Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation
Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglyce...
Saved in:
Published in | Cell metabolism Vol. 32; no. 1; pp. 44 - 55.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.
[Display omitted]
•CD4+ T cells from healthy older people preferentially produce a Th17 profile•Autophagy, but not mitophagy, knockdown activates a Th17 profile in “young” cells•Mitochondrial ROS is needed, but not sufficient, for a Th17 profile in “young” cells•Metformin improves autophagy and mitochondria in parallel to decrease inflammaging
We uncovered a dominant Th17 inflammaging profile made by CD4+ T cells. Knockdown of autophagy in T cells from young subjects activates this profile. In vitro metformin improves autophagy and mitochondrial function in parallel to ameliorate Th17 inflammaging. Oral metformin intervention improves T cell autophagy in people, indicating potential use for age-associated inflammation. |
---|---|
AbstractList | Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.
[Display omitted]
•CD4+ T cells from healthy older people preferentially produce a Th17 profile•Autophagy, but not mitophagy, knockdown activates a Th17 profile in “young” cells•Mitochondrial ROS is needed, but not sufficient, for a Th17 profile in “young” cells•Metformin improves autophagy and mitochondria in parallel to decrease inflammaging
We uncovered a dominant Th17 inflammaging profile made by CD4+ T cells. Knockdown of autophagy in T cells from young subjects activates this profile. In vitro metformin improves autophagy and mitochondrial function in parallel to ameliorate Th17 inflammaging. Oral metformin intervention improves T cell autophagy in people, indicating potential use for age-associated inflammation. Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes. Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4 + T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes. • CD4 + T cells from healthy older people preferentially produce a Th17 profile • Autophagy, but not mitophagy, knockdown activates a Th17 profile in “young” cells • Mitochondrial ROS is needed, but not sufficient, for a Th17 profile in “young” cells • Metformin improves autophagy and mitochondria in parallel to decrease inflammaging We uncovered a dominant Th17 inflammaging profile made by CD4 + T cells. Knockdown of autophagy in T cells from young subjects activates this profile. In vitro metformin improves autophagy and mitochondrial function in parallel to ameliorate Th17 inflammaging. Oral metformin intervention improves T cell autophagy in people, indicating potential use for age-associated inflammation. Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4 T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes. |
Author | Bharath, Leena P. Nicholas, Dequina A. Liu, Jing Kern, Philip A. Guo, Zhenheng Hasturk, Hatice Fleeman, Rebecca M. Proctor, Elizabeth A. Jiang, Kai Deeney, Jude Snyder-Cappione, Jennifer Hawk, Gregory S. Liu, Rui Nikolajczyk, Barbara S. Pihl, Riley M.F. Cui, Licong Agrawal, Madhur Apovian, Caroline M. Belkina, Anna C. McCambridge, Grace Thompson, Katherine |
Author_xml | – sequence: 1 givenname: Leena P. surname: Bharath fullname: Bharath, Leena P. organization: Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA – sequence: 2 givenname: Madhur surname: Agrawal fullname: Agrawal, Madhur organization: Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA – sequence: 3 givenname: Grace surname: McCambridge fullname: McCambridge, Grace organization: Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA – sequence: 4 givenname: Dequina A. surname: Nicholas fullname: Nicholas, Dequina A. organization: Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, San Diego, CA, USA – sequence: 5 givenname: Hatice surname: Hasturk fullname: Hasturk, Hatice organization: Forsyth Institute, Cambridge, MA, USA – sequence: 6 givenname: Jing surname: Liu fullname: Liu, Jing organization: Department of Computer Science, University of Kentucky, Lexington, KY, USA – sequence: 7 givenname: Kai surname: Jiang fullname: Jiang, Kai organization: Department of Physiology, University of Kentucky, Lexington, KY, USA – sequence: 8 givenname: Rui surname: Liu fullname: Liu, Rui organization: Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA – sequence: 9 givenname: Zhenheng surname: Guo fullname: Guo, Zhenheng organization: Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA – sequence: 10 givenname: Jude surname: Deeney fullname: Deeney, Jude organization: Department of Medicine, Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA, USA – sequence: 11 givenname: Caroline M. surname: Apovian fullname: Apovian, Caroline M. organization: Department of Medicine, Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA, USA – sequence: 12 givenname: Jennifer surname: Snyder-Cappione fullname: Snyder-Cappione, Jennifer organization: Department of Microbiology, Boston University School of Medicine, Boston, MA, USA – sequence: 13 givenname: Gregory S. surname: Hawk fullname: Hawk, Gregory S. organization: Department of Statistics, University of Kentucky, Lexington, KY, USA – sequence: 14 givenname: Rebecca M. surname: Fleeman fullname: Fleeman, Rebecca M. organization: Departments of Neurosurgery and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA – sequence: 15 givenname: Riley M.F. surname: Pihl fullname: Pihl, Riley M.F. organization: Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA – sequence: 16 givenname: Katherine surname: Thompson fullname: Thompson, Katherine organization: Department of Statistics, University of Kentucky, Lexington, KY, USA – sequence: 17 givenname: Anna C. surname: Belkina fullname: Belkina, Anna C. organization: Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA – sequence: 18 givenname: Licong surname: Cui fullname: Cui, Licong organization: Department of Computer Science, University of Kentucky, Lexington, KY, USA – sequence: 19 givenname: Elizabeth A. surname: Proctor fullname: Proctor, Elizabeth A. organization: Departments of Neurosurgery and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA – sequence: 20 givenname: Philip A. surname: Kern fullname: Kern, Philip A. organization: Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA – sequence: 21 givenname: Barbara S. surname: Nikolajczyk fullname: Nikolajczyk, Barbara S. email: barb.nik@uky.edu organization: Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32402267$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu1DAUtVARfcAPsEBZsknwI4-JhJCiqoVKLWxgbd2xb2Y8cuzBdkZqvx6HaRGw6Mq2zss655ycOO-QkLeMVoyy9sOuUhOmilNOK1pXlDUvyBnrBS-7mtOTfG8aWtZMsFNyHuOOUtGKXrwip4LXlPO2OyPTHabRh8m44sptwSmMxTAnv9_C5r4Ap4uvGQVrHjJwZ5JXW-90MGCL69mpZLwrki8Ga_FgIGExbIzblEOMXi1vXdy40cI0wUJ9TV6OYCO-eTwvyI_rq--XX8rbb59vLofbUjWcpXKl1oo1DAWKulcNbRtYvi6UgK7v1lqtNEM19qB5p2mDXcdhDT0TGhjrGBMX5NPRdz-vJ9QKXQpg5T6YCcK99GDkv4gzW7nxB9nxrBciG7x_NAj-54wxyclEhdaCQz9HmfsTlPc1bTP13d9Zf0KeOs6E1ZGggo8x4CiVSb_ryNHGSkblMqfcyWVOucwpaS3znFnK_5M-uT8r-ngUYW74YDDIqAzmZbUJqJLU3jwn_wXZObuv |
CitedBy_id | crossref_primary_10_1016_j_drup_2024_101170 crossref_primary_10_1002_adbi_202200321 crossref_primary_10_1016_j_xcrm_2023_101061 crossref_primary_10_1096_fj_202101988R crossref_primary_10_1016_j_ebiom_2021_103409 crossref_primary_10_37349_eds_2024_00055 crossref_primary_10_1016_j_cmet_2023_12_007 crossref_primary_10_14336_AD_2021_1213 crossref_primary_10_1016_j_smim_2024_101890 crossref_primary_10_1038_s43587_021_00114_7 crossref_primary_10_1111_acel_13277 crossref_primary_10_3390_genes14051014 crossref_primary_10_1002_mnfr_202200763 crossref_primary_10_1016_j_trecan_2022_07_002 crossref_primary_10_1152_ajpcell_00469_2020 crossref_primary_10_1016_j_matdes_2023_112316 crossref_primary_10_1021_acsptsci_1c00167 crossref_primary_10_3390_cancers14215185 crossref_primary_10_1016_j_exger_2025_112686 crossref_primary_10_1093_jn_nxab183 crossref_primary_10_3389_fragi_2023_1272336 crossref_primary_10_1016_j_jcrc_2020_12_007 crossref_primary_10_1007_s12013_024_01534_z crossref_primary_10_1039_D3FO02580B crossref_primary_10_1016_j_bioactmat_2023_03_005 crossref_primary_10_1016_j_clim_2023_109838 crossref_primary_10_1038_s41401_023_01216_1 crossref_primary_10_1097_TP_0000000000004862 crossref_primary_10_3390_ijerph17228650 crossref_primary_10_3390_ijms23115986 crossref_primary_10_5937_scriptamed53_36574 crossref_primary_10_1016_j_molmet_2023_101755 crossref_primary_10_1093_infdis_jiab400 crossref_primary_10_1007_s11010_021_04119_z crossref_primary_10_1210_endrev_bnaa023 crossref_primary_10_7554_eLife_62420 crossref_primary_10_1038_s42003_022_03592_6 crossref_primary_10_1097_MJT_0000000000001900 crossref_primary_10_1016_j_jconrel_2022_01_043 crossref_primary_10_1016_j_phymed_2023_154907 crossref_primary_10_1038_s41419_023_06013_6 crossref_primary_10_1007_s00210_024_03295_1 crossref_primary_10_1515_med_2025_1159 crossref_primary_10_1101_cshperspect_a041197 crossref_primary_10_4049_immunohorizons_2400045 crossref_primary_10_1038_s41598_024_51878_y crossref_primary_10_2147_CCID_S502252 crossref_primary_10_1002_adbi_202300199 crossref_primary_10_1016_j_phrs_2021_105912 crossref_primary_10_3389_fmed_2020_589553 crossref_primary_10_1016_j_exger_2021_111377 crossref_primary_10_1096_fj_202002623RRR crossref_primary_10_3390_cells13090749 crossref_primary_10_1159_000514657 crossref_primary_10_1021_acssensors_1c02381 crossref_primary_10_2147_JIR_S488655 crossref_primary_10_3390_ijms25168884 crossref_primary_10_14336_AD_2023_0621 crossref_primary_10_1242_dmm_049345 crossref_primary_10_14336_AD_2020_0603 crossref_primary_10_1038_s41590_023_01717_5 crossref_primary_10_3390_ijms22105351 crossref_primary_10_1111_acel_13596 crossref_primary_10_3390_ijms24065708 crossref_primary_10_1210_endocr_bqac124 crossref_primary_10_1186_s40001_025_02462_1 crossref_primary_10_3390_nu13114058 crossref_primary_10_3389_fresc_2021_782848 crossref_primary_10_3390_ijms232415508 crossref_primary_10_1016_j_jconrel_2023_01_028 crossref_primary_10_3389_fimmu_2023_1182217 crossref_primary_10_3389_fphar_2021_622262 crossref_primary_10_1016_j_brainresbull_2025_111214 crossref_primary_10_1016_j_bbadis_2023_166839 crossref_primary_10_1016_j_arr_2020_101231 crossref_primary_10_1016_j_arr_2021_101410 crossref_primary_10_1183_13993003_00284_2021 crossref_primary_10_3390_nu16101404 crossref_primary_10_3390_cells12232691 crossref_primary_10_1016_j_jhazmat_2024_135176 crossref_primary_10_1038_s41467_020_19095_z crossref_primary_10_1016_j_biopha_2022_113547 crossref_primary_10_1016_j_neurobiolaging_2022_11_015 crossref_primary_10_1126_sciadv_adh0798 crossref_primary_10_3390_cells11193021 crossref_primary_10_3389_fnagi_2022_838173 crossref_primary_10_14336_AD_2021_0101 crossref_primary_10_3390_pharmaceutics15041203 crossref_primary_10_1016_j_jnutbio_2021_108911 crossref_primary_10_1093_ageing_afac328 crossref_primary_10_1186_s13287_023_03244_4 crossref_primary_10_1007_s40200_024_01458_8 crossref_primary_10_1111_acel_14317 crossref_primary_10_3390_ijms222313068 crossref_primary_10_14336_AD_2021_0110 crossref_primary_10_1016_j_neuroscience_2022_07_007 crossref_primary_10_3389_fmed_2021_640785 crossref_primary_10_1002_cbin_12149 crossref_primary_10_1007_s10067_024_07271_1 crossref_primary_10_1007_s13577_024_01132_4 crossref_primary_10_1016_j_nbd_2023_106202 crossref_primary_10_7554_eLife_88310 crossref_primary_10_1111_acel_13316 crossref_primary_10_14341_probl13097 crossref_primary_10_1007_s11357_024_01441_4 crossref_primary_10_3390_ph15070786 crossref_primary_10_3389_fimmu_2024_1421062 crossref_primary_10_1016_j_mehy_2023_111155 crossref_primary_10_1038_s41541_024_00874_4 crossref_primary_10_1093_braincomms_fcad259 crossref_primary_10_3390_cells12010106 crossref_primary_10_1007_s10522_023_10091_6 crossref_primary_10_1016_j_phymed_2024_156056 crossref_primary_10_1038_s41380_022_01631_6 crossref_primary_10_1016_j_mam_2022_101157 crossref_primary_10_33145_2304_8336_2024_29_327_358 crossref_primary_10_1111_cpr_13052 crossref_primary_10_1242_jcs_259738 crossref_primary_10_17816_CI642739 crossref_primary_10_1016_j_cmet_2020_07_001 crossref_primary_10_3390_vaccines12121314 crossref_primary_10_3390_cimb45120596 crossref_primary_10_1016_j_theriogenology_2022_05_030 crossref_primary_10_3390_vaccines10040607 crossref_primary_10_14336_AD_2024_1253 crossref_primary_10_1186_s12979_024_00486_5 crossref_primary_10_1038_s41574_021_00575_1 crossref_primary_10_1186_s12974_024_03072_0 crossref_primary_10_1111_odi_14884 crossref_primary_10_11648_j_bmb_20240904_11 crossref_primary_10_1111_acel_13653 crossref_primary_10_1111_acel_13413 crossref_primary_10_14336_AD_2024_0168 crossref_primary_10_3389_fimmu_2022_843712 crossref_primary_10_1016_j_exer_2021_108664 crossref_primary_10_3390_cimb45110540 crossref_primary_10_3389_fimmu_2025_1534926 crossref_primary_10_3389_fimmu_2021_706434 crossref_primary_10_1038_s41590_021_00927_z crossref_primary_10_1007_s11010_024_04965_7 crossref_primary_10_1007_s00394_022_03036_1 crossref_primary_10_1021_acsmaterialslett_4c02108 crossref_primary_10_1016_j_tem_2024_07_017 crossref_primary_10_3389_fneur_2024_1384480 crossref_primary_10_1007_s00011_022_01649_0 crossref_primary_10_1111_cpr_13155 crossref_primary_10_3389_fragi_2021_715981 crossref_primary_10_1016_j_abb_2024_110283 crossref_primary_10_1038_s41467_023_42277_4 crossref_primary_10_3389_fimmu_2024_1338680 crossref_primary_10_1016_j_autrev_2022_103132 crossref_primary_10_1515_chem_2024_0013 crossref_primary_10_1007_s11684_023_0998_6 crossref_primary_10_1002_JLB_3MA0321_745R crossref_primary_10_1186_s12979_023_00343_x crossref_primary_10_1186_s43556_022_00108_w crossref_primary_10_1186_s12967_023_04365_3 crossref_primary_10_1038_s41420_021_00800_w crossref_primary_10_1186_s10020_023_00742_2 crossref_primary_10_47583_ijpsrr_2022_v76i02_022 crossref_primary_10_1016_j_arr_2024_102213 crossref_primary_10_1111_imr_13354 crossref_primary_10_1155_2023_3595992 crossref_primary_10_3389_fphys_2021_825816 crossref_primary_10_1111_acel_13996 crossref_primary_10_3390_biom13121789 crossref_primary_10_3389_fonc_2022_852424 crossref_primary_10_1016_j_imlet_2022_09_002 crossref_primary_10_2139_ssrn_3916096 crossref_primary_10_1038_s41392_022_01251_0 crossref_primary_10_14336_AD_2024_0219 crossref_primary_10_1016_j_cej_2021_131064 crossref_primary_10_1016_j_ejphar_2022_174951 crossref_primary_10_3390_ph16121714 crossref_primary_10_31083_j_fbl2901023 crossref_primary_10_1002_jmv_28278 crossref_primary_10_1007_s00109_024_02424_w crossref_primary_10_1016_j_neures_2025_02_008 crossref_primary_10_3389_fphys_2021_705588 crossref_primary_10_1111_cpr_13095 crossref_primary_10_2174_0113895575299439240216081711 crossref_primary_10_1093_ndt_gfad024 crossref_primary_10_1038_s42255_020_00307_1 crossref_primary_10_1186_s12931_023_02492_5 crossref_primary_10_14336_AD_2024_0362 crossref_primary_10_1126_sciadv_adl0372 crossref_primary_10_1016_j_ejps_2022_106182 crossref_primary_10_3390_ijms242316880 crossref_primary_10_3389_fcell_2020_594416 crossref_primary_10_3389_fphar_2021_719589 crossref_primary_10_1016_j_exger_2020_111147 crossref_primary_10_1186_s12933_023_01842_3 crossref_primary_10_1111_acel_13733 crossref_primary_10_1038_s41585_021_00511_y crossref_primary_10_3390_cells11030359 crossref_primary_10_1186_s12872_023_03047_8 crossref_primary_10_3390_cells9081894 crossref_primary_10_1080_15548627_2020_1822089 crossref_primary_10_1016_j_ejmech_2024_116688 crossref_primary_10_1016_j_jff_2024_106307 crossref_primary_10_1038_s41413_024_00375_z crossref_primary_10_3389_fendo_2024_1417007 crossref_primary_10_3390_ijms24010755 crossref_primary_10_3390_cells10123367 crossref_primary_10_1007_s12975_022_01026_3 crossref_primary_10_1016_j_smim_2023_101808 crossref_primary_10_3389_fncel_2021_652111 crossref_primary_10_1038_s41586_023_06017_4 crossref_primary_10_1080_22221751_2022_2045876 crossref_primary_10_1016_j_bcp_2022_115337 crossref_primary_10_1016_j_intimp_2025_114437 crossref_primary_10_1016_j_cell_2024_08_021 crossref_primary_10_1186_s13578_022_00815_5 crossref_primary_10_1186_s12979_023_00378_0 crossref_primary_10_3389_fcell_2022_1028510 crossref_primary_10_3390_cells10102562 crossref_primary_10_1080_15548627_2023_2259281 crossref_primary_10_1096_fj_202300187R crossref_primary_10_1038_s41577_021_00557_4 crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_3389_fendo_2023_1216193 crossref_primary_10_4252_wjsc_v12_i12_1455 crossref_primary_10_3389_fragi_2022_924003 crossref_primary_10_1016_j_coph_2021_01_003 crossref_primary_10_14336_AD_2021_0823 crossref_primary_10_14336_AD_2023_1130 crossref_primary_10_1016_j_isci_2023_106774 crossref_primary_10_1186_s13287_024_03928_5 crossref_primary_10_3389_fphar_2023_1191517 crossref_primary_10_3389_fimmu_2022_835936 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_1016_j_smim_2023_101834 crossref_primary_10_1016_j_tins_2024_04_003 crossref_primary_10_1038_s41574_023_00833_4 crossref_primary_10_1080_17425255_2024_2398628 crossref_primary_10_3390_ijms231911845 crossref_primary_10_1152_ajpcell_00607_2020 crossref_primary_10_1016_j_smim_2023_101838 crossref_primary_10_1093_cvr_cvad035 crossref_primary_10_3389_fphys_2022_909569 crossref_primary_10_3390_nu16223830 crossref_primary_10_1093_cvr_cvae240 crossref_primary_10_1016_j_heliyon_2024_e27478 crossref_primary_10_4103_1673_5374_360245 crossref_primary_10_3390_ijms252312550 crossref_primary_10_1016_j_nanoen_2023_108989 crossref_primary_10_1002_adhm_202405069 crossref_primary_10_3389_fcell_2022_1046022 crossref_primary_10_1007_s10072_023_07278_7 crossref_primary_10_1016_j_jbc_2025_108308 crossref_primary_10_1016_j_tem_2022_01_007 crossref_primary_10_1016_j_coi_2024_102498 crossref_primary_10_1186_s12979_021_00251_y crossref_primary_10_1007_s11357_023_00909_z crossref_primary_10_1038_s43587_023_00431_z crossref_primary_10_1016_j_biocel_2021_106086 crossref_primary_10_18632_aging_204498 crossref_primary_10_1016_j_trsl_2023_08_001 crossref_primary_10_1111_jdi_13541 crossref_primary_10_1017_erm_2023_2 crossref_primary_10_1007_s11033_021_06420_y crossref_primary_10_3390_cells13050415 crossref_primary_10_1038_s41573_024_01126_9 crossref_primary_10_1210_clinem_dgad403 crossref_primary_10_1007_s10495_024_01977_y crossref_primary_10_1002_adhm_202304261 crossref_primary_10_1538_expanim_22_0104 crossref_primary_10_1016_j_bbamcr_2024_119864 crossref_primary_10_1097_CM9_0000000000003410 crossref_primary_10_1152_ajprenal_00105_2023 crossref_primary_10_1186_s10020_024_00903_x crossref_primary_10_1042_BCJ20230279 crossref_primary_10_3389_fimmu_2024_1520072 crossref_primary_10_1002_advs_202002611 crossref_primary_10_3390_cells10123544 crossref_primary_10_1016_j_bbamcr_2024_119873 crossref_primary_10_1016_j_bbadis_2022_166508 crossref_primary_10_1080_10715762_2020_1866757 crossref_primary_10_1021_acs_analchem_2c02177 crossref_primary_10_1007_s13668_024_00566_4 crossref_primary_10_1126_sciadv_add6097 crossref_primary_10_2147_DMSO_S326378 crossref_primary_10_1016_j_scib_2023_10_021 crossref_primary_10_14336_AD_2022_0325 crossref_primary_10_1186_s40001_023_01017_6 crossref_primary_10_2491_jjsth_35_666 crossref_primary_10_3389_fneur_2023_1197212 crossref_primary_10_1080_15412555_2022_2164262 crossref_primary_10_3389_fendo_2021_811776 crossref_primary_10_3390_biomedicines8120615 crossref_primary_10_3390_cimb47030176 crossref_primary_10_1016_j_mad_2023_111841 crossref_primary_10_1016_j_jid_2020_11_006 crossref_primary_10_3390_ijms23052543 crossref_primary_10_3390_biom13060950 crossref_primary_10_1007_s11357_024_01187_z crossref_primary_10_1039_D3TB02426A crossref_primary_10_3389_fcvm_2024_1384996 crossref_primary_10_3389_fphys_2020_584248 crossref_primary_10_3390_jcm13041172 crossref_primary_10_52601_bpr_2023_230032 crossref_primary_10_1016_j_cpcardiol_2023_101910 crossref_primary_10_1016_j_gde_2024_102306 crossref_primary_10_3389_fimmu_2020_572677 crossref_primary_10_3390_ijms241914666 crossref_primary_10_1016_j_cmet_2020_04_016 crossref_primary_10_1016_j_bbr_2022_113772 crossref_primary_10_1186_s12979_023_00348_6 crossref_primary_10_3389_fcell_2021_656201 crossref_primary_10_37349_ei_2023_00105 crossref_primary_10_7554_eLife_74713 crossref_primary_10_1177_15353702231181188 crossref_primary_10_1089_ars_2021_0070 crossref_primary_10_1155_2022_7494863 crossref_primary_10_1186_s12979_021_00222_3 crossref_primary_10_3390_cells13211799 crossref_primary_10_34133_research_0130 crossref_primary_10_1186_s12872_024_04387_9 crossref_primary_10_1016_j_copbio_2022_102701 crossref_primary_10_1080_15548627_2024_2315893 crossref_primary_10_1038_s41598_021_97441_x crossref_primary_10_3389_fcell_2021_737304 crossref_primary_10_3389_fimmu_2025_1534263 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1038_s43587_021_00121_8 crossref_primary_10_1016_j_cellsig_2022_110502 crossref_primary_10_1016_j_bbcan_2021_188565 crossref_primary_10_1039_D0FO02707C crossref_primary_10_3390_cells10082115 crossref_primary_10_14336_AD_2023_0321 crossref_primary_10_2337_db21_0659 crossref_primary_10_1021_acs_nanolett_3c01502 crossref_primary_10_3390_biom14020207 crossref_primary_10_3390_ijms22126352 crossref_primary_10_3389_fimmu_2021_714742 crossref_primary_10_1016_j_molmed_2023_07_010 crossref_primary_10_3390_ijms25126793 crossref_primary_10_1016_j_coviro_2021_09_017 crossref_primary_10_1002_med_22034 crossref_primary_10_1016_j_freeradbiomed_2024_10_295 crossref_primary_10_1139_cjpp_2023_0432 crossref_primary_10_18632_aging_203910 crossref_primary_10_1016_j_mito_2024_101957 crossref_primary_10_1016_j_exger_2023_112269 crossref_primary_10_3389_fcimb_2023_1146571 crossref_primary_10_1016_j_pharmthera_2020_107751 crossref_primary_10_1111_febs_15770 crossref_primary_10_3390_biomedicines8070188 crossref_primary_10_1111_bjh_19940 crossref_primary_10_3390_biomedicines9050524 crossref_primary_10_1155_2023_1429642 crossref_primary_10_1002_ctm2_70197 crossref_primary_10_1007_s11010_024_05042_9 crossref_primary_10_3390_cells11010060 crossref_primary_10_1093_jleuko_qiad020 crossref_primary_10_1152_ajpcell_00604_2020 crossref_primary_10_1016_j_jsps_2024_102029 crossref_primary_10_1080_08923973_2023_2232101 crossref_primary_10_1002_eji_202048645 crossref_primary_10_1016_S2213_8587_23_00001_3 crossref_primary_10_1038_s41416_024_02865_7 crossref_primary_10_3389_fnins_2024_1505493 crossref_primary_10_1002_advs_202414923 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1155_2022_6232902 crossref_primary_10_3389_fimmu_2021_638575 crossref_primary_10_1016_j_heliyon_2023_e18325 crossref_primary_10_1016_j_jare_2021_12_009 crossref_primary_10_2337_db23_0827 crossref_primary_10_3390_cells11121977 crossref_primary_10_3390_ijms242115930 crossref_primary_10_1093_lifemeta_load028 crossref_primary_10_3389_fendo_2023_1346441 crossref_primary_10_1016_j_isci_2020_101631 crossref_primary_10_3389_fragi_2021_732414 crossref_primary_10_1016_j_mad_2023_111790 crossref_primary_10_1038_s41574_021_00626_7 crossref_primary_10_1007_s11357_022_00568_6 crossref_primary_10_1007_s12195_023_00782_y crossref_primary_10_3390_ijms24098224 crossref_primary_10_1016_j_biomaterials_2025_123210 crossref_primary_10_1038_s41541_023_00682_2 crossref_primary_10_1016_j_eururo_2023_07_016 crossref_primary_10_1016_j_lfs_2023_121666 crossref_primary_10_18632_aging_103693 crossref_primary_10_3389_fcell_2022_811701 crossref_primary_10_1002_mco2_70048 crossref_primary_10_3390_nu15051177 crossref_primary_10_1007_s12015_020_10065_y crossref_primary_10_3389_fragi_2023_1202152 crossref_primary_10_1111_gtc_13098 crossref_primary_10_1016_j_ebiom_2022_104080 crossref_primary_10_1007_s10238_023_01051_y |
Cites_doi | 10.1016/j.celrep.2018.01.040 10.1242/jcs.01131 10.1093/gerona/glz130 10.1074/jbc.M113.467837 10.4161/auto.3634 10.1016/S0021-9258(19)47429-2 10.1371/journal.pone.0150924 10.1161/CIRCRESAHA.111.300285 10.1002/oby.21243 10.1016/j.diabres.2010.11.030 10.1161/CIRCRESAHA.109.214601 10.1016/j.cmet.2019.07.004 10.1046/j.0022-3042.2002.00744.x 10.1182/blood-2004-07-2599 10.1038/s41467-017-00525-4 10.1038/ni.3269 10.4161/oxim.3.4.12860 10.1016/0026-0495(79)90024-6 10.1093/gerona/53A.1.M20 10.4049/jimmunol.1200528 10.4049/jimmunol.0903002 10.4049/jimmunol.1800311 10.1002/cphy.c160042 10.1038/ncb2012 10.1172/jci.insight.86850 10.1016/j.cmet.2015.07.008 10.3390/ijms19061656 10.1016/j.immuni.2011.09.021 10.1371/journal.pcbi.1005752 10.1002/cem.2736 10.1556/2060.105.2018.3.20 10.1093/gerona/glu057 10.1371/journal.pone.0170975 10.1073/pnas.97.11.6013 10.1038/s41591-018-0220-6 10.18632/aging.102438 10.2337/db12-0420 10.1210/jcem-60-1-13 10.1007/s11306-011-0330-3 10.3389/fonc.2015.00121 10.1038/nmeth1007-767 10.1016/S1734-1140(10)70337-6 10.1152/ajpheart.00375.2009 10.1074/jbc.M705100200 10.1161/CIRCRESAHA.116.308445 10.2174/1871530315666150316124019 10.7554/eLife.12444 10.1016/j.immuni.2017.06.009 10.1016/j.cell.2010.01.028 10.1016/S0021-9258(18)31720-4 10.1007/978-1-4939-2404-2_3 10.1042/BJ20081386 10.1152/physrev.00026.2013 10.1038/ni.3365 10.1016/j.smim.2016.10.009 10.2337/db15-0244 10.1016/j.molcel.2016.01.028 10.1161/ATVBAHA.117.309510 10.1111/odi.12598 10.1016/S0024-3205(00)00851-1 10.1016/j.bbamcr.2015.05.010 10.1080/15548627.2015.1017192 10.1073/pnas.93.26.15249 10.1093/gerona/gly153 10.1155/2015/843743 10.1186/1471-2180-13-255 10.1172/JCI76881 10.1002/0471142735.im0316bs113 10.1161/CIRCRESAHA.112.265819 10.1016/j.semcdb.2008.07.011 10.1371/journal.pone.0031231 10.1002/path.2697 10.1126/science.1171721 10.3389/fimmu.2015.00001 10.4110/in.2018.18.e14 10.1038/s41467-019-13055-y 10.1139/cjpp-2014-0017 10.2337/diab.28.12.1095 10.1016/j.tem.2016.09.005 10.1007/s00592-011-0276-y 10.4049/jimmunol.1001455 10.1152/ajpcell.1998.275.6.C1640 10.1038/s41591-019-0381-y 10.1210/jc.2010-0017 10.1021/acs.jproteome.5b00354 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.04.015 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 55.e6 |
ExternalDocumentID | PMC7217133 32402267 10_1016_j_cmet_2020_04_015 S1550413120301972 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK108056 – fundername: NCI NIH HHS grantid: P30 CA177558 – fundername: NCATS NIH HHS grantid: UL1 TR001998 – fundername: NIDDK NIH HHS grantid: P30 DK046200 – fundername: NIDCR NIH HHS grantid: U01 DE025383 – fundername: NIDDK NIH HHS grantid: T32 DK007201 – fundername: NIAID NIH HHS grantid: T32 AI089673 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-8cbc151e3e349c5065a03633c3a797bdc8d1ecf9ad27d05e772aba913da117113 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:09:10 EDT 2025 Fri Jul 11 02:35:20 EDT 2025 Mon Jul 21 06:02:45 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Fri Feb 23 02:47:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metformin inflammaging autophagy T cells mitochondria |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-8cbc151e3e349c5065a03633c3a797bdc8d1ecf9ad27d05e772aba913da117113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7217133 |
PMID | 32402267 |
PQID | 2403029406 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217133 proquest_miscellaneous_2403029406 pubmed_primary_32402267 crossref_citationtrail_10_1016_j_cmet_2020_04_015 crossref_primary_10_1016_j_cmet_2020_04_015 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_04_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-07 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kabeya, Mizushima, Yamamoto, Oshitani-Okamoto, Ohsumi, Yoshimori (bib35) 2004; 117 Defronzo (bib17) 1979; 28 Guadagnin, Narola, Bönnemann, Chen (bib30) 2015; 2015 Szymańska, Saccenti, Smilde, Westerhuis (bib69) 2012; 8 Ungvari, Labinskyy, Mukhopadhyay, Pinto, Bagi, Ballabh, Zhang, Pacher, Csiszar (bib70) 2009; 297 Gautam, Das, Kar Mahapatra, Chakraborty, Kundu, Roy (bib24) 2010; 3 Wei, Laurence, O'Shea (bib76) 2008; 19 Melser, Lavie, Bénard (bib49) 2015; 1853 Rincon, Pereira (bib62) 2018; 19 Jiang, Yang, Cheng, Wang, Ning, Zhou, Lin, Zhong, Wang, Li (bib33) 2013; 288 Rohart, Gautier, Singh, Lê Cao (bib63) 2017; 13 Piber, Olmstead, Cho, Witarama, Perez, Dietz, Seeman, Breen, Cole, Irwin (bib58) 2019; 74 Mizushima, Yoshimori, Levine (bib51) 2010; 140 Mueller, Rose (bib52) 1996; 93 Chen, Kotecha (bib12) 2014; 377 Hong, Kutty, Toth, Marsboom, Hammel, Chamberlain, Ryan, Zhang, Sharp, Morrow (bib31) 2013; 112 Vereb, Matkó, Vámosi, Ibrahim, Magyar, Varga, Szöllosi, Jenei, Gáspár, Waldmann, Damjanovich (bib72) 2000; 97 Franceschi, Campisi (bib22) 2014; 69 Glick, Barth, Macleod (bib26) 2010; 221 Nickel, von Hardenberg, Hohl, Löffler, Kohlhaas, Becker, Reil, Kazakov, Bonnekoh, Stadelmaier (bib56) 2015; 22 Chakraborty, Chowdhury, Bhattacharyya (bib11) 2011; 93 Bharath, Cho, Park, Ruan, Li, Mueller, Bean, Reese, Richardson, Cai (bib7) 2017; 37 De Rosa, Galgani, Porcellini, Colamatteo, Santopaolo, Zuchegna, Romano, De Simone, Procaccini, La Rocca (bib16) 2015; 16 Kawai, Uchiyama, Takano, Nakamura, Ohkuma (bib37) 2007; 3 Abusleme, Moutsopoulos (bib85) 2017; 23 Geisler, Holmström, Skujat, Fiesel, Rothfuss, Kahle, Springer (bib25) 2010; 12 Greiner, Guppy, Brand (bib29) 1994; 269 Chen, Bergman, Pacini, Porte (bib13) 1985; 60 You, Wang, Li, Shou, Jing, Xie, Sui, Pan, Han (bib81) 2015; 11 Xie, Su, Liu, Zhao, Esser, Schroder, Lefta, Stauss, Guo, Gong (bib78) 2015; 125 Kubli, Gustafsson (bib40) 2012; 111 Kirber, Chen, Keaney (bib38) 2007; 4 Thévenot, Roux, Xu, Ezan, Junot (bib86) 2015; 14 Bektas, Schurman, Gonzalez-Freire, Dunn, Singh, Macian, Cuervo, Sen, Ferrucci (bib3) 2019; 11 Murphy (bib53) 2009; 417 Palmer, Ostrowski, Balderson, Christian, Crowe (bib57) 2015; 6 Ferrucci, Corsi, Lauretani, Bandinelli, Bartali, Taub, Guralnik, Longo (bib20) 2005; 105 Nicholas, Proctor, Agrawal, Belkina, Van Nostrand, Panneerseelan-Bharath, Jones, Raval, Ip, Zhu (bib55) 2019; 30 Bharath, Ip, Nikolajczyk (bib8) 2017; 7 Le Texier, Lineburg, Cao, McDonald-Hyman, Leveque-El Mouttie, Nicholls, Melino, Nalkurthi, Alexander, Teal (bib41) 2016; 1 Wang, Feng, Zeng, Fan, Wu, Li, Liu, Huang, Huang, Yu, Yang (bib74) 2013; 13 Mak, Grusdat, Duncan, Dostert, Nonnenmacher, Cox, Binsfeld, Hao, Brüstle, Itsumi (bib45) 2017; 46 Simon, Rai, Fanburg, Cochran (bib66) 1998; 275 Goodman, Young, McCormick, Cooper, Levine (bib27) 2011; 186 Yoshimori, Yamamoto, Moriyama, Futai, Tashiro (bib80) 1991; 266 Bharath, Ruan, Li, Ravindran, Wan, Nhan, Walker, Deeter, Goodrich, Johnson (bib6) 2015; 64 Zhi, Ustyugova, Chen, Zhang, Wu (bib83) 2012; 189 Franceschi, Garagnani, Vitale, Capri, Salvioli (bib23) 2017; 28 Ip, Cilfone, Belkina, DeFuria, Jagannathan-Bogdan, Zhu, Kuchibhatla, McDonnell, Xiao, Kepler (bib32) 2016; 24 Alpert, Pickman, Leipold, Rosenberg-Hasson, Ji, Gaujoux, Rabani, Starosvetsky, Kveler, Schaffert (bib2) 2019; 25 Bharath, Mueller, Li, Ruan, Kunz, Goodrich, Mills, Deeter, Sargsyan, Anandh Babu (bib5) 2014; 92 Conte, Ostan, Fabbri, Santoro, Guidarelli, Vitale, Mari, Sevini, Capri, Sandri (bib14) 2019; 74 Wei, Laurence, Elias, O'Shea (bib75) 2007; 282 Priyadharshini, Loschi, Newton, Zhang, Finn, Gerriets, Huynh, Rathmell, Blazar, Turka (bib60) 2018; 201 Cameron, Morrison, Levin, Mohan, Forteath, Beall, McNeilly, Balfour, Savinko, Wong (bib10) 2016; 119 Smith, Yao-Borengasser, Starks, Tripputi, Kern, Rasouli (bib67) 2010; 95 Kathiria, Butcher, Feagins, Souza, Boland, Theiss (bib36) 2012; 7 Poli, Camporeale (bib59) 2015; 5 Belkina, Ciccolella, Anno, Halpert, Spidlen, Snyder-Cappione (bib4) 2019; 10 Rana, Oliveira, Khamoui, Aparicio, Rera, Rossiter, Walker (bib61) 2017; 8 Gough, Corlett, Schlessinger, Wegrzyn, Larner, Levy (bib28) 2009; 324 Sun, Youle, Finkel (bib68) 2016; 61 Farres, Tsakovski, Tauler (bib19) 2015; 29 Zorov, Juhaszova, Sollott (bib84) 2014; 94 Madiraju, Qiu, Perry, Rahimi, Zhang, Zhang, Camporez, Cline, Butrico, Kemp (bib44) 2019; 25 Zapała, Kaczyński, Kieć-Wilk, Staszel, Knapp, Thoresen, Wybrańska, Dembińska-Kieć (bib82) 2010; 62 Martinez-Lopez, Athonvarangkul, Singh (bib47) 2015; 847 Yarosz, Chang (bib79) 2018; 18 Wei, Long, Yang, Guy, Shrestha, Chen, Wu, Vogel, Neale, Green, Chi (bib77) 2016; 17 Fidan, Onder Ersoz, Yilmaz, Yilmaz, Kocak, Karahan, Erem (bib21) 2011; 48 Davidson (bib15) 1979; 28 Saisho (bib65) 2015; 15 Kominsky, Campbell, Colgan (bib39) 2010; 184 McCormick, VanDusseldorp, Ulrich, Lanphere, Dokladny, Mosely, Mermier (bib48) 2018; 105 Nicholas, Proctor, Raval, Ip, Habib, Ritou, Grammatopoulos, Steenkamp, Dooms, Apovian (bib54) 2017; 12 Almeida, Lochner, Berod, Sparwasser (bib1) 2016; 28 Wang, Dillon, Shi, Milasta, Carter, Finkelstein, McCormick, Fitzgerald, Chi, Munger, Green (bib73) 2011; 35 Dikalova, Bikineyeva, Budzyn, Nazarewicz, McCann, Lewis, Harrison, Dikalov (bib18) 2010; 107 Kabat, Harrison, Riffelmacher, Moghaddam, Pearson, Laing, Abeler-Dörner, Forman, Grencis, Sattentau (bib34) 2016; 5 Roubenoff, Harris, Abad, Wilson, Dallal, Dinarello (bib64) 1998; 53 Bruunsgaard, Pedersen, Schroll, Skinhøj, Pedersen (bib9) 2000; 67 Liu, Fiskum, Schubert (bib43) 2002; 80 Malínská, Oliyarnyk, Škop, Šilhavý, Landa, Zídek, Mlejnek, Šimáková, Strnad, Kazdová, Pravenec (bib46) 2016; 11 van der Windt, Chang, Pearce (bib71) 2016; 113 Lee, Kim, Kim, Shong, Ku, Jo (bib42) 2013; 62 Menk, Scharping, Moreci, Zeng, Guy, Salvatore, Bae, Xie, Young, Wendell, Delgoffe (bib50) 2018; 22 Rana (10.1016/j.cmet.2020.04.015_bib61) 2017; 8 Poli (10.1016/j.cmet.2020.04.015_bib59) 2015; 5 Chakraborty (10.1016/j.cmet.2020.04.015_bib11) 2011; 93 Bharath (10.1016/j.cmet.2020.04.015_bib8) 2017; 7 Simon (10.1016/j.cmet.2020.04.015_bib66) 1998; 275 McCormick (10.1016/j.cmet.2020.04.015_bib48) 2018; 105 Rincon (10.1016/j.cmet.2020.04.015_bib62) 2018; 19 Xie (10.1016/j.cmet.2020.04.015_bib78) 2015; 125 Alpert (10.1016/j.cmet.2020.04.015_bib2) 2019; 25 Kathiria (10.1016/j.cmet.2020.04.015_bib36) 2012; 7 Yarosz (10.1016/j.cmet.2020.04.015_bib79) 2018; 18 Mizushima (10.1016/j.cmet.2020.04.015_bib51) 2010; 140 Yoshimori (10.1016/j.cmet.2020.04.015_bib80) 1991; 266 De Rosa (10.1016/j.cmet.2020.04.015_bib16) 2015; 16 Mak (10.1016/j.cmet.2020.04.015_bib45) 2017; 46 Fidan (10.1016/j.cmet.2020.04.015_bib21) 2011; 48 Franceschi (10.1016/j.cmet.2020.04.015_bib23) 2017; 28 Malínská (10.1016/j.cmet.2020.04.015_bib46) 2016; 11 Zhi (10.1016/j.cmet.2020.04.015_bib83) 2012; 189 Wang (10.1016/j.cmet.2020.04.015_bib74) 2013; 13 Kabat (10.1016/j.cmet.2020.04.015_bib34) 2016; 5 Sun (10.1016/j.cmet.2020.04.015_bib68) 2016; 61 Zapała (10.1016/j.cmet.2020.04.015_bib82) 2010; 62 Smith (10.1016/j.cmet.2020.04.015_bib67) 2010; 95 Rohart (10.1016/j.cmet.2020.04.015_bib63) 2017; 13 Zorov (10.1016/j.cmet.2020.04.015_bib84) 2014; 94 Vereb (10.1016/j.cmet.2020.04.015_bib72) 2000; 97 Wang (10.1016/j.cmet.2020.04.015_bib73) 2011; 35 Belkina (10.1016/j.cmet.2020.04.015_bib4) 2019; 10 Guadagnin (10.1016/j.cmet.2020.04.015_bib30) 2015; 2015 Goodman (10.1016/j.cmet.2020.04.015_bib27) 2011; 186 Kawai (10.1016/j.cmet.2020.04.015_bib37) 2007; 3 Gough (10.1016/j.cmet.2020.04.015_bib28) 2009; 324 Lee (10.1016/j.cmet.2020.04.015_bib42) 2013; 62 Hong (10.1016/j.cmet.2020.04.015_bib31) 2013; 112 Bharath (10.1016/j.cmet.2020.04.015_bib5) 2014; 92 Chen (10.1016/j.cmet.2020.04.015_bib13) 1985; 60 Wei (10.1016/j.cmet.2020.04.015_bib77) 2016; 17 Defronzo (10.1016/j.cmet.2020.04.015_bib17) 1979; 28 Le Texier (10.1016/j.cmet.2020.04.015_bib41) 2016; 1 Roubenoff (10.1016/j.cmet.2020.04.015_bib64) 1998; 53 Farres (10.1016/j.cmet.2020.04.015_bib19) 2015; 29 Ip (10.1016/j.cmet.2020.04.015_bib32) 2016; 24 Melser (10.1016/j.cmet.2020.04.015_bib49) 2015; 1853 Almeida (10.1016/j.cmet.2020.04.015_bib1) 2016; 28 Bektas (10.1016/j.cmet.2020.04.015_bib3) 2019; 11 Bruunsgaard (10.1016/j.cmet.2020.04.015_bib9) 2000; 67 Greiner (10.1016/j.cmet.2020.04.015_bib29) 1994; 269 Nickel (10.1016/j.cmet.2020.04.015_bib56) 2015; 22 Conte (10.1016/j.cmet.2020.04.015_bib14) 2019; 74 Davidson (10.1016/j.cmet.2020.04.015_bib15) 1979; 28 Liu (10.1016/j.cmet.2020.04.015_bib43) 2002; 80 Murphy (10.1016/j.cmet.2020.04.015_bib53) 2009; 417 Abusleme (10.1016/j.cmet.2020.04.015_bib85) 2017; 23 Piber (10.1016/j.cmet.2020.04.015_bib58) 2019; 74 Nicholas (10.1016/j.cmet.2020.04.015_bib54) 2017; 12 Nicholas (10.1016/j.cmet.2020.04.015_bib55) 2019; 30 Szymańska (10.1016/j.cmet.2020.04.015_bib69) 2012; 8 You (10.1016/j.cmet.2020.04.015_bib81) 2015; 11 Menk (10.1016/j.cmet.2020.04.015_bib50) 2018; 22 Thévenot (10.1016/j.cmet.2020.04.015_bib86) 2015; 14 Ungvari (10.1016/j.cmet.2020.04.015_bib70) 2009; 297 Dikalova (10.1016/j.cmet.2020.04.015_bib18) 2010; 107 Madiraju (10.1016/j.cmet.2020.04.015_bib44) 2019; 25 Palmer (10.1016/j.cmet.2020.04.015_bib57) 2015; 6 Geisler (10.1016/j.cmet.2020.04.015_bib25) 2010; 12 Glick (10.1016/j.cmet.2020.04.015_bib26) 2010; 221 Kirber (10.1016/j.cmet.2020.04.015_bib38) 2007; 4 Kominsky (10.1016/j.cmet.2020.04.015_bib39) 2010; 184 Franceschi (10.1016/j.cmet.2020.04.015_bib22) 2014; 69 Jiang (10.1016/j.cmet.2020.04.015_bib33) 2013; 288 Kabeya (10.1016/j.cmet.2020.04.015_bib35) 2004; 117 Ferrucci (10.1016/j.cmet.2020.04.015_bib20) 2005; 105 Gautam (10.1016/j.cmet.2020.04.015_bib24) 2010; 3 Kubli (10.1016/j.cmet.2020.04.015_bib40) 2012; 111 Wei (10.1016/j.cmet.2020.04.015_bib76) 2008; 19 Cameron (10.1016/j.cmet.2020.04.015_bib10) 2016; 119 Wei (10.1016/j.cmet.2020.04.015_bib75) 2007; 282 Martinez-Lopez (10.1016/j.cmet.2020.04.015_bib47) 2015; 847 Bharath (10.1016/j.cmet.2020.04.015_bib7) 2017; 37 Priyadharshini (10.1016/j.cmet.2020.04.015_bib60) 2018; 201 Bharath (10.1016/j.cmet.2020.04.015_bib6) 2015; 64 Saisho (10.1016/j.cmet.2020.04.015_bib65) 2015; 15 van der Windt (10.1016/j.cmet.2020.04.015_bib71) 2016; 113 Mueller (10.1016/j.cmet.2020.04.015_bib52) 1996; 93 Chen (10.1016/j.cmet.2020.04.015_bib12) 2014; 377 32960694 - Autophagy. 2020 Dec;16(12):2285-2286 32402265 - Cell Metab. 2020 Jul 7;32(1):4-5 |
References_xml | – volume: 4 start-page: 767 year: 2007 end-page: 768 ident: bib38 article-title: YFP photoconversion revisited: confirmation of the CFP-like species publication-title: Nat. Methods – volume: 13 start-page: e1005752 year: 2017 ident: bib63 article-title: mixOmics: an R package for 'omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. – volume: 25 start-page: 487 year: 2019 end-page: 495 ident: bib2 article-title: A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring publication-title: Nat. Med. – volume: 93 start-page: 15249 year: 1996 end-page: 15253 ident: bib52 article-title: Evolutionary theory predicts late-life mortality plateaus publication-title: Proc. Natl. Acad. Sci. USA – volume: 2015 start-page: 843743 year: 2015 ident: bib30 article-title: Tyrosine 705 phosphorylation of STAT3 is associated with phenotype severity in TGFbeta1 transgenic mice publication-title: BioMed Res. Int. – volume: 14 start-page: 3322 year: 2015 end-page: 3325 ident: bib86 article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses publication-title: J. Proteome. Res. – volume: 847 start-page: 73 year: 2015 end-page: 87 ident: bib47 article-title: Autophagy and aging publication-title: Adv. Exp. Med. Biol. – volume: 62 start-page: 767 year: 2010 end-page: 777 ident: bib82 article-title: Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties publication-title: Pharmacol. Rep. – volume: 92 start-page: 605 year: 2014 end-page: 612 ident: bib5 article-title: Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability publication-title: Can. J. Physiol. Pharmacol. – volume: 7 start-page: 1307 year: 2017 end-page: 1337 ident: bib8 article-title: Adaptive immunity and metabolic health: harmony becomes dissonant in obesity and aging publication-title: Compr. Physiol. – volume: 95 start-page: 4441 year: 2010 end-page: 4448 ident: bib67 article-title: Insulin resistance in African-American and Caucasian women: differences in lipotoxicity, adipokines, and gene expression in adipose tissue and muscle publication-title: J. Clin. Endocrinol. Metab. – volume: 8 start-page: 448 year: 2017 ident: bib61 article-title: Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster publication-title: Nat. Commun. – volume: 67 start-page: 2721 year: 2000 end-page: 2731 ident: bib9 article-title: TNF-alpha, leptin, and lymphocyte function in human aging publication-title: Life Sci. – volume: 69 start-page: S4 year: 2014 end-page: S9 ident: bib22 article-title: Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 5 start-page: e12444 year: 2016 ident: bib34 article-title: The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation publication-title: eLife – volume: 23 start-page: 854 year: 2017 end-page: 865 ident: bib85 article-title: IL-17: overview and role in oral immunity and microbiome publication-title: Oral Dis. – volume: 61 start-page: 654 year: 2016 end-page: 666 ident: bib68 article-title: The mitochondrial basis of aging publication-title: Mol. Cell – volume: 48 start-page: 297 year: 2011 end-page: 302 ident: bib21 article-title: The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus publication-title: Acta Diabetol. – volume: 11 start-page: e0150924 year: 2016 ident: bib46 article-title: Effects of metformin on tissue oxidative and dicarbonyl stress in transgenic spontaneously hypertensive rats expressing human C-reactive protein publication-title: PLoS One – volume: 13 start-page: 255 year: 2013 ident: bib74 article-title: Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells publication-title: BMC Microbiol. – volume: 17 start-page: 277 year: 2016 end-page: 285 ident: bib77 article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis publication-title: Nat. Immunol. – volume: 80 start-page: 780 year: 2002 end-page: 787 ident: bib43 article-title: Generation of reactive oxygen species by the mitochondrial electron transport chain publication-title: J. Neurochem. – volume: 35 start-page: 871 year: 2011 end-page: 882 ident: bib73 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity – volume: 1853 start-page: 2812 year: 2015 end-page: 2821 ident: bib49 article-title: Mitochondrial degradation and energy metabolism publication-title: Biochim. Biophys. Acta – volume: 125 start-page: 324 year: 2015 end-page: 336 ident: bib78 article-title: Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation publication-title: J. Clin. Invest. – volume: 22 start-page: 472 year: 2015 end-page: 484 ident: bib56 article-title: Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure publication-title: Cell Metab. – volume: 12 start-page: 119 year: 2010 end-page: 131 ident: bib25 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell Biol. – volume: 189 start-page: 1639 year: 2012 end-page: 1647 ident: bib83 article-title: Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling publication-title: J. Immunol. – volume: 288 start-page: 24590 year: 2013 end-page: 24599 ident: bib33 article-title: Mediator of ERBB2-driven cell motility (MEMO) promotes extranuclear estrogen receptor signaling involving the growth factor receptors IGF1R and ERBB2 publication-title: J. Biol. Chem. – volume: 111 start-page: 1208 year: 2012 end-page: 1221 ident: bib40 article-title: Mitochondria and mitophagy: the Yin and Yang of cell death control publication-title: Circ. Res. – volume: 113 start-page: 3.16B.1 year: 2016 end-page: 3.16B.14 ident: bib71 article-title: Measuring bioenergetics in T cells using a Seahorse extracellular flux analyzer publication-title: Curr. Protoc. Immunol. – volume: 64 start-page: 3914 year: 2015 end-page: 3926 ident: bib6 article-title: Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo publication-title: Diabetes – volume: 119 start-page: 652 year: 2016 end-page: 665 ident: bib10 article-title: Anti-inflammatory effects of metformin irrespective of diabetes status publication-title: Circ. Res. – volume: 16 start-page: 1174 year: 2015 end-page: 1184 ident: bib16 article-title: Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants publication-title: Nat. Immunol. – volume: 97 start-page: 6013 year: 2000 end-page: 6018 ident: bib72 article-title: Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts publication-title: Proc. Natl. Acad. Sci. USA – volume: 74 start-page: 1716 year: 2019 end-page: 1724 ident: bib58 article-title: Inflammaging: age and systemic, cellular, and nuclear inflammatory biology in older adults publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 186 start-page: 3336 year: 2011 end-page: 3345 ident: bib27 article-title: Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression publication-title: J. Immunol. – volume: 417 start-page: 1 year: 2009 end-page: 13 ident: bib53 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. – volume: 93 start-page: 56 year: 2011 end-page: 62 ident: bib11 article-title: Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients publication-title: Diabetes Res. Clin. Pract. – volume: 28 start-page: 688 year: 1979 end-page: 705 ident: bib15 article-title: The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly publication-title: Metabolism – volume: 112 start-page: 802 year: 2013 end-page: 815 ident: bib31 article-title: Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus publication-title: Circ. Res. – volume: 105 start-page: 247 year: 2018 end-page: 256 ident: bib48 article-title: The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells publication-title: Physiol. Int. – volume: 11 start-page: 9234 year: 2019 end-page: 9263 ident: bib3 article-title: Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy publication-title: Aging (Albany NY) – volume: 30 start-page: 447 year: 2019 end-page: 461.e5 ident: bib55 article-title: Fatty acid Metabolites combine with reduced beta oxidation to activate Th17 inflammation in human type 2 diabetes publication-title: Cell Metab. – volume: 266 start-page: 17707 year: 1991 end-page: 17712 ident: bib80 article-title: Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells publication-title: J. Biol. Chem. – volume: 29 start-page: 528 year: 2015 end-page: 536 ident: bib19 article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio(SR) methods for variable selection and interpretation publication-title: J. Chemometrics – volume: 12 start-page: e0170975 year: 2017 ident: bib54 article-title: Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis publication-title: PLoS One – volume: 8 start-page: 3 year: 2012 end-page: 16 ident: bib69 article-title: Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies publication-title: Metabolomics – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bib51 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 10 start-page: 5415 year: 2019 ident: bib4 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. – volume: 74 start-page: 600 year: 2019 end-page: 607 ident: bib14 article-title: Human aging and longevity are characterized by high levels of Mitokines publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 11 start-page: 729 year: 2015 end-page: 739 ident: bib81 article-title: The role of STAT3 in autophagy publication-title: Autophagy – volume: 117 start-page: 2805 year: 2004 end-page: 2812 ident: bib35 article-title: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation publication-title: J. Cell Sci. – volume: 28 start-page: 1095 year: 1979 end-page: 1101 ident: bib17 article-title: Glucose intolerance and aging: evidence for tissue insensitivity to insulin publication-title: Diabetes – volume: 22 start-page: 1509 year: 2018 end-page: 1521 ident: bib50 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep. – volume: 105 start-page: 2294 year: 2005 end-page: 2299 ident: bib20 article-title: The origins of age-related proinflammatory state publication-title: Blood – volume: 201 start-page: 2215 year: 2018 end-page: 2219 ident: bib60 article-title: Cutting edge: TGF-beta and phosphatidylinositol 3-kinase signals modulate distinct metabolism of regulatory T cell subsets publication-title: J. Immunol. – volume: 1 start-page: e86850 year: 2016 ident: bib41 article-title: Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease publication-title: JCI Insight – volume: 3 start-page: 154 year: 2007 end-page: 157 ident: bib37 article-title: Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells publication-title: Autophagy – volume: 60 start-page: 13 year: 1985 end-page: 20 ident: bib13 article-title: Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function publication-title: J. Clin. Endocrinol. Metab. – volume: 53 start-page: M20 year: 1998 end-page: M26 ident: bib64 article-title: Monocyte cytokine production in an elderly population: effect of age and inflammation publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 28 start-page: 514 year: 2016 end-page: 524 ident: bib1 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin. Immunol. – volume: 5 start-page: 121 year: 2015 ident: bib59 article-title: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance publication-title: Front. Oncol. – volume: 28 start-page: 199 year: 2017 end-page: 212 ident: bib23 article-title: Inflammaging and 'garb-aging publication-title: Trends Endocrinol. Metab. – volume: 62 start-page: 194 year: 2013 end-page: 204 ident: bib42 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes – volume: 324 start-page: 1713 year: 2009 end-page: 1716 ident: bib28 article-title: Mitochondrial STAT3 supports Ras-dependent oncogenic transformation publication-title: Science – volume: 297 start-page: H1876 year: 2009 end-page: H1881 ident: bib70 article-title: Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 6 start-page: 1 year: 2015 ident: bib57 article-title: Glucose metabolism regulates T cell activation, differentiation, and functions publication-title: Front. Immunol. – volume: 184 start-page: 4062 year: 2010 end-page: 4068 ident: bib39 article-title: Metabolic shifts in immunity and inflammation publication-title: J. Immunol. – volume: 18 start-page: e14 year: 2018 ident: bib79 article-title: The role of reactive oxygen species in regulating T cell-mediated immunity and disease publication-title: Immune Netw. – volume: 221 start-page: 3 year: 2010 end-page: 12 ident: bib26 article-title: Autophagy: cellular and molecular mechanisms publication-title: J. Pathol. – volume: 46 start-page: 1089 year: 2017 end-page: 1090 ident: bib45 article-title: Glutathione primes T cell metabolism for inflammation publication-title: Immunity – volume: 107 start-page: 106 year: 2010 end-page: 116 ident: bib18 article-title: Therapeutic targeting of mitochondrial superoxide in hypertension publication-title: Circ. Res. – volume: 275 start-page: C1640 year: 1998 end-page: C1652 ident: bib66 article-title: Activation of the JAK-STAT pathway by reactive oxygen species publication-title: Am. J. Physiol. – volume: 94 start-page: 909 year: 2014 end-page: 950 ident: bib84 article-title: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release publication-title: Physiol. Rev. – volume: 377 start-page: 127 year: 2014 end-page: 157 ident: bib12 article-title: Cytobank: providing an analytics platform for community cytometry data analysis and collaboration publication-title: Curr. Top. Microbiol. Immunol. – volume: 19 start-page: 394 year: 2008 end-page: 400 ident: bib76 article-title: New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation publication-title: Semin. Cell Dev. Biol. – volume: 24 start-page: 102 year: 2016 end-page: 112 ident: bib32 article-title: Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFalpha production publication-title: Obesity (Silver Spring) – volume: 269 start-page: 31484 year: 1994 end-page: 31490 ident: bib29 article-title: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production publication-title: J. Biol. Chem. – volume: 15 start-page: 196 year: 2015 end-page: 205 ident: bib65 article-title: Metformin and inflammation: its potential beyond glucose-lowering effect publication-title: Endocr. Metab. Immune Disord. Drug Targets – volume: 25 start-page: 526 year: 2019 end-page: 528 ident: bib44 article-title: Author correction: metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo publication-title: Nat. Med. – volume: 19 start-page: E1656 year: 2018 ident: bib62 article-title: A new perspective: mitochondrial Stat3 as a regulator for lymphocyte function publication-title: Int. J. Mol. Sci. – volume: 3 start-page: 275 year: 2010 end-page: 282 ident: bib24 article-title: Age associated oxidative damage in lymphocytes publication-title: Oxid. Med. Cell. Longev. – volume: 37 start-page: 1646 year: 2017 end-page: 1656 ident: bib7 article-title: Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent purinergic signaling to endothelial nitric oxide synthase publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 7 start-page: e31231 year: 2012 ident: bib36 article-title: Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells publication-title: PLoS One – volume: 282 start-page: 34605 year: 2007 end-page: 34610 ident: bib75 article-title: IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner publication-title: J. Biol. Chem. – volume: 22 start-page: 1509 year: 2018 ident: 10.1016/j.cmet.2020.04.015_bib50 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.040 – volume: 117 start-page: 2805 year: 2004 ident: 10.1016/j.cmet.2020.04.015_bib35 article-title: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation publication-title: J. Cell Sci. doi: 10.1242/jcs.01131 – volume: 74 start-page: 1716 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib58 article-title: Inflammaging: age and systemic, cellular, and nuclear inflammatory biology in older adults publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glz130 – volume: 288 start-page: 24590 year: 2013 ident: 10.1016/j.cmet.2020.04.015_bib33 article-title: Mediator of ERBB2-driven cell motility (MEMO) promotes extranuclear estrogen receptor signaling involving the growth factor receptors IGF1R and ERBB2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.467837 – volume: 3 start-page: 154 year: 2007 ident: 10.1016/j.cmet.2020.04.015_bib37 article-title: Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells publication-title: Autophagy doi: 10.4161/auto.3634 – volume: 266 start-page: 17707 year: 1991 ident: 10.1016/j.cmet.2020.04.015_bib80 article-title: Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)47429-2 – volume: 11 start-page: e0150924 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib46 article-title: Effects of metformin on tissue oxidative and dicarbonyl stress in transgenic spontaneously hypertensive rats expressing human C-reactive protein publication-title: PLoS One doi: 10.1371/journal.pone.0150924 – volume: 112 start-page: 802 year: 2013 ident: 10.1016/j.cmet.2020.04.015_bib31 article-title: Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.300285 – volume: 24 start-page: 102 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib32 article-title: Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFalpha production publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21243 – volume: 93 start-page: 56 year: 2011 ident: 10.1016/j.cmet.2020.04.015_bib11 article-title: Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2010.11.030 – volume: 107 start-page: 106 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib18 article-title: Therapeutic targeting of mitochondrial superoxide in hypertension publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.214601 – volume: 30 start-page: 447 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib55 article-title: Fatty acid Metabolites combine with reduced beta oxidation to activate Th17 inflammation in human type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.07.004 – volume: 377 start-page: 127 year: 2014 ident: 10.1016/j.cmet.2020.04.015_bib12 article-title: Cytobank: providing an analytics platform for community cytometry data analysis and collaboration publication-title: Curr. Top. Microbiol. Immunol. – volume: 80 start-page: 780 year: 2002 ident: 10.1016/j.cmet.2020.04.015_bib43 article-title: Generation of reactive oxygen species by the mitochondrial electron transport chain publication-title: J. Neurochem. doi: 10.1046/j.0022-3042.2002.00744.x – volume: 105 start-page: 2294 year: 2005 ident: 10.1016/j.cmet.2020.04.015_bib20 article-title: The origins of age-related proinflammatory state publication-title: Blood doi: 10.1182/blood-2004-07-2599 – volume: 8 start-page: 448 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib61 article-title: Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster publication-title: Nat. Commun. doi: 10.1038/s41467-017-00525-4 – volume: 16 start-page: 1174 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib16 article-title: Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants publication-title: Nat. Immunol. doi: 10.1038/ni.3269 – volume: 3 start-page: 275 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib24 article-title: Age associated oxidative damage in lymphocytes publication-title: Oxid. Med. Cell. Longev. doi: 10.4161/oxim.3.4.12860 – volume: 28 start-page: 688 year: 1979 ident: 10.1016/j.cmet.2020.04.015_bib15 article-title: The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly publication-title: Metabolism doi: 10.1016/0026-0495(79)90024-6 – volume: 53 start-page: M20 year: 1998 ident: 10.1016/j.cmet.2020.04.015_bib64 article-title: Monocyte cytokine production in an elderly population: effect of age and inflammation publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/53A.1.M20 – volume: 189 start-page: 1639 year: 2012 ident: 10.1016/j.cmet.2020.04.015_bib83 article-title: Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.1200528 – volume: 184 start-page: 4062 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib39 article-title: Metabolic shifts in immunity and inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.0903002 – volume: 201 start-page: 2215 year: 2018 ident: 10.1016/j.cmet.2020.04.015_bib60 article-title: Cutting edge: TGF-beta and phosphatidylinositol 3-kinase signals modulate distinct metabolism of regulatory T cell subsets publication-title: J. Immunol. doi: 10.4049/jimmunol.1800311 – volume: 7 start-page: 1307 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib8 article-title: Adaptive immunity and metabolic health: harmony becomes dissonant in obesity and aging publication-title: Compr. Physiol. doi: 10.1002/cphy.c160042 – volume: 12 start-page: 119 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib25 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2012 – volume: 1 start-page: e86850 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib41 article-title: Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease publication-title: JCI Insight doi: 10.1172/jci.insight.86850 – volume: 22 start-page: 472 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib56 article-title: Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.008 – volume: 19 start-page: E1656 year: 2018 ident: 10.1016/j.cmet.2020.04.015_bib62 article-title: A new perspective: mitochondrial Stat3 as a regulator for lymphocyte function publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19061656 – volume: 35 start-page: 871 year: 2011 ident: 10.1016/j.cmet.2020.04.015_bib73 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity doi: 10.1016/j.immuni.2011.09.021 – volume: 13 start-page: e1005752 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib63 article-title: mixOmics: an R package for 'omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005752 – volume: 29 start-page: 528 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib19 article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio(SR) methods for variable selection and interpretation publication-title: J. Chemometrics doi: 10.1002/cem.2736 – volume: 105 start-page: 247 year: 2018 ident: 10.1016/j.cmet.2020.04.015_bib48 article-title: The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells publication-title: Physiol. Int. doi: 10.1556/2060.105.2018.3.20 – volume: 69 start-page: S4 year: 2014 ident: 10.1016/j.cmet.2020.04.015_bib22 article-title: Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glu057 – volume: 12 start-page: e0170975 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib54 article-title: Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis publication-title: PLoS One doi: 10.1371/journal.pone.0170975 – volume: 97 start-page: 6013 year: 2000 ident: 10.1016/j.cmet.2020.04.015_bib72 article-title: Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.11.6013 – volume: 25 start-page: 526 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib44 article-title: Author correction: metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo publication-title: Nat. Med. doi: 10.1038/s41591-018-0220-6 – volume: 11 start-page: 9234 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib3 article-title: Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy publication-title: Aging (Albany NY) doi: 10.18632/aging.102438 – volume: 62 start-page: 194 year: 2013 ident: 10.1016/j.cmet.2020.04.015_bib42 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/db12-0420 – volume: 60 start-page: 13 year: 1985 ident: 10.1016/j.cmet.2020.04.015_bib13 article-title: Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-60-1-13 – volume: 8 start-page: 3 year: 2012 ident: 10.1016/j.cmet.2020.04.015_bib69 article-title: Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies publication-title: Metabolomics doi: 10.1007/s11306-011-0330-3 – volume: 5 start-page: 121 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib59 article-title: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00121 – volume: 4 start-page: 767 year: 2007 ident: 10.1016/j.cmet.2020.04.015_bib38 article-title: YFP photoconversion revisited: confirmation of the CFP-like species publication-title: Nat. Methods doi: 10.1038/nmeth1007-767 – volume: 62 start-page: 767 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib82 article-title: Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(10)70337-6 – volume: 297 start-page: H1876 year: 2009 ident: 10.1016/j.cmet.2020.04.015_bib70 article-title: Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00375.2009 – volume: 282 start-page: 34605 year: 2007 ident: 10.1016/j.cmet.2020.04.015_bib75 article-title: IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705100200 – volume: 119 start-page: 652 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib10 article-title: Anti-inflammatory effects of metformin irrespective of diabetes status publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.308445 – volume: 15 start-page: 196 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib65 article-title: Metformin and inflammation: its potential beyond glucose-lowering effect publication-title: Endocr. Metab. Immune Disord. Drug Targets doi: 10.2174/1871530315666150316124019 – volume: 5 start-page: e12444 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib34 article-title: The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation publication-title: eLife doi: 10.7554/eLife.12444 – volume: 46 start-page: 1089 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib45 article-title: Glutathione primes T cell metabolism for inflammation publication-title: Immunity doi: 10.1016/j.immuni.2017.06.009 – volume: 140 start-page: 313 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib51 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 269 start-page: 31484 year: 1994 ident: 10.1016/j.cmet.2020.04.015_bib29 article-title: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)31720-4 – volume: 847 start-page: 73 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib47 article-title: Autophagy and aging publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4939-2404-2_3 – volume: 417 start-page: 1 year: 2009 ident: 10.1016/j.cmet.2020.04.015_bib53 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. doi: 10.1042/BJ20081386 – volume: 94 start-page: 909 year: 2014 ident: 10.1016/j.cmet.2020.04.015_bib84 article-title: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release publication-title: Physiol. Rev. doi: 10.1152/physrev.00026.2013 – volume: 17 start-page: 277 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib77 article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.3365 – volume: 28 start-page: 514 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib1 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin. Immunol. doi: 10.1016/j.smim.2016.10.009 – volume: 64 start-page: 3914 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib6 article-title: Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo publication-title: Diabetes doi: 10.2337/db15-0244 – volume: 61 start-page: 654 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib68 article-title: The mitochondrial basis of aging publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.028 – volume: 37 start-page: 1646 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib7 article-title: Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent purinergic signaling to endothelial nitric oxide synthase publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309510 – volume: 23 start-page: 854 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib85 article-title: IL-17: overview and role in oral immunity and microbiome publication-title: Oral Dis. doi: 10.1111/odi.12598 – volume: 67 start-page: 2721 year: 2000 ident: 10.1016/j.cmet.2020.04.015_bib9 article-title: TNF-alpha, leptin, and lymphocyte function in human aging publication-title: Life Sci. doi: 10.1016/S0024-3205(00)00851-1 – volume: 1853 start-page: 2812 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib49 article-title: Mitochondrial degradation and energy metabolism publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2015.05.010 – volume: 11 start-page: 729 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib81 article-title: The role of STAT3 in autophagy publication-title: Autophagy doi: 10.1080/15548627.2015.1017192 – volume: 93 start-page: 15249 year: 1996 ident: 10.1016/j.cmet.2020.04.015_bib52 article-title: Evolutionary theory predicts late-life mortality plateaus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.26.15249 – volume: 74 start-page: 600 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib14 article-title: Human aging and longevity are characterized by high levels of Mitokines publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/gly153 – volume: 2015 start-page: 843743 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib30 article-title: Tyrosine 705 phosphorylation of STAT3 is associated with phenotype severity in TGFbeta1 transgenic mice publication-title: BioMed Res. Int. doi: 10.1155/2015/843743 – volume: 13 start-page: 255 year: 2013 ident: 10.1016/j.cmet.2020.04.015_bib74 article-title: Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells publication-title: BMC Microbiol. doi: 10.1186/1471-2180-13-255 – volume: 125 start-page: 324 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib78 article-title: Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation publication-title: J. Clin. Invest. doi: 10.1172/JCI76881 – volume: 113 start-page: 3.16B.1 year: 2016 ident: 10.1016/j.cmet.2020.04.015_bib71 article-title: Measuring bioenergetics in T cells using a Seahorse extracellular flux analyzer publication-title: Curr. Protoc. Immunol. doi: 10.1002/0471142735.im0316bs113 – volume: 111 start-page: 1208 year: 2012 ident: 10.1016/j.cmet.2020.04.015_bib40 article-title: Mitochondria and mitophagy: the Yin and Yang of cell death control publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.265819 – volume: 19 start-page: 394 year: 2008 ident: 10.1016/j.cmet.2020.04.015_bib76 article-title: New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.07.011 – volume: 7 start-page: e31231 year: 2012 ident: 10.1016/j.cmet.2020.04.015_bib36 article-title: Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells publication-title: PLoS One doi: 10.1371/journal.pone.0031231 – volume: 221 start-page: 3 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib26 article-title: Autophagy: cellular and molecular mechanisms publication-title: J. Pathol. doi: 10.1002/path.2697 – volume: 324 start-page: 1713 year: 2009 ident: 10.1016/j.cmet.2020.04.015_bib28 article-title: Mitochondrial STAT3 supports Ras-dependent oncogenic transformation publication-title: Science doi: 10.1126/science.1171721 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib57 article-title: Glucose metabolism regulates T cell activation, differentiation, and functions publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00001 – volume: 18 start-page: e14 year: 2018 ident: 10.1016/j.cmet.2020.04.015_bib79 article-title: The role of reactive oxygen species in regulating T cell-mediated immunity and disease publication-title: Immune Netw. doi: 10.4110/in.2018.18.e14 – volume: 10 start-page: 5415 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib4 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-13055-y – volume: 92 start-page: 605 year: 2014 ident: 10.1016/j.cmet.2020.04.015_bib5 article-title: Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/cjpp-2014-0017 – volume: 28 start-page: 1095 year: 1979 ident: 10.1016/j.cmet.2020.04.015_bib17 article-title: Glucose intolerance and aging: evidence for tissue insensitivity to insulin publication-title: Diabetes doi: 10.2337/diab.28.12.1095 – volume: 28 start-page: 199 year: 2017 ident: 10.1016/j.cmet.2020.04.015_bib23 article-title: Inflammaging and 'garb-aging publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2016.09.005 – volume: 48 start-page: 297 year: 2011 ident: 10.1016/j.cmet.2020.04.015_bib21 article-title: The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus publication-title: Acta Diabetol. doi: 10.1007/s00592-011-0276-y – volume: 186 start-page: 3336 year: 2011 ident: 10.1016/j.cmet.2020.04.015_bib27 article-title: Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression publication-title: J. Immunol. doi: 10.4049/jimmunol.1001455 – volume: 275 start-page: C1640 year: 1998 ident: 10.1016/j.cmet.2020.04.015_bib66 article-title: Activation of the JAK-STAT pathway by reactive oxygen species publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1998.275.6.C1640 – volume: 25 start-page: 487 year: 2019 ident: 10.1016/j.cmet.2020.04.015_bib2 article-title: A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring publication-title: Nat. Med. doi: 10.1038/s41591-019-0381-y – volume: 95 start-page: 4441 year: 2010 ident: 10.1016/j.cmet.2020.04.015_bib67 article-title: Insulin resistance in African-American and Caucasian women: differences in lipotoxicity, adipokines, and gene expression in adipose tissue and muscle publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2010-0017 – volume: 14 start-page: 3322 year: 2015 ident: 10.1016/j.cmet.2020.04.015_bib86 article-title: Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses publication-title: J. Proteome. Res. doi: 10.1021/acs.jproteome.5b00354 – reference: 32402265 - Cell Metab. 2020 Jul 7;32(1):4-5 – reference: 32960694 - Autophagy. 2020 Dec;16(12):2285-2286 |
SSID | ssj0036393 |
Score | 2.7032864 |
Snippet | Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | autophagy inflammaging metformin mitochondria T cells |
Title | Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation |
URI | https://dx.doi.org/10.1016/j.cmet.2020.04.015 https://www.ncbi.nlm.nih.gov/pubmed/32402267 https://www.proquest.com/docview/2403029406 https://pubmed.ncbi.nlm.nih.gov/PMC7217133 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EELyIb-uLFbxJaDabdrvHWiwqtBcVelv2FY3UbdH2oL_emTyKVfHgMcmGLPtNZr5sZr4h5JzFJs68kZF1RuNulY4k_nDUFvhF22VZVkgpDYbt64f0dtQarZBeXQuDaZWV7y99euGtqzPNajWb0zxv3iG5BhfMEmT1UqAf5vAwLOIbXdbemEMELpLsYXCEo6vCmTLHy754zKdM4kLuFFvj_h6cfpLP7zmUX4JSf5NsVGySdssJb5EVH7bJWtlf8n2HvAz8DElpHuhVeEJ832h3jlIC-vGd6uDoECnrOP-ACwN4t8EXBocmSfsQ7xAzOpvQ7hhr0IGU0i62NIpqSL2jNyEDkyrLH3fJQ__qvncdVf0VIottDKKONRYCvueep9K2gIxoXC9uuRZSGGc7jnmbSe0S4eKWByKujZaMO82YYIzvkdUwCf6AUJvZtnCSm44DgsXb0qUJuIbU6k4qhTMNwuqFVbYSH8ceGGNVZ5k9KwRDIRgqThWA0SAXi3umpfTGn6NbNV5qyYAUxIY_7zurwVXwZuHvEh38ZP6mUKkwTiQwngbZL8FezANlDIG4igYRS2awGICq3ctXQv5UqHfDJzduDBz-c75HZB2PioxhcUxWZ69zfwK8aGZOC8P_BCAgDeg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxLMEWjASnNAq691NHB96CKVRQptcaKXcjF9LF6VORRKh8Lf4g8zsIyKAekDqdb27sjzjbz7b428A3vDYxLk3MrLOaNqt0pGkA0dtkV90XZ7npZTSeNIdnmcfp53pDvxs7sJQWmWN_RWml2hdP2nXo9m-Kor2JyLXCME8IVYvRVJnVp749Xdcty0ORx_QyG-TZHB8djSM6tICkSUF_6hnjcVY51OfZtJ2MA5rOtFMbaqFFMbZnuPe5lK7RLi445GDaqMlT53mXHCe4n9vwW1kH4LQYDR938A__qVU-qXeRdS9-qZOlVRmLz0lcCZxqa9KtXj_HQ3_Zrt_Jm3-FgUHD-B-TV9Zvxqhh7DjwyO4UxW0XD-Gy7FfEgsuAjsOF-RQC9ZfkXaB_rJmOjg2IY48K35gwxjBBME3OJoDbIABlpyELeesP6NL78iCWZ9qKEWND3nHRiFHH67uWz6B8xsZ9aewG-bBPwNmc9sVTqam55DRpV3psgSxKLO6l0nhTAt4M7DK1mrnVHRjppq0tq-KjKHIGCrOFBqjBe8231xVWh_Xvt1p7KW2PFZhMLr2u9eNcRVOZTqf0cHPVwtF0ohxIpFitWCvMvamH6SbiExZtEBsucHmBZIJ324JxUUpF45rfNqJeP6f_X0Fd4dn41N1OpqcvIB71FKmK4t92F1-W_kDJGVL87KcBAw-3_Ss-wWupEsM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+Enhances+Autophagy+and+Normalizes+Mitochondrial+Function+to+Alleviate+Aging-Associated+Inflammation&rft.jtitle=Cell+metabolism&rft.au=Bharath%2C+Leena+P.&rft.au=Agrawal%2C+Madhur&rft.au=McCambridge%2C+Grace&rft.au=Nicholas%2C+Dequina+A.&rft.date=2020-07-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=1&rft.spage=44&rft.epage=55.e6&rft_id=info:doi/10.1016%2Fj.cmet.2020.04.015&rft.externalDocID=S1550413120301972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |