Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expan...
Saved in:
Published in | STAR protocols Vol. 1; no. 3; p. 100221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.
For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
[Display omitted]
•Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells•Approach provides enhanced control over the shape and position of encapsulated extract•Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. |
---|---|
AbstractList | Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.
For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
[Display omitted]
•Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells•Approach provides enhanced control over the shape and position of encapsulated extract•Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020). Cell-free extract derived from the eggs of the African clawed frog is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020). Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020) . • Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells • Approach provides enhanced control over the shape and position of encapsulated extract • Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. |
ArticleNumber | 100221 |
Author | Geisterfer, Zachary M. Gatlin, Jesse C. Oakey, John |
Author_xml | – sequence: 1 givenname: Zachary M. surname: Geisterfer fullname: Geisterfer, Zachary M. email: zgeister@uwyo.edu organization: Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA – sequence: 2 givenname: John orcidid: 0000-0003-1023-1964 surname: Oakey fullname: Oakey, John organization: Department of Chemical Engineering, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA – sequence: 3 givenname: Jesse C. surname: Gatlin fullname: Gatlin, Jesse C. email: jgatlin@uwyo.edu organization: Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33377113$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1UREvpH-CAcuSSxR9JHEsICVV8VCriAhI3y3bGiVfeONjJqvvvcUip2gunGY3fecYz70t0NoYREHpN8I5g0rzb7-6mGHYU07WAKSXP0AVtmqYkTcPPHuXn6CqlPc6amtCKtC_QOWOMc0LYBZLfnInB-sV1zhQwGjWlxavZhbEItvgFY5iWVHgFR5cKA96XNgIUcDdHZeZULMmNfTGcuhh68MU0hDl4Nw-hj2oaTq_Qc6t8gqv7eIl-fv704_prefv9y831x9vS1JTMJa-Bqpq2mjNBgdGqJlYLwgCwxrqlqhJaCyFsjcF0wiot2prnlHcatOXsEt1s3C6ovZyiO6h4kkE5-bcQYi9VnJ3xIG2nWdVahhWFHFutOyqYtSbHyrY0sz5srGnRB-gMjHlX_wT69GV0g-zDUXJe86ZuM-DtPSCG3wukWR5cWm-nRghLkrTKa2LWslVKN2l2IaUI9mEMwXI1Wu7larRcjZab0bnpzeMPPrT8szUL3m8CyCc_OogyGZfNhc5FMHO-ifsf_w9mbr-r |
CitedBy_id | crossref_primary_10_1091_mbc_E22_03_0074 crossref_primary_10_20517_microstructures_2023_106 |
Cites_doi | 10.1126/science.1243147 10.1109/TNB.2019.2905489 10.1016/j.cub.2020.05.056 10.1021/ma801219w 10.1101/pdb.prot097055 10.1039/C0LC00046A 10.1021/acsbiomaterials.8b00350 10.1063/1.1387591 10.1016/j.jcis.2017.09.081 10.1016/j.biomaterials.2009.08.055 10.1101/pdb.prot102913 10.1016/j.cub.2005.10.054 10.1126/science.1243110 |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.xpro.2020.100221 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1667 |
EndPage | 100221 |
ExternalDocumentID | oai_doaj_org_article_fdb348f30a2e48f8bbd293ffcbd24f82 10_1016_j_xpro_2020_100221 33377113 S2666166720302082 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM135568 – fundername: NIGMS NIH HHS grantid: R01 GM113028 – fundername: NIGMS NIH HHS grantid: P20 GM103432 |
GroupedDBID | 53G 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM 0R~ 0SF AALRI AAMRU ADVLN AITUG AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c521t-75e2a528b7392e32451fb913ee0b0b82a49bb999f50ecd9fab9857ecd7dbebf73 |
IEDL.DBID | RPM |
ISSN | 2666-1667 |
IngestDate | Tue Oct 22 15:15:17 EDT 2024 Tue Sep 17 21:23:02 EDT 2024 Thu Oct 24 22:57:42 EDT 2024 Thu Sep 26 17:39:10 EDT 2024 Sat Sep 28 08:21:41 EDT 2024 Fri Feb 23 02:44:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Model Organisms Biophysics Microscopy Cell isolation Cell Biology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-75e2a528b7392e32451fb913ee0b0b82a49bb999f50ecd9fab9857ecd7dbebf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Technical Contact |
ORCID | 0000-0003-1023-1964 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757658/ |
PMID | 33377113 |
PQID | 2473903838 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fdb348f30a2e48f8bbd293ffcbd24f82 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7757658 proquest_miscellaneous_2473903838 crossref_primary_10_1016_j_xpro_2020_100221 pubmed_primary_33377113 elsevier_sciencedirect_doi_10_1016_j_xpro_2020_100221 |
PublicationCentury | 2000 |
PublicationDate | 2020-12-18 |
PublicationDateYYYYMMDD | 2020-12-18 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | STAR protocols |
PublicationTitleAlternate | STAR Protoc |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Tsai, Zheng (bib12) 2005; 15 Debroy, Oakey, Li (bib2) 2018; 510 Oakey, Gatlin (bib11) 2018; 2018 Debroy, Liu, Li-Oakey, Oakey (bib1) 2019; 18 Dendukuri, Panda, Haghgooie, Kim, Hatton, Doyle (bib3) 2008; 41 Jimenez, Roché, Pinot, Panizza, Courbin, Gueroui (bib9) 2011; 11 Hazel, Krutkramelis, Mooney, Tomschik, Gerow, Oakey, Gatlin (bib8) 2013; 342 Good, Vahey, Skandarajah, Fletcher, Heald (bib7) 2013; 342 Fairbanks, Schwartz, Bowman, Anseth (bib4) 2009; 30 Good, Heald (bib6) 2018 Levalley, Noren, Kharkar, Kloxin, Gatlin, Oakey (bib10) 2018; 4 Geisterfer, Zhu, Mitchison, Oakey, Gatlin (bib5) 2020; 30 Whitesides, Stroock (bib13) 2001; 54 Geisterfer (10.1016/j.xpro.2020.100221_bib5) 2020; 30 Debroy (10.1016/j.xpro.2020.100221_bib2) 2018; 510 Hazel (10.1016/j.xpro.2020.100221_bib8) 2013; 342 Jimenez (10.1016/j.xpro.2020.100221_bib9) 2011; 11 Fairbanks (10.1016/j.xpro.2020.100221_bib4) 2009; 30 Dendukuri (10.1016/j.xpro.2020.100221_bib3) 2008; 41 Levalley (10.1016/j.xpro.2020.100221_bib10) 2018; 4 Good (10.1016/j.xpro.2020.100221_bib7) 2013; 342 Oakey (10.1016/j.xpro.2020.100221_bib11) 2018; 2018 Tsai (10.1016/j.xpro.2020.100221_bib12) 2005; 15 Debroy (10.1016/j.xpro.2020.100221_bib1) 2019; 18 Good (10.1016/j.xpro.2020.100221_bib6) 2018 Whitesides (10.1016/j.xpro.2020.100221_bib13) 2001; 54 |
References_xml | – volume: 342 start-page: 856 year: 2013 end-page: 860 ident: bib7 article-title: Cytoplasmic volume modulates spindle size during embryogenesis publication-title: Science contributor: fullname: Heald – volume: 11 start-page: 429 year: 2011 end-page: 434 ident: bib9 article-title: Towards high throughput production of artificial egg oocytes using microfluidics publication-title: Lab. Chip contributor: fullname: Gueroui – volume: 54 start-page: 42 year: 2001 end-page: 48 ident: bib13 article-title: Flexible methods for microfluidics publication-title: Phys. Today contributor: fullname: Stroock – volume: 510 start-page: 334 year: 2018 end-page: 344 ident: bib2 article-title: Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication publication-title: J Colloid. Interface Sci. contributor: fullname: Li – volume: 30 start-page: 3016 year: 2020 end-page: 3023 ident: bib5 article-title: Microtubule growth rates are sensitive to global and local changes in microtubule plus-end density publication-title: Curr. Biol. contributor: fullname: Gatlin – volume: 15 start-page: 2156 year: 2005 end-page: 2163 ident: bib12 article-title: Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly publication-title: Curr. Biol. contributor: fullname: Zheng – volume: 18 start-page: 253 year: 2019 end-page: 256 ident: bib1 article-title: Structured hydrogel particles with nanofabricated interfaces via controlled oxygen inhibition publication-title: IEEE Trans. Nanobiosci. contributor: fullname: Oakey – volume: 342 start-page: 853 year: 2013 end-page: 856 ident: bib8 article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling publication-title: Science contributor: fullname: Gatlin – volume: 4 start-page: 3078 year: 2018 end-page: 3087 ident: bib10 article-title: Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation publication-title: ACS Biomater. Sci. Eng. contributor: fullname: Oakey – volume: 2018 year: 2018 ident: bib11 article-title: Microfluidic encapsulation of demembranated sperm nuclei in publication-title: Cold Spring Harb. Protoc. contributor: fullname: Gatlin – volume: 41 start-page: 8547 year: 2008 end-page: 8556 ident: bib3 article-title: Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device publication-title: Macromolecules contributor: fullname: Doyle – volume: 30 start-page: 6702 year: 2009 end-page: 6707 ident: bib4 article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility publication-title: Biomaterials contributor: fullname: Anseth – year: 2018 ident: bib6 article-title: Preparation of cellular extracts from publication-title: Cold Spring Harb. Protoc. contributor: fullname: Heald – volume: 342 start-page: 856 year: 2013 ident: 10.1016/j.xpro.2020.100221_bib7 article-title: Cytoplasmic volume modulates spindle size during embryogenesis publication-title: Science doi: 10.1126/science.1243147 contributor: fullname: Good – volume: 18 start-page: 253 year: 2019 ident: 10.1016/j.xpro.2020.100221_bib1 article-title: Structured hydrogel particles with nanofabricated interfaces via controlled oxygen inhibition publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2019.2905489 contributor: fullname: Debroy – volume: 30 start-page: 3016 year: 2020 ident: 10.1016/j.xpro.2020.100221_bib5 article-title: Microtubule growth rates are sensitive to global and local changes in microtubule plus-end density publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.05.056 contributor: fullname: Geisterfer – volume: 41 start-page: 8547 year: 2008 ident: 10.1016/j.xpro.2020.100221_bib3 article-title: Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device publication-title: Macromolecules doi: 10.1021/ma801219w contributor: fullname: Dendukuri – year: 2018 ident: 10.1016/j.xpro.2020.100221_bib6 article-title: Preparation of cellular extracts from Xenopus eggs and embryos publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot097055 contributor: fullname: Good – volume: 11 start-page: 429 year: 2011 ident: 10.1016/j.xpro.2020.100221_bib9 article-title: Towards high throughput production of artificial egg oocytes using microfluidics publication-title: Lab. Chip doi: 10.1039/C0LC00046A contributor: fullname: Jimenez – volume: 4 start-page: 3078 year: 2018 ident: 10.1016/j.xpro.2020.100221_bib10 article-title: Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00350 contributor: fullname: Levalley – volume: 54 start-page: 42 year: 2001 ident: 10.1016/j.xpro.2020.100221_bib13 article-title: Flexible methods for microfluidics publication-title: Phys. Today doi: 10.1063/1.1387591 contributor: fullname: Whitesides – volume: 510 start-page: 334 year: 2018 ident: 10.1016/j.xpro.2020.100221_bib2 article-title: Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication publication-title: J Colloid. Interface Sci. doi: 10.1016/j.jcis.2017.09.081 contributor: fullname: Debroy – volume: 30 start-page: 6702 year: 2009 ident: 10.1016/j.xpro.2020.100221_bib4 article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.055 contributor: fullname: Fairbanks – volume: 2018 year: 2018 ident: 10.1016/j.xpro.2020.100221_bib11 article-title: Microfluidic encapsulation of demembranated sperm nuclei in Xenopus egg extracts publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot102913 contributor: fullname: Oakey – volume: 15 start-page: 2156 year: 2005 ident: 10.1016/j.xpro.2020.100221_bib12 article-title: Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.10.054 contributor: fullname: Tsai – volume: 342 start-page: 853 year: 2013 ident: 10.1016/j.xpro.2020.100221_bib8 article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling publication-title: Science doi: 10.1126/science.1243110 contributor: fullname: Hazel |
SSID | ssj0002512418 |
Score | 2.2043443 |
Snippet | Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk... Cell-free extract derived from the eggs of the African clawed frog is a well-established model system that has been used historically in bulk aliquots. Here,... Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 100221 |
SubjectTerms | Animals Biophysics Cell Biology Cell Extracts - isolation & purification Cell isolation Cell-Free System - metabolism Cell-Free System - physiology Cytoplasm - metabolism Hydrogels - chemistry Microfluidic Analytical Techniques - methods Microfluidics - methods Microscopy Model Organisms Oocytes - metabolism Protocol Xenopus laevis - metabolism |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yT77IHafeqicRfJNi23z2UcXjEM4nD_YtJE3mdmVpl_2A8793pukeWwV9uaeEtrSdySTzm_CbCWPvLdoJVSIrdCmgkNgvmojBCqLXJGU0Cobcqpvv-vpWfpur-dFRX8QJy-WBs-I-QgxCWhClrxO2NoSIHgqgxVaCzatv2RwFU7QGk9eWw-YeOiBdVFqbMWMmk7vucXnC4LDOJUjrauKVhuL9E-f0N_j8k0N55JSuTtmzEU3yT1mKM_YkdefM3RDJDlb7ZVy2HK3QYyScKW-8Bz5PXb_eb_nKU2I5p537AjYpcVymKWVqy4kLf8cXv-Kmv0srvl70O2LJLcbq1s_Z7dXXH1-ui_EchaKl4woKo1LtVW2DQTCUEEGpCkJTiZTKUAZbe9mEgEARVJna2IAPjVUGuyaGFMCIF-yk67t0wbgXUVtf2kiBZKNb2wZtAXTrwRqT7Ix9OOjRrXO5DHfgkf10pHVHWndZ6zP2mVT98CSVuh4uoAG40QDc_wxgxtRhoNyIGjIawFct__nxd4dRdTilSNu-S_1-62qJiioxdEdxXuZRfvhFIYQxVSVmzEzGfyLD9E63XAxlu43B2E7ZV48h9Gv2lEQhXk1l37CT3WafLhEd7cLbYSL8BhJSEG4 priority: 102 providerName: Directory of Open Access Journals |
Title | Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography |
URI | https://dx.doi.org/10.1016/j.xpro.2020.100221 https://www.ncbi.nlm.nih.gov/pubmed/33377113 https://search.proquest.com/docview/2473903838 https://pubmed.ncbi.nlm.nih.gov/PMC7757658 https://doaj.org/article/fdb348f30a2e48f8bbd293ffcbd24f82 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJTr2UlDbtJm1QobfgrG1JlnxsQ0MIbOmhgb0JPXcdNvayD2j_fWf8CHELOeQk4aekGWm-Ed-MCPmiQE8wE1lSpCwmHOpJ6cFZAfQaOPdSxDa2avajuLnjt3MxPyBiiIVpSfvOVpf16uGyrpYtt3L94KYDT2z6c3YlJaBkoaaH5BAU9ImLjssvGmyeqT5ApuNy_YbVCHzBvMs4muPxMIwxKbOMjexRm7Z_ZJb-h53_siefmKPrY_K6x5H0a9feN-Qg1G-JniG9Lq72la8cBf0z4AN3ZDfaRDoPdbPeb-nKYEg5xT37JG5CoLBAY7DUliILfkGXf_ymWYQVXS-bHfLjln1e63fk7vr7r6ubpD9BIXF4UEEiRciNyJWVAIMCYCeRRVtmLITUplblhpfWAkSMIg3Ol9HYUgkJVeltsFGyE3JUN3X4QKhhvlAmVR5dyLJwytlCxVg4E5WUQU3IxTCOet0lytADg-xeowA0CkB3ApiQbzjUj09ikuv2QrNZ6F7UOnrLuIosNXmAUlnrAZzE6KDkUeUTIgZB6R4vdDgAPlU9-_PPg1Q1TCYcbVOHZr_VOYeBSsFph-6876T82MRBYSZEjuQ_6sP4Duhvm7C719fTF795Rl5h-5FGk6mP5Gi32YdPAIZ29rzdRDhvp8Bfbc0OZA |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFgXgtTyNxQ-kmsR07R6ioFuhWHFppb5afu0HbZLUPCf49M3lUDUgcOMXK054Ze76JvhkT8l6BnWAlsqRIWUw4tJPSQ7AC6DVw7qWIbW7V_KKYXfGvC7E4ImLIhWlJ-85WJ_X6-qSuVi23cnPtpgNPbPp9fioloGShpnfIXZivKb8VpOMCjC6bZ6pPkenYXD9hPYJoMO9qjua4QQxjTMosYyOP1BbuHzmmv4Hnn_zJWw7p7CF50CNJ-rHr8SNyFOrHRM-RYBfXh8pXjoIFGoiCO7obbSJdhLrZHHZ0bTCpnOJf-yRuQ6CwRGO61I4iD35JV7_8tlmGNd2smj0y5FZ9Zesn5Ors8-XpLOn3UEgcblWQSBFyI3JlJQChAOhJZNGWGQshtalVueGltQASo0iD82U0tlRCQlN6G2yU7Ck5rps6PCfUMF8okyqPQWRZOOVsoWIsnIlKyqAm5MMgR73pSmXogUP2Q6MCNCpAdwqYkE8o6ps7scx1e6LZLnWvbB29ZVxFlpo8wFFZ6wGexOjgyKPKJ0QMitI9YuiQALyq-ufH3w1a1TCdUNqmDs1hp3MOgkohbIfhPOu0fNPFwWAmRI70PxrD-ApYcFuyu7fYF__95Ftyb3Y5P9fnXy6-vST3cSxIqsnUK3K83x7Ca4BGe_umnQi_AWO8EMU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSIgXBOJaTiPxhtJN4jh2HqGwKsdWfaDSvlk-d1Ntk2gPif77zuSoNiDxwFOsnPbM2PNN9M2YkA8S7AQrkUV5zEKUQTsqHAQrgF59ljnBQ5tbNT_LTy-y7wu-ONjqqyXtW1MeV-ur46pctdzK5spOB57Y9Hx-IgSgZC6njQvTu-QezNk4PwjUcRFGt50lsk-T6Rhdv2FNgogw7eqOprhJDGNMiCRhI6_UFu8fOae_weefHMoDpzR7RB72aJJ-6nr9mNzx1ROi5kiyC-t96UpLwQo1RMId5Y3WgS58VTf7LV1rTCyn-Oc-ChvvKSzTmDK1pciFX9LVtdvUS7-mzareIUtu1Ve3fkouZl9_nZxG_T4KkcXtCiLBfap5Ko0AMOQBQfEkmCJh3scmNjLVWWEMAMXAY29dEbQpJBfQFM54EwR7Ro6quvIvCNXM5VLH0mEgWeRWWpPLEHKrgxTCywn5OMhRNV25DDXwyC4VKkChAlSngAn5jKK-vRNLXbcn6s1S9QpXwRmWycBinXo4SmMcQJQQLByzINMJ4YOiVI8aOjQAryr_-fH3g1YVTCmUtq58vd-qNANBxRC6w3Ced1q-7eJgMBMiRvofjWF8Bay4LdvdW-3L_37yHbl__mWmfn47-_GKPMChIK8mka_J0W6z928AHe3M23Ye3AA0xRHY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+encapsulation+of+Xenopus+laevis+cell-free+extracts+using+hydrogel+photolithography&rft.jtitle=STAR+protocols&rft.au=Geisterfer%2C+Zachary+M.&rft.au=Oakey%2C+John&rft.au=Gatlin%2C+Jesse+C.&rft.date=2020-12-18&rft.pub=Elsevier+Inc&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1016%2Fj.xpro.2020.100221&rft.externalDocID=S2666166720302082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon |