TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies

Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the lat...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; pp. 267 - 280
Main Authors Lee, Heejin, Evans, Todd
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. [Display omitted] •Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification•TMEM88 does not require Dishevelled to inhibit Wnt signaling•TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB•Expression of TMEM88 promotes association of the signalosome to the MVB Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research
AbstractList Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. • Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification • TMEM88 does not require Dishevelled to inhibit Wnt signaling • TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB • Expression of TMEM88 promotes association of the signalosome to the MVB Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. : Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research Subject Areas: Molecular Mechanism of Behavior, Cell Biology, Stem Cells Research
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling.
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. [Display omitted] •Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification•TMEM88 does not require Dishevelled to inhibit Wnt signaling•TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB•Expression of TMEM88 promotes association of the signalosome to the MVB Molecular Mechanism of Behavior; Cell Biology; Stem Cells Research
Author Lee, Heejin
Evans, Todd
AuthorAffiliation 1 Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
AuthorAffiliation_xml – name: 1 Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
Author_xml – sequence: 1
  givenname: Heejin
  surname: Lee
  fullname: Lee, Heejin
  organization: Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
– sequence: 2
  givenname: Todd
  surname: Evans
  fullname: Evans, Todd
  email: tre2003@med.cornell.edu
  organization: Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31401350$$D View this record in MEDLINE/PubMed
BookMark eNp9UtFqFDEUDVKxde0P-CDz6MuON8nMZAZE0FJ1YRcFKz7GTHJnm2UmqUl2oX692W6trQ-FQJKbc84N95zn5Mh5h4S8pFBSoM2bTWmjtiUD2pUgSuDdE3LC6rabA1Ts6N75mJzGuAEAllfVNc_IMacVUF7DCfl5sTpftW2xcJe2tykWP1wqvtm1U6N166K_Lr4GP_m0v_x78tFPWCy9zqjfKlnviuSL1XZMdofR6u2oQvHBG4vxBXk6qDHi6e0-I98_nl-cfZ4vv3xanL1fznXNaJq32tQt7VpT9QpF3RimKVMKVNUYCn3VDKxHANEidMboTgjOGfSNxoEDNgOfkcVB13i1kVfBTipcS6-svCn4sJYqJKtHlIMRglYtDH3HKy76jmqK9dBhrVQjcmlG3h20rrb9hEajS0GND0Qfvjh7Kdd-JxuRB17xLPD6ViD4X1uMSU7ZLRxH5dBvo2RMMMZow9sMfXW_112TvxZlADsAdPAxBhzuIBTkPgpyI_dRkPsoSBAyRyGT2v9I2qYbo_J_7fg49e2BitmtncUgMwKdRmMD6pTHaR-j_wEKU8-O
CitedBy_id crossref_primary_10_1093_biolre_ioad124
crossref_primary_10_1111_dgd_12718
crossref_primary_10_1016_j_yexcr_2020_112193
crossref_primary_10_1016_j_addr_2020_12_010
crossref_primary_10_1016_j_celrep_2021_110095
crossref_primary_10_1038_s44161_023_00215_z
crossref_primary_10_1038_s41467_024_52221_9
crossref_primary_10_1111_jcmm_15119
crossref_primary_10_3390_ijms26010089
crossref_primary_10_1016_j_jgg_2022_04_016
crossref_primary_10_3389_fonc_2022_906372
crossref_primary_10_1158_2159_8290_CD_21_0190
crossref_primary_10_1093_lifemedi_lnad044
crossref_primary_10_1038_s41598_020_78019_5
crossref_primary_10_1016_j_isci_2022_104159
crossref_primary_10_3389_fonc_2023_1244740
crossref_primary_10_1002_bies_202400110
crossref_primary_10_1111_apha_13912
crossref_primary_10_1371_journal_pone_0296003
crossref_primary_10_1002_jbt_22835
Cites_doi 10.1126/science.1137065
10.1016/j.devcel.2009.06.016
10.1016/j.celrep.2012.09.026
10.1242/dev.093567
10.1016/j.molcel.2013.12.010
10.1111/j.1600-0854.2007.00662.x
10.1074/jbc.M110.193383
10.1038/s41421-018-0051-0
10.1186/1471-2121-7-28
10.1083/jcb.201002049
10.1016/j.devcel.2006.07.003
10.1016/j.cell.2017.05.016
10.1016/S1097-2765(03)00484-2
10.1073/pnas.94.19.10330
10.1242/jcs.091991
10.18632/oncotarget.4379
10.1006/bbrc.2001.5430
10.1073/pnas.1118777109
10.1016/B978-0-12-385952-5.00003-8
10.1073/pnas.0610155104
10.1016/j.cell.2010.11.034
10.1016/j.molcel.2015.03.015
10.1158/0008-5472.CAN-14-3828
10.1002/jcp.25853
10.1007/s00018-017-2654-2
10.1128/MCB.01010-15
10.20892/j.issn.2095-3941.2017.0061
10.1073/pnas.0605768103
10.1126/science.1232389
10.1006/exnr.1999.7033
10.1016/S0960-9822(03)00240-9
10.1073/pnas.0702859104
10.1016/j.cell.2012.05.012
10.1146/annurev.cellbio.23.090506.123319
10.1038/ncb2313
10.1016/j.cell.2012.05.002
10.1242/dev.094789
10.1073/pnas.1424576112
10.1016/j.devcel.2008.04.015
10.1242/jcs.195685
10.1016/j.devcel.2018.02.013
10.1242/jcs.155424
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.07.039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 280
ExternalDocumentID oai_doaj_org_article_fd771480fb93437b91c1e5f9e5aa6734
PMC6700443
31401350
10_1016_j_isci_2019_07_039
S2589004219302664
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-8cd58198d4bae756d2c12aa0a46d10b46f2be0078e09ddc9773320b6cef30e6f3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:14:36 EDT 2025
Thu Aug 21 17:43:03 EDT 2025
Fri Jul 11 12:30:09 EDT 2025
Thu Jan 02 22:59:03 EST 2025
Tue Jul 01 01:03:26 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Molecular Mechanism of Behavior
Stem Cells Research
Cell Biology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-8cd58198d4bae756d2c12aa0a46d10b46f2be0078e09ddc9773320b6cef30e6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/fd771480fb93437b91c1e5f9e5aa6734
PMID 31401350
PQID 2272221638
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_fd771480fb93437b91c1e5f9e5aa6734
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700443
proquest_miscellaneous_2272221638
pubmed_primary_31401350
crossref_primary_10_1016_j_isci_2019_07_039
crossref_citationtrail_10_1016_j_isci_2019_07_039
elsevier_sciencedirect_doi_10_1016_j_isci_2019_07_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Vinyoles, Del Valle-Perez, Curto, Vinas-Castells, Alba-Castellon, Garcia de Herreros, Dunach (bib37) 2014; 53
Gammons, Rutherford, Steinhart, Angers, Bienz (bib10) 2016; 129
Gagliardi, Piddini, Vincent (bib9) 2008; 9
Lee, Finkelstein, Li, Wu, Shi, Zheng (bib17) 2010; 285
Ge, Wang, Hu, Pan, Min, Niu, Zhang, Li, Xu (bib11) 2018; 233
Naito, Shiojima, Akazawa, Hidaka, Morisaki, Kikuchi, Komuro (bib24) 2006; 103
Metcalfe, Bienz (bib23) 2011; 124
Nusse, Clevers (bib26) 2017; 169
Dobrowolski, Vick, Ploper, Gumper, Snitkin, Sabatini, De Robertis (bib7) 2012; 2
Ma, Feng, Yu, Lin, Zhang, Shi, Zhang, Zhang, Li, Zheng (bib20) 2017; 14
Okada, Lansford, Weimann, Fraser, McConnell (bib27) 1999; 156
Davidson, Adams, Goodson, McDonald, Potter, Berndt, Biechele, Taylor, Moon (bib6) 2012; 109
Jiang, Charlat, Zamponi, Yang, Cong (bib13) 2015; 58
Saito-Diaz, Benchabane, Tiwari, Tian, Li, Thompson, Hyde, Sawyer, Jodoin, Santos (bib32) 2018; 44
Matsuda, Cepko (bib22) 2007; 104
Yao, Maeda, Takada, Noda (bib40) 2001; 286
Novikov, Evans (bib25) 2013; 140
Taelman, Dobrowolski, Plouhinec, Fuentealba, Vorwald, Gumper, Sabatini, De Robertis (bib33) 2010; 143
Li, Liu, Liu, Wang, Wei, Qi, Wang, Fu, Chen (bib19) 2018; 4
Ploper, Taelman, Robert, Perez, Titz, Chen, Graeber, von Euw, Ribas, De Robertis (bib30) 2015; 112
Clevers, Nusse (bib5) 2012; 149
Blitzer, Nusse (bib2) 2006; 7
Yu, Zhang, Zhang, Jiang, Mao, Jin (bib41) 2015; 6
Romero, von Zastrow, Friedman (bib31) 2011; 62
Gagliardi, Hernandez, McGough, Vincent (bib8) 2014; 127
Kwon, Cheng, King, Andersen, Shenje, Nigam, Srivastava (bib16) 2011; 13
Piper, Katzmann (bib29) 2007; 23
Tamai, Zeng, Liu, Zhang, Harada, Chang, He (bib34) 2004; 13
Chairoungdua, Smith, Pochard, Hull, Caplan (bib4) 2010; 190
Li, Ng, Boersema, Low, Karthaus, Gerlach, Mohammed, Heck, Maurice, Mahmoudi (bib18) 2012; 149
Yamamoto, Sakane, Yamamoto, Michiue, Kikuchi (bib39) 2008; 15
Bilic, Huang, Davidson, Zimmermann, Cruciat, Bienz, Niehrs (bib1) 2007; 316
Yamamoto, Komekado, Kikuchi (bib38) 2006; 11
Ilyas, Tomlinson, Rowan, Pignatelli, Bodmer (bib12) 1997; 94
Kim, Huang, Zhao, Zhang, Zhang, Semonov, MacDonald, Zhang, Garcia Abreu, Peng (bib14) 2013; 340
MacDonald, Tamai, He (bib21) 2009; 17
Palpant, Pabon, Rabinowitz, Hadland, Stoick-Cooper, Paige, Bernstein, Moon, Murry (bib28) 2013; 140
Brunt, Scholpp (bib3) 2018; 75
Ueno, Weidinger, Osugi, Kohn, Golob, Pabon, Reinecke, Moon, Murry (bib35) 2007; 104
Kumar, Chalamalasetty, Kennedy, Thomas, Inala, Garriock, Yamaguchi (bib15) 2016; 36
Veeman, Slusarski, Kaykas, Louie, Moon (bib36) 2003; 13
Zhang, Yu, Jiang, Miao, Wang, Zhang, Liu, Fan, Lin, Dong (bib42) 2015; 75
Romero (10.1016/j.isci.2019.07.039_bib31) 2011; 62
Gagliardi (10.1016/j.isci.2019.07.039_bib9) 2008; 9
Naito (10.1016/j.isci.2019.07.039_bib24) 2006; 103
Novikov (10.1016/j.isci.2019.07.039_bib25) 2013; 140
Taelman (10.1016/j.isci.2019.07.039_bib33) 2010; 143
Yu (10.1016/j.isci.2019.07.039_bib41) 2015; 6
Ueno (10.1016/j.isci.2019.07.039_bib35) 2007; 104
Davidson (10.1016/j.isci.2019.07.039_bib6) 2012; 109
Zhang (10.1016/j.isci.2019.07.039_bib42) 2015; 75
Vinyoles (10.1016/j.isci.2019.07.039_bib37) 2014; 53
Saito-Diaz (10.1016/j.isci.2019.07.039_bib32) 2018; 44
Dobrowolski (10.1016/j.isci.2019.07.039_bib7) 2012; 2
Brunt (10.1016/j.isci.2019.07.039_bib3) 2018; 75
Clevers (10.1016/j.isci.2019.07.039_bib5) 2012; 149
Kwon (10.1016/j.isci.2019.07.039_bib16) 2011; 13
Okada (10.1016/j.isci.2019.07.039_bib27) 1999; 156
Veeman (10.1016/j.isci.2019.07.039_bib36) 2003; 13
Yamamoto (10.1016/j.isci.2019.07.039_bib38) 2006; 11
Matsuda (10.1016/j.isci.2019.07.039_bib22) 2007; 104
Bilic (10.1016/j.isci.2019.07.039_bib1) 2007; 316
Li (10.1016/j.isci.2019.07.039_bib18) 2012; 149
Blitzer (10.1016/j.isci.2019.07.039_bib2) 2006; 7
Metcalfe (10.1016/j.isci.2019.07.039_bib23) 2011; 124
Lee (10.1016/j.isci.2019.07.039_bib17) 2010; 285
Ma (10.1016/j.isci.2019.07.039_bib20) 2017; 14
Ilyas (10.1016/j.isci.2019.07.039_bib12) 1997; 94
Chairoungdua (10.1016/j.isci.2019.07.039_bib4) 2010; 190
Gammons (10.1016/j.isci.2019.07.039_bib10) 2016; 129
Jiang (10.1016/j.isci.2019.07.039_bib13) 2015; 58
Kim (10.1016/j.isci.2019.07.039_bib14) 2013; 340
Ploper (10.1016/j.isci.2019.07.039_bib30) 2015; 112
Tamai (10.1016/j.isci.2019.07.039_bib34) 2004; 13
Yamamoto (10.1016/j.isci.2019.07.039_bib39) 2008; 15
Gagliardi (10.1016/j.isci.2019.07.039_bib8) 2014; 127
Piper (10.1016/j.isci.2019.07.039_bib29) 2007; 23
MacDonald (10.1016/j.isci.2019.07.039_bib21) 2009; 17
Palpant (10.1016/j.isci.2019.07.039_bib28) 2013; 140
Li (10.1016/j.isci.2019.07.039_bib19) 2018; 4
Kumar (10.1016/j.isci.2019.07.039_bib15) 2016; 36
Yao (10.1016/j.isci.2019.07.039_bib40) 2001; 286
Nusse (10.1016/j.isci.2019.07.039_bib26) 2017; 169
Ge (10.1016/j.isci.2019.07.039_bib11) 2018; 233
References_xml – volume: 109
  start-page: 4485
  year: 2012
  end-page: 4490
  ident: bib6
  article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 285
  start-page: 41549
  year: 2010
  end-page: 41556
  ident: bib17
  article-title: Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein
  publication-title: J. Biol. Chem.
– volume: 169
  start-page: 985
  year: 2017
  end-page: 999
  ident: bib26
  article-title: Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
– volume: 13
  start-page: 1244
  year: 2011
  end-page: 1251
  ident: bib16
  article-title: Notch post-translationally regulates beta-catenin protein in stem and progenitor cells
  publication-title: Nat. Cell Biol.
– volume: 286
  start-page: 771
  year: 2001
  end-page: 778
  ident: bib40
  article-title: Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 15
  start-page: 37
  year: 2008
  end-page: 48
  ident: bib39
  article-title: Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling
  publication-title: Dev. Cell
– volume: 36
  start-page: 1793
  year: 2016
  end-page: 1802
  ident: bib15
  article-title: Zfp703 is a Wnt/beta-catenin feedback suppressor targeting the beta-catenin/Tcf1 complex
  publication-title: Mol. Cell. Biol.
– volume: 62
  start-page: 279
  year: 2011
  end-page: 314
  ident: bib31
  article-title: Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity
  publication-title: Adv. Pharmacol.
– volume: 94
  start-page: 10330
  year: 1997
  end-page: 10334
  ident: bib12
  article-title: Beta-catenin mutations in cell lines established from human colorectal cancers
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 233
  start-page: 79
  year: 2018
  end-page: 87
  ident: bib11
  article-title: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway
  publication-title: J. Cell. Physiol.
– volume: 129
  start-page: 3892
  year: 2016
  end-page: 3902
  ident: bib10
  article-title: Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay
  publication-title: J. Cell Sci.
– volume: 124
  start-page: 3537
  year: 2011
  end-page: 3544
  ident: bib23
  article-title: Inhibition of GSK3 by Wnt signalling–two contrasting models
  publication-title: J. Cell Sci.
– volume: 140
  start-page: 3799
  year: 2013
  end-page: 3808
  ident: bib28
  article-title: Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development
  publication-title: Development
– volume: 127
  start-page: 4918
  year: 2014
  end-page: 4926
  ident: bib8
  article-title: Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal beta-catenin/Armadillo
  publication-title: J. Cell Sci.
– volume: 75
  start-page: 4527
  year: 2015
  end-page: 4537
  ident: bib42
  article-title: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS
  publication-title: Cancer Res.
– volume: 104
  start-page: 9685
  year: 2007
  end-page: 9690
  ident: bib35
  article-title: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 17
  start-page: 9
  year: 2009
  end-page: 26
  ident: bib21
  article-title: Wnt/beta-catenin signaling: components, mechanisms, and diseases
  publication-title: Dev. Cell
– volume: 103
  start-page: 19812
  year: 2006
  end-page: 19817
  ident: bib24
  article-title: Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 58
  start-page: 522
  year: 2015
  end-page: 533
  ident: bib13
  article-title: Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases
  publication-title: Mol. Cell
– volume: 13
  start-page: 680
  year: 2003
  end-page: 685
  ident: bib36
  article-title: Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements
  publication-title: Curr. Biol.
– volume: 7
  start-page: 28
  year: 2006
  ident: bib2
  article-title: A critical role for endocytosis in Wnt signaling
  publication-title: BMC Cell Biol.
– volume: 156
  start-page: 394
  year: 1999
  end-page: 406
  ident: bib27
  article-title: Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein
  publication-title: Exp. Neurol.
– volume: 112
  start-page: E420
  year: 2015
  end-page: E429
  ident: bib30
  article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 44
  start-page: 566
  year: 2018
  end-page: 581.e8
  ident: bib32
  article-title: APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway
  publication-title: Dev. Cell
– volume: 316
  start-page: 1619
  year: 2007
  end-page: 1622
  ident: bib1
  article-title: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation
  publication-title: Science
– volume: 14
  start-page: 377
  year: 2017
  end-page: 386
  ident: bib20
  article-title: Promoter methylation of Wnt/beta-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer
  publication-title: Cancer Biol. Med.
– volume: 23
  start-page: 519
  year: 2007
  end-page: 547
  ident: bib29
  article-title: Biogenesis and function of multivesicular bodies
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 149
  start-page: 1192
  year: 2012
  end-page: 1205
  ident: bib5
  article-title: Wnt/beta-catenin signaling and disease
  publication-title: Cell
– volume: 53
  start-page: 444
  year: 2014
  end-page: 457
  ident: bib37
  article-title: Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6
  publication-title: Mol. Cell
– volume: 9
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib9
  article-title: Endocytosis: a positive or a negative influence on Wnt signalling?
  publication-title: Traffic
– volume: 190
  start-page: 1079
  year: 2010
  end-page: 1091
  ident: bib4
  article-title: Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling
  publication-title: J. Cell Biol.
– volume: 6
  start-page: 25034
  year: 2015
  end-page: 25045
  ident: bib41
  article-title: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl
  publication-title: Oncotarget
– volume: 149
  start-page: 1245
  year: 2012
  end-page: 1256
  ident: bib18
  article-title: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex
  publication-title: Cell
– volume: 140
  start-page: 3787
  year: 2013
  end-page: 3798
  ident: bib25
  article-title: Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling
  publication-title: Development
– volume: 2
  start-page: 1316
  year: 2012
  end-page: 1328
  ident: bib7
  article-title: Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment
  publication-title: Cell Rep.
– volume: 13
  start-page: 149
  year: 2004
  end-page: 156
  ident: bib34
  article-title: A mechanism for Wnt coreceptor activation
  publication-title: Mol. Cell
– volume: 340
  start-page: 867
  year: 2013
  end-page: 870
  ident: bib14
  article-title: Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies
  publication-title: Science
– volume: 4
  start-page: 49
  year: 2018
  ident: bib19
  article-title: A growth factor-free culture system underscores the coordination between Wnt and BMP signaling in Lgr5(+) intestinal stem cell maintenance
  publication-title: Cell Discov.
– volume: 104
  start-page: 1027
  year: 2007
  end-page: 1032
  ident: bib22
  article-title: Controlled expression of transgenes introduced by in vivo electroporation
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 11
  start-page: 213
  year: 2006
  end-page: 223
  ident: bib38
  article-title: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin
  publication-title: Dev. Cell
– volume: 143
  start-page: 1136
  year: 2010
  end-page: 1148
  ident: bib33
  article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes
  publication-title: Cell
– volume: 75
  start-page: 785
  year: 2018
  end-page: 795
  ident: bib3
  article-title: The function of endocytosis in Wnt signaling
  publication-title: Cell Mol. Life Sci.
– volume: 316
  start-page: 1619
  year: 2007
  ident: 10.1016/j.isci.2019.07.039_bib1
  article-title: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation
  publication-title: Science
  doi: 10.1126/science.1137065
– volume: 17
  start-page: 9
  year: 2009
  ident: 10.1016/j.isci.2019.07.039_bib21
  article-title: Wnt/beta-catenin signaling: components, mechanisms, and diseases
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.06.016
– volume: 2
  start-page: 1316
  year: 2012
  ident: 10.1016/j.isci.2019.07.039_bib7
  article-title: Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.09.026
– volume: 140
  start-page: 3787
  year: 2013
  ident: 10.1016/j.isci.2019.07.039_bib25
  article-title: Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling
  publication-title: Development
  doi: 10.1242/dev.093567
– volume: 53
  start-page: 444
  year: 2014
  ident: 10.1016/j.isci.2019.07.039_bib37
  article-title: Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.12.010
– volume: 9
  start-page: 1
  year: 2008
  ident: 10.1016/j.isci.2019.07.039_bib9
  article-title: Endocytosis: a positive or a negative influence on Wnt signalling?
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2007.00662.x
– volume: 285
  start-page: 41549
  year: 2010
  ident: 10.1016/j.isci.2019.07.039_bib17
  article-title: Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.193383
– volume: 4
  start-page: 49
  year: 2018
  ident: 10.1016/j.isci.2019.07.039_bib19
  article-title: A growth factor-free culture system underscores the coordination between Wnt and BMP signaling in Lgr5(+) intestinal stem cell maintenance
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0051-0
– volume: 7
  start-page: 28
  year: 2006
  ident: 10.1016/j.isci.2019.07.039_bib2
  article-title: A critical role for endocytosis in Wnt signaling
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-7-28
– volume: 190
  start-page: 1079
  year: 2010
  ident: 10.1016/j.isci.2019.07.039_bib4
  article-title: Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201002049
– volume: 11
  start-page: 213
  year: 2006
  ident: 10.1016/j.isci.2019.07.039_bib38
  article-title: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.07.003
– volume: 169
  start-page: 985
  year: 2017
  ident: 10.1016/j.isci.2019.07.039_bib26
  article-title: Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.016
– volume: 13
  start-page: 149
  year: 2004
  ident: 10.1016/j.isci.2019.07.039_bib34
  article-title: A mechanism for Wnt coreceptor activation
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00484-2
– volume: 94
  start-page: 10330
  year: 1997
  ident: 10.1016/j.isci.2019.07.039_bib12
  article-title: Beta-catenin mutations in cell lines established from human colorectal cancers
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.94.19.10330
– volume: 124
  start-page: 3537
  year: 2011
  ident: 10.1016/j.isci.2019.07.039_bib23
  article-title: Inhibition of GSK3 by Wnt signalling–two contrasting models
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.091991
– volume: 6
  start-page: 25034
  year: 2015
  ident: 10.1016/j.isci.2019.07.039_bib41
  article-title: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4379
– volume: 286
  start-page: 771
  year: 2001
  ident: 10.1016/j.isci.2019.07.039_bib40
  article-title: Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5430
– volume: 109
  start-page: 4485
  year: 2012
  ident: 10.1016/j.isci.2019.07.039_bib6
  article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1118777109
– volume: 62
  start-page: 279
  year: 2011
  ident: 10.1016/j.isci.2019.07.039_bib31
  article-title: Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity
  publication-title: Adv. Pharmacol.
  doi: 10.1016/B978-0-12-385952-5.00003-8
– volume: 104
  start-page: 1027
  year: 2007
  ident: 10.1016/j.isci.2019.07.039_bib22
  article-title: Controlled expression of transgenes introduced by in vivo electroporation
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0610155104
– volume: 143
  start-page: 1136
  year: 2010
  ident: 10.1016/j.isci.2019.07.039_bib33
  article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.034
– volume: 58
  start-page: 522
  year: 2015
  ident: 10.1016/j.isci.2019.07.039_bib13
  article-title: Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.015
– volume: 75
  start-page: 4527
  year: 2015
  ident: 10.1016/j.isci.2019.07.039_bib42
  article-title: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3828
– volume: 233
  start-page: 79
  year: 2018
  ident: 10.1016/j.isci.2019.07.039_bib11
  article-title: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25853
– volume: 75
  start-page: 785
  year: 2018
  ident: 10.1016/j.isci.2019.07.039_bib3
  article-title: The function of endocytosis in Wnt signaling
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-017-2654-2
– volume: 36
  start-page: 1793
  year: 2016
  ident: 10.1016/j.isci.2019.07.039_bib15
  article-title: Zfp703 is a Wnt/beta-catenin feedback suppressor targeting the beta-catenin/Tcf1 complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01010-15
– volume: 14
  start-page: 377
  year: 2017
  ident: 10.1016/j.isci.2019.07.039_bib20
  article-title: Promoter methylation of Wnt/beta-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer
  publication-title: Cancer Biol. Med.
  doi: 10.20892/j.issn.2095-3941.2017.0061
– volume: 103
  start-page: 19812
  year: 2006
  ident: 10.1016/j.isci.2019.07.039_bib24
  article-title: Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0605768103
– volume: 340
  start-page: 867
  year: 2013
  ident: 10.1016/j.isci.2019.07.039_bib14
  article-title: Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies
  publication-title: Science
  doi: 10.1126/science.1232389
– volume: 156
  start-page: 394
  year: 1999
  ident: 10.1016/j.isci.2019.07.039_bib27
  article-title: Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1999.7033
– volume: 13
  start-page: 680
  year: 2003
  ident: 10.1016/j.isci.2019.07.039_bib36
  article-title: Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00240-9
– volume: 104
  start-page: 9685
  year: 2007
  ident: 10.1016/j.isci.2019.07.039_bib35
  article-title: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0702859104
– volume: 149
  start-page: 1192
  year: 2012
  ident: 10.1016/j.isci.2019.07.039_bib5
  article-title: Wnt/beta-catenin signaling and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.012
– volume: 23
  start-page: 519
  year: 2007
  ident: 10.1016/j.isci.2019.07.039_bib29
  article-title: Biogenesis and function of multivesicular bodies
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123319
– volume: 13
  start-page: 1244
  year: 2011
  ident: 10.1016/j.isci.2019.07.039_bib16
  article-title: Notch post-translationally regulates beta-catenin protein in stem and progenitor cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2313
– volume: 149
  start-page: 1245
  year: 2012
  ident: 10.1016/j.isci.2019.07.039_bib18
  article-title: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.002
– volume: 140
  start-page: 3799
  year: 2013
  ident: 10.1016/j.isci.2019.07.039_bib28
  article-title: Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development
  publication-title: Development
  doi: 10.1242/dev.094789
– volume: 112
  start-page: E420
  year: 2015
  ident: 10.1016/j.isci.2019.07.039_bib30
  article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1424576112
– volume: 15
  start-page: 37
  year: 2008
  ident: 10.1016/j.isci.2019.07.039_bib39
  article-title: Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.04.015
– volume: 129
  start-page: 3892
  year: 2016
  ident: 10.1016/j.isci.2019.07.039_bib10
  article-title: Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.195685
– volume: 44
  start-page: 566
  year: 2018
  ident: 10.1016/j.isci.2019.07.039_bib32
  article-title: APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.02.013
– volume: 127
  start-page: 4918
  year: 2014
  ident: 10.1016/j.isci.2019.07.039_bib8
  article-title: Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal beta-catenin/Armadillo
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.155424
SSID ssj0002002496
Score 2.2239282
Snippet Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 267
SubjectTerms Cell Biology
Molecular Mechanism of Behavior
Stem Cells Research
Title TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies
URI https://dx.doi.org/10.1016/j.isci.2019.07.039
https://www.ncbi.nlm.nih.gov/pubmed/31401350
https://www.proquest.com/docview/2272221638
https://pubmed.ncbi.nlm.nih.gov/PMC6700443
https://doaj.org/article/fd771480fb93437b91c1e5f9e5aa6734
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFd4yZW4oYj47RwpatUiFiHRit6Mn22qklTdFIl_j8fJLrsglQvHJM5jxhPNZ_mbbxB6TS2nQWtf-yR0zZ1oa9fSVHvJlCKJ-FD6pyw-ycMT_uFUnG60-gJO2CQPPDnubQr5Hq6b5FrGmXIt8SSK1EZhrVSsKIHmnLexmLoo22sghVc6ywngBOXQnCtmJnIXVLwCr6styp3QKXwjKxXx_q3k9Df4_JNDuZGUDu6jezOaxO8mKx6gO7F_iL4dL_YXWuOj_rxz3bjEX_sRf-nOAHL3Z9j9xJ8nDl4--H1pWA7fI_4IqW0uzcTjgEt97o-47ApdFe8NQDp8hE4O9o_fH9ZzI4XaQ7-CWvsgcubXgTsblZCBekKtbSyXgTSOy0RdBLAQmzYEnyEhY7Rx0sfEmigTe4x2-qGPTxHOz2DO2URi9DywVjfWWQL8GRkUcbxCZOVI42eVcWh2cWlWdLILA8434HzTKJOdX6E363uuJo2NW0fvwfysR4I-djmRo8bMUWP-FTUVEqvZNTPUmCBEflR368t3V6Fg8n8Imyu2j8PN0lCqMtQCdFuhJ1NorD-RlVWsaCqktoJmy4btK313XrS-oYqKc_bsfxj9HN0FU4DtQtULtDNe38SXGVKN7lX5e34BxK0eSw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMEM88+Inhibits+Wnt+Signaling+by+Promoting+Wnt+Signalosome+Localization+to+Multivesicular+Bodies&rft.jtitle=iScience&rft.au=Lee%2C+Heejin&rft.au=Evans%2C+Todd&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=267&rft_id=info:doi/10.1016%2Fj.isci.2019.07.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon