The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter mono...
Saved in:
Published in | Cell metabolism Vol. 33; no. 3; pp. 629 - 648.e10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
[Display omitted]
•Myocardial MPC expression coincides with LVAD-mediated recovery in chronic HF patients•Loss of the MPC in cells or mouse hearts is sufficient to induce hypertrophy and HF•MPC overexpression attenuates drug-induced hypertrophy in a cell-autonomous manner•Inhibition of MCT4 can mitigate hypertrophy in cultured cardiomyocytes and in mice
Cluntun et al. identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and heart failure, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype. |
---|---|
AbstractList | The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the Mitochondrial Pyruvate Carrier (MPC) and the cellular lactate exporter Monocarboxylate Transporter 4 (MCT4), as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
Cluntun, et al identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and HF, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype. The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure. [Display omitted] •Myocardial MPC expression coincides with LVAD-mediated recovery in chronic HF patients•Loss of the MPC in cells or mouse hearts is sufficient to induce hypertrophy and HF•MPC overexpression attenuates drug-induced hypertrophy in a cell-autonomous manner•Inhibition of MCT4 can mitigate hypertrophy in cultured cardiomyocytes and in mice Cluntun et al. identify the pyruvate-lactate axis as a critical node in cardiac homeostasis and health. This axis is maintained by a careful regulation of the disposition of pyruvate, including mitochondrial import and cellular export as lactate. During hypertrophy and heart failure, this balance is disrupted. Regaining this balance by inhibiting MCT4 ameliorated the hypertrophic phenotype. |
Author | Fogarty, Sarah Lettlova, Sandra Tatum, Sean M. Cluntun, Ahmad A. Rutter, Jared Drakos, Stavros G. Skedros, Sophia Navankasattusas, Sutip Van Ry, Tyler Swiatek, Wojciech I. McKellar, Stephen H. Berg, Jordan A. Diakos, Nikolaos A. Bott, Alex J. Parnell, K. Mark Luo, Bai Krokidi, Aspasia Thodou Shankar, Thirupura S. Badolia, Rachit Merx, Shannon Cox, James E. Olson, Kristofor A. Yu, Xuejing Cunningham, Corey N. Holland, William L. Taleb, Iosif Ducker, Gregory S. |
AuthorAffiliation | 3 Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA 1 Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA 7 Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA 5 Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA 4 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA 13 Lead Contact 8 U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA 10 These authors contributed equally 9 Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City |
AuthorAffiliation_xml | – name: 7 Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA – name: 4 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA – name: 12 Present address: Department of Surgery and Perioperative Care, Dell Medical School, University of Texas, Austin, TX 78712, USA – name: 13 Lead Contact – name: 3 Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA – name: 2 Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – name: 8 U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA – name: 10 These authors contributed equally – name: 1 Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – name: 11 Present address: Division of Cardiology, Tufts Medical Center, Boston, MA 02111, USA – name: 6 University of Utah, School of Medicine, Salt Lake City, Utah; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA – name: 9 Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA – name: 5 Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA |
Author_xml | – sequence: 1 givenname: Ahmad A. surname: Cluntun fullname: Cluntun, Ahmad A. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 2 givenname: Rachit surname: Badolia fullname: Badolia, Rachit organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 3 givenname: Sandra surname: Lettlova fullname: Lettlova, Sandra organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 4 givenname: K. Mark surname: Parnell fullname: Parnell, K. Mark organization: Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA – sequence: 5 givenname: Thirupura S. surname: Shankar fullname: Shankar, Thirupura S. organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 6 givenname: Nikolaos A. surname: Diakos fullname: Diakos, Nikolaos A. organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 7 givenname: Kristofor A. surname: Olson fullname: Olson, Kristofor A. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 8 givenname: Iosif surname: Taleb fullname: Taleb, Iosif organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 9 givenname: Sean M. surname: Tatum fullname: Tatum, Sean M. organization: Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA – sequence: 10 givenname: Jordan A. surname: Berg fullname: Berg, Jordan A. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 11 givenname: Corey N. surname: Cunningham fullname: Cunningham, Corey N. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 12 givenname: Tyler surname: Van Ry fullname: Van Ry, Tyler organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 13 givenname: Alex J. surname: Bott fullname: Bott, Alex J. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 14 givenname: Aspasia Thodou surname: Krokidi fullname: Krokidi, Aspasia Thodou organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 15 givenname: Sarah surname: Fogarty fullname: Fogarty, Sarah organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 16 givenname: Sophia surname: Skedros fullname: Skedros, Sophia organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 17 givenname: Wojciech I. surname: Swiatek fullname: Swiatek, Wojciech I. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 18 givenname: Xuejing surname: Yu fullname: Yu, Xuejing organization: University of Utah, School of Medicine, Salt Lake City, UT 84132, USA – sequence: 19 givenname: Bai surname: Luo fullname: Luo, Bai organization: Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA – sequence: 20 givenname: Shannon surname: Merx fullname: Merx, Shannon organization: Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA – sequence: 21 givenname: Sutip surname: Navankasattusas fullname: Navankasattusas, Sutip organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA – sequence: 22 givenname: James E. surname: Cox fullname: Cox, James E. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 23 givenname: Gregory S. surname: Ducker fullname: Ducker, Gregory S. organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 24 givenname: William L. surname: Holland fullname: Holland, William L. organization: Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA – sequence: 25 givenname: Stephen H. surname: McKellar fullname: McKellar, Stephen H. organization: University of Utah, School of Medicine, Salt Lake City, UT 84132, USA – sequence: 26 givenname: Jared surname: Rutter fullname: Rutter, Jared email: rutter@biochem.utah.edu organization: Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA – sequence: 27 givenname: Stavros G. surname: Drakos fullname: Drakos, Stavros G. email: stavros.drakos@hsc.utah.edu organization: Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33333007$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctq3DAUFSGlebQ_0EXxshtP9bIVQSmUkDSBQDezF3pcxxpsy5XkofP3kZmktFlEm6srnQecc4FOpzABQp8I3hBM2q-7jR0hbyim5YFuMGYn6JxIRmvBKT4t96bBNSeMnKGLlHYF0DLJ3qMzth6MxTm63_ZQzYe47HWGetA2l1npPz5VY3DLULZUWR2d17bqDzPEHMPcHyo9uaoHHXPVaT8sET6gd50eEnx8npdoe3uzvb6rH379vL_-8VDbhpJci84awbkzxmHSEGs6bTDI1gqOaQuudQYcdZyDwFja7koaJySXnFAj24Zdou9H2XkxIzgLU456UHP0o44HFbRX__9MvlePYa-EZIyQtgh8eRaI4fcCKavRJwvDoCcIS1KUC8LbRkpaoJ__9fpr8hJfAVwdATaGlCJ0yvoSoA-rtR8UwWptSu3U2pRam1KEqlJEodJX1Bf1N0nfjiQoAe89RJWsh8mC8xFsVi74t-hPFZKuqA |
CitedBy_id | crossref_primary_10_1016_j_jacbts_2021_05_008 crossref_primary_10_3389_fphys_2021_715081 crossref_primary_10_14797_mdcvj_1443 crossref_primary_10_3389_fphys_2022_952682 crossref_primary_10_3390_cells11182835 crossref_primary_10_1016_j_acthis_2025_152233 crossref_primary_10_1161_CIRCRESAHA_121_318241 crossref_primary_10_3390_jcdd10070287 crossref_primary_10_1093_cvr_cvae231 crossref_primary_10_1016_j_mcpro_2023_100641 crossref_primary_10_1016_j_semcancer_2022_07_004 crossref_primary_10_3389_fcvm_2024_1375400 crossref_primary_10_1186_s12872_024_04228_9 crossref_primary_10_1097_MCO_0000000000000943 crossref_primary_10_1073_pnas_2022495118 crossref_primary_10_1016_j_yjmcc_2021_08_013 crossref_primary_10_1038_s41467_024_48970_2 crossref_primary_10_1111_nyas_14678 crossref_primary_10_1038_s41467_023_44520_4 crossref_primary_10_1016_j_phymed_2024_156054 crossref_primary_10_1038_s44161_022_00118_5 crossref_primary_10_1126_science_abm3452 crossref_primary_10_2139_ssrn_4136089 crossref_primary_10_3389_fphar_2024_1372766 crossref_primary_10_1007_s12649_023_02290_6 crossref_primary_10_3390_ijms23020996 crossref_primary_10_1007_s12265_023_10443_0 crossref_primary_10_1172_JCI176207 crossref_primary_10_1038_s41569_021_00513_8 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1161_JAHA_122_025517 crossref_primary_10_1021_acsanm_4c04916 crossref_primary_10_1021_acsinfecdis_3c00261 crossref_primary_10_1016_j_yjmcc_2021_08_003 crossref_primary_10_34133_research_0006 crossref_primary_10_2139_ssrn_3979182 crossref_primary_10_1186_s12964_023_01368_x crossref_primary_10_1038_s41401_023_01152_0 crossref_primary_10_3390_metabo12030216 crossref_primary_10_1016_j_apsb_2024_11_004 crossref_primary_10_1161_CIRCHEARTFAILURE_123_011504 crossref_primary_10_1161_CIRCULATIONAHA_120_052141 crossref_primary_10_46879_ukroj_2_2023_190_205 crossref_primary_10_1161_CIRCRESAHA_121_318866 crossref_primary_10_1016_j_cophys_2022_100489 crossref_primary_10_1016_j_metabol_2024_155957 crossref_primary_10_3389_fcvm_2024_1489438 crossref_primary_10_1016_j_jare_2024_02_008 crossref_primary_10_1016_j_cardfail_2025_01_011 crossref_primary_10_1016_j_phymed_2023_155033 crossref_primary_10_1016_j_healun_2022_07_007 crossref_primary_10_1038_s41467_023_42247_w crossref_primary_10_1016_j_phrs_2021_105802 crossref_primary_10_1172_JCI167371 crossref_primary_10_3390_jcm11123542 crossref_primary_10_1038_s41569_021_00569_6 crossref_primary_10_1186_s13062_023_00411_8 crossref_primary_10_1161_JAHA_123_029542 crossref_primary_10_1186_s13020_024_01009_6 crossref_primary_10_1007_s10142_024_01515_8 crossref_primary_10_1016_j_celrep_2023_112400 crossref_primary_10_1038_s41467_023_36712_9 crossref_primary_10_1161_CIRCRESAHA_122_320334 crossref_primary_10_1093_jb_mvae031 crossref_primary_10_1186_s12933_024_02178_2 crossref_primary_10_1021_acsptsci_4c00354 crossref_primary_10_1093_eurheartj_ehae379 crossref_primary_10_3389_fphar_2025_1526494 crossref_primary_10_1038_s41392_023_01652_9 crossref_primary_10_1136_jitc_2023_007349 crossref_primary_10_1038_s41422_023_00844_w crossref_primary_10_1111_imm_13628 crossref_primary_10_1038_s41392_024_01816_1 crossref_primary_10_1093_cvr_cvae248 crossref_primary_10_1016_j_jchromb_2022_123435 crossref_primary_10_1186_s13018_023_03623_w crossref_primary_10_1016_j_ijcard_2022_04_061 crossref_primary_10_1016_j_tem_2022_01_006 crossref_primary_10_1016_j_yjmcc_2025_03_006 crossref_primary_10_1186_s10020_024_00854_3 crossref_primary_10_1016_j_heliyon_2024_e24719 crossref_primary_10_1016_j_tox_2022_153196 crossref_primary_10_1038_s41569_023_00887_x crossref_primary_10_1161_JAHA_123_032936 crossref_primary_10_1038_s41467_021_24869_0 crossref_primary_10_1016_j_gendis_2025_101554 crossref_primary_10_1021_acs_jmedchem_1c00448 crossref_primary_10_1016_j_ajem_2022_12_030 crossref_primary_10_1016_j_phymed_2025_156389 crossref_primary_10_1016_j_jep_2022_115150 crossref_primary_10_1152_ajpendo_00158_2021 crossref_primary_10_1016_j_isci_2022_104447 crossref_primary_10_1186_s12935_023_03082_7 crossref_primary_10_1002_dvdy_70020 crossref_primary_10_1248_bpb_b23_00570 crossref_primary_10_1016_j_jep_2022_115702 crossref_primary_10_1038_s41596_023_00948_y crossref_primary_10_1161_CIRCRESAHA_122_321050 crossref_primary_10_1080_10826076_2022_2163499 crossref_primary_10_1073_pnas_2402639122 crossref_primary_10_1038_s44321_024_00155_6 crossref_primary_10_1007_s12265_025_10600_7 crossref_primary_10_3389_fcvm_2022_945142 crossref_primary_10_3389_fphar_2023_1151447 crossref_primary_10_1016_j_bios_2022_114378 crossref_primary_10_1093_hmg_ddac176 crossref_primary_10_1186_s12964_023_01350_7 crossref_primary_10_1016_j_envpol_2023_123238 crossref_primary_10_1016_j_molmet_2023_101849 crossref_primary_10_1016_j_heliyon_2024_e40653 crossref_primary_10_1016_j_peptides_2024_171323 crossref_primary_10_1016_j_taap_2023_116572 crossref_primary_10_30970_sbi_1701_703 crossref_primary_10_7554_eLife_84282 crossref_primary_10_25259_AJPPS_2024_013 crossref_primary_10_1038_s12276_024_01324_w crossref_primary_10_1038_s42003_024_07306_y crossref_primary_10_1161_JAHA_122_028022 crossref_primary_10_1016_j_metabol_2025_156144 crossref_primary_10_1016_j_semcancer_2023_01_007 crossref_primary_10_3390_antiox12030756 crossref_primary_10_1002_jimd_12459 crossref_primary_10_1007_s00210_022_02252_0 crossref_primary_10_3389_fendo_2023_1205442 crossref_primary_10_1016_j_canlet_2024_216824 crossref_primary_10_1186_s12872_022_02960_8 crossref_primary_10_1161_CIRCULATIONAHA_121_054885 crossref_primary_10_1016_j_cmet_2024_06_003 crossref_primary_10_3389_fphar_2022_1017433 crossref_primary_10_1038_s41422_023_00857_5 crossref_primary_10_37349_emed_2023_00160 crossref_primary_10_1016_j_celrep_2024_114180 crossref_primary_10_1016_j_chembiol_2023_06_029 crossref_primary_10_1093_cvr_cvae216 crossref_primary_10_1016_j_jpba_2022_114711 crossref_primary_10_3390_cancers13071488 crossref_primary_10_1016_j_arr_2024_102631 crossref_primary_10_1172_jci_insight_180906 crossref_primary_10_3390_biomedicines11123207 crossref_primary_10_3390_metabo12060500 crossref_primary_10_1161_CIRCRESAHA_123_321872 crossref_primary_10_1007_s10741_023_10295_5 crossref_primary_10_3389_fcvm_2024_1349417 crossref_primary_10_1172_JCI155333 crossref_primary_10_1172_jci_insight_166713 crossref_primary_10_3389_fcvm_2021_789267 crossref_primary_10_1172_jci_insight_182599 crossref_primary_10_1016_j_yexmp_2025_104957 crossref_primary_10_1002_adtp_202200254 crossref_primary_10_1007_s10753_024_01981_z crossref_primary_10_1016_j_metabol_2025_156234 crossref_primary_10_1038_s41392_023_01546_w crossref_primary_10_1093_cvr_cvae203 crossref_primary_10_1172_JCI176708 crossref_primary_10_1016_j_actbio_2023_04_020 crossref_primary_10_3390_antiox13111426 crossref_primary_10_1007_s10741_023_10353_y crossref_primary_10_1016_j_arr_2024_102467 crossref_primary_10_2147_CMAR_S421771 crossref_primary_10_1126_sciadv_abq0117 crossref_primary_10_1172_JCI162309 crossref_primary_10_1002_hep_32348 crossref_primary_10_1016_j_bios_2024_116188 crossref_primary_10_1016_j_jep_2024_118827 crossref_primary_10_1161_CIRCHEARTFAILURE_121_008910 crossref_primary_10_1007_s12272_023_01431_8 crossref_primary_10_1016_j_jocmr_2024_101095 |
Cites_doi | 10.1038/ncb3593 10.1016/j.cmet.2016.09.006 10.1016/j.cmet.2019.11.002 10.3389/fcvm.2018.00068 10.1152/ajpendo.00526.2002 10.1038/nchembio744 10.1038/s42255-020-00296-1 10.1042/bj3290321 10.1016/j.cell.2018.08.040 10.1016/S0002-9629(15)40570-1 10.1038/ncomms7259 10.1093/cvr/cvy063 10.1016/j.cmet.2015.07.028 10.1038/s42255-020-00288-1 10.1186/s13059-014-0550-8 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.cardfail.2012.08.001 10.1007/s004210100516 10.1038/nrcardio.2016.203 10.1016/j.mam.2012.05.005 10.1093/bioinformatics/btw354 10.3109/10715769709097781 10.1016/j.cell.2015.07.017 10.1016/j.jacc.2016.07.743 10.1172/JCI120849 10.2459/JCM.0000000000000059 10.1093/bioinformatics/btt656 10.1158/1535-7163.MCT-18-0107 10.1016/j.molmet.2017.09.002 10.1161/ATVBAHA.115.306686 10.1161/CIR.0000000000000509 10.1016/0022-2828(92)93381-S 10.1073/pnas.1812941116 10.1056/NEJMoa053063 10.1126/scitranslmed.aan4935 10.1038/onc.2013.390 10.1038/nprot.2011.319 10.1007/s11626-010-9368-1 10.1016/j.jacbts.2016.12.003 10.1016/j.vascn.2007.06.001 10.1172/JCI113822 10.1371/journal.pone.0129303 10.1016/j.isci.2019.11.041 10.3389/fcvm.2018.00017 10.1016/j.jacc.2016.07.756 10.1161/01.RES.77.4.773 10.1016/S0140-6736(17)31071-1 10.1161/JAHA.119.012673 10.1097/00005768-200004000-00007 10.15420/cfr.2016:25:2 10.1038/s41467-018-05362-7 10.1161/CIRCULATIONAHA.109.933960 10.1083/jcb.30.1.23 10.1016/j.celrep.2018.11.043 10.1038/ncb3575 10.1016/j.cell.2015.07.016 10.1186/s40170-015-0135-3 10.1016/0735-1097(94)90740-4 10.1155/2019/4532592 10.1159/000354470 10.1007/s00204-015-1477-x 10.1038/s41569-018-0044-6 10.1126/science.1218099 10.1186/s10020-018-0005-x 10.1172/JCI112174 10.1074/jbc.RA118.002845 10.1161/01.RES.37.5.527 10.1016/j.celrep.2019.08.076 10.1038/nprot.2017.104 10.1016/j.copbio.2015.02.003 10.1093/bioinformatics/bts635 10.1038/nature24057 10.1109/MCSE.2007.55 10.1126/science.aad0116 10.1016/j.cell.2016.07.040 10.1016/j.cell.2009.08.005 10.1093/emboj/19.15.3896 10.1093/nar/gkm226 10.1016/j.cmet.2015.07.027 10.1056/NEJMra021498 10.14806/ej.17.1.200 10.1007/s00392-018-1318-z 10.1016/0002-9343(53)90082-5 10.1113/jphysiol.2008.168286 10.1161/hh1301.092687 10.1016/j.jacc.2013.01.072 10.1371/journal.pcbi.1007625 10.1161/CIRCRESAHA.116.309396 10.1016/j.cmet.2014.01.010 10.1038/s42255-020-00276-5 10.1158/0008-5472.CAN-14-2260 10.1093/nar/gky310 10.1016/j.ab.2017.07.009 10.1016/j.jacbts.2016.06.009 10.1007/BF00944607 10.1590/1414-431x20187660 10.1172/JCI116579 10.1186/s12967-020-02487-6 10.1067/mhj.2001.116768 10.1006/jmcc.1997.0512 10.1074/jbc.273.26.15920 10.1093/cvr/cvx017 10.1161/CIRCRESAHA.119.315483 10.1016/j.celrep.2020.108087 10.1038/s41586-020-2649-2 10.1161/CIRCRESAHA.113.302095 10.7554/eLife.45873 10.1371/journal.pone.0127843 10.1006/jmcc.2001.1378 10.1152/japplphysiol.01069.2001 10.1126/science.1260419 10.1016/S0002-9149(99)00261-1 10.1093/cvr/cvr015 10.1152/jappl.2000.89.1.169 10.1161/CIRCULATIONAHA.119.044452 10.1161/CIRCHEARTFAILURE.116.003157 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.12.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 648.e10 |
ExternalDocumentID | PMC7933116 33333007 10_1016_j_cmet_2020_12_003 S1550413120306586 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: T32 DK091317 – fundername: NIH HHS grantid: S10 OD016232 – fundername: NIDDK NIH HHS grantid: R01 DK108833 – fundername: NHLBI NIH HHS grantid: T32 HL007576 – fundername: NIDDK NIH HHS grantid: U54 DK110858 – fundername: NIH HHS grantid: S10 OD021505 – fundername: NIDDK NIH HHS grantid: R01 DK112826 – fundername: NHLBI NIH HHS grantid: R01 HL135121 – fundername: NHLBI NIH HHS grantid: R01 HL132067 – fundername: NIH HHS grantid: S10 OD018210 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c521t-7fcb744dbbd0151cbfab0e96c74026ed6dbed2d44e7009cf89bd7949412b9653 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:24:18 EDT 2025 Tue Aug 05 11:01:38 EDT 2025 Thu Apr 03 06:56:44 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Fri Feb 23 02:46:07 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | heart failure MPC MCT4 hypertrophy cardiac metabolism mitochondria lactate pyruvate VB124 LVAD |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-7fcb744dbbd0151cbfab0e96c74026ed6dbed2d44e7009cf89bd7949412b9653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author Contributions Conceptualization, A.A.C., R.B., S.N., S.H.M., J.R., and S.G.D.; Methodology, Validation, Formal Analysis, and Investigation, A.A.C., R.B., S.L., K.M.P., T.S.S., N.A.D., K.A.O., I.T., S.M.T., J.A.B., C.N.C., T.V.R., A.J.B., A.T.K., S.F., S.S, W.I.S, X.Y., B.L., S.M., S.N., and J.E.C.; Software, J.A.B.; Resources, K.M.P., W.I.S., X.Y., J.E.C., G.S.D., W.L.H., S.H.M., and S.G.D.; Data Curation, A.A.C., R.B., S.L., I.T. and J.A.B.; Writing - Original Draft, A.A.C., R.B., S.G.D, and J.R.; Writing - Review & Editing, A.A.C., R.B., S.L., S.F., S.N., S.H.M., J.R., and S.G.D.; Visualization, A.A.C., R.B., K.M.P, and J.A.B.; Supervision, J.R., and S.G.D.; Funding Acquisition, S.H.M., J.R., and S.G.D. |
OpenAccessLink | http://www.cell.com/article/S1550413120306586/pdf |
PMID | 33333007 |
PQID | 2471465992 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7933116 proquest_miscellaneous_2471465992 pubmed_primary_33333007 crossref_citationtrail_10_1016_j_cmet_2020_12_003 crossref_primary_10_1016_j_cmet_2020_12_003 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-02 |
PublicationDateYYYYMMDD | 2021-03-02 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Martin (bib72) 2011; 17 McNally, Mestroni (bib75) 2017; 121 Harbauer, Zahedi, Sickmann, Pfanner, Meisinger (bib52) 2014; 19 Yanagida, Luo, Doyle, Pohost, Pike (bib113) 1995; 77 Gopal, Almutairi, Al Batran, Eaton, Gandhi, Ussher (bib47) 2018; 5 Drakos, Wever-Pinzon, Selzman, Gilbert, Alharethi, Reid, Saidi, Diakos, Stoker, Davis (bib38) 2013; 61 Ito, Hirata, Adachi, Tanaka, Tsujino, Koike, Nogami, Murumo, Hiroe (bib57) 1993; 92 Bergman, Tsvetkova, Lowes, Wolfel (bib12) 2009; 587 Tham, Bernardo, Ooi, Weeks, McMullen (bib99) 2015; 89 Zorova, Popkov, Plotnikov, Silachev, Pevzner, Jankauskas, Babenko, Zorov, Balakireva, Juhaszova (bib118) 2018; 552 Bertero, Maack (bib13) 2018; 15 Chen, Freinkman, Sabatini (bib27) 2017; 12 Branco, Pereira, Gonzalez, Gusev, Rizvanov, Oliveira (bib21) 2015; 10 Liao, Smyth, Shi (bib65) 2014; 30 Hui, Ghergurovich, Morscher, Jang, Teng, Lu, Esparza, Reya, Le Zhan, Yanxiang Guo (bib55) 2017; 551 Gabriel-Costa, da Cunha, Bechara, Fortunato, Bozi, Coelho, Barreto-Chaves, Brum (bib44) 2015; 10 Reimand, Kull, Peterson, Hansen, Vilo (bib84) 2007; 35 Hunter (bib56) 2007; 9 Sugden, Holness (bib96) 2003; 284 Weibel, Kistler, Scherle (bib107) 1966; 30 Palmieri (bib79) 2013; 34 Sharma, Oonthonpan, Sheldon, Rauckhorst, Zhu, Tompkins, Cho, Grzesik, Gray, Scerbo (bib92) 2019; 8 Wever-Pinzon, Drakos, McKellar, Horne, Caine, Kfoury, Li, Fang, Stehlik, Selzman (bib109) 2016; 68 Gertz, Wisneski, Stanley, Neese (bib46) 1988; 82 Kirk, Wilson, Heddle, Brown, Barclay, Halestrap (bib62) 2000; 19 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib80) 2011; 12 Shao, Villet, Zhang, Choi, Yan, Ritterhoff, Gu, Djukovic, Christodoulou, Kolwicz (bib91) 2018; 9 Todenhöfer, Seiler, Stewart, Moskalev, Gao, Ladhar, Kamjabi, Al Nakouzi, Hayashi, Choi (bib100) 2018; 17 Boehmer, Starling, Cooper, Torre-Amione, Wittstein, Dec, Markham, Zucker, Gorcsan, McTiernan (bib19) 2012; 18 Opie (bib78) 1980 Sullivan, Gui, Hosios, Bush, Freinkman, Vander Heiden (bib97) 2015; 162 Zhou, Tian (bib115) 2018; 128 Lukey, Cluntun, Katt, Lin, Druso, Ramachandran, Erickson, Le, Wang, Blank (bib70) 2019; 29 Acin-Perez, Lechuga-Vieco, Del Mar Muñoz, Nieto-Arellano, Torroja, Sánchez-Cabo, Jiménez, González-Guerra, Carrascoso, Benincá (bib2) 2018; 10 Sheeran, Angerosa, Liaw, Cheung, Pepe (bib93) 2019; 2019 Metra, Teerlink (bib76) 2017; 390 Watkins, Borthwick, Arthur (bib106) 2011; 47 Drakos, Pagani, Lundberg, Baldwin (bib39) 2017; 2 Flores, Schell, Krall, Jelinek, Miranda, Grigorian, Braas, White, Zhou, Graham (bib43) 2017; 19 Dai, Li, May, Li, Zhang, Sharma, Sherry, Malloy, Khemtong, Zhang (bib32) 2020; 32 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith (bib53) 2020; 585 Benjamin, Robay, Hindupur, Pohlmann, Colombi, El-Shemerly, Maira, Moroni, Lane, Hall (bib8) 2018; 25 Liu, Cooper, Cluntun, Warmoes, Zhao, Reid, Liu, Lund, Lopes, Garcia (bib67) 2018; 175 Murray, Hutchinson, Bantick, Belfield, Benjamin, Brazma, Bundick, Cook, Craggs, Edwards (bib77) 2005; 1 Picard, McManus, Csordás, Várnai, Dorn, Williams, Hajnóczky, Wallace (bib81) 2015; 6 Berg, Belyeu, Morgan, Ouyang, Bott, Quinlan, Gertz, Rutter (bib11) 2020; 16 Birsoy, Wang, Chen, Freinkman, Abu-Remaileh, Sabatini (bib17) 2015; 162 Zhang, Taufalele, Cochran, Robillard-Frayne, Marx, Soto, Rauckhorst, Tayyari, Pewa, Gray (bib120) 2020; 2 Wisneski, Gertz, Neese, Gruenke, Morris, Craig (bib111) 1985; 76 Fillmore, Levasseur, Fukushima, Wagg, Wang, Dyck, Lopaschuk (bib42) 2018; 24 Grenell, Wang, Yam, Swarup, Dilan, Hauer, Linton, Philp, Gregor, Zhu (bib49) 2019; 116 Bekfani, Westphal, Schulze (bib7) 2018; 107 Gui, Sullivan, Luengo, Hosios, Bush, Gitego, Davidson, Freinkman, Thomas, Vander Heiden (bib51) 2016; 24 Benjamini, Hochberg (bib9) 1995; 57 Xia, Wishart (bib112) 2011; 6 Chacinska, Koehler, Milenkovic, Lithgow, Pfanner (bib25) 2009; 138 McCommis, Kovacs, Weinheimer, Shew, Koves, Ilkayeva, Kamm, Pyles, King, Veech (bib119) 2020; 2 Tran, Wang (bib102) 2019; 8 Dzimiri (bib40) 1999; 51 Bensard, Wisidagama, Olson, Berg, Krah, Schell, Nowinski, Fogarty, Bott, Wei (bib10) 2020; 31 Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib103) 2015; 347 Spriet, Howlett, Heigenhauser (bib95) 2000; 32 Barth, Stämmler, Speiser, Schaper (bib6) 1992; 24 Sohal, Nghiem, Crackower, Witt, Kimball, Tymitz, Penninger, Molkentin (bib94) 2001; 89 Allard, Schönekess, Henning, English, Lopaschuk (bib3) 1994; 267 Lesnefsky, Moghaddas, Tandler, Kerner, Hoppel (bib64) 2001; 33 Chen, Freinkman, Wang, Birsoy, Sabatini (bib26) 2016; 166 Chong, Soufan, Li, Caraus, Li, Bourque, Wishart, Xia (bib28) 2018; 46 Clerk, Sugden (bib29) 1999; 83 Ritterhoff, Young, Villet, Shao, Neto, Bettcher, Hsu, Kolwicz, Raftery, Tian (bib86) 2020; 126 Kolwicz, Purohit, Tian (bib63) 2013; 113 Seymour, Chatham (bib90) 1997; 29 Bisetto, Wright, Nowak, Lepore, Khurana, Loro, Philp (bib18) 2019; 22 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib37) 2013; 29 Lu, Jia, Zu, Zhang, Zhao, Shi (bib69) 2018; 293 Jessup, Brozena (bib58) 2003; 348 Ritterhoff, Tian (bib85) 2017; 113 Birks, Tansley, Hardy, George, Bowles, Burke, Banner, Khaghani, Yacoub (bib15) 2006; 355 Abel, Doenst (bib1) 2011; 90 Birks, George, Hedger, Bahrami, Wilton, Bowles, Webb, Bougard, Amrani, Yacoub (bib16) 2011; 123 Wever-Pinzon, Selzman, Stoddard, Wever-Pinzon, Catino, Kfoury, Diakos, Reid, McKellar, Bonios (bib108) 2016; 68 Gray, Sultana, Rauckhorst, Oonthonpan, Tompkins, Sharma, Fu, Miao, Pewa, Brown (bib48) 2015; 22 Bricker, Taylor, Schell, Orsak, Boutron, Chen, Cox, Cardon, Van Vranken, Dephoure (bib22) 2012; 337 Groussard, Morel, Chevanne, Monnier, Cillard, Delamarche (bib50) 2000; 89 Topkara, Garan, Fine, Godier-Furnémont, Breskin, Cagliostro, Yuzefpolskaya, Takeda, Takayama, Mancini (bib101) 2016; 9 Dell’Anno, Barone, Mutti, Rassl, Marciniak, Silvestri, Landi, Gemignani (bib35) 2020; 18 Zordoky, El-Kadi (bib117) 2007; 56 Bing, Siegel, Vitale, Balboni, Sparks, Taeschler, Klapper, Edwards (bib14) 1953; 15 Dandel, Weng, Siniawski, Potapov, Drews, Lehmkuhl, Knosalla, Hetzer (bib33) 2008; 118 Yancy, Jessup, Bozkurt, Butler, Casey, Colvin, Drazner, Filippatos, Fonarow, Givertz (bib114) 2017; 136 Buescher, Antoniewicz, Boros, Burgess, Brunengraber, Clish, DeBerardinis, Feron, Frezza, Ghesquiere (bib24) 2015; 34 Ewels, Magnusson, Lundin, Käller (bib41) 2016; 32 Suzuki, Satoh, Ikeda, Sunamura, Otsuki, Satoh, Kikuchi, Omura, Kurosawa, Nogi (bib98) 2016; 36 Barger, Kelly (bib5) 1999; 318 McCommis, Chen, Fu, McDonald, Colca, Kletzien, Burgess, Finck (bib74) 2015; 22 Lim, Lim, Price, Orr, Eberhart, Bar (bib66) 2014; 33 Savarese, Lund (bib88) 2017; 3 Umbarawan, Syamsunarno, Koitabashi, Yamaguchi, Hanaoka, Hishiki, Nagahata-Naito, Obinata, Sano, Sunaga (bib104) 2018; 114 Fernandez-Caggiano, Kamynina, Francois, Prysyazhna, Eykyn, Krasemann, Crespo-Leiro, Vieites, Bianchi, Morales (bib121) 2020; 2 Safer (bib87) 1975; 37 Wilson, Jackson, Heddle, Price, Pilegaard, Juel, Bonen, Montgomery, Hutter, Halestrap (bib110) 1998; 273 Badolia, Ramadurai, Abel, Ferrin, Taleb, Shankar, Krokidi, Navankasattusas, McKellar, Yin (bib4) 2020; 142 Zhu, Wu, Yuan (bib116) 2013; 32 Bonen (bib20) 2001; 86 Gabriel-Costa, Cunha, Paixão, Fortunato, Rego-Monteiro, Barreto-Chaves, Brum (bib45) 2018; 51 Price, Jackson, Halestrap (bib82) 1998; 329 Herz, Blake, Grootveld (bib54) 1997; 26 Marchiq, Le Floch, Roux, Simon, Pouyssegur (bib71) 2015; 75 Diakos, Navankasattusas, Abel, Rutter, McCreath, Ferrin, McKellar, Miller, Park, Richardson (bib36) 2016; 1 McClelland, Brooks (bib73) 2002; 92 Cresti, Chiavarelli, Glauber, Tanganelli, Scalese, Cesareo, Guerrini, Capati, Focardi, Severi (bib31) 2016; 17 Khattar, Senior, Soman, van der Does, Lahiri (bib61) 2001; 142 Karwi, Uddin, Ho, Lopaschuk (bib59) 2018; 5 Schell, Wisidagama, Bensard, Zhao, Wei, Tanner, Flores, Mohlman, Sorensen, Earl (bib89) 2017; 19 Cluntun, Huang, Dai, Liu, Zhao, Locasale (bib30) 2015; 3 Love, Huber, Anders (bib68) 2014; 15 Wai, García-Prieto, Baker, Merkwirth, Benit, Rustin, Rupérez, Barbas, Ibañez, Langer (bib105) 2015; 350 Rauckhorst, Gray, Sheldon, Fu, Pewa, Feddersen, Dupuy, Gibson-Corley, Cox, Burgess, Taylor (bib83) 2017; 6 Brown, Perry, Allen, Sabbah, Stauffer, Shaikh, Cleland, Colucci, Butler, Voors (bib23) 2017; 14 de Groot, van Helden, de Jong, Coumans, van der Vusse (bib34) 1995; 146 Kasper, Agema, Hutchins, Deckers, Hare, Baughman (bib60) 1994; 23 Yancy (10.1016/j.cmet.2020.12.003_bib114) 2017; 136 Chen (10.1016/j.cmet.2020.12.003_bib26) 2016; 166 Schell (10.1016/j.cmet.2020.12.003_bib89) 2017; 19 Sharma (10.1016/j.cmet.2020.12.003_bib92) 2019; 8 Ritterhoff (10.1016/j.cmet.2020.12.003_bib85) 2017; 113 Branco (10.1016/j.cmet.2020.12.003_bib21) 2015; 10 Chen (10.1016/j.cmet.2020.12.003_bib27) 2017; 12 Benjamini (10.1016/j.cmet.2020.12.003_bib9) 1995; 57 Reimand (10.1016/j.cmet.2020.12.003_bib84) 2007; 35 Dandel (10.1016/j.cmet.2020.12.003_bib33) 2008; 118 Buescher (10.1016/j.cmet.2020.12.003_bib24) 2015; 34 Boehmer (10.1016/j.cmet.2020.12.003_bib19) 2012; 18 Abel (10.1016/j.cmet.2020.12.003_bib1) 2011; 90 Hui (10.1016/j.cmet.2020.12.003_bib55) 2017; 551 Bekfani (10.1016/j.cmet.2020.12.003_bib7) 2018; 107 Bisetto (10.1016/j.cmet.2020.12.003_bib18) 2019; 22 Lu (10.1016/j.cmet.2020.12.003_bib69) 2018; 293 Gopal (10.1016/j.cmet.2020.12.003_bib47) 2018; 5 Tran (10.1016/j.cmet.2020.12.003_bib102) 2019; 8 Umbarawan (10.1016/j.cmet.2020.12.003_bib104) 2018; 114 Birsoy (10.1016/j.cmet.2020.12.003_bib17) 2015; 162 Birks (10.1016/j.cmet.2020.12.003_bib16) 2011; 123 McNally (10.1016/j.cmet.2020.12.003_bib75) 2017; 121 Zhang (10.1016/j.cmet.2020.12.003_bib120) 2020; 2 Pedregosa (10.1016/j.cmet.2020.12.003_bib80) 2011; 12 Chacinska (10.1016/j.cmet.2020.12.003_bib25) 2009; 138 Shao (10.1016/j.cmet.2020.12.003_bib91) 2018; 9 Dzimiri (10.1016/j.cmet.2020.12.003_bib40) 1999; 51 Bonen (10.1016/j.cmet.2020.12.003_bib20) 2001; 86 Benjamin (10.1016/j.cmet.2020.12.003_bib8) 2018; 25 Safer (10.1016/j.cmet.2020.12.003_bib87) 1975; 37 Dobin (10.1016/j.cmet.2020.12.003_bib37) 2013; 29 Kasper (10.1016/j.cmet.2020.12.003_bib60) 1994; 23 Wilson (10.1016/j.cmet.2020.12.003_bib110) 1998; 273 Liao (10.1016/j.cmet.2020.12.003_bib65) 2014; 30 Murray (10.1016/j.cmet.2020.12.003_bib77) 2005; 1 Wever-Pinzon (10.1016/j.cmet.2020.12.003_bib108) 2016; 68 Weibel (10.1016/j.cmet.2020.12.003_bib107) 1966; 30 Uhlén (10.1016/j.cmet.2020.12.003_bib103) 2015; 347 Wisneski (10.1016/j.cmet.2020.12.003_bib111) 1985; 76 Sohal (10.1016/j.cmet.2020.12.003_bib94) 2001; 89 Watkins (10.1016/j.cmet.2020.12.003_bib106) 2011; 47 Palmieri (10.1016/j.cmet.2020.12.003_bib79) 2013; 34 Lukey (10.1016/j.cmet.2020.12.003_bib70) 2019; 29 Zorova (10.1016/j.cmet.2020.12.003_bib118) 2018; 552 Allard (10.1016/j.cmet.2020.12.003_bib3) 1994; 267 Bertero (10.1016/j.cmet.2020.12.003_bib13) 2018; 15 Diakos (10.1016/j.cmet.2020.12.003_bib36) 2016; 1 Gertz (10.1016/j.cmet.2020.12.003_bib46) 1988; 82 Suzuki (10.1016/j.cmet.2020.12.003_bib98) 2016; 36 Brown (10.1016/j.cmet.2020.12.003_bib23) 2017; 14 Price (10.1016/j.cmet.2020.12.003_bib82) 1998; 329 Birks (10.1016/j.cmet.2020.12.003_bib15) 2006; 355 Sullivan (10.1016/j.cmet.2020.12.003_bib97) 2015; 162 Flores (10.1016/j.cmet.2020.12.003_bib43) 2017; 19 Barger (10.1016/j.cmet.2020.12.003_bib5) 1999; 318 Bricker (10.1016/j.cmet.2020.12.003_bib22) 2012; 337 Fillmore (10.1016/j.cmet.2020.12.003_bib42) 2018; 24 McCommis (10.1016/j.cmet.2020.12.003_bib119) 2020; 2 Picard (10.1016/j.cmet.2020.12.003_bib81) 2015; 6 Todenhöfer (10.1016/j.cmet.2020.12.003_bib100) 2018; 17 Topkara (10.1016/j.cmet.2020.12.003_bib101) 2016; 9 Gabriel-Costa (10.1016/j.cmet.2020.12.003_bib44) 2015; 10 Cluntun (10.1016/j.cmet.2020.12.003_bib30) 2015; 3 Khattar (10.1016/j.cmet.2020.12.003_bib61) 2001; 142 Cresti (10.1016/j.cmet.2020.12.003_bib31) 2016; 17 Hunter (10.1016/j.cmet.2020.12.003_bib56) 2007; 9 McClelland (10.1016/j.cmet.2020.12.003_bib73) 2002; 92 Gui (10.1016/j.cmet.2020.12.003_bib51) 2016; 24 Harbauer (10.1016/j.cmet.2020.12.003_bib52) 2014; 19 Ewels (10.1016/j.cmet.2020.12.003_bib41) 2016; 32 Kolwicz (10.1016/j.cmet.2020.12.003_bib63) 2013; 113 Zordoky (10.1016/j.cmet.2020.12.003_bib117) 2007; 56 de Groot (10.1016/j.cmet.2020.12.003_bib34) 1995; 146 Bensard (10.1016/j.cmet.2020.12.003_bib10) 2020; 31 Lim (10.1016/j.cmet.2020.12.003_bib66) 2014; 33 Sugden (10.1016/j.cmet.2020.12.003_bib96) 2003; 284 Zhou (10.1016/j.cmet.2020.12.003_bib115) 2018; 128 Rauckhorst (10.1016/j.cmet.2020.12.003_bib83) 2017; 6 Drakos (10.1016/j.cmet.2020.12.003_bib39) 2017; 2 Chong (10.1016/j.cmet.2020.12.003_bib28) 2018; 46 Gabriel-Costa (10.1016/j.cmet.2020.12.003_bib45) 2018; 51 Karwi (10.1016/j.cmet.2020.12.003_bib59) 2018; 5 Barth (10.1016/j.cmet.2020.12.003_bib6) 1992; 24 Jessup (10.1016/j.cmet.2020.12.003_bib58) 2003; 348 Fernandez-Caggiano (10.1016/j.cmet.2020.12.003_bib121) 2020; 2 Tham (10.1016/j.cmet.2020.12.003_bib99) 2015; 89 Martin (10.1016/j.cmet.2020.12.003_bib72) 2011; 17 Liu (10.1016/j.cmet.2020.12.003_bib67) 2018; 175 Savarese (10.1016/j.cmet.2020.12.003_bib88) 2017; 3 Gray (10.1016/j.cmet.2020.12.003_bib48) 2015; 22 Lesnefsky (10.1016/j.cmet.2020.12.003_bib64) 2001; 33 Berg (10.1016/j.cmet.2020.12.003_bib11) 2020; 16 Herz (10.1016/j.cmet.2020.12.003_bib54) 1997; 26 Ritterhoff (10.1016/j.cmet.2020.12.003_bib86) 2020; 126 Yanagida (10.1016/j.cmet.2020.12.003_bib113) 1995; 77 Bergman (10.1016/j.cmet.2020.12.003_bib12) 2009; 587 Xia (10.1016/j.cmet.2020.12.003_bib112) 2011; 6 Marchiq (10.1016/j.cmet.2020.12.003_bib71) 2015; 75 Harris (10.1016/j.cmet.2020.12.003_bib53) 2020; 585 Spriet (10.1016/j.cmet.2020.12.003_bib95) 2000; 32 Dai (10.1016/j.cmet.2020.12.003_bib32) 2020; 32 Sheeran (10.1016/j.cmet.2020.12.003_bib93) 2019; 2019 Zhu (10.1016/j.cmet.2020.12.003_bib116) 2013; 32 Drakos (10.1016/j.cmet.2020.12.003_bib38) 2013; 61 Clerk (10.1016/j.cmet.2020.12.003_bib29) 1999; 83 Seymour (10.1016/j.cmet.2020.12.003_bib90) 1997; 29 Bing (10.1016/j.cmet.2020.12.003_bib14) 1953; 15 Dell’Anno (10.1016/j.cmet.2020.12.003_bib35) 2020; 18 Ito (10.1016/j.cmet.2020.12.003_bib57) 1993; 92 Love (10.1016/j.cmet.2020.12.003_bib68) 2014; 15 McCommis (10.1016/j.cmet.2020.12.003_bib74) 2015; 22 Wai (10.1016/j.cmet.2020.12.003_bib105) 2015; 350 Wever-Pinzon (10.1016/j.cmet.2020.12.003_bib109) 2016; 68 Grenell (10.1016/j.cmet.2020.12.003_bib49) 2019; 116 Opie (10.1016/j.cmet.2020.12.003_bib78) 1980 Acin-Perez (10.1016/j.cmet.2020.12.003_bib2) 2018; 10 Badolia (10.1016/j.cmet.2020.12.003_bib4) 2020; 142 Kirk (10.1016/j.cmet.2020.12.003_bib62) 2000; 19 Metra (10.1016/j.cmet.2020.12.003_bib76) 2017; 390 Groussard (10.1016/j.cmet.2020.12.003_bib50) 2000; 89 |
References_xml | – volume: 22 start-page: 507 year: 2019 end-page: 518 ident: bib18 article-title: New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity publication-title: iScience – volume: 24 start-page: 669 year: 1992 end-page: 681 ident: bib6 article-title: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man publication-title: J. Mol. Cell. Cardiol. – volume: 293 start-page: 12199 year: 2018 end-page: 12208 ident: bib69 article-title: Inhibition of the cyclophilin A-CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats publication-title: J. Biol. Chem. – volume: 390 start-page: 1981 year: 2017 end-page: 1995 ident: bib76 article-title: Heart failure publication-title: Lancet – volume: 32 start-page: 756 year: 2000 end-page: 763 ident: bib95 article-title: An enzymatic approach to lactate production in human skeletal muscle during exercise publication-title: Med. Sci. Sports Exerc. – volume: 15 start-page: 457 year: 2018 end-page: 470 ident: bib13 article-title: Metabolic remodelling in heart failure publication-title: Nat. Rev. Cardiol. – volume: 35 start-page: W193-200 year: 2007 ident: bib84 article-title: g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments publication-title: Nucleic Acids Res. – volume: 77 start-page: 773 year: 1995 end-page: 783 ident: bib113 article-title: Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate publication-title: Circ. Res. – volume: 337 start-page: 96 year: 2012 end-page: 100 ident: bib22 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans publication-title: Science – volume: 118 start-page: S94 year: 2008 end-page: S105 ident: bib33 article-title: Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy publication-title: Circulation – volume: 2 start-page: 1232 year: 2020 end-page: 1247 ident: bib119 article-title: Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice publication-title: Nat. Metab. – volume: 123 start-page: 381 year: 2011 end-page: 390 ident: bib16 article-title: Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study publication-title: Circulation – volume: 8 start-page: e012673 year: 2019 ident: bib102 article-title: Glucose metabolism in cardiac hypertrophy and heart failure publication-title: J. Am. Heart Assoc. – volume: 107 start-page: 114 year: 2018 end-page: 119 ident: bib7 article-title: Therapeutic options in advanced heart failure publication-title: Clin. Res. Cardiol. – volume: 2 start-page: 335 year: 2017 end-page: 340 ident: bib39 article-title: Advancing the science of myocardial recovery with mechanical circulatory support: a working group of the National, Heart, Lung, and Blood Institute publication-title: JACC Basic Transl. Sci. – volume: 2 start-page: 1248 year: 2020 end-page: 1264 ident: bib120 article-title: Mitochondrial pyruvate carriers are required for myocardial stress adaptation publication-title: Nat. Metab. – volume: 83 start-page: 64H year: 1999 end-page: 69H ident: bib29 article-title: Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists publication-title: Am. J. Cardiol. – volume: 18 start-page: 341 year: 2020 ident: bib35 article-title: Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report) publication-title: J. Transl. Med. – volume: 19 start-page: 1017 year: 2017 end-page: 1026 ident: bib43 article-title: Lactate dehydrogenase activity drives hair follicle stem cell activation publication-title: Nat. Cell Biol. – volume: 68 start-page: 1540 year: 2016 end-page: 1553 ident: bib109 article-title: Cardiac recovery during long-term left ventricular assist device support publication-title: J. Am. Coll. Cardiol. – volume: 89 start-page: 20 year: 2001 end-page: 25 ident: bib94 article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein publication-title: Circ. Res. – volume: 12 start-page: 2215 year: 2017 end-page: 2231 ident: bib27 article-title: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites publication-title: Nat. Protoc. – volume: 146 start-page: 147 year: 1995 end-page: 155 ident: bib34 article-title: The influence of lactate, pyruvate and glucose as exogenous substrates on free radical defense mechanisms in isolated rat hearts during ischaemia and reperfusion publication-title: Mol. Cell. Biochem. – volume: 32 start-page: 3047 year: 2016 end-page: 3048 ident: bib41 article-title: MultiQC: summarize analysis results for multiple tools and samples in a single report publication-title: Bioinformatics – volume: 2019 start-page: 4532592 year: 2019 ident: bib93 article-title: Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure publication-title: Oxid. Med. Cell. Longev. – volume: 142 start-page: 259 year: 2020 end-page: 274 ident: bib4 article-title: The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure publication-title: Circulation – volume: 34 start-page: 465 year: 2013 end-page: 484 ident: bib79 article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology publication-title: Mol. Aspects Med. – volume: 17 start-page: 37 year: 2016 end-page: 43 ident: bib31 article-title: Incidence rate of primary cardiac tumors: a 14-year population study publication-title: J. Cardiovasc. Med. (Hagerstown) – volume: 68 start-page: 1741 year: 2016 end-page: 1752 ident: bib108 article-title: Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading publication-title: J. Am. Coll. Cardiol. – volume: 51 start-page: 465 year: 1999 end-page: 501 ident: bib40 article-title: Regulation of beta-adrenoceptor signaling in cardiac function and disease publication-title: Pharmacol. Rev. – volume: 3 start-page: 10 year: 2015 ident: bib30 article-title: The rate of glycolysis quantitatively mediates specific histone acetylation sites publication-title: Cancer Metab. – volume: 552 start-page: 50 year: 2018 end-page: 59 ident: bib118 article-title: Mitochondrial membrane potential publication-title: Anal. Biochem. – volume: 15 start-page: 550 year: 2014 ident: bib68 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 14 start-page: 238 year: 2017 end-page: 250 ident: bib23 article-title: Expert consensus document: mitochondrial function as a therapeutic target in heart failure publication-title: Nat. Rev. Cardiol. – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib56 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 19 start-page: 3896 year: 2000 end-page: 3904 ident: bib62 article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression publication-title: EMBO J. – volume: 75 start-page: 171 year: 2015 end-page: 180 ident: bib71 article-title: Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin publication-title: Cancer Res. – volume: 37 start-page: 527 year: 1975 end-page: 533 ident: bib87 article-title: The metabolic significance of the malate-aspartate cycle in heart publication-title: Circ. Res. – volume: 142 start-page: 704 year: 2001 end-page: 713 ident: bib61 article-title: Regression of left ventricular remodeling in chronic heart failure: comparative and combined effects of captopril and carvedilol publication-title: Am. Heart J. – volume: 92 start-page: 1573 year: 2002 end-page: 1584 ident: bib73 article-title: Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia publication-title: J Appl Physiol (1985) – volume: 26 start-page: 19 year: 1997 end-page: 35 ident: bib54 article-title: Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases publication-title: Free Radic. Res. – volume: 113 start-page: 603 year: 2013 end-page: 616 ident: bib63 article-title: Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes publication-title: Circ. Res. – volume: 162 start-page: 552 year: 2015 end-page: 563 ident: bib97 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell – volume: 47 start-page: 125 year: 2011 end-page: 131 ident: bib106 article-title: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro publication-title: In Vitro Cell. Dev. Biol. Anim. – volume: 17 start-page: 3 year: 2011 ident: bib72 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J – volume: 587 start-page: 2087 year: 2009 end-page: 2099 ident: bib12 article-title: Myocardial glucose and lactate metabolism during rest and atrial pacing in humans publication-title: J. Physiol. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib9 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B – volume: 10 start-page: eaan4935 year: 2018 ident: bib2 article-title: Ablation of the stress protease OMA1 protects against heart failure in mice publication-title: Sci. Transl. Med. – volume: 116 start-page: 3530 year: 2019 end-page: 3535 ident: bib49 article-title: Loss of MPC1 reprograms retinal metabolism to impair visual function publication-title: Proc. Natl. Acad. Sci. USA – volume: 551 start-page: 115 year: 2017 end-page: 118 ident: bib55 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature – volume: 30 start-page: 23 year: 1966 end-page: 38 ident: bib107 article-title: Practical stereological methods for morphometric cytology publication-title: J. Cell Biol. – volume: 23 start-page: 586 year: 1994 end-page: 590 ident: bib60 article-title: The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients publication-title: J. Am. Coll. Cardiol. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib37 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 348 start-page: 2007 year: 2003 end-page: 2018 ident: bib58 article-title: Heart failure publication-title: N. Engl. J. Med. – volume: 17 start-page: 2746 year: 2018 end-page: 2755 ident: bib100 article-title: Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer publication-title: Mol. Cancer Ther. – volume: 6 start-page: 6259 year: 2015 ident: bib81 article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions publication-title: Nat. Commun. – volume: 89 start-page: 169 year: 2000 end-page: 175 ident: bib50 article-title: Free radical scavenging and antioxidant effects of lactate ion: an in vitro study publication-title: J. Appl. Physiol. (1985) – volume: 126 start-page: 182 year: 2020 end-page: 196 ident: bib86 article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis publication-title: Circ. Res. – volume: 267 start-page: H742 year: 1994 end-page: H750 ident: bib3 article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts publication-title: Am. J. Physiol. – volume: 128 start-page: 3716 year: 2018 end-page: 3726 ident: bib115 article-title: Mitochondrial dysfunction in pathophysiology of heart failure publication-title: J. Clin. Invest. – volume: 10 start-page: e0129303 year: 2015 ident: bib21 article-title: Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype publication-title: PLoS ONE – volume: 36 start-page: 636 year: 2016 end-page: 646 ident: bib98 article-title: Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 32 start-page: 108087 year: 2020 ident: bib32 article-title: Lactate dehydrogenase a governs cardiac hypertrophic growth in response to hemodynamic stress publication-title: Cell Rep. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: bib53 article-title: Array programming with NumPy publication-title: Nature – volume: 29 start-page: 76 year: 2019 end-page: 88.e7 ident: bib70 article-title: Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer publication-title: Cell Rep. – volume: 51 start-page: e7660 year: 2018 ident: bib45 article-title: Lactate-upregulation of lactate oxidation complex-related genes is blunted in left ventricle of myocardial infarcted rats publication-title: Braz. J. Med. Biol. Res. – volume: 92 start-page: 398 year: 1993 end-page: 403 ident: bib57 article-title: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes publication-title: J. Clin. Invest. – volume: 3 start-page: 7 year: 2017 end-page: 11 ident: bib88 article-title: Global public health burden of heart failure publication-title: Card. Fail. Rev. – volume: 76 start-page: 1819 year: 1985 end-page: 1827 ident: bib111 article-title: Metabolic fate of extracted glucose in normal human myocardium publication-title: J. Clin. Invest. – volume: 32 start-page: 663 year: 2013 end-page: 674 ident: bib116 article-title: MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart publication-title: Cell. Physiol. Biochem. – volume: 175 start-page: 502 year: 2018 end-page: 513.e13 ident: bib67 article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals publication-title: Cell – volume: 1 start-page: 371 year: 2005 end-page: 376 ident: bib77 article-title: Monocarboxylate transporter MCT1 is a target for immunosuppression publication-title: Nat. Chem. Biol. – volume: 5 start-page: 68 year: 2018 ident: bib59 article-title: Loss of metabolic flexibility in the failing heart publication-title: Front. Cardiovasc. Med. – volume: 22 start-page: 682 year: 2015 end-page: 694 ident: bib74 article-title: Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling publication-title: Cell Metab. – volume: 90 start-page: 234 year: 2011 end-page: 242 ident: bib1 article-title: Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy publication-title: Cardiovasc. Res. – volume: 34 start-page: 189 year: 2015 end-page: 201 ident: bib24 article-title: A roadmap for interpreting (13)C metabolite labeling patterns from cells publication-title: Curr. Opin. Biotechnol. – volume: 19 start-page: 357 year: 2014 end-page: 372 ident: bib52 article-title: The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease publication-title: Cell Metab. – volume: 24 start-page: 716 year: 2016 end-page: 727 ident: bib51 article-title: Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin publication-title: Cell Metab. – volume: 138 start-page: 628 year: 2009 end-page: 644 ident: bib25 article-title: Importing mitochondrial proteins: machineries and mechanisms publication-title: Cell – volume: 22 start-page: 669 year: 2015 end-page: 681 ident: bib48 article-title: Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis publication-title: Cell Metab. – volume: 121 start-page: 731 year: 2017 end-page: 748 ident: bib75 article-title: Dilated cardiomyopathy: genetic determinants and mechanisms publication-title: Circ. Res. – volume: 114 start-page: 1132 year: 2018 end-page: 1144 ident: bib104 article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice publication-title: Cardiovasc. Res. – volume: 15 start-page: 284 year: 1953 end-page: 296 ident: bib14 article-title: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart publication-title: Am. J. Med. – volume: 8 start-page: e45873 year: 2019 ident: bib92 article-title: Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness publication-title: eLife – volume: 318 start-page: 36 year: 1999 end-page: 42 ident: bib5 article-title: Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms publication-title: Am. J. Med. Sci. – volume: 24 start-page: 3 year: 2018 ident: bib42 article-title: Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction publication-title: Mol. Med. – volume: 56 start-page: 317 year: 2007 end-page: 322 ident: bib117 article-title: H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart publication-title: J. Pharmacol. Toxicol. Methods – volume: 61 start-page: 1985 year: 2013 end-page: 1994 ident: bib38 article-title: Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery publication-title: J. Am. Coll. Cardiol. – volume: 10 start-page: e0127843 year: 2015 ident: bib44 article-title: Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats publication-title: PLoS ONE – volume: 6 start-page: 1468 year: 2017 end-page: 1479 ident: bib83 article-title: The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity publication-title: Mol. Metab. – volume: 31 start-page: 284 year: 2020 end-page: 300.e7 ident: bib10 article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier publication-title: Cell Metab. – volume: 355 start-page: 1873 year: 2006 end-page: 1884 ident: bib15 article-title: Left ventricular assist device and drug therapy for the reversal of heart failure publication-title: N. Engl. J. Med. – volume: 16 start-page: e1007625 year: 2020 ident: bib11 article-title: XPRESSyourself: enhancing, standardizing, and automating ribosome profiling computational analyses yields improved insight into data publication-title: PLoS Comput. Biol. – volume: 18 start-page: 755 year: 2012 end-page: 761 ident: bib19 article-title: Left ventricular assist device support and myocardial recovery in recent onset cardiomyopathy publication-title: J. Card. Fail. – volume: 82 start-page: 2017 year: 1988 end-page: 2025 ident: bib46 article-title: Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments publication-title: J. Clin. Invest. – volume: 33 start-page: 4433 year: 2014 end-page: 4441 ident: bib66 article-title: Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner publication-title: Oncogene – volume: 162 start-page: 540 year: 2015 end-page: 551 ident: bib17 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell – volume: 86 start-page: 6 year: 2001 end-page: 11 ident: bib20 article-title: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle publication-title: Eur. J. Appl. Physiol. – volume: 113 start-page: 411 year: 2017 end-page: 421 ident: bib85 article-title: Metabolism in cardiomyopathy: every substrate matters publication-title: Cardiovasc. Res. – volume: 89 start-page: 1401 year: 2015 end-page: 1438 ident: bib99 article-title: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets publication-title: Arch. Toxicol. – volume: 2 start-page: 1223 year: 2020 end-page: 1231 ident: bib121 article-title: Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy publication-title: Nat. Metab. – volume: 9 start-page: 2935 year: 2018 ident: bib91 article-title: Glucose promotes cell growth by suppressing branched-chain amino acid degradation publication-title: Nat. Commun. – volume: 6 start-page: 743 year: 2011 end-page: 760 ident: bib112 article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst publication-title: Nat. Protoc. – volume: 25 start-page: 3047 year: 2018 end-page: 3058.e4 ident: bib8 article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells publication-title: Cell Rep. – start-page: 4 year: 1980 end-page: 9 ident: bib78 article-title: Lactate metabolism and cardiac muscle publication-title: Lactate – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: bib65 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib80 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 350 start-page: aad0116 year: 2015 ident: bib105 article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice publication-title: Science – volume: 166 start-page: 1324 year: 2016 end-page: 1337.e11 ident: bib26 article-title: Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism publication-title: Cell – volume: 329 start-page: 321 year: 1998 end-page: 328 ident: bib82 article-title: Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past publication-title: Biochem. J. – volume: 273 start-page: 15920 year: 1998 end-page: 15926 ident: bib110 article-title: Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3 publication-title: J. Biol. Chem. – volume: 5 start-page: 17 year: 2018 ident: bib47 article-title: Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction publication-title: Front. Cardiovasc. Med. – volume: 29 start-page: 2771 year: 1997 end-page: 2778 ident: bib90 article-title: The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity publication-title: J. Mol. Cell. Cardiol. – volume: 33 start-page: 1065 year: 2001 end-page: 1089 ident: bib64 article-title: Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure publication-title: J. Mol. Cell. Cardiol. – volume: 9 start-page: e003157 year: 2016 ident: bib101 article-title: Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) publication-title: Circ. Heart Fail. – volume: 284 start-page: E855 year: 2003 end-page: E862 ident: bib96 article-title: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 46 start-page: W486 year: 2018 end-page: W494 ident: bib28 article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis publication-title: Nucleic Acids Res. – volume: 1 start-page: 432 year: 2016 end-page: 444 ident: bib36 article-title: Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning publication-title: JACC Basic Transl. Sci. – volume: 136 start-page: e137 year: 2017 end-page: e161 ident: bib114 article-title: 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America publication-title: Circulation – volume: 19 start-page: 1027 year: 2017 end-page: 1036 ident: bib89 article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism publication-title: Nat. Cell Biol. – volume: 347 start-page: 1260419 year: 2015 ident: bib103 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science – volume: 19 start-page: 1027 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib89 article-title: Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb3593 – volume: 24 start-page: 716 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib51 article-title: Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.006 – volume: 31 start-page: 284 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib10 article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.11.002 – volume: 5 start-page: 68 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib59 article-title: Loss of metabolic flexibility in the failing heart publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2018.00068 – volume: 284 start-page: E855 year: 2003 ident: 10.1016/j.cmet.2020.12.003_bib96 article-title: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00526.2002 – volume: 1 start-page: 371 year: 2005 ident: 10.1016/j.cmet.2020.12.003_bib77 article-title: Monocarboxylate transporter MCT1 is a target for immunosuppression publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio744 – volume: 2 start-page: 1232 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib119 article-title: Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice publication-title: Nat. Metab. doi: 10.1038/s42255-020-00296-1 – volume: 329 start-page: 321 year: 1998 ident: 10.1016/j.cmet.2020.12.003_bib82 article-title: Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past publication-title: Biochem. J. doi: 10.1042/bj3290321 – volume: 175 start-page: 502 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib67 article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals publication-title: Cell doi: 10.1016/j.cell.2018.08.040 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib80 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 318 start-page: 36 year: 1999 ident: 10.1016/j.cmet.2020.12.003_bib5 article-title: Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms publication-title: Am. J. Med. Sci. doi: 10.1016/S0002-9629(15)40570-1 – volume: 6 start-page: 6259 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib81 article-title: Trans-mitochondrial coordination of cristae at regulated membrane junctions publication-title: Nat. Commun. doi: 10.1038/ncomms7259 – volume: 114 start-page: 1132 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib104 article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvy063 – volume: 22 start-page: 682 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib74 article-title: Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.028 – volume: 2 start-page: 1248 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib120 article-title: Mitochondrial pyruvate carriers are required for myocardial stress adaptation publication-title: Nat. Metab. doi: 10.1038/s42255-020-00288-1 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.cmet.2020.12.003_bib68 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.cmet.2020.12.003_bib9 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 18 start-page: 755 year: 2012 ident: 10.1016/j.cmet.2020.12.003_bib19 article-title: Left ventricular assist device support and myocardial recovery in recent onset cardiomyopathy publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2012.08.001 – volume: 86 start-page: 6 year: 2001 ident: 10.1016/j.cmet.2020.12.003_bib20 article-title: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s004210100516 – volume: 14 start-page: 238 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib23 article-title: Expert consensus document: mitochondrial function as a therapeutic target in heart failure publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2016.203 – volume: 34 start-page: 465 year: 2013 ident: 10.1016/j.cmet.2020.12.003_bib79 article-title: The mitochondrial transporter family SLC25: identification, properties and physiopathology publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2012.05.005 – volume: 32 start-page: 3047 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib41 article-title: MultiQC: summarize analysis results for multiple tools and samples in a single report publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw354 – volume: 26 start-page: 19 year: 1997 ident: 10.1016/j.cmet.2020.12.003_bib54 article-title: Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases publication-title: Free Radic. Res. doi: 10.3109/10715769709097781 – volume: 162 start-page: 552 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib97 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 68 start-page: 1540 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib109 article-title: Cardiac recovery during long-term left ventricular assist device support publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.07.743 – volume: 128 start-page: 3716 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib115 article-title: Mitochondrial dysfunction in pathophysiology of heart failure publication-title: J. Clin. Invest. doi: 10.1172/JCI120849 – volume: 17 start-page: 37 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib31 article-title: Incidence rate of primary cardiac tumors: a 14-year population study publication-title: J. Cardiovasc. Med. (Hagerstown) doi: 10.2459/JCM.0000000000000059 – volume: 30 start-page: 923 year: 2014 ident: 10.1016/j.cmet.2020.12.003_bib65 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 17 start-page: 2746 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib100 article-title: Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-18-0107 – volume: 6 start-page: 1468 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib83 article-title: The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.09.002 – volume: 36 start-page: 636 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib98 article-title: Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.306686 – volume: 136 start-page: e137 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib114 publication-title: Circulation doi: 10.1161/CIR.0000000000000509 – volume: 24 start-page: 669 year: 1992 ident: 10.1016/j.cmet.2020.12.003_bib6 article-title: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/0022-2828(92)93381-S – volume: 116 start-page: 3530 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib49 article-title: Loss of MPC1 reprograms retinal metabolism to impair visual function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1812941116 – volume: 267 start-page: H742 year: 1994 ident: 10.1016/j.cmet.2020.12.003_bib3 article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts publication-title: Am. J. Physiol. – volume: 355 start-page: 1873 year: 2006 ident: 10.1016/j.cmet.2020.12.003_bib15 article-title: Left ventricular assist device and drug therapy for the reversal of heart failure publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa053063 – volume: 10 start-page: eaan4935 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib2 article-title: Ablation of the stress protease OMA1 protects against heart failure in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan4935 – volume: 33 start-page: 4433 year: 2014 ident: 10.1016/j.cmet.2020.12.003_bib66 article-title: Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner publication-title: Oncogene doi: 10.1038/onc.2013.390 – volume: 6 start-page: 743 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib112 article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.319 – volume: 47 start-page: 125 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib106 article-title: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1007/s11626-010-9368-1 – volume: 2 start-page: 335 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib39 article-title: Advancing the science of myocardial recovery with mechanical circulatory support: a working group of the National, Heart, Lung, and Blood Institute publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2016.12.003 – volume: 56 start-page: 317 year: 2007 ident: 10.1016/j.cmet.2020.12.003_bib117 article-title: H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart publication-title: J. Pharmacol. Toxicol. Methods doi: 10.1016/j.vascn.2007.06.001 – volume: 82 start-page: 2017 year: 1988 ident: 10.1016/j.cmet.2020.12.003_bib46 article-title: Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments publication-title: J. Clin. Invest. doi: 10.1172/JCI113822 – volume: 10 start-page: e0129303 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib21 article-title: Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype publication-title: PLoS ONE doi: 10.1371/journal.pone.0129303 – volume: 22 start-page: 507 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib18 article-title: New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity publication-title: iScience doi: 10.1016/j.isci.2019.11.041 – volume: 5 start-page: 17 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib47 article-title: Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2018.00017 – volume: 68 start-page: 1741 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib108 article-title: Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.07.756 – volume: 77 start-page: 773 year: 1995 ident: 10.1016/j.cmet.2020.12.003_bib113 article-title: Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate publication-title: Circ. Res. doi: 10.1161/01.RES.77.4.773 – volume: 390 start-page: 1981 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib76 article-title: Heart failure publication-title: Lancet doi: 10.1016/S0140-6736(17)31071-1 – volume: 8 start-page: e012673 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib102 article-title: Glucose metabolism in cardiac hypertrophy and heart failure publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.119.012673 – volume: 32 start-page: 756 year: 2000 ident: 10.1016/j.cmet.2020.12.003_bib95 article-title: An enzymatic approach to lactate production in human skeletal muscle during exercise publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-200004000-00007 – volume: 3 start-page: 7 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib88 article-title: Global public health burden of heart failure publication-title: Card. Fail. Rev. doi: 10.15420/cfr.2016:25:2 – volume: 9 start-page: 2935 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib91 article-title: Glucose promotes cell growth by suppressing branched-chain amino acid degradation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05362-7 – volume: 123 start-page: 381 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib16 article-title: Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.933960 – volume: 30 start-page: 23 year: 1966 ident: 10.1016/j.cmet.2020.12.003_bib107 article-title: Practical stereological methods for morphometric cytology publication-title: J. Cell Biol. doi: 10.1083/jcb.30.1.23 – volume: 25 start-page: 3047 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib8 article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.11.043 – volume: 19 start-page: 1017 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib43 article-title: Lactate dehydrogenase activity drives hair follicle stem cell activation publication-title: Nat. Cell Biol. doi: 10.1038/ncb3575 – volume: 162 start-page: 540 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib17 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 3 start-page: 10 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib30 article-title: The rate of glycolysis quantitatively mediates specific histone acetylation sites publication-title: Cancer Metab. doi: 10.1186/s40170-015-0135-3 – volume: 23 start-page: 586 year: 1994 ident: 10.1016/j.cmet.2020.12.003_bib60 article-title: The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(94)90740-4 – volume: 2019 start-page: 4532592 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib93 article-title: Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/4532592 – volume: 32 start-page: 663 year: 2013 ident: 10.1016/j.cmet.2020.12.003_bib116 article-title: MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart publication-title: Cell. Physiol. Biochem. doi: 10.1159/000354470 – volume: 89 start-page: 1401 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib99 article-title: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1477-x – volume: 15 start-page: 457 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib13 article-title: Metabolic remodelling in heart failure publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-018-0044-6 – volume: 337 start-page: 96 year: 2012 ident: 10.1016/j.cmet.2020.12.003_bib22 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans publication-title: Science doi: 10.1126/science.1218099 – volume: 24 start-page: 3 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib42 article-title: Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction publication-title: Mol. Med. doi: 10.1186/s10020-018-0005-x – volume: 76 start-page: 1819 year: 1985 ident: 10.1016/j.cmet.2020.12.003_bib111 article-title: Metabolic fate of extracted glucose in normal human myocardium publication-title: J. Clin. Invest. doi: 10.1172/JCI112174 – volume: 293 start-page: 12199 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib69 article-title: Inhibition of the cyclophilin A-CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002845 – volume: 37 start-page: 527 year: 1975 ident: 10.1016/j.cmet.2020.12.003_bib87 article-title: The metabolic significance of the malate-aspartate cycle in heart publication-title: Circ. Res. doi: 10.1161/01.RES.37.5.527 – volume: 29 start-page: 76 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib70 article-title: Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.076 – volume: 118 start-page: S94 issue: Suppl year: 2008 ident: 10.1016/j.cmet.2020.12.003_bib33 article-title: Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy publication-title: Circulation – volume: 12 start-page: 2215 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib27 article-title: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.104 – volume: 34 start-page: 189 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib24 article-title: A roadmap for interpreting (13)C metabolite labeling patterns from cells publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.003 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.cmet.2020.12.003_bib37 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 551 start-page: 115 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib55 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature doi: 10.1038/nature24057 – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.cmet.2020.12.003_bib56 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 350 start-page: aad0116 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib105 article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice publication-title: Science doi: 10.1126/science.aad0116 – volume: 166 start-page: 1324 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib26 article-title: Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism publication-title: Cell doi: 10.1016/j.cell.2016.07.040 – volume: 138 start-page: 628 year: 2009 ident: 10.1016/j.cmet.2020.12.003_bib25 article-title: Importing mitochondrial proteins: machineries and mechanisms publication-title: Cell doi: 10.1016/j.cell.2009.08.005 – volume: 19 start-page: 3896 year: 2000 ident: 10.1016/j.cmet.2020.12.003_bib62 article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression publication-title: EMBO J. doi: 10.1093/emboj/19.15.3896 – volume: 35 start-page: W193-200 year: 2007 ident: 10.1016/j.cmet.2020.12.003_bib84 article-title: g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm226 – volume: 22 start-page: 669 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib48 article-title: Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.027 – volume: 348 start-page: 2007 year: 2003 ident: 10.1016/j.cmet.2020.12.003_bib58 article-title: Heart failure publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra021498 – volume: 17 start-page: 3 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib72 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 107 start-page: 114 issue: Suppl 2 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib7 article-title: Therapeutic options in advanced heart failure publication-title: Clin. Res. Cardiol. doi: 10.1007/s00392-018-1318-z – volume: 15 start-page: 284 year: 1953 ident: 10.1016/j.cmet.2020.12.003_bib14 article-title: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart publication-title: Am. J. Med. doi: 10.1016/0002-9343(53)90082-5 – volume: 587 start-page: 2087 year: 2009 ident: 10.1016/j.cmet.2020.12.003_bib12 article-title: Myocardial glucose and lactate metabolism during rest and atrial pacing in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.168286 – volume: 89 start-page: 20 year: 2001 ident: 10.1016/j.cmet.2020.12.003_bib94 article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein publication-title: Circ. Res. doi: 10.1161/hh1301.092687 – volume: 61 start-page: 1985 year: 2013 ident: 10.1016/j.cmet.2020.12.003_bib38 article-title: Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.01.072 – volume: 16 start-page: e1007625 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib11 article-title: XPRESSyourself: enhancing, standardizing, and automating ribosome profiling computational analyses yields improved insight into data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007625 – volume: 121 start-page: 731 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib75 article-title: Dilated cardiomyopathy: genetic determinants and mechanisms publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.309396 – volume: 19 start-page: 357 year: 2014 ident: 10.1016/j.cmet.2020.12.003_bib52 article-title: The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.01.010 – volume: 2 start-page: 1223 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib121 article-title: Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy publication-title: Nat. Metab. doi: 10.1038/s42255-020-00276-5 – volume: 75 start-page: 171 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib71 article-title: Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-2260 – volume: 46 start-page: W486 issue: W1 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib28 article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky310 – volume: 552 start-page: 50 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib118 article-title: Mitochondrial membrane potential publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.07.009 – volume: 1 start-page: 432 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib36 article-title: Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2016.06.009 – volume: 146 start-page: 147 year: 1995 ident: 10.1016/j.cmet.2020.12.003_bib34 article-title: The influence of lactate, pyruvate and glucose as exogenous substrates on free radical defense mechanisms in isolated rat hearts during ischaemia and reperfusion publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00944607 – volume: 51 start-page: e7660 year: 2018 ident: 10.1016/j.cmet.2020.12.003_bib45 article-title: Lactate-upregulation of lactate oxidation complex-related genes is blunted in left ventricle of myocardial infarcted rats publication-title: Braz. J. Med. Biol. Res. doi: 10.1590/1414-431x20187660 – volume: 92 start-page: 398 year: 1993 ident: 10.1016/j.cmet.2020.12.003_bib57 article-title: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes publication-title: J. Clin. Invest. doi: 10.1172/JCI116579 – start-page: 4 year: 1980 ident: 10.1016/j.cmet.2020.12.003_bib78 article-title: Lactate metabolism and cardiac muscle – volume: 18 start-page: 341 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib35 article-title: Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report) publication-title: J. Transl. Med. doi: 10.1186/s12967-020-02487-6 – volume: 142 start-page: 704 year: 2001 ident: 10.1016/j.cmet.2020.12.003_bib61 article-title: Regression of left ventricular remodeling in chronic heart failure: comparative and combined effects of captopril and carvedilol publication-title: Am. Heart J. doi: 10.1067/mhj.2001.116768 – volume: 29 start-page: 2771 year: 1997 ident: 10.1016/j.cmet.2020.12.003_bib90 article-title: The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity publication-title: J. Mol. Cell. Cardiol. doi: 10.1006/jmcc.1997.0512 – volume: 273 start-page: 15920 year: 1998 ident: 10.1016/j.cmet.2020.12.003_bib110 article-title: Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.26.15920 – volume: 113 start-page: 411 year: 2017 ident: 10.1016/j.cmet.2020.12.003_bib85 article-title: Metabolism in cardiomyopathy: every substrate matters publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvx017 – volume: 126 start-page: 182 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib86 article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.315483 – volume: 32 start-page: 108087 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib32 article-title: Lactate dehydrogenase a governs cardiac hypertrophic growth in response to hemodynamic stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108087 – volume: 585 start-page: 357 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib53 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 51 start-page: 465 year: 1999 ident: 10.1016/j.cmet.2020.12.003_bib40 article-title: Regulation of beta-adrenoceptor signaling in cardiac function and disease publication-title: Pharmacol. Rev. – volume: 113 start-page: 603 year: 2013 ident: 10.1016/j.cmet.2020.12.003_bib63 article-title: Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.302095 – volume: 8 start-page: e45873 year: 2019 ident: 10.1016/j.cmet.2020.12.003_bib92 article-title: Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness publication-title: eLife doi: 10.7554/eLife.45873 – volume: 10 start-page: e0127843 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib44 article-title: Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats publication-title: PLoS ONE doi: 10.1371/journal.pone.0127843 – volume: 33 start-page: 1065 year: 2001 ident: 10.1016/j.cmet.2020.12.003_bib64 article-title: Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure publication-title: J. Mol. Cell. Cardiol. doi: 10.1006/jmcc.2001.1378 – volume: 92 start-page: 1573 year: 2002 ident: 10.1016/j.cmet.2020.12.003_bib73 article-title: Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.01069.2001 – volume: 347 start-page: 1260419 year: 2015 ident: 10.1016/j.cmet.2020.12.003_bib103 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 83 start-page: 64H issue: 12A year: 1999 ident: 10.1016/j.cmet.2020.12.003_bib29 article-title: Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists publication-title: Am. J. Cardiol. doi: 10.1016/S0002-9149(99)00261-1 – volume: 90 start-page: 234 year: 2011 ident: 10.1016/j.cmet.2020.12.003_bib1 article-title: Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvr015 – volume: 89 start-page: 169 year: 2000 ident: 10.1016/j.cmet.2020.12.003_bib50 article-title: Free radical scavenging and antioxidant effects of lactate ion: an in vitro study publication-title: J. Appl. Physiol. (1985) doi: 10.1152/jappl.2000.89.1.169 – volume: 142 start-page: 259 year: 2020 ident: 10.1016/j.cmet.2020.12.003_bib4 article-title: The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.044452 – volume: 9 start-page: e003157 year: 2016 ident: 10.1016/j.cmet.2020.12.003_bib101 article-title: Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.116.003157 |
SSID | ssj0036393 |
Score | 2.6676054 |
Snippet | The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 629 |
SubjectTerms | Animals Anion Transport Proteins - antagonists & inhibitors Anion Transport Proteins - genetics Anion Transport Proteins - metabolism cardiac metabolism Cardiomegaly - chemically induced Cardiomegaly - complications Cardiomegaly - pathology heart failure Heart Failure - etiology Heart Failure - pathology Heart-Assist Devices Humans hypertrophy lactate Lactic Acid - metabolism LVAD MCT4 Membrane Potential, Mitochondrial Mice Mice, Inbred C57BL Mice, Knockout mitochondria Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - antagonists & inhibitors Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Monocarboxylic Acid Transporters - antagonists & inhibitors Monocarboxylic Acid Transporters - genetics Monocarboxylic Acid Transporters - metabolism MPC Muscle Proteins - antagonists & inhibitors Muscle Proteins - metabolism Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism pyruvate Pyruvic Acid - metabolism Reactive Oxygen Species - metabolism RNA Interference RNA, Small Interfering - metabolism VB124 Ventricular Function, Left - physiology |
Title | The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure |
URI | https://dx.doi.org/10.1016/j.cmet.2020.12.003 https://www.ncbi.nlm.nih.gov/pubmed/33333007 https://www.proquest.com/docview/2471465992 https://pubmed.ncbi.nlm.nih.gov/PMC7933116 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EELzI-h5dpQVvEmb6kXT6uCuKCnpRYW5N-oVZNDPMQ_Tfb1Ueg6PgwRyT6tBUVVd96XxdRcgpOG7h8igSzlxIpAgq0dox8OUoI7P5gEfc0L-9y64e5c0wHa6Q8-4sDNIq29jfxPQ6Wrd3-q02--Oy7N8juIYQzDjC3jTHsttC5vUhvuHfLhoLyMA1yR6EE5RuD840HC_3EpBPyQf1lmDXOOtrcvoKPj9zKD8kpctfZKNFk_RPM-FNshKqLbLW9Jd83ybX4AR0_D6ZvwKiTJ4Lh8iSFm_llL6MPDbuClPqah9x9Am-SCezyQj0TovKU2x1PaOxKJG4vkMeLi8ezq-StndC4rBFQaKis0pKb62HhM-cjYUdBJ05BR-MWcA2UsFzL2VQgLJczLX1sDS1ZNzqLBW7ZLUaVWGfUCWUHcCbcg_YKwShQ8y49BkPQsnIRY-wTmfGtXXFsb3Fs-kIZP8M6tmgng3jWI20R84WY8ZNVY1vpdPOFGbJNwyE_W_HnXR2M7Bo8E9IUYXRfGo4pGSZpVrzHtlr7LiYh8ALkFOPqCULLwSwIPfyk6p8qgtzQ6wTjGUHP5zvIVnnyJhBhhv_TVZnk3k4Asgzs8e1T_8HQbL_3g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILKu-FUozEDUW7fsSOj1BR7ULbC4u0Nyt-qana7GofiP57ZvJYsVTqoTkm48iaGc98cT7PEPIJHLf0RRIZZz5mUkSdGeMZ-HKSiblixBNu6J-dq_Ev-X2Wz_bIcX8WBmmVXexvY3oTrbs7w06bw0VVDX8iuIYQzDjC3rxQD8hDQAMaV-dk9rUPxwJScMOyB-kMxbuTMy3Jy19HJFTyUbMn2HfOup2dbqPP_0mU_2SlkwPytIOT9Es742dkL9bPyaO2weTNCzIBL6CLm-XmN0DK7Kr0CC1p-ada0et5wM5dcUV94ySeXsAn6XK9nIPiaVkHir2u1zSVFTLXX5Lpybfp8TjrmidkHnsUZDp5p6UMzgXI-My7VLpRNMpr-GJUEftIxcCDlFEDzPKpMC7A2jSScWdULl6R_XpexzeEaqHdCN5UBABfMQoTk-IyKB6FlomLAWG9zqzvCotjf4sr2zPILi3q2aKeLeNYjnRAPm_HLNqyGndK570p7I5zWIj7d4772NvNwqrBXyFlHeebleWQk6XKjeED8rq143YeAi-ATgOidyy8FcCK3LtP6uqiqcwNwU4wpt7ec74fyOPx9OzUnk7Of7wjTzjSZ5Duxg_J_nq5ie8B_6zdUePffwEiNQMN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pyruvate-lactate+axis+modulates+cardiac+hypertrophy+and+heart+failure&rft.jtitle=Cell+metabolism&rft.au=Cluntun%2C+Ahmad+A&rft.au=Badolia%2C+Rachit&rft.au=Lettlova%2C+Sandra&rft.au=Parnell%2C+K+Mark&rft.date=2021-03-02&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=33&rft.issue=3&rft.spage=629&rft_id=info:doi/10.1016%2Fj.cmet.2020.12.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |