication-title: Science doi: 10.1126/science.1137065 – volume: 17 start-page: 9 year: 2009 ident: 10.1016/j.isci.2019.07.039_bib21 article-title: Wnt/beta-catenin signaling: components, mechanisms, and diseases publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.06.016 – volume: 2 start-page: 1316 year: 2012 ident: 10.1016/j.isci.2019.07.039_bib7 article-title: Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.09.026 – volume: 140 start-page: 3787 year: 2013 ident: 10.1016/j.isci.2019.07.039_bib25 article-title: Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling publication-title: Development doi: 10.1242/dev.093567 – volume: 53 start-page: 444 year: 2014 ident: 10.1016/j.isci.2019.07.039_bib37 article-title: Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.12.010 – volume: 9 start-page: 1 year: 2008 ident: 10.1016/j.isci.2019.07.039_bib9 article-title: Endocytosis: a positive or a negative influence on Wnt signalling? publication-title: Traffic doi: 10.1111/j.1600-0854.2007.00662.x – volume: 285 start-page: 41549 year: 2010 ident: 10.1016/j.isci.2019.07.039_bib17 article-title: Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.193383 – volume: 4 start-page: 49 year: 2018 ident: 10.1016/j.isci.2019.07.039_bib19 article-title: A growth factor-free culture system underscores the coordination between Wnt and BMP signaling in Lgr5(+) intestinal stem cell maintenance publication-title: Cell Discov. doi: 10.1038/s41421-018-0051-0 – volume: 7 start-page: 28 year: 2006 ident: 10.1016/j.isci.2019.07.039_bib2 article-title: A critical role for endocytosis in Wnt signaling publication-title: BMC Cell Biol. doi: 10.1186/1471-2121-7-28 – volume: 190 start-page: 1079 year: 2010 ident: 10.1016/j.isci.2019.07.039_bib4 article-title: Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201002049 – volume: 11 start-page: 213 year: 2006 ident: 10.1016/j.isci.2019.07.039_bib38 article-title: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.07.003 – volume: 169 start-page: 985 year: 2017 ident: 10.1016/j.isci.2019.07.039_bib26 article-title: Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 13 start-page: 149 year: 2004 ident: 10.1016/j.isci.2019.07.039_bib34 article-title: A mechanism for Wnt coreceptor activation publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00484-2 – volume: 94 start-page: 10330 year: 1997 ident: 10.1016/j.isci.2019.07.039_bib12 article-title: Beta-catenin mutations in cell lines established from human colorectal cancers publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.94.19.10330 – volume: 124 start-page: 3537 year: 2011 ident: 10.1016/j.isci.2019.07.039_bib23 article-title: Inhibition of GSK3 by Wnt signalling–two contrasting models publication-title: J. Cell Sci. doi: 10.1242/jcs.091991 – volume: 6 start-page: 25034 year: 2015 ident: 10.1016/j.isci.2019.07.039_bib41 article-title: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl publication-title: Oncotarget doi: 10.18632/oncotarget.4379 – volume: 286 start-page: 771 year: 2001 ident: 10.1016/j.isci.2019.07.039_bib40 article-title: Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5430 – volume: 109 start-page: 4485 year: 2012 ident: 10.1016/j.isci.2019.07.039_bib6 article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4 publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1118777109 – volume: 62 start-page: 279 year: 2011 ident: 10.1016/j.isci.2019.07.039_bib31 article-title: Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity publication-title: Adv. Pharmacol. doi: 10.1016/B978-0-12-385952-5.00003-8 – volume: 104 start-page: 1027 year: 2007 ident: 10.1016/j.isci.2019.07.039_bib22 article-title: Controlled expression of transgenes introduced by in vivo electroporation publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0610155104 – volume: 143 start-page: 1136 year: 2010 ident: 10.1016/j.isci.2019.07.039_bib33 article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes publication-title: Cell doi: 10.1016/j.cell.2010.11.034 – volume: 58 start-page: 522 year: 2015 ident: 10.1016/j.isci.2019.07.039_bib13 article-title: Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.015 – volume: 75 start-page: 4527 year: 2015 ident: 10.1016/j.isci.2019.07.039_bib42 article-title: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3828 – volume: 233 start-page: 79 year: 2018 ident: 10.1016/j.isci.2019.07.039_bib11 article-title: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25853 – volume: 75 start-page: 785 year: 2018 ident: 10.1016/j.isci.2019.07.039_bib3 article-title: The function of endocytosis in Wnt signaling publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-017-2654-2 – volume: 36 start-page: 1793 year: 2016 ident: 10.1016/j.isci.2019.07.039_bib15 article-title: Zfp703 is a Wnt/beta-catenin feedback suppressor targeting the beta-catenin/Tcf1 complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01010-15 – volume: 14 start-page: 377 year: 2017 ident: 10.1016/j.isci.2019.07.039_bib20 article-title: Promoter methylation of Wnt/beta-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer publication-title: Cancer Biol. Med. doi: 10.20892/j.issn.2095-3941.2017.0061 – volume: 103 start-page: 19812 year: 2006 ident: 10.1016/j.isci.2019.07.039_bib24 article-title: Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0605768103 – volume: 340 start-page: 867 year: 2013 ident: 10.1016/j.isci.2019.07.039_bib14 article-title: Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies publication-title: Science doi: 10.1126/science.1232389 – volume: 156 start-page: 394 year: 1999 ident: 10.1016/j.isci.2019.07.039_bib27 article-title: Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein publication-title: Exp. Neurol. doi: 10.1006/exnr.1999.7033 – volume: 13 start-page: 680 year: 2003 ident: 10.1016/j.isci.2019.07.039_bib36 article-title: Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00240-9 – volume: 104 start-page: 9685 year: 2007 ident: 10.1016/j.isci.2019.07.039_bib35 article-title: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0702859104 – volume: 149 start-page: 1192 year: 2012 ident: 10.1016/j.isci.2019.07.039_bib5 article-title: Wnt/beta-catenin signaling and disease publication-title: Cell doi: 10.1016/j.cell.2012.05.012 – volume: 23 start-page: 519 year: 2007 ident: 10.1016/j.isci.2019.07.039_bib29 article-title: Biogenesis and function of multivesicular bodies publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123319 – volume: 13 start-page: 1244 year: 2011 ident: 10.1016/j.isci.2019.07.039_bib16 article-title: Notch post-translationally regulates beta-catenin protein in stem and progenitor cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2313 – volume: 149 start-page: 1245 year: 2012 ident: 10.1016/j.isci.2019.07.039_bib18 article-title: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex publication-title: Cell doi: 10.1016/j.cell.2012.05.002 – volume: 140 start-page: 3799 year: 2013 ident: 10.1016/j.isci.2019.07.039_bib28 article-title: Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development publication-title: Development doi: 10.1242/dev.094789 – volume: 112 start-page: E420 year: 2015 ident: 10.1016/j.isci.2019.07.039_bib30 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1424576112 – volume: 15 start-page: 37 year: 2008 ident: 10.1016/j.isci.2019.07.039_bib39 article-title: Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.04.015 – volume: 129 start-page: 3892 year: 2016 ident: 10.1016/j.isci.2019.07.039_bib10 article-title: Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay publication-title: J. Cell Sci. doi: 10.1242/jcs.195685 – volume: 44 start-page: 566 year: 2018 ident: 10.1016/j.isci.2019.07.039_bib32 article-title: APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.02.013 – volume: 127 start-page: 4918 year: 2014 ident: 10.1016/j.isci.2019.07.039_bib8 article-title: Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal beta-catenin/Armadillo publication-title: J. Cell Sci. doi: 10.1242/jcs.155424 |
SSID | ssj0002002496 |
Score | 2.2239282 |
Snippet | Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | Cell Biology Molecular Mechanism of Behavior Stem Cells Research |
Title | TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies |
URI | https://dx.doi.org/10.1016/j.isci.2019.07.039 https://www.ncbi.nlm.nih.gov/pubmed/31401350 https://www.proquest.com/docview/2272221638 https://pubmed.ncbi.nlm.nih.gov/PMC6700443 https://doaj.org/article/fd771480fb93437b91c1e5f9e5aa6734 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFd4yZW4oYj47RwpatUiFiHRit6Mn22qklTdFIl_j8fJLrsglQvHJM5jxhPNZ_mbbxB6TS2nQWtf-yR0zZ1oa9fSVHvJlCKJ-FD6pyw-ycMT_uFUnG60-gJO2CQPPDnubQr5Hq6b5FrGmXIt8SSK1EZhrVSsKIHmnLexmLoo22sghVc6ywngBOXQnCtmJnIXVLwCr6styp3QKXwjKxXx_q3k9Df4_JNDuZGUDu6jezOaxO8mKx6gO7F_iL4dL_YXWuOj_rxz3bjEX_sRf-nOAHL3Z9j9xJ8nDl4--H1pWA7fI_4IqW0uzcTjgEt97o-47ApdFe8NQDp8hE4O9o_fH9ZzI4XaQ7-CWvsgcubXgTsblZCBekKtbSyXgTSOy0RdBLAQmzYEnyEhY7Rx0sfEmigTe4x2-qGPTxHOz2DO2URi9DywVjfWWQL8GRkUcbxCZOVI42eVcWh2cWlWdLILA8434HzTKJOdX6E363uuJo2NW0fvwfysR4I-djmRo8bMUWP-FTUVEqvZNTPUmCBEflR368t3V6Fg8n8Imyu2j8PN0lCqMtQCdFuhJ1NorD-RlVWsaCqktoJmy4btK313XrS-oYqKc_bsfxj9HN0FU4DtQtULtDNe38SXGVKN7lX5e34BxK0eSw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMEM88+Inhibits+Wnt+Signaling+by+Promoting+Wnt+Signalosome+Localization+to+Multivesicular+Bodies&rft.jtitle=iScience&rft.au=Lee%2C+Heejin&rft.au=Evans%2C+Todd&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=267&rft_id=info:doi/10.1016%2Fj.isci.2019.07.039&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |