The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter mono...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 3; pp. 629 - 648.e10
Main Authors Cluntun, Ahmad A., Badolia, Rachit, Lettlova, Sandra, Parnell, K. Mark, Shankar, Thirupura S., Diakos, Nikolaos A., Olson, Kristofor A., Taleb, Iosif, Tatum, Sean M., Berg, Jordan A., Cunningham, Corey N., Van Ry, Tyler, Bott, Alex J., Krokidi, Aspasia Thodou, Fogarty, Sarah, Skedros, Sophia, Swiatek, Wojciech I., Yu, Xuejing, Luo, Bai, Merx, Shannon, Navankasattusas, Sutip, Cox, James E., Ducker, Gregory S., Holland, William L., McKellar, Stephen H., Rutter, Jared, Drakos, Stavros G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. [Display omitted] •Myocardial MPC expression coincides with LVAD-mediated recovery in chronic HF patients•Loss of the MPC in cells or mouse hearts is sufficient to induce hypertrophy and HF•MPC overexpression attenuates drug-induced hypertrophy in a cell-autonomous manner•Inhibition of MCT4 can mitigate hypertrophy in cultured cardiomyocytes and in mice Cluntun et al. identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and heart failure, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype.
AbstractList The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the Mitochondrial Pyruvate Carrier (MPC) and the cellular lactate exporter Monocarboxylate Transporter 4 (MCT4), as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. Cluntun, et al identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and HF, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype.
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. [Display omitted] •Myocardial MPC expression coincides with LVAD-mediated recovery in chronic HF patients•Loss of the MPC in cells or mouse hearts is sufficient to induce hypertrophy and HF•MPC overexpression attenuates drug-induced hypertrophy in a cell-autonomous manner•Inhibition of MCT4 can mitigate hypertrophy in cultured cardiomyocytes and in mice Cluntun et al. identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and heart failure, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype.
Author Fogarty, Sarah
Lettlova, Sandra
Tatum, Sean M.
Cluntun, Ahmad A.
Rutter, Jared
Drakos, Stavros G.
Skedros, Sophia
Navankasattusas, Sutip
Van Ry, Tyler
Swiatek, Wojciech I.
McKellar, Stephen H.
Berg, Jordan A.
Diakos, Nikolaos A.
Bott, Alex J.
Parnell, K. Mark
Luo, Bai
Krokidi, Aspasia Thodou
Shankar, Thirupura S.
Badolia, Rachit
Merx, Shannon
Cox, James E.
Olson, Kristofor A.
Yu, Xuejing
Cunningham, Corey N.
Holland, William L.
Taleb, Iosif
Ducker, Gregory S.
AuthorAffiliation 3 Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
1 Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
7 Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA
5 Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
2 Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
4 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
13 Lead Contact
8 U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA
10 These authors contributed equally
9 Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City
AuthorAffiliation_xml – name: 7 Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA
– name: 4 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
– name: 12 Present address: Department of Surgery and Perioperative Care, Dell Medical School, University of Texas, Austin, TX 78712, USA
– name: 13 Lead Contact
– name: 3 Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
– name: 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– name: 8 U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA
– name: 10 These authors contributed equally
– name: 1 Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– name: 11 Present address: Division of Cardiology, Tufts Medical Center, Boston, MA 02111, USA
– name: 6 University of Utah, School of Medicine, Salt Lake City, Utah; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA
– name: 9 Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
– name: 5 Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
Author_xml – sequence: 1
  givenname: Ahmad A.
  surname: Cluntun
  fullname: Cluntun, Ahmad A.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 2
  givenname: Rachit
  surname: Badolia
  fullname: Badolia, Rachit
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 3
  givenname: Sandra
  surname: Lettlova
  fullname: Lettlova, Sandra
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 4
  givenname: K. Mark
  surname: Parnell
  fullname: Parnell, K. Mark
  organization: Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
– sequence: 5
  givenname: Thirupura S.
  surname: Shankar
  fullname: Shankar, Thirupura S.
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 6
  givenname: Nikolaos A.
  surname: Diakos
  fullname: Diakos, Nikolaos A.
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 7
  givenname: Kristofor A.
  surname: Olson
  fullname: Olson, Kristofor A.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 8
  givenname: Iosif
  surname: Taleb
  fullname: Taleb, Iosif
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 9
  givenname: Sean M.
  surname: Tatum
  fullname: Tatum, Sean M.
  organization: Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 10
  givenname: Jordan A.
  surname: Berg
  fullname: Berg, Jordan A.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 11
  givenname: Corey N.
  surname: Cunningham
  fullname: Cunningham, Corey N.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 12
  givenname: Tyler
  surname: Van Ry
  fullname: Van Ry, Tyler
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 13
  givenname: Alex J.
  surname: Bott
  fullname: Bott, Alex J.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 14
  givenname: Aspasia Thodou
  surname: Krokidi
  fullname: Krokidi, Aspasia Thodou
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 15
  givenname: Sarah
  surname: Fogarty
  fullname: Fogarty, Sarah
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 16
  givenname: Sophia
  surname: Skedros
  fullname: Skedros, Sophia
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 17
  givenname: Wojciech I.
  surname: Swiatek
  fullname: Swiatek, Wojciech I.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 18
  givenname: Xuejing
  surname: Yu
  fullname: Yu, Xuejing
  organization: University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
– sequence: 19
  givenname: Bai
  surname: Luo
  fullname: Luo, Bai
  organization: Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 20
  givenname: Shannon
  surname: Merx
  fullname: Merx, Shannon
  organization: Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
– sequence: 21
  givenname: Sutip
  surname: Navankasattusas
  fullname: Navankasattusas, Sutip
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 22
  givenname: James E.
  surname: Cox
  fullname: Cox, James E.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 23
  givenname: Gregory S.
  surname: Ducker
  fullname: Ducker, Gregory S.
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 24
  givenname: William L.
  surname: Holland
  fullname: Holland, William L.
  organization: Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 25
  givenname: Stephen H.
  surname: McKellar
  fullname: McKellar, Stephen H.
  organization: University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
– sequence: 26
  givenname: Jared
  surname: Rutter
  fullname: Rutter, Jared
  email: rutter@biochem.utah.edu
  organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
– sequence: 27
  givenname: Stavros G.
  surname: Drakos
  fullname: Drakos, Stavros G.
  email: stavros.drakos@hsc.utah.edu
  organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33333007$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctq3DAUFSGlebQ_0EXxshtP9bIVQSmUkDSBQDezF3pcxxpsy5XkofP3kZmktFlEm6srnQecc4FOpzABQp8I3hBM2q-7jR0hbyim5YFuMGYn6JxIRmvBKT4t96bBNSeMnKGLlHYF0DLJ3qMzth6MxTm63_ZQzYe47HWGetA2l1npPz5VY3DLULZUWR2d17bqDzPEHMPcHyo9uaoHHXPVaT8sET6gd50eEnx8npdoe3uzvb6rH379vL_-8VDbhpJci84awbkzxmHSEGs6bTDI1gqOaQuudQYcdZyDwFja7koaJySXnFAj24Zdou9H2XkxIzgLU456UHP0o44HFbRX__9MvlePYa-EZIyQtgh8eRaI4fcCKavRJwvDoCcIS1KUC8LbRkpaoJ__9fpr8hJfAVwdATaGlCJ0yvoSoA-rtR8UwWptSu3U2pRam1KEqlJEodJX1Bf1N0nfjiQoAe89RJWsh8mC8xFsVi74t-hPFZKuqA
CitedBy_id crossref_primary_10_1016_j_jacbts_2021_05_008
crossref_primary_10_3389_fphys_2021_715081
crossref_primary_10_14797_mdcvj_1443
crossref_primary_10_3389_fphys_2022_952682
crossref_primary_10_3390_cells11182835
crossref_primary_10_1016_j_acthis_2025_152233
crossref_primary_10_1161_CIRCRESAHA_121_318241
crossref_primary_10_3390_jcdd10070287
crossref_primary_10_1093_cvr_cvae231
crossref_primary_10_1016_j_mcpro_2023_100641
crossref_primary_10_1016_j_semcancer_2022_07_004
crossref_primary_10_3389_fcvm_2024_1375400
crossref_primary_10_1186_s12872_024_04228_9
crossref_primary_10_1097_MCO_0000000000000943
crossref_primary_10_1073_pnas_2022495118
crossref_primary_10_1016_j_yjmcc_2021_08_013
crossref_primary_10_1038_s41467_024_48970_2
crossref_primary_10_1111_nyas_14678
crossref_primary_10_1038_s41467_023_44520_4
crossref_primary_10_1016_j_phymed_2024_156054
crossref_primary_10_1038_s44161_022_00118_5
crossref_primary_10_1126_science_abm3452
crossref_primary_10_2139_ssrn_4136089
crossref_primary_10_3389_fphar_2024_1372766
crossref_primary_10_1007_s12649_023_02290_6
crossref_primary_10_3390_ijms23020996
crossref_primary_10_1007_s12265_023_10443_0
crossref_primary_10_1172_JCI176207
crossref_primary_10_1038_s41569_021_00513_8
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_1161_JAHA_122_025517
crossref_primary_10_1021_acsanm_4c04916
crossref_primary_10_1021_acsinfecdis_3c00261
crossref_primary_10_1016_j_yjmcc_2021_08_003
crossref_primary_10_34133_research_0006
crossref_primary_10_2139_ssrn_3979182
crossref_primary_10_1186_s12964_023_01368_x
crossref_primary_10_1038_s41401_023_01152_0
crossref_primary_10_3390_metabo12030216
crossref_primary_10_1016_j_apsb_2024_11_004
crossref_primary_10_1161_CIRCHEARTFAILURE_123_011504
crossref_primary_10_1161_CIRCULATIONAHA_120_052141
crossref_primary_10_46879_ukroj_2_2023_190_205
crossref_primary_10_1161_CIRCRESAHA_121_318866
crossref_primary_10_1016_j_cophys_2022_100489
crossref_primary_10_1016_j_metabol_2024_155957
crossref_primary_10_3389_fcvm_2024_1489438
crossref_primary_10_1016_j_jare_2024_02_008
crossref_primary_10_1016_j_cardfail_2025_01_011
crossref_primary_10_1016_j_phymed_2023_155033
crossref_primary_10_1016_j_healun_2022_07_007
crossref_primary_10_1038_s41467_023_42247_w
crossref_primary_10_1016_j_phrs_2021_105802
crossref_primary_10_1172_JCI167371
crossref_primary_10_3390_jcm11123542
crossref_primary_10_1038_s41569_021_00569_6
crossref_primary_10_1186_s13062_023_00411_8
crossref_primary_10_1161_JAHA_123_029542
crossref_primary_10_1186_s13020_024_01009_6
crossref_primary_10_1007_s10142_024_01515_8
crossref_primary_10_1016_j_celrep_2023_112400
crossref_primary_10_1038_s41467_023_36712_9
crossref_primary_10_1161_CIRCRESAHA_122_320334
crossref_primary_10_1093_jb_mvae031
crossref_primary_10_1186_s12933_024_02178_2
crossref_primary_10_1021_acsptsci_4c00354
crossref_primary_10_1093_eurheartj_ehae379
crossref_primary_10_3389_fphar_2025_1526494
crossref_primary_10_1038_s41392_023_01652_9
crossref_primary_10_1136_jitc_2023_007349
crossref_primary_10_1038_s41422_023_00844_w
crossref_primary_10_1111_imm_13628
crossref_primary_10_1038_s41392_024_01816_1
crossref_primary_10_1093_cvr_cvae248
crossref_primary_10_1016_j_jchromb_2022_123435
crossref_primary_10_1186_s13018_023_03623_w
crossref_primary_10_1016_j_ijcard_2022_04_061
crossref_primary_10_1016_j_tem_2022_01_006
crossref_primary_10_1016_j_yjmcc_2025_03_006
crossref_primary_10_1186_s10020_024_00854_3
crossref_primary_10_1016_j_heliyon_2024_e24719
crossref_primary_10_1016_j_tox_2022_153196
crossref_primary_10_1038_s41569_023_00887_x
crossref_primary_10_1161_JAHA_123_032936
crossref_primary_10_1038_s41467_021_24869_0
crossref_primary_10_1016_j_gendis_2025_101554
crossref_primary_10_1021_acs_jmedchem_1c00448
crossref_primary_10_1016_j_ajem_2022_12_030
crossref_primary_10_1016_j_phymed_2025_156389
crossref_primary_10_1016_j_jep_2022_115150
crossref_primary_10_1152_ajpendo_00158_2021
crossref_primary_10_1016_j_isci_2022_104447
crossref_primary_10_1186_s12935_023_03082_7
crossref_primary_10_1002_dvdy_70020
crossref_primary_10_1248_bpb_b23_00570
crossref_primary_10_1016_j_jep_2022_115702
crossref_primary_10_1038_s41596_023_00948_y
crossref_primary_10_1161_CIRCRESAHA_122_321050
crossref_primary_10_1080_10826076_2022_2163499
crossref_primary_10_1073_pnas_2402639122
crossref_primary_10_1038_s44321_024_00155_6
crossref_primary_10_1007_s12265_025_10600_7
crossref_primary_10_3389_fcvm_2022_945142
crossref_primary_10_3389_fphar_2023_1151447
crossref_primary_10_1016_j_bios_2022_114378
crossref_primary_10_1093_hmg_ddac176
crossref_primary_10_1186_s12964_023_01350_7
crossref_primary_10_1016_j_envpol_2023_123238
crossref_primary_10_1016_j_molmet_2023_101849
crossref_primary_10_1016_j_heliyon_2024_e40653
crossref_primary_10_1016_j_peptides_2024_171323
crossref_primary_10_1016_j_taap_2023_116572
crossref_primary_10_30970_sbi_1701_703
crossref_primary_10_7554_eLife_84282
crossref_primary_10_25259_AJPPS_2024_013
crossref_primary_10_1038_s12276_024_01324_w
crossref_primary_10_1038_s42003_024_07306_y
crossref_primary_10_1161_JAHA_122_028022
crossref_primary_10_1016_j_metabol_2025_156144
crossref_primary_10_1016_j_semcancer_2023_01_007
crossref_primary_10_3390_antiox12030756
crossref_primary_10_1002_jimd_12459
crossref_primary_10_1007_s00210_022_02252_0
crossref_primary_10_3389_fendo_2023_1205442
crossref_primary_10_1016_j_canlet_2024_216824
crossref_primary_10_1186_s12872_022_02960_8
crossref_primary_10_1161_CIRCULATIONAHA_121_054885
crossref_primary_10_1016_j_cmet_2024_06_003
crossref_primary_10_3389_fphar_2022_1017433
crossref_primary_10_1038_s41422_023_00857_5
crossref_primary_10_37349_emed_2023_00160
crossref_primary_10_1016_j_celrep_2024_114180
crossref_primary_10_1016_j_chembiol_2023_06_029
crossref_primary_10_1093_cvr_cvae216
crossref_primary_10_1016_j_jpba_2022_114711
crossref_primary_10_3390_cancers13071488
crossref_primary_10_1016_j_arr_2024_102631
crossref_primary_10_1172_jci_insight_180906
crossref_primary_10_3390_biomedicines11123207
crossref_primary_10_3390_metabo12060500
crossref_primary_10_1161_CIRCRESAHA_123_321872
crossref_primary_10_1007_s10741_023_10295_5
crossref_primary_10_3389_fcvm_2024_1349417
crossref_primary_10_1172_JCI155333
crossref_primary_10_1172_jci_insight_166713
crossref_primary_10_3389_fcvm_2021_789267
crossref_primary_10_1172_jci_insight_182599
crossref_primary_10_1016_j_yexmp_2025_104957
crossref_primary_10_1002_adtp_202200254
crossref_primary_10_1007_s10753_024_01981_z
crossref_primary_10_1016_j_metabol_2025_156234
crossref_primary_10_1038_s41392_023_01546_w
crossref_primary_10_1093_cvr_cvae203
crossref_primary_10_1172_JCI176708
crossref_primary_10_1016_j_actbio_2023_04_020
crossref_primary_10_3390_antiox13111426
crossref_primary_10_1007_s10741_023_10353_y
crossref_primary_10_1016_j_arr_2024_102467
crossref_primary_10_2147_CMAR_S421771
crossref_primary_10_1126_sciadv_abq0117
crossref_primary_10_1172_JCI162309
crossref_primary_10_1002_hep_32348
crossref_primary_10_1016_j_bios_2024_116188
crossref_primary_10_1016_j_jep_2024_118827
crossref_primary_10_1161_CIRCHEARTFAILURE_121_008910
crossref_primary_10_1007_s12272_023_01431_8
crossref_primary_10_1016_j_jocmr_2024_101095
Cites_doi 10.1038/ncb3593
10.1016/j.cmet.2016.09.006
10.1016/j.cmet.2019.11.002
10.3389/fcvm.2018.00068
10.1152/ajpendo.00526.2002
10.1038/nchembio744
10.1038/s42255-020-00296-1
10.1042/bj3290321
10.1016/j.cell.2018.08.040
10.1016/S0002-9629(15)40570-1
10.1038/ncomms7259
10.1093/cvr/cvy063
10.1016/j.cmet.2015.07.028
10.1038/s42255-020-00288-1
10.1186/s13059-014-0550-8
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.cardfail.2012.08.001
10.1007/s004210100516
10.1038/nrcardio.2016.203
10.1016/j.mam.2012.05.005
10.1093/bioinformatics/btw354
10.3109/10715769709097781
10.1016/j.cell.2015.07.017
10.1016/j.jacc.2016.07.743
10.1172/JCI120849
10.2459/JCM.0000000000000059
10.1093/bioinformatics/btt656
10.1158/1535-7163.MCT-18-0107
10.1016/j.molmet.2017.09.002
10.1161/ATVBAHA.115.306686
10.1161/CIR.0000000000000509
10.1016/0022-2828(92)93381-S
10.1073/pnas.1812941116
10.1056/NEJMoa053063
10.1126/scitranslmed.aan4935
10.1038/onc.2013.390
10.1038/nprot.2011.319
10.1007/s11626-010-9368-1
10.1016/j.jacbts.2016.12.003
10.1016/j.vascn.2007.06.001
10.1172/JCI113822
10.1371/journal.pone.0129303
10.1016/j.isci.2019.11.041
10.3389/fcvm.2018.00017
10.1016/j.jacc.2016.07.756
10.1161/01.RES.77.4.773
10.1016/S0140-6736(17)31071-1
10.1161/JAHA.119.012673
10.1097/00005768-200004000-00007
10.15420/cfr.2016:25:2
10.1038/s41467-018-05362-7
10.1161/CIRCULATIONAHA.109.933960
10.1083/jcb.30.1.23
10.1016/j.celrep.2018.11.043
10.1038/ncb3575
10.1016/j.cell.2015.07.016
10.1186/s40170-015-0135-3
10.1016/0735-1097(94)90740-4
10.1155/2019/4532592
10.1159/000354470
10.1007/s00204-015-1477-x
10.1038/s41569-018-0044-6
10.1126/science.1218099
10.1186/s10020-018-0005-x
10.1172/JCI112174
10.1074/jbc.RA118.002845
10.1161/01.RES.37.5.527
10.1016/j.celrep.2019.08.076
10.1038/nprot.2017.104
10.1016/j.copbio.2015.02.003
10.1093/bioinformatics/bts635
10.1038/nature24057
10.1109/MCSE.2007.55
10.1126/science.aad0116
10.1016/j.cell.2016.07.040
10.1016/j.cell.2009.08.005
10.1093/emboj/19.15.3896
10.1093/nar/gkm226
10.1016/j.cmet.2015.07.027
10.1056/NEJMra021498
10.14806/ej.17.1.200
10.1007/s00392-018-1318-z
10.1016/0002-9343(53)90082-5
10.1113/jphysiol.2008.168286
10.1161/hh1301.092687
10.1016/j.jacc.2013.01.072
10.1371/journal.pcbi.1007625
10.1161/CIRCRESAHA.116.309396
10.1016/j.cmet.2014.01.010
10.1038/s42255-020-00276-5
10.1158/0008-5472.CAN-14-2260
10.1093/nar/gky310
10.1016/j.ab.2017.07.009
10.1016/j.jacbts.2016.06.009
10.1007/BF00944607
10.1590/1414-431x20187660
10.1172/JCI116579
10.1186/s12967-020-02487-6
10.1067/mhj.2001.116768
10.1006/jmcc.1997.0512
10.1074/jbc.273.26.15920
10.1093/cvr/cvx017
10.1161/CIRCRESAHA.119.315483
10.1016/j.celrep.2020.108087
10.1038/s41586-020-2649-2
10.1161/CIRCRESAHA.113.302095
10.7554/eLife.45873
10.1371/journal.pone.0127843
10.1006/jmcc.2001.1378
10.1152/japplphysiol.01069.2001
10.1126/science.1260419
10.1016/S0002-9149(99)00261-1
10.1093/cvr/cvr015
10.1152/jappl.2000.89.1.169
10.1161/CIRCULATIONAHA.119.044452
10.1161/CIRCHEARTFAILURE.116.003157
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2020.12.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 648.e10
ExternalDocumentID PMC7933116
33333007
10_1016_j_cmet_2020_12_003
S1550413120306586
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T32 DK091317
– fundername: NIH HHS
  grantid: S10 OD016232
– fundername: NIDDK NIH HHS
  grantid: R01 DK108833
– fundername: NHLBI NIH HHS
  grantid: T32 HL007576
– fundername: NIDDK NIH HHS
  grantid: U54 DK110858
– fundername: NIH HHS
  grantid: S10 OD021505
– fundername: NIDDK NIH HHS
  grantid: R01 DK112826
– fundername: NHLBI NIH HHS
  grantid: R01 HL135121
– fundername: NHLBI NIH HHS
  grantid: R01 HL132067
– fundername: NIH HHS
  grantid: S10 OD018210
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c521t-7fcb744dbbd0151cbfab0e96c74026ed6dbed2d44e7009cf89bd7949412b9653
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:24:18 EDT 2025
Tue Aug 05 11:01:38 EDT 2025
Thu Apr 03 06:56:44 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Fri Feb 23 02:46:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords heart failure
MPC
MCT4
hypertrophy
cardiac metabolism
mitochondria
lactate
pyruvate
VB124
LVAD
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-7fcb744dbbd0151cbfab0e96c74026ed6dbed2d44e7009cf89bd7949412b9653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
Conceptualization, A.A.C., R.B., S.N., S.H.M., J.R., and S.G.D.; Methodology, Validation, Formal Analysis, and Investigation, A.A.C., R.B., S.L., K.M.P., T.S.S., N.A.D., K.A.O., I.T., S.M.T., J.A.B., C.N.C., T.V.R., A.J.B., A.T.K., S.F., S.S, W.I.S, X.Y., B.L., S.M., S.N., and J.E.C.; Software, J.A.B.; Resources, K.M.P., W.I.S., X.Y., J.E.C., G.S.D., W.L.H., S.H.M., and S.G.D.; Data Curation, A.A.C., R.B., S.L., I.T. and J.A.B.; Writing - Original Draft, A.A.C., R.B., S.G.D, and J.R.; Writing - Review & Editing, A.A.C., R.B., S.L., S.F., S.N., S.H.M., J.R., and S.G.D.; Visualization, A.A.C., R.B., K.M.P, and J.A.B.; Supervision, J.R., and S.G.D.; Funding Acquisition, S.H.M., J.R., and S.G.D.
OpenAccessLink http://www.cell.com/article/S1550413120306586/pdf
PMID 33333007
PQID 2471465992
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7933116
proquest_miscellaneous_2471465992
pubmed_primary_33333007
crossref_citationtrail_10_1016_j_cmet_2020_12_003
crossref_primary_10_1016_j_cmet_2020_12_003
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_12_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-02
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Martin (bib72) 2011; 17
McNally, Mestroni (bib75) 2017; 121
Harbauer, Zahedi, Sickmann, Pfanner, Meisinger (bib52) 2014; 19
Yanagida, Luo, Doyle, Pohost, Pike (bib113) 1995; 77
Gopal, Almutairi, Al Batran, Eaton, Gandhi, Ussher (bib47) 2018; 5
Drakos, Wever-Pinzon, Selzman, Gilbert, Alharethi, Reid, Saidi, Diakos, Stoker, Davis (bib38) 2013; 61
Ito, Hirata, Adachi, Tanaka, Tsujino, Koike, Nogami, Murumo, Hiroe (bib57) 1993; 92
Bergman, Tsvetkova, Lowes, Wolfel (bib12) 2009; 587
Tham, Bernardo, Ooi, Weeks, McMullen (bib99) 2015; 89
Zorova, Popkov, Plotnikov, Silachev, Pevzner, Jankauskas, Babenko, Zorov, Balakireva, Juhaszova (bib118) 2018; 552
Bertero, Maack (bib13) 2018; 15
Chen, Freinkman, Sabatini (bib27) 2017; 12
Branco, Pereira, Gonzalez, Gusev, Rizvanov, Oliveira (bib21) 2015; 10
Liao, Smyth, Shi (bib65) 2014; 30
Hui, Ghergurovich, Morscher, Jang, Teng, Lu, Esparza, Reya, Le Zhan, Yanxiang Guo (bib55) 2017; 551
Gabriel-Costa, da Cunha, Bechara, Fortunato, Bozi, Coelho, Barreto-Chaves, Brum (bib44) 2015; 10
Reimand, Kull, Peterson, Hansen, Vilo (bib84) 2007; 35
Hunter (bib56) 2007; 9
Sugden, Holness (bib96) 2003; 284
Weibel, Kistler, Scherle (bib107) 1966; 30
Palmieri (bib79) 2013; 34
Sharma, Oonthonpan, Sheldon, Rauckhorst, Zhu, Tompkins, Cho, Grzesik, Gray, Scerbo (bib92) 2019; 8
Wever-Pinzon, Drakos, McKellar, Horne, Caine, Kfoury, Li, Fang, Stehlik, Selzman (bib109) 2016; 68
Gertz, Wisneski, Stanley, Neese (bib46) 1988; 82
Kirk, Wilson, Heddle, Brown, Barclay, Halestrap (bib62) 2000; 19
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib80) 2011; 12
Shao, Villet, Zhang, Choi, Yan, Ritterhoff, Gu, Djukovic, Christodoulou, Kolwicz (bib91) 2018; 9
Todenhöfer, Seiler, Stewart, Moskalev, Gao, Ladhar, Kamjabi, Al Nakouzi, Hayashi, Choi (bib100) 2018; 17
Boehmer, Starling, Cooper, Torre-Amione, Wittstein, Dec, Markham, Zucker, Gorcsan, McTiernan (bib19) 2012; 18
Opie (bib78) 1980
Sullivan, Gui, Hosios, Bush, Freinkman, Vander Heiden (bib97) 2015; 162
Zhou, Tian (bib115) 2018; 128
Lukey, Cluntun, Katt, Lin, Druso, Ramachandran, Erickson, Le, Wang, Blank (bib70) 2019; 29
Acin-Perez, Lechuga-Vieco, Del Mar Muñoz, Nieto-Arellano, Torroja, Sánchez-Cabo, Jiménez, González-Guerra, Carrascoso, Benincá (bib2) 2018; 10
Sheeran, Angerosa, Liaw, Cheung, Pepe (bib93) 2019; 2019
Metra, Teerlink (bib76) 2017; 390
Watkins, Borthwick, Arthur (bib106) 2011; 47
Drakos, Pagani, Lundberg, Baldwin (bib39) 2017; 2
Flores, Schell, Krall, Jelinek, Miranda, Grigorian, Braas, White, Zhou, Graham (bib43) 2017; 19
Dai, Li, May, Li, Zhang, Sharma, Sherry, Malloy, Khemtong, Zhang (bib32) 2020; 32
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith (bib53) 2020; 585
Benjamin, Robay, Hindupur, Pohlmann, Colombi, El-Shemerly, Maira, Moroni, Lane, Hall (bib8) 2018; 25
Liu, Cooper, Cluntun, Warmoes, Zhao, Reid, Liu, Lund, Lopes, Garcia (bib67) 2018; 175
Murray, Hutchinson, Bantick, Belfield, Benjamin, Brazma, Bundick, Cook, Craggs, Edwards (bib77) 2005; 1
Picard, McManus, Csordás, Várnai, Dorn, Williams, Hajnóczky, Wallace (bib81) 2015; 6
Berg, Belyeu, Morgan, Ouyang, Bott, Quinlan, Gertz, Rutter (bib11) 2020; 16
Birsoy, Wang, Chen, Freinkman, Abu-Remaileh, Sabatini (bib17) 2015; 162
Zhang, Taufalele, Cochran, Robillard-Frayne, Marx, Soto, Rauckhorst, Tayyari, Pewa, Gray (bib120) 2020; 2
Wisneski, Gertz, Neese, Gruenke, Morris, Craig (bib111) 1985; 76
Fillmore, Levasseur, Fukushima, Wagg, Wang, Dyck, Lopaschuk (bib42) 2018; 24
Grenell, Wang, Yam, Swarup, Dilan, Hauer, Linton, Philp, Gregor, Zhu (bib49) 2019; 116
Bekfani, Westphal, Schulze (bib7) 2018; 107
Gui, Sullivan, Luengo, Hosios, Bush, Gitego, Davidson, Freinkman, Thomas, Vander Heiden (bib51) 2016; 24
Benjamini, Hochberg (bib9) 1995; 57
Xia, Wishart (bib112) 2011; 6
Chacinska, Koehler, Milenkovic, Lithgow, Pfanner (bib25) 2009; 138
McCommis, Kovacs, Weinheimer, Shew, Koves, Ilkayeva, Kamm, Pyles, King, Veech (bib119) 2020; 2
Tran, Wang (bib102) 2019; 8
Dzimiri (bib40) 1999; 51
Bensard, Wisidagama, Olson, Berg, Krah, Schell, Nowinski, Fogarty, Bott, Wei (bib10) 2020; 31
Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib103) 2015; 347
Spriet, Howlett, Heigenhauser (bib95) 2000; 32
Barth, Stämmler, Speiser, Schaper (bib6) 1992; 24
Sohal, Nghiem, Crackower, Witt, Kimball, Tymitz, Penninger, Molkentin (bib94) 2001; 89
Allard, Schönekess, Henning, English, Lopaschuk (bib3) 1994; 267
Lesnefsky, Moghaddas, Tandler, Kerner, Hoppel (bib64) 2001; 33
Chen, Freinkman, Wang, Birsoy, Sabatini (bib26) 2016; 166
Chong, Soufan, Li, Caraus, Li, Bourque, Wishart, Xia (bib28) 2018; 46
Clerk, Sugden (bib29) 1999; 83
Ritterhoff, Young, Villet, Shao, Neto, Bettcher, Hsu, Kolwicz, Raftery, Tian (bib86) 2020; 126
Kolwicz, Purohit, Tian (bib63) 2013; 113
Seymour, Chatham (bib90) 1997; 29
Bisetto, Wright, Nowak, Lepore, Khurana, Loro, Philp (bib18) 2019; 22
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib37) 2013; 29
Lu, Jia, Zu, Zhang, Zhao, Shi (bib69) 2018; 293
Jessup, Brozena (bib58) 2003; 348
Ritterhoff, Tian (bib85) 2017; 113
Birks, Tansley, Hardy, George, Bowles, Burke, Banner, Khaghani, Yacoub (bib15) 2006; 355
Abel, Doenst (bib1) 2011; 90
Birks, George, Hedger, Bahrami, Wilton, Bowles, Webb, Bougard, Amrani, Yacoub (bib16) 2011; 123
Wever-Pinzon, Selzman, Stoddard, Wever-Pinzon, Catino, Kfoury, Diakos, Reid, McKellar, Bonios (bib108) 2016; 68
Gray, Sultana, Rauckhorst, Oonthonpan, Tompkins, Sharma, Fu, Miao, Pewa, Brown (bib48) 2015; 22
Bricker, Taylor, Schell, Orsak, Boutron, Chen, Cox, Cardon, Van Vranken, Dephoure (bib22) 2012; 337
Groussard, Morel, Chevanne, Monnier, Cillard, Delamarche (bib50) 2000; 89
Topkara, Garan, Fine, Godier-Furnémont, Breskin, Cagliostro, Yuzefpolskaya, Takeda, Takayama, Mancini (bib101) 2016; 9
Dell’Anno, Barone, Mutti, Rassl, Marciniak, Silvestri, Landi, Gemignani (bib35) 2020; 18
Zordoky, El-Kadi (bib117) 2007; 56
Bing, Siegel, Vitale, Balboni, Sparks, Taeschler, Klapper, Edwards (bib14) 1953; 15
Dandel, Weng, Siniawski, Potapov, Drews, Lehmkuhl, Knosalla, Hetzer (bib33) 2008; 118
Yancy, Jessup, Bozkurt, Butler, Casey, Colvin, Drazner, Filippatos, Fonarow, Givertz (bib114) 2017; 136
Buescher, Antoniewicz, Boros, Burgess, Brunengraber, Clish, DeBerardinis, Feron, Frezza, Ghesquiere (bib24) 2015; 34
Ewels, Magnusson, Lundin, Käller (bib41) 2016; 32
Suzuki, Satoh, Ikeda, Sunamura, Otsuki, Satoh, Kikuchi, Omura, Kurosawa, Nogi (bib98) 2016; 36
Barger, Kelly (bib5) 1999; 318
McCommis, Chen, Fu, McDonald, Colca, Kletzien, Burgess, Finck (bib74) 2015; 22
Lim, Lim, Price, Orr, Eberhart, Bar (bib66) 2014; 33
Savarese, Lund (bib88) 2017; 3
Umbarawan, Syamsunarno, Koitabashi, Yamaguchi, Hanaoka, Hishiki, Nagahata-Naito, Obinata, Sano, Sunaga (bib104) 2018; 114
Fernandez-Caggiano, Kamynina, Francois, Prysyazhna, Eykyn, Krasemann, Crespo-Leiro, Vieites, Bianchi, Morales (bib121) 2020; 2
Safer (bib87) 1975; 37
Wilson, Jackson, Heddle, Price, Pilegaard, Juel, Bonen, Montgomery, Hutter, Halestrap (bib110) 1998; 273
Badolia, Ramadurai, Abel, Ferrin, Taleb, Shankar, Krokidi, Navankasattusas, McKellar, Yin (bib4) 2020; 142
Zhu, Wu, Yuan (bib116) 2013; 32
Bonen (bib20) 2001; 86
Gabriel-Costa, Cunha, Paixão, Fortunato, Rego-Monteiro, Barreto-Chaves, Brum (bib45) 2018; 51
Price, Jackson, Halestrap (bib82) 1998; 329
Herz, Blake, Grootveld (bib54) 1997; 26
Marchiq, Le Floch, Roux, Simon, Pouyssegur (bib71) 2015; 75
Diakos, Navankasattusas, Abel, Rutter, McCreath, Ferrin, McKellar, Miller, Park, Richardson (bib36) 2016; 1
McClelland, Brooks (bib73) 2002; 92
Cresti, Chiavarelli, Glauber, Tanganelli, Scalese, Cesareo, Guerrini, Capati, Focardi, Severi (bib31) 2016; 17
Khattar, Senior, Soman, van der Does, Lahiri (bib61) 2001; 142
Karwi, Uddin, Ho, Lopaschuk (bib59) 2018; 5
Schell, Wisidagama, Bensard, Zhao, Wei, Tanner, Flores, Mohlman, Sorensen, Earl (bib89) 2017; 19
Cluntun, Huang, Dai, Liu, Zhao, Locasale (bib30) 2015; 3
Love, Huber, Anders (bib68) 2014; 15
Wai, García-Prieto, Baker, Merkwirth, Benit, Rustin, Rupérez, Barbas, Ibañez, Langer (bib105) 2015; 350
Rauckhorst, Gray, Sheldon, Fu, Pewa, Feddersen, Dupuy, Gibson-Corley, Cox, Burgess, Taylor (bib83) 2017; 6
Brown, Perry, Allen, Sabbah, Stauffer, Shaikh, Cleland, Colucci, Butler, Voors (bib23) 2017; 14
de Groot, van Helden, de Jong, Coumans, van der Vusse (bib34) 1995; 146
Kasper, Agema, Hutchins, Deckers, Hare, Baughman (bib60) 1994; 23
Yancy (10.1016/j.cmet.2020.12.003_bib114) 2017; 136
Chen (10.1016/j.cmet.2020.12.003_bib26) 2016; 166
Schell (10.1016/j.cmet.2020.12.003_bib89) 2017; 19
Sharma (10.1016/j.cmet.2020.12.003_bib92) 2019; 8
Ritterhoff (10.1016/j.cmet.2020.12.003_bib85) 2017; 113
Branco (10.1016/j.cmet.2020.12.003_bib21) 2015; 10
Chen (10.1016/j.cmet.2020.12.003_bib27) 2017; 12
Benjamini (10.1016/j.cmet.2020.12.003_bib9) 1995; 57
Reimand (10.1016/j.cmet.2020.12.003_bib84) 2007; 35
Dandel (10.1016/j.cmet.2020.12.003_bib33) 2008; 118
Buescher (10.1016/j.cmet.2020.12.003_bib24) 2015; 34
Boehmer (10.1016/j.cmet.2020.12.003_bib19) 2012; 18
Abel (10.1016/j.cmet.2020.12.003_bib1) 2011; 90
Hui (10.1016/j.cmet.2020.12.003_bib55) 2017; 551
Bekfani (10.1016/j.cmet.2020.12.003_bib7) 2018; 107
Bisetto (10.1016/j.cmet.2020.12.003_bib18) 2019; 22
Lu (10.1016/j.cmet.2020.12.003_bib69) 2018; 293
Gopal (10.1016/j.cmet.2020.12.003_bib47) 2018; 5
Tran (10.1016/j.cmet.2020.12.003_bib102) 2019; 8
Umbarawan (10.1016/j.cmet.2020.12.003_bib104) 2018; 114
Birsoy (10.1016/j.cmet.2020.12.003_bib17) 2015; 162
Birks (10.1016/j.cmet.2020.12.003_bib16) 2011; 123
McNally (10.1016/j.cmet.2020.12.003_bib75) 2017; 121
Zhang (10.1016/j.cmet.2020.12.003_bib120) 2020; 2
Pedregosa (10.1016/j.cmet.2020.12.003_bib80) 2011; 12
Chacinska (10.1016/j.cmet.2020.12.003_bib25) 2009; 138
Shao (10.1016/j.cmet.2020.12.003_bib91) 2018; 9
Dzimiri (10.1016/j.cmet.2020.12.003_bib40) 1999; 51
Bonen (10.1016/j.cmet.2020.12.003_bib20) 2001; 86
Benjamin (10.1016/j.cmet.2020.12.003_bib8) 2018; 25
Safer (10.1016/j.cmet.2020.12.003_bib87) 1975; 37
Dobin (10.1016/j.cmet.2020.12.003_bib37) 2013; 29
Kasper (10.1016/j.cmet.2020.12.003_bib60) 1994; 23
Wilson (10.1016/j.cmet.2020.12.003_bib110) 1998; 273
Liao (10.1016/j.cmet.2020.12.003_bib65) 2014; 30
Murray (10.1016/j.cmet.2020.12.003_bib77) 2005; 1
Wever-Pinzon (10.1016/j.cmet.2020.12.003_bib108) 2016; 68
Weibel (10.1016/j.cmet.2020.12.003_bib107) 1966; 30
Uhlén (10.1016/j.cmet.2020.12.003_bib103) 2015; 347
Wisneski (10.1016/j.cmet.2020.12.003_bib111) 1985; 76
Sohal (10.1016/j.cmet.2020.12.003_bib94) 2001; 89
Watkins (10.1016/j.cmet.2020.12.003_bib106) 2011; 47
Palmieri (10.1016/j.cmet.2020.12.003_bib79) 2013; 34
Lukey (10.1016/j.cmet.2020.12.003_bib70) 2019; 29
Zorova (10.1016/j.cmet.2020.12.003_bib118) 2018; 552
Allard (10.1016/j.cmet.2020.12.003_bib3) 1994; 267
Bertero (10.1016/j.cmet.2020.12.003_bib13) 2018; 15
Diakos (10.1016/j.cmet.2020.12.003_bib36) 2016; 1
Gertz (10.1016/j.cmet.2020.12.003_bib46) 1988; 82
Suzuki (10.1016/j.cmet.2020.12.003_bib98) 2016; 36
Brown (10.1016/j.cmet.2020.12.003_bib23) 2017; 14
Price (10.1016/j.cmet.2020.12.003_bib82) 1998; 329
Birks (10.1016/j.cmet.2020.12.003_bib15) 2006; 355
Sullivan (10.1016/j.cmet.2020.12.003_bib97) 2015; 162
Flores (10.1016/j.cmet.2020.12.003_bib43) 2017; 19
Barger (10.1016/j.cmet.2020.12.003_bib5) 1999; 318
Bricker (10.1016/j.cmet.2020.12.003_bib22) 2012; 337
Fillmore (10.1016/j.cmet.2020.12.003_bib42) 2018; 24
McCommis (10.1016/j.cmet.2020.12.003_bib119) 2020; 2
Picard (10.1016/j.cmet.2020.12.003_bib81) 2015; 6
Todenhöfer (10.1016/j.cmet.2020.12.003_bib100) 2018; 17
Topkara (10.1016/j.cmet.2020.12.003_bib101) 2016; 9
Gabriel-Costa (10.1016/j.cmet.2020.12.003_bib44) 2015; 10
Cluntun (10.1016/j.cmet.2020.12.003_bib30) 2015; 3
Khattar (10.1016/j.cmet.2020.12.003_bib61) 2001; 142
Cresti (10.1016/j.cmet.2020.12.003_bib31) 2016; 17
Hunter (10.1016/j.cmet.2020.12.003_bib56) 2007; 9
McClelland (10.1016/j.cmet.2020.12.003_bib73) 2002; 92
Gui (10.1016/j.cmet.2020.12.003_bib51) 2016; 24
Harbauer (10.1016/j.cmet.2020.12.003_bib52) 2014; 19
Ewels (10.1016/j.cmet.2020.12.003_bib41) 2016; 32
Kolwicz (10.1016/j.cmet.2020.12.003_bib63) 2013; 113
Zordoky (10.1016/j.cmet.2020.12.003_bib117) 2007; 56
de Groot (10.1016/j.cmet.2020.12.003_bib34) 1995; 146
Bensard (10.1016/j.cmet.2020.12.003_bib10) 2020; 31
Lim (10.1016/j.cmet.2020.12.003_bib66) 2014; 33
Sugden (10.1016/j.cmet.2020.12.003_bib96) 2003; 284
Zhou (10.1016/j.cmet.2020.12.003_bib115) 2018; 128
Rauckhorst (10.1016/j.cmet.2020.12.003_bib83) 2017; 6
Drakos (10.1016/j.cmet.2020.12.003_bib39) 2017; 2
Chong (10.1016/j.cmet.2020.12.003_bib28) 2018; 46
Gabriel-Costa (10.1016/j.cmet.2020.12.003_bib45) 2018; 51
Karwi (10.1016/j.cmet.2020.12.003_bib59) 2018; 5
Barth (10.1016/j.cmet.2020.12.003_bib6) 1992; 24
Jessup (10.1016/j.cmet.2020.12.003_bib58) 2003; 348
Fernandez-Caggiano (10.1016/j.cmet.2020.12.003_bib121) 2020; 2
Tham (10.1016/j.cmet.2020.12.003_bib99) 2015; 89
Martin (10.1016/j.cmet.2020.12.003_bib72) 2011; 17
Liu (10.1016/j.cmet.2020.12.003_bib67) 2018; 175
Savarese (10.1016/j.cmet.2020.12.003_bib88) 2017; 3
Gray (10.1016/j.cmet.2020.12.003_bib48) 2015; 22
Lesnefsky (10.1016/j.cmet.2020.12.003_bib64) 2001; 33
Berg (10.1016/j.cmet.2020.12.003_bib11) 2020; 16
Herz (10.1016/j.cmet.2020.12.003_bib54) 1997; 26
Ritterhoff (10.1016/j.cmet.2020.12.003_bib86) 2020; 126
Yanagida (10.1016/j.cmet.2020.12.003_bib113) 1995; 77
Bergman (10.1016/j.cmet.2020.12.003_bib12) 2009; 587
Xia (10.1016/j.cmet.2020.12.003_bib112) 2011; 6
Marchiq (10.1016/j.cmet.2020.12.003_bib71) 2015; 75
Harris (10.1016/j.cmet.2020.12.003_bib53) 2020; 585
Spriet (10.1016/j.cmet.2020.12.003_bib95) 2000; 32
Dai (10.1016/j.cmet.2020.12.003_bib32) 2020; 32
Sheeran (10.1016/j.cmet.2020.12.003_bib93) 2019; 2019
Zhu (10.1016/j.cmet.2020.12.003_bib116) 2013; 32
Drakos (10.1016/j.cmet.2020.12.003_bib38) 2013; 61
Clerk (10.1016/j.cmet.2020.12.003_bib29) 1999; 83
Seymour (10.1016/j.cmet.2020.12.003_bib90) 1997; 29
Bing (10.1016/j.cmet.2020.12.003_bib14) 1953; 15
Dell’Anno (10.1016/j.cmet.2020.12.003_bib35) 2020; 18
Ito (10.1016/j.cmet.2020.12.003_bib57) 1993; 92
Love (10.1016/j.cmet.2020.12.003_bib68) 2014; 15
McCommis (10.1016/j.cmet.2020.12.003_bib74) 2015; 22
Wai (10.1016/j.cmet.2020.12.003_bib105) 2015; 350
Wever-Pinzon (10.1016/j.cmet.2020.12.003_bib109) 2016; 68
Grenell (10.1016/j.cmet.2020.12.003_bib49) 2019; 116
Opie (10.1016/j.cmet.2020.12.003_bib78) 1980
Acin-Perez (10.1016/j.cmet.2020.12.003_bib2) 2018; 10
Badolia (10.1016/j.cmet.2020.12.003_bib4) 2020; 142
Kirk (10.1016/j.cmet.2020.12.003_bib62) 2000; 19
Metra (10.1016/j.cmet.2020.12.003_bib76) 2017; 390
Groussard (10.1016/j.cmet.2020.12.003_bib50) 2000; 89
References_xml – volume: 22
  start-page: 507
  year: 2019
  end-page: 518
  ident: bib18
  article-title: New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity
  publication-title: iScience
– volume: 24
  start-page: 669
  year: 1992
  end-page: 681
  ident: bib6
  article-title: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man
  publication-title: J. Mol. Cell. Cardiol.
– volume: 293
  start-page: 12199
  year: 2018
  end-page: 12208
  ident: bib69
  article-title: Inhibition of the cyclophilin A-CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats
  publication-title: J. Biol. Chem.
– volume: 390
  start-page: 1981
  year: 2017
  end-page: 1995
  ident: bib76
  article-title: Heart failure
  publication-title: Lancet
– volume: 32
  start-page: 756
  year: 2000
  end-page: 763
  ident: bib95
  article-title: An enzymatic approach to lactate production in human skeletal muscle during exercise
  publication-title: Med. Sci. Sports Exerc.
– volume: 15
  start-page: 457
  year: 2018
  end-page: 470
  ident: bib13
  article-title: Metabolic remodelling in heart failure
  publication-title: Nat. Rev. Cardiol.
– volume: 35
  start-page: W193-200
  year: 2007
  ident: bib84
  article-title: g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments
  publication-title: Nucleic Acids Res.
– volume: 77
  start-page: 773
  year: 1995
  end-page: 783
  ident: bib113
  article-title: Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate
  publication-title: Circ. Res.
– volume: 337
  start-page: 96
  year: 2012
  end-page: 100
  ident: bib22
  article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
  publication-title: Science
– volume: 118
  start-page: S94
  year: 2008
  end-page: S105
  ident: bib33
  article-title: Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy
  publication-title: Circulation
– volume: 2
  start-page: 1232
  year: 2020
  end-page: 1247
  ident: bib119
  article-title: Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice
  publication-title: Nat. Metab.
– volume: 123
  start-page: 381
  year: 2011
  end-page: 390
  ident: bib16
  article-title: Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study
  publication-title: Circulation
– volume: 8
  start-page: e012673
  year: 2019
  ident: bib102
  article-title: Glucose metabolism in cardiac hypertrophy and heart failure
  publication-title: J. Am. Heart Assoc.
– volume: 107
  start-page: 114
  year: 2018
  end-page: 119
  ident: bib7
  article-title: Therapeutic options in advanced heart failure
  publication-title: Clin. Res. Cardiol.
– volume: 2
  start-page: 335
  year: 2017
  end-page: 340
  ident: bib39
  article-title: Advancing the science of myocardial recovery with mechanical circulatory support: a working group of the National, Heart, Lung, and Blood Institute
  publication-title: JACC Basic Transl. Sci.
– volume: 2
  start-page: 1248
  year: 2020
  end-page: 1264
  ident: bib120
  article-title: Mitochondrial pyruvate carriers are required for myocardial stress adaptation
  publication-title: Nat. Metab.
– volume: 83
  start-page: 64H
  year: 1999
  end-page: 69H
  ident: bib29
  article-title: Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists
  publication-title: Am. J. Cardiol.
– volume: 18
  start-page: 341
  year: 2020
  ident: bib35
  article-title: Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report)
  publication-title: J. Transl. Med.
– volume: 19
  start-page: 1017
  year: 2017
  end-page: 1026
  ident: bib43
  article-title: Lactate dehydrogenase activity drives hair follicle stem cell activation
  publication-title: Nat. Cell Biol.
– volume: 68
  start-page: 1540
  year: 2016
  end-page: 1553
  ident: bib109
  article-title: Cardiac recovery during long-term left ventricular assist device support
  publication-title: J. Am. Coll. Cardiol.
– volume: 89
  start-page: 20
  year: 2001
  end-page: 25
  ident: bib94
  article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein
  publication-title: Circ. Res.
– volume: 12
  start-page: 2215
  year: 2017
  end-page: 2231
  ident: bib27
  article-title: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites
  publication-title: Nat. Protoc.
– volume: 146
  start-page: 147
  year: 1995
  end-page: 155
  ident: bib34
  article-title: The influence of lactate, pyruvate and glucose as exogenous substrates on free radical defense mechanisms in isolated rat hearts during ischaemia and reperfusion
  publication-title: Mol. Cell. Biochem.
– volume: 32
  start-page: 3047
  year: 2016
  end-page: 3048
  ident: bib41
  article-title: MultiQC: summarize analysis results for multiple tools and samples in a single report
  publication-title: Bioinformatics
– volume: 2019
  start-page: 4532592
  year: 2019
  ident: bib93
  article-title: Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure
  publication-title: Oxid. Med. Cell. Longev.
– volume: 142
  start-page: 259
  year: 2020
  end-page: 274
  ident: bib4
  article-title: The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure
  publication-title: Circulation
– volume: 34
  start-page: 465
  year: 2013
  end-page: 484
  ident: bib79
  article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology
  publication-title: Mol. Aspects Med.
– volume: 17
  start-page: 37
  year: 2016
  end-page: 43
  ident: bib31
  article-title: Incidence rate of primary cardiac tumors: a 14-year population study
  publication-title: J. Cardiovasc. Med. (Hagerstown)
– volume: 68
  start-page: 1741
  year: 2016
  end-page: 1752
  ident: bib108
  article-title: Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading
  publication-title: J. Am. Coll. Cardiol.
– volume: 51
  start-page: 465
  year: 1999
  end-page: 501
  ident: bib40
  article-title: Regulation of beta-adrenoceptor signaling in cardiac function and disease
  publication-title: Pharmacol. Rev.
– volume: 3
  start-page: 10
  year: 2015
  ident: bib30
  article-title: The rate of glycolysis quantitatively mediates specific histone acetylation sites
  publication-title: Cancer Metab.
– volume: 552
  start-page: 50
  year: 2018
  end-page: 59
  ident: bib118
  article-title: Mitochondrial membrane potential
  publication-title: Anal. Biochem.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib68
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 14
  start-page: 238
  year: 2017
  end-page: 250
  ident: bib23
  article-title: Expert consensus document: mitochondrial function as a therapeutic target in heart failure
  publication-title: Nat. Rev. Cardiol.
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bib56
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 19
  start-page: 3896
  year: 2000
  end-page: 3904
  ident: bib62
  article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression
  publication-title: EMBO J.
– volume: 75
  start-page: 171
  year: 2015
  end-page: 180
  ident: bib71
  article-title: Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin
  publication-title: Cancer Res.
– volume: 37
  start-page: 527
  year: 1975
  end-page: 533
  ident: bib87
  article-title: The metabolic significance of the malate-aspartate cycle in heart
  publication-title: Circ. Res.
– volume: 142
  start-page: 704
  year: 2001
  end-page: 713
  ident: bib61
  article-title: Regression of left ventricular remodeling in chronic heart failure: comparative and combined effects of captopril and carvedilol
  publication-title: Am. Heart J.
– volume: 92
  start-page: 1573
  year: 2002
  end-page: 1584
  ident: bib73
  article-title: Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia
  publication-title: J Appl Physiol (1985)
– volume: 26
  start-page: 19
  year: 1997
  end-page: 35
  ident: bib54
  article-title: Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases
  publication-title: Free Radic. Res.
– volume: 113
  start-page: 603
  year: 2013
  end-page: 616
  ident: bib63
  article-title: Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes
  publication-title: Circ. Res.
– volume: 162
  start-page: 552
  year: 2015
  end-page: 563
  ident: bib97
  article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
  publication-title: Cell
– volume: 47
  start-page: 125
  year: 2011
  end-page: 131
  ident: bib106
  article-title: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro
  publication-title: In Vitro Cell. Dev. Biol. Anim.
– volume: 17
  start-page: 3
  year: 2011
  ident: bib72
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
– volume: 587
  start-page: 2087
  year: 2009
  end-page: 2099
  ident: bib12
  article-title: Myocardial glucose and lactate metabolism during rest and atrial pacing in humans
  publication-title: J. Physiol.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib9
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
– volume: 10
  start-page: eaan4935
  year: 2018
  ident: bib2
  article-title: Ablation of the stress protease OMA1 protects against heart failure in mice
  publication-title: Sci. Transl. Med.
– volume: 116
  start-page: 3530
  year: 2019
  end-page: 3535
  ident: bib49
  article-title: Loss of MPC1 reprograms retinal metabolism to impair visual function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 551
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib55
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
– volume: 30
  start-page: 23
  year: 1966
  end-page: 38
  ident: bib107
  article-title: Practical stereological methods for morphometric cytology
  publication-title: J. Cell Biol.
– volume: 23
  start-page: 586
  year: 1994
  end-page: 590
  ident: bib60
  article-title: The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients
  publication-title: J. Am. Coll. Cardiol.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib37
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 348
  start-page: 2007
  year: 2003
  end-page: 2018
  ident: bib58
  article-title: Heart failure
  publication-title: N. Engl. J. Med.
– volume: 17
  start-page: 2746
  year: 2018
  end-page: 2755
  ident: bib100
  article-title: Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer
  publication-title: Mol. Cancer Ther.
– volume: 6
  start-page: 6259
  year: 2015
  ident: bib81
  article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions
  publication-title: Nat. Commun.
– volume: 89
  start-page: 169
  year: 2000
  end-page: 175
  ident: bib50
  article-title: Free radical scavenging and antioxidant effects of lactate ion: an in vitro study
  publication-title: J. Appl. Physiol. (1985)
– volume: 126
  start-page: 182
  year: 2020
  end-page: 196
  ident: bib86
  article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis
  publication-title: Circ. Res.
– volume: 267
  start-page: H742
  year: 1994
  end-page: H750
  ident: bib3
  article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts
  publication-title: Am. J. Physiol.
– volume: 128
  start-page: 3716
  year: 2018
  end-page: 3726
  ident: bib115
  article-title: Mitochondrial dysfunction in pathophysiology of heart failure
  publication-title: J. Clin. Invest.
– volume: 10
  start-page: e0129303
  year: 2015
  ident: bib21
  article-title: Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype
  publication-title: PLoS ONE
– volume: 36
  start-page: 636
  year: 2016
  end-page: 646
  ident: bib98
  article-title: Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 32
  start-page: 108087
  year: 2020
  ident: bib32
  article-title: Lactate dehydrogenase a governs cardiac hypertrophic growth in response to hemodynamic stress
  publication-title: Cell Rep.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: bib53
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 29
  start-page: 76
  year: 2019
  end-page: 88.e7
  ident: bib70
  article-title: Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer
  publication-title: Cell Rep.
– volume: 51
  start-page: e7660
  year: 2018
  ident: bib45
  article-title: Lactate-upregulation of lactate oxidation complex-related genes is blunted in left ventricle of myocardial infarcted rats
  publication-title: Braz. J. Med. Biol. Res.
– volume: 92
  start-page: 398
  year: 1993
  end-page: 403
  ident: bib57
  article-title: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes
  publication-title: J. Clin. Invest.
– volume: 3
  start-page: 7
  year: 2017
  end-page: 11
  ident: bib88
  article-title: Global public health burden of heart failure
  publication-title: Card. Fail. Rev.
– volume: 76
  start-page: 1819
  year: 1985
  end-page: 1827
  ident: bib111
  article-title: Metabolic fate of extracted glucose in normal human myocardium
  publication-title: J. Clin. Invest.
– volume: 32
  start-page: 663
  year: 2013
  end-page: 674
  ident: bib116
  article-title: MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart
  publication-title: Cell. Physiol. Biochem.
– volume: 175
  start-page: 502
  year: 2018
  end-page: 513.e13
  ident: bib67
  article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals
  publication-title: Cell
– volume: 1
  start-page: 371
  year: 2005
  end-page: 376
  ident: bib77
  article-title: Monocarboxylate transporter MCT1 is a target for immunosuppression
  publication-title: Nat. Chem. Biol.
– volume: 5
  start-page: 68
  year: 2018
  ident: bib59
  article-title: Loss of metabolic flexibility in the failing heart
  publication-title: Front. Cardiovasc. Med.
– volume: 22
  start-page: 682
  year: 2015
  end-page: 694
  ident: bib74
  article-title: Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling
  publication-title: Cell Metab.
– volume: 90
  start-page: 234
  year: 2011
  end-page: 242
  ident: bib1
  article-title: Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy
  publication-title: Cardiovasc. Res.
– volume: 34
  start-page: 189
  year: 2015
  end-page: 201
  ident: bib24
  article-title: A roadmap for interpreting (13)C metabolite labeling patterns from cells
  publication-title: Curr. Opin. Biotechnol.
– volume: 19
  start-page: 357
  year: 2014
  end-page: 372
  ident: bib52
  article-title: The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease
  publication-title: Cell Metab.
– volume: 24
  start-page: 716
  year: 2016
  end-page: 727
  ident: bib51
  article-title: Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin
  publication-title: Cell Metab.
– volume: 138
  start-page: 628
  year: 2009
  end-page: 644
  ident: bib25
  article-title: Importing mitochondrial proteins: machineries and mechanisms
  publication-title: Cell
– volume: 22
  start-page: 669
  year: 2015
  end-page: 681
  ident: bib48
  article-title: Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis
  publication-title: Cell Metab.
– volume: 121
  start-page: 731
  year: 2017
  end-page: 748
  ident: bib75
  article-title: Dilated cardiomyopathy: genetic determinants and mechanisms
  publication-title: Circ. Res.
– volume: 114
  start-page: 1132
  year: 2018
  end-page: 1144
  ident: bib104
  article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice
  publication-title: Cardiovasc. Res.
– volume: 15
  start-page: 284
  year: 1953
  end-page: 296
  ident: bib14
  article-title: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart
  publication-title: Am. J. Med.
– volume: 8
  start-page: e45873
  year: 2019
  ident: bib92
  article-title: Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness
  publication-title: eLife
– volume: 318
  start-page: 36
  year: 1999
  end-page: 42
  ident: bib5
  article-title: Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms
  publication-title: Am. J. Med. Sci.
– volume: 24
  start-page: 3
  year: 2018
  ident: bib42
  article-title: Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction
  publication-title: Mol. Med.
– volume: 56
  start-page: 317
  year: 2007
  end-page: 322
  ident: bib117
  article-title: H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart
  publication-title: J. Pharmacol. Toxicol. Methods
– volume: 61
  start-page: 1985
  year: 2013
  end-page: 1994
  ident: bib38
  article-title: Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery
  publication-title: J. Am. Coll. Cardiol.
– volume: 10
  start-page: e0127843
  year: 2015
  ident: bib44
  article-title: Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats
  publication-title: PLoS ONE
– volume: 6
  start-page: 1468
  year: 2017
  end-page: 1479
  ident: bib83
  article-title: The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity
  publication-title: Mol. Metab.
– volume: 31
  start-page: 284
  year: 2020
  end-page: 300.e7
  ident: bib10
  article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier
  publication-title: Cell Metab.
– volume: 355
  start-page: 1873
  year: 2006
  end-page: 1884
  ident: bib15
  article-title: Left ventricular assist device and drug therapy for the reversal of heart failure
  publication-title: N. Engl. J. Med.
– volume: 16
  start-page: e1007625
  year: 2020
  ident: bib11
  article-title: XPRESSyourself: enhancing, standardizing, and automating ribosome profiling computational analyses yields improved insight into data
  publication-title: PLoS Comput. Biol.
– volume: 18
  start-page: 755
  year: 2012
  end-page: 761
  ident: bib19
  article-title: Left ventricular assist device support and myocardial recovery in recent onset cardiomyopathy
  publication-title: J. Card. Fail.
– volume: 82
  start-page: 2017
  year: 1988
  end-page: 2025
  ident: bib46
  article-title: Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments
  publication-title: J. Clin. Invest.
– volume: 33
  start-page: 4433
  year: 2014
  end-page: 4441
  ident: bib66
  article-title: Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner
  publication-title: Oncogene
– volume: 162
  start-page: 540
  year: 2015
  end-page: 551
  ident: bib17
  article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
  publication-title: Cell
– volume: 86
  start-page: 6
  year: 2001
  end-page: 11
  ident: bib20
  article-title: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle
  publication-title: Eur. J. Appl. Physiol.
– volume: 113
  start-page: 411
  year: 2017
  end-page: 421
  ident: bib85
  article-title: Metabolism in cardiomyopathy: every substrate matters
  publication-title: Cardiovasc. Res.
– volume: 89
  start-page: 1401
  year: 2015
  end-page: 1438
  ident: bib99
  article-title: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets
  publication-title: Arch. Toxicol.
– volume: 2
  start-page: 1223
  year: 2020
  end-page: 1231
  ident: bib121
  article-title: Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy
  publication-title: Nat. Metab.
– volume: 9
  start-page: 2935
  year: 2018
  ident: bib91
  article-title: Glucose promotes cell growth by suppressing branched-chain amino acid degradation
  publication-title: Nat. Commun.
– volume: 6
  start-page: 743
  year: 2011
  end-page: 760
  ident: bib112
  article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
  publication-title: Nat. Protoc.
– volume: 25
  start-page: 3047
  year: 2018
  end-page: 3058.e4
  ident: bib8
  article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells
  publication-title: Cell Rep.
– start-page: 4
  year: 1980
  end-page: 9
  ident: bib78
  article-title: Lactate metabolism and cardiac muscle
  publication-title: Lactate
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: bib65
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib80
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 350
  start-page: aad0116
  year: 2015
  ident: bib105
  article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice
  publication-title: Science
– volume: 166
  start-page: 1324
  year: 2016
  end-page: 1337.e11
  ident: bib26
  article-title: Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism
  publication-title: Cell
– volume: 329
  start-page: 321
  year: 1998
  end-page: 328
  ident: bib82
  article-title: Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past
  publication-title: Biochem. J.
– volume: 273
  start-page: 15920
  year: 1998
  end-page: 15926
  ident: bib110
  article-title: Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 17
  year: 2018
  ident: bib47
  article-title: Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction
  publication-title: Front. Cardiovasc. Med.
– volume: 29
  start-page: 2771
  year: 1997
  end-page: 2778
  ident: bib90
  article-title: The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity
  publication-title: J. Mol. Cell. Cardiol.
– volume: 33
  start-page: 1065
  year: 2001
  end-page: 1089
  ident: bib64
  article-title: Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure
  publication-title: J. Mol. Cell. Cardiol.
– volume: 9
  start-page: e003157
  year: 2016
  ident: bib101
  article-title: Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS)
  publication-title: Circ. Heart Fail.
– volume: 284
  start-page: E855
  year: 2003
  end-page: E862
  ident: bib96
  article-title: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 46
  start-page: W486
  year: 2018
  end-page: W494
  ident: bib28
  article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 432
  year: 2016
  end-page: 444
  ident: bib36
  article-title: Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning
  publication-title: JACC Basic Transl. Sci.
– volume: 136
  start-page: e137
  year: 2017
  end-page: e161
  ident: bib114
  article-title: 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America
  publication-title: Circulation
– volume: 19
  start-page: 1027
  year: 2017
  end-page: 1036
  ident: bib89
  article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism
  publication-title: Nat. Cell Biol.
– volume: 347
  start-page: 1260419
  year: 2015
  ident: bib103
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
– volume: 19
  start-page: 1027
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib89
  article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3593
– volume: 24
  start-page: 716
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib51
  article-title: Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.09.006
– volume: 31
  start-page: 284
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib10
  article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.11.002
– volume: 5
  start-page: 68
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib59
  article-title: Loss of metabolic flexibility in the failing heart
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2018.00068
– volume: 284
  start-page: E855
  year: 2003
  ident: 10.1016/j.cmet.2020.12.003_bib96
  article-title: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00526.2002
– volume: 1
  start-page: 371
  year: 2005
  ident: 10.1016/j.cmet.2020.12.003_bib77
  article-title: Monocarboxylate transporter MCT1 is a target for immunosuppression
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio744
– volume: 2
  start-page: 1232
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib119
  article-title: Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-00296-1
– volume: 329
  start-page: 321
  year: 1998
  ident: 10.1016/j.cmet.2020.12.003_bib82
  article-title: Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past
  publication-title: Biochem. J.
  doi: 10.1042/bj3290321
– volume: 175
  start-page: 502
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib67
  article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.040
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib80
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 318
  start-page: 36
  year: 1999
  ident: 10.1016/j.cmet.2020.12.003_bib5
  article-title: Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms
  publication-title: Am. J. Med. Sci.
  doi: 10.1016/S0002-9629(15)40570-1
– volume: 6
  start-page: 6259
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib81
  article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7259
– volume: 114
  start-page: 1132
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib104
  article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy063
– volume: 22
  start-page: 682
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib74
  article-title: Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.028
– volume: 2
  start-page: 1248
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib120
  article-title: Mitochondrial pyruvate carriers are required for myocardial stress adaptation
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-00288-1
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.cmet.2020.12.003_bib68
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.cmet.2020.12.003_bib9
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 18
  start-page: 755
  year: 2012
  ident: 10.1016/j.cmet.2020.12.003_bib19
  article-title: Left ventricular assist device support and myocardial recovery in recent onset cardiomyopathy
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2012.08.001
– volume: 86
  start-page: 6
  year: 2001
  ident: 10.1016/j.cmet.2020.12.003_bib20
  article-title: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s004210100516
– volume: 14
  start-page: 238
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib23
  article-title: Expert consensus document: mitochondrial function as a therapeutic target in heart failure
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2016.203
– volume: 34
  start-page: 465
  year: 2013
  ident: 10.1016/j.cmet.2020.12.003_bib79
  article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2012.05.005
– volume: 32
  start-page: 3047
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib41
  article-title: MultiQC: summarize analysis results for multiple tools and samples in a single report
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw354
– volume: 26
  start-page: 19
  year: 1997
  ident: 10.1016/j.cmet.2020.12.003_bib54
  article-title: Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases
  publication-title: Free Radic. Res.
  doi: 10.3109/10715769709097781
– volume: 162
  start-page: 552
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib97
  article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.017
– volume: 68
  start-page: 1540
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib109
  article-title: Cardiac recovery during long-term left ventricular assist device support
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.07.743
– volume: 128
  start-page: 3716
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib115
  article-title: Mitochondrial dysfunction in pathophysiology of heart failure
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI120849
– volume: 17
  start-page: 37
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib31
  article-title: Incidence rate of primary cardiac tumors: a 14-year population study
  publication-title: J. Cardiovasc. Med. (Hagerstown)
  doi: 10.2459/JCM.0000000000000059
– volume: 30
  start-page: 923
  year: 2014
  ident: 10.1016/j.cmet.2020.12.003_bib65
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 17
  start-page: 2746
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib100
  article-title: Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-0107
– volume: 6
  start-page: 1468
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib83
  article-title: The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.09.002
– volume: 36
  start-page: 636
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib98
  article-title: Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.306686
– volume: 136
  start-page: e137
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib114
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000509
– volume: 24
  start-page: 669
  year: 1992
  ident: 10.1016/j.cmet.2020.12.003_bib6
  article-title: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/0022-2828(92)93381-S
– volume: 116
  start-page: 3530
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib49
  article-title: Loss of MPC1 reprograms retinal metabolism to impair visual function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1812941116
– volume: 267
  start-page: H742
  year: 1994
  ident: 10.1016/j.cmet.2020.12.003_bib3
  article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts
  publication-title: Am. J. Physiol.
– volume: 355
  start-page: 1873
  year: 2006
  ident: 10.1016/j.cmet.2020.12.003_bib15
  article-title: Left ventricular assist device and drug therapy for the reversal of heart failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa053063
– volume: 10
  start-page: eaan4935
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib2
  article-title: Ablation of the stress protease OMA1 protects against heart failure in mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan4935
– volume: 33
  start-page: 4433
  year: 2014
  ident: 10.1016/j.cmet.2020.12.003_bib66
  article-title: Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner
  publication-title: Oncogene
  doi: 10.1038/onc.2013.390
– volume: 6
  start-page: 743
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib112
  article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.319
– volume: 47
  start-page: 125
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib106
  article-title: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1007/s11626-010-9368-1
– volume: 2
  start-page: 335
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib39
  article-title: Advancing the science of myocardial recovery with mechanical circulatory support: a working group of the National, Heart, Lung, and Blood Institute
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2016.12.003
– volume: 56
  start-page: 317
  year: 2007
  ident: 10.1016/j.cmet.2020.12.003_bib117
  article-title: H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart
  publication-title: J. Pharmacol. Toxicol. Methods
  doi: 10.1016/j.vascn.2007.06.001
– volume: 82
  start-page: 2017
  year: 1988
  ident: 10.1016/j.cmet.2020.12.003_bib46
  article-title: Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI113822
– volume: 10
  start-page: e0129303
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib21
  article-title: Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129303
– volume: 22
  start-page: 507
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib18
  article-title: New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity
  publication-title: iScience
  doi: 10.1016/j.isci.2019.11.041
– volume: 5
  start-page: 17
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib47
  article-title: Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2018.00017
– volume: 68
  start-page: 1741
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib108
  article-title: Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.07.756
– volume: 77
  start-page: 773
  year: 1995
  ident: 10.1016/j.cmet.2020.12.003_bib113
  article-title: Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.77.4.773
– volume: 390
  start-page: 1981
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib76
  article-title: Heart failure
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31071-1
– volume: 8
  start-page: e012673
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib102
  article-title: Glucose metabolism in cardiac hypertrophy and heart failure
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.012673
– volume: 32
  start-page: 756
  year: 2000
  ident: 10.1016/j.cmet.2020.12.003_bib95
  article-title: An enzymatic approach to lactate production in human skeletal muscle during exercise
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-200004000-00007
– volume: 3
  start-page: 7
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib88
  article-title: Global public health burden of heart failure
  publication-title: Card. Fail. Rev.
  doi: 10.15420/cfr.2016:25:2
– volume: 9
  start-page: 2935
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib91
  article-title: Glucose promotes cell growth by suppressing branched-chain amino acid degradation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05362-7
– volume: 123
  start-page: 381
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib16
  article-title: Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.933960
– volume: 30
  start-page: 23
  year: 1966
  ident: 10.1016/j.cmet.2020.12.003_bib107
  article-title: Practical stereological methods for morphometric cytology
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.30.1.23
– volume: 25
  start-page: 3047
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib8
  article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.11.043
– volume: 19
  start-page: 1017
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib43
  article-title: Lactate dehydrogenase activity drives hair follicle stem cell activation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3575
– volume: 162
  start-page: 540
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib17
  article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.016
– volume: 3
  start-page: 10
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib30
  article-title: The rate of glycolysis quantitatively mediates specific histone acetylation sites
  publication-title: Cancer Metab.
  doi: 10.1186/s40170-015-0135-3
– volume: 23
  start-page: 586
  year: 1994
  ident: 10.1016/j.cmet.2020.12.003_bib60
  article-title: The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(94)90740-4
– volume: 2019
  start-page: 4532592
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib93
  article-title: Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/4532592
– volume: 32
  start-page: 663
  year: 2013
  ident: 10.1016/j.cmet.2020.12.003_bib116
  article-title: MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000354470
– volume: 89
  start-page: 1401
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib99
  article-title: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-015-1477-x
– volume: 15
  start-page: 457
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib13
  article-title: Metabolic remodelling in heart failure
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-018-0044-6
– volume: 337
  start-page: 96
  year: 2012
  ident: 10.1016/j.cmet.2020.12.003_bib22
  article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
  publication-title: Science
  doi: 10.1126/science.1218099
– volume: 24
  start-page: 3
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib42
  article-title: Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction
  publication-title: Mol. Med.
  doi: 10.1186/s10020-018-0005-x
– volume: 76
  start-page: 1819
  year: 1985
  ident: 10.1016/j.cmet.2020.12.003_bib111
  article-title: Metabolic fate of extracted glucose in normal human myocardium
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI112174
– volume: 293
  start-page: 12199
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib69
  article-title: Inhibition of the cyclophilin A-CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002845
– volume: 37
  start-page: 527
  year: 1975
  ident: 10.1016/j.cmet.2020.12.003_bib87
  article-title: The metabolic significance of the malate-aspartate cycle in heart
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.37.5.527
– volume: 29
  start-page: 76
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib70
  article-title: Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.076
– volume: 118
  start-page: S94
  issue: Suppl
  year: 2008
  ident: 10.1016/j.cmet.2020.12.003_bib33
  article-title: Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy
  publication-title: Circulation
– volume: 12
  start-page: 2215
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib27
  article-title: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.104
– volume: 34
  start-page: 189
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib24
  article-title: A roadmap for interpreting (13)C metabolite labeling patterns from cells
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.003
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.cmet.2020.12.003_bib37
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 551
  start-page: 115
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib55
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
  doi: 10.1038/nature24057
– volume: 9
  start-page: 90
  year: 2007
  ident: 10.1016/j.cmet.2020.12.003_bib56
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 350
  start-page: aad0116
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib105
  article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice
  publication-title: Science
  doi: 10.1126/science.aad0116
– volume: 166
  start-page: 1324
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib26
  article-title: Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.040
– volume: 138
  start-page: 628
  year: 2009
  ident: 10.1016/j.cmet.2020.12.003_bib25
  article-title: Importing mitochondrial proteins: machineries and mechanisms
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.005
– volume: 19
  start-page: 3896
  year: 2000
  ident: 10.1016/j.cmet.2020.12.003_bib62
  article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.15.3896
– volume: 35
  start-page: W193-200
  year: 2007
  ident: 10.1016/j.cmet.2020.12.003_bib84
  article-title: g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm226
– volume: 22
  start-page: 669
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib48
  article-title: Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.027
– volume: 348
  start-page: 2007
  year: 2003
  ident: 10.1016/j.cmet.2020.12.003_bib58
  article-title: Heart failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra021498
– volume: 17
  start-page: 3
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib72
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
  doi: 10.14806/ej.17.1.200
– volume: 107
  start-page: 114
  issue: Suppl 2
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib7
  article-title: Therapeutic options in advanced heart failure
  publication-title: Clin. Res. Cardiol.
  doi: 10.1007/s00392-018-1318-z
– volume: 15
  start-page: 284
  year: 1953
  ident: 10.1016/j.cmet.2020.12.003_bib14
  article-title: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart
  publication-title: Am. J. Med.
  doi: 10.1016/0002-9343(53)90082-5
– volume: 587
  start-page: 2087
  year: 2009
  ident: 10.1016/j.cmet.2020.12.003_bib12
  article-title: Myocardial glucose and lactate metabolism during rest and atrial pacing in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.168286
– volume: 89
  start-page: 20
  year: 2001
  ident: 10.1016/j.cmet.2020.12.003_bib94
  article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein
  publication-title: Circ. Res.
  doi: 10.1161/hh1301.092687
– volume: 61
  start-page: 1985
  year: 2013
  ident: 10.1016/j.cmet.2020.12.003_bib38
  article-title: Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.01.072
– volume: 16
  start-page: e1007625
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib11
  article-title: XPRESSyourself: enhancing, standardizing, and automating ribosome profiling computational analyses yields improved insight into data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007625
– volume: 121
  start-page: 731
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib75
  article-title: Dilated cardiomyopathy: genetic determinants and mechanisms
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.309396
– volume: 19
  start-page: 357
  year: 2014
  ident: 10.1016/j.cmet.2020.12.003_bib52
  article-title: The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.01.010
– volume: 2
  start-page: 1223
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib121
  article-title: Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-00276-5
– volume: 75
  start-page: 171
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib71
  article-title: Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2260
– volume: 46
  start-page: W486
  issue: W1
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib28
  article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky310
– volume: 552
  start-page: 50
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib118
  article-title: Mitochondrial membrane potential
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2017.07.009
– volume: 1
  start-page: 432
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib36
  article-title: Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2016.06.009
– volume: 146
  start-page: 147
  year: 1995
  ident: 10.1016/j.cmet.2020.12.003_bib34
  article-title: The influence of lactate, pyruvate and glucose as exogenous substrates on free radical defense mechanisms in isolated rat hearts during ischaemia and reperfusion
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00944607
– volume: 51
  start-page: e7660
  year: 2018
  ident: 10.1016/j.cmet.2020.12.003_bib45
  article-title: Lactate-upregulation of lactate oxidation complex-related genes is blunted in left ventricle of myocardial infarcted rats
  publication-title: Braz. J. Med. Biol. Res.
  doi: 10.1590/1414-431x20187660
– volume: 92
  start-page: 398
  year: 1993
  ident: 10.1016/j.cmet.2020.12.003_bib57
  article-title: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116579
– start-page: 4
  year: 1980
  ident: 10.1016/j.cmet.2020.12.003_bib78
  article-title: Lactate metabolism and cardiac muscle
– volume: 18
  start-page: 341
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib35
  article-title: Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report)
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-020-02487-6
– volume: 142
  start-page: 704
  year: 2001
  ident: 10.1016/j.cmet.2020.12.003_bib61
  article-title: Regression of left ventricular remodeling in chronic heart failure: comparative and combined effects of captopril and carvedilol
  publication-title: Am. Heart J.
  doi: 10.1067/mhj.2001.116768
– volume: 29
  start-page: 2771
  year: 1997
  ident: 10.1016/j.cmet.2020.12.003_bib90
  article-title: The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1006/jmcc.1997.0512
– volume: 273
  start-page: 15920
  year: 1998
  ident: 10.1016/j.cmet.2020.12.003_bib110
  article-title: Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.26.15920
– volume: 113
  start-page: 411
  year: 2017
  ident: 10.1016/j.cmet.2020.12.003_bib85
  article-title: Metabolism in cardiomyopathy: every substrate matters
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvx017
– volume: 126
  start-page: 182
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib86
  article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.315483
– volume: 32
  start-page: 108087
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib32
  article-title: Lactate dehydrogenase a governs cardiac hypertrophic growth in response to hemodynamic stress
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108087
– volume: 585
  start-page: 357
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib53
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 51
  start-page: 465
  year: 1999
  ident: 10.1016/j.cmet.2020.12.003_bib40
  article-title: Regulation of beta-adrenoceptor signaling in cardiac function and disease
  publication-title: Pharmacol. Rev.
– volume: 113
  start-page: 603
  year: 2013
  ident: 10.1016/j.cmet.2020.12.003_bib63
  article-title: Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.302095
– volume: 8
  start-page: e45873
  year: 2019
  ident: 10.1016/j.cmet.2020.12.003_bib92
  article-title: Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness
  publication-title: eLife
  doi: 10.7554/eLife.45873
– volume: 10
  start-page: e0127843
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib44
  article-title: Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127843
– volume: 33
  start-page: 1065
  year: 2001
  ident: 10.1016/j.cmet.2020.12.003_bib64
  article-title: Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1006/jmcc.2001.1378
– volume: 92
  start-page: 1573
  year: 2002
  ident: 10.1016/j.cmet.2020.12.003_bib73
  article-title: Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.01069.2001
– volume: 347
  start-page: 1260419
  year: 2015
  ident: 10.1016/j.cmet.2020.12.003_bib103
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 83
  start-page: 64H
  issue: 12A
  year: 1999
  ident: 10.1016/j.cmet.2020.12.003_bib29
  article-title: Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(99)00261-1
– volume: 90
  start-page: 234
  year: 2011
  ident: 10.1016/j.cmet.2020.12.003_bib1
  article-title: Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvr015
– volume: 89
  start-page: 169
  year: 2000
  ident: 10.1016/j.cmet.2020.12.003_bib50
  article-title: Free radical scavenging and antioxidant effects of lactate ion: an in vitro study
  publication-title: J. Appl. Physiol. (1985)
  doi: 10.1152/jappl.2000.89.1.169
– volume: 142
  start-page: 259
  year: 2020
  ident: 10.1016/j.cmet.2020.12.003_bib4
  article-title: The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.044452
– volume: 9
  start-page: e003157
  year: 2016
  ident: 10.1016/j.cmet.2020.12.003_bib101
  article-title: Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS)
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.116.003157
SSID ssj0036393
Score 2.6676054
Snippet The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 629
SubjectTerms Animals
Anion Transport Proteins - antagonists & inhibitors
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
cardiac metabolism
Cardiomegaly - chemically induced
Cardiomegaly - complications
Cardiomegaly - pathology
heart failure
Heart Failure - etiology
Heart Failure - pathology
Heart-Assist Devices
Humans
hypertrophy
lactate
Lactic Acid - metabolism
LVAD
MCT4
Membrane Potential, Mitochondrial
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins - antagonists & inhibitors
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Monocarboxylic Acid Transporters - antagonists & inhibitors
Monocarboxylic Acid Transporters - genetics
Monocarboxylic Acid Transporters - metabolism
MPC
Muscle Proteins - antagonists & inhibitors
Muscle Proteins - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
pyruvate
Pyruvic Acid - metabolism
Reactive Oxygen Species - metabolism
RNA Interference
RNA, Small Interfering - metabolism
VB124
Ventricular Function, Left - physiology
Title The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure
URI https://dx.doi.org/10.1016/j.cmet.2020.12.003
https://www.ncbi.nlm.nih.gov/pubmed/33333007
https://www.proquest.com/docview/2471465992
https://pubmed.ncbi.nlm.nih.gov/PMC7933116
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EELzI-h5dpQVvEmb6kXT6uCuKCnpRYW5N-oVZNDPMQ_Tfb1Ueg6PgwRyT6tBUVVd96XxdRcgpOG7h8igSzlxIpAgq0dox8OUoI7P5gEfc0L-9y64e5c0wHa6Q8-4sDNIq29jfxPQ6Wrd3-q02--Oy7N8juIYQzDjC3jTHsttC5vUhvuHfLhoLyMA1yR6EE5RuD840HC_3EpBPyQf1lmDXOOtrcvoKPj9zKD8kpctfZKNFk_RPM-FNshKqLbLW9Jd83ybX4AR0_D6ZvwKiTJ4Lh8iSFm_llL6MPDbuClPqah9x9Am-SCezyQj0TovKU2x1PaOxKJG4vkMeLi8ezq-StndC4rBFQaKis0pKb62HhM-cjYUdBJ05BR-MWcA2UsFzL2VQgLJczLX1sDS1ZNzqLBW7ZLUaVWGfUCWUHcCbcg_YKwShQ8y49BkPQsnIRY-wTmfGtXXFsb3Fs-kIZP8M6tmgng3jWI20R84WY8ZNVY1vpdPOFGbJNwyE_W_HnXR2M7Bo8E9IUYXRfGo4pGSZpVrzHtlr7LiYh8ALkFOPqCULLwSwIPfyk6p8qgtzQ6wTjGUHP5zvIVnnyJhBhhv_TVZnk3k4Asgzs8e1T_8HQbL_3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILKu-FUozEDUW7fsSOj1BR7ULbC4u0Nyt-qana7GofiP57ZvJYsVTqoTkm48iaGc98cT7PEPIJHLf0RRIZZz5mUkSdGeMZ-HKSiblixBNu6J-dq_Ev-X2Wz_bIcX8WBmmVXexvY3oTrbs7w06bw0VVDX8iuIYQzDjC3rxQD8hDQAMaV-dk9rUPxwJScMOyB-kMxbuTMy3Jy19HJFTyUbMn2HfOup2dbqPP_0mU_2SlkwPytIOT9Es742dkL9bPyaO2weTNCzIBL6CLm-XmN0DK7Kr0CC1p-ada0et5wM5dcUV94ySeXsAn6XK9nIPiaVkHir2u1zSVFTLXX5Lpybfp8TjrmidkHnsUZDp5p6UMzgXI-My7VLpRNMpr-GJUEftIxcCDlFEDzPKpMC7A2jSScWdULl6R_XpexzeEaqHdCN5UBABfMQoTk-IyKB6FlomLAWG9zqzvCotjf4sr2zPILi3q2aKeLeNYjnRAPm_HLNqyGndK570p7I5zWIj7d4772NvNwqrBXyFlHeebleWQk6XKjeED8rq143YeAi-ATgOidyy8FcCK3LtP6uqiqcwNwU4wpt7ec74fyOPx9OzUnk7Of7wjTzjSZ5Duxg_J_nq5ie8B_6zdUePffwEiNQMN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pyruvate-lactate+axis+modulates+cardiac+hypertrophy+and+heart+failure&rft.jtitle=Cell+metabolism&rft.au=Cluntun%2C+Ahmad+A&rft.au=Badolia%2C+Rachit&rft.au=Lettlova%2C+Sandra&rft.au=Parnell%2C+K+Mark&rft.date=2021-03-02&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=33&rft.issue=3&rft.spage=629&rft_id=info:doi/10.1016%2Fj.cmet.2020.12.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon