Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography

Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expan...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 1; no. 3; p. 100221
Main Authors Geisterfer, Zachary M., Oakey, John, Gatlin, Jesse C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.12.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020). [Display omitted] •Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells•Approach provides enhanced control over the shape and position of encapsulated extract•Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.
AbstractList Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020). [Display omitted] •Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells•Approach provides enhanced control over the shape and position of encapsulated extract•Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
Cell-free extract derived from the eggs of the African clawed frog is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020) . • Xenopus laevis cell-free extracts can be isolated as discreet volumes typical of cells • Approach provides enhanced control over the shape and position of encapsulated extract • Improved signal-to-noise during fluorescence imaging versus oil-emulsion extract droplets Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms.
ArticleNumber 100221
Author Geisterfer, Zachary M.
Gatlin, Jesse C.
Oakey, John
Author_xml – sequence: 1
  givenname: Zachary M.
  surname: Geisterfer
  fullname: Geisterfer, Zachary M.
  email: zgeister@uwyo.edu
  organization: Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA
– sequence: 2
  givenname: John
  orcidid: 0000-0003-1023-1964
  surname: Oakey
  fullname: Oakey, John
  organization: Department of Chemical Engineering, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA
– sequence: 3
  givenname: Jesse C.
  surname: Gatlin
  fullname: Gatlin, Jesse C.
  email: jgatlin@uwyo.edu
  organization: Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82070, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33377113$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpH-CAcuSSxR9JHEsICVV8VCriAhI3y3bGiVfeONjJqvvvcUip2gunGY3fecYz70t0NoYREHpN8I5g0rzb7-6mGHYU07WAKSXP0AVtmqYkTcPPHuXn6CqlPc6amtCKtC_QOWOMc0LYBZLfnInB-sV1zhQwGjWlxavZhbEItvgFY5iWVHgFR5cKA96XNgIUcDdHZeZULMmNfTGcuhh68MU0hDl4Nw-hj2oaTq_Qc6t8gqv7eIl-fv704_prefv9y831x9vS1JTMJa-Bqpq2mjNBgdGqJlYLwgCwxrqlqhJaCyFsjcF0wiot2prnlHcatOXsEt1s3C6ovZyiO6h4kkE5-bcQYi9VnJ3xIG2nWdVahhWFHFutOyqYtSbHyrY0sz5srGnRB-gMjHlX_wT69GV0g-zDUXJe86ZuM-DtPSCG3wukWR5cWm-nRghLkrTKa2LWslVKN2l2IaUI9mEMwXI1Wu7larRcjZab0bnpzeMPPrT8szUL3m8CyCc_OogyGZfNhc5FMHO-ifsf_w9mbr-r
CitedBy_id crossref_primary_10_1091_mbc_E22_03_0074
crossref_primary_10_20517_microstructures_2023_106
Cites_doi 10.1126/science.1243147
10.1109/TNB.2019.2905489
10.1016/j.cub.2020.05.056
10.1021/ma801219w
10.1101/pdb.prot097055
10.1039/C0LC00046A
10.1021/acsbiomaterials.8b00350
10.1063/1.1387591
10.1016/j.jcis.2017.09.081
10.1016/j.biomaterials.2009.08.055
10.1101/pdb.prot102913
10.1016/j.cub.2005.10.054
10.1126/science.1243110
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.xpro.2020.100221
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
EndPage 100221
ExternalDocumentID oai_doaj_org_article_fdb348f30a2e48f8bbd293ffcbd24f82
10_1016_j_xpro_2020_100221
33377113
S2666166720302082
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM135568
– fundername: NIGMS NIH HHS
  grantid: R01 GM113028
– fundername: NIGMS NIH HHS
  grantid: P20 GM103432
GroupedDBID 53G
6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
0R~
0SF
AALRI
AAMRU
ADVLN
AITUG
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c521t-75e2a528b7392e32451fb913ee0b0b82a49bb999f50ecd9fab9857ecd7dbebf73
IEDL.DBID RPM
ISSN 2666-1667
IngestDate Tue Oct 22 15:15:17 EDT 2024
Tue Sep 17 21:23:02 EDT 2024
Thu Oct 24 22:57:42 EDT 2024
Thu Sep 26 17:39:10 EDT 2024
Sat Sep 28 08:21:41 EDT 2024
Fri Feb 23 02:44:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Model Organisms
Biophysics
Microscopy
Cell isolation
Cell Biology
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-75e2a528b7392e32451fb913ee0b0b82a49bb999f50ecd9fab9857ecd7dbebf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Technical Contact
ORCID 0000-0003-1023-1964
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757658/
PMID 33377113
PQID 2473903838
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_fdb348f30a2e48f8bbd293ffcbd24f82
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7757658
proquest_miscellaneous_2473903838
crossref_primary_10_1016_j_xpro_2020_100221
pubmed_primary_33377113
elsevier_sciencedirect_doi_10_1016_j_xpro_2020_100221
PublicationCentury 2000
PublicationDate 2020-12-18
PublicationDateYYYYMMDD 2020-12-18
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Tsai, Zheng (bib12) 2005; 15
Debroy, Oakey, Li (bib2) 2018; 510
Oakey, Gatlin (bib11) 2018; 2018
Debroy, Liu, Li-Oakey, Oakey (bib1) 2019; 18
Dendukuri, Panda, Haghgooie, Kim, Hatton, Doyle (bib3) 2008; 41
Jimenez, Roché, Pinot, Panizza, Courbin, Gueroui (bib9) 2011; 11
Hazel, Krutkramelis, Mooney, Tomschik, Gerow, Oakey, Gatlin (bib8) 2013; 342
Good, Vahey, Skandarajah, Fletcher, Heald (bib7) 2013; 342
Fairbanks, Schwartz, Bowman, Anseth (bib4) 2009; 30
Good, Heald (bib6) 2018
Levalley, Noren, Kharkar, Kloxin, Gatlin, Oakey (bib10) 2018; 4
Geisterfer, Zhu, Mitchison, Oakey, Gatlin (bib5) 2020; 30
Whitesides, Stroock (bib13) 2001; 54
Geisterfer (10.1016/j.xpro.2020.100221_bib5) 2020; 30
Debroy (10.1016/j.xpro.2020.100221_bib2) 2018; 510
Hazel (10.1016/j.xpro.2020.100221_bib8) 2013; 342
Jimenez (10.1016/j.xpro.2020.100221_bib9) 2011; 11
Fairbanks (10.1016/j.xpro.2020.100221_bib4) 2009; 30
Dendukuri (10.1016/j.xpro.2020.100221_bib3) 2008; 41
Levalley (10.1016/j.xpro.2020.100221_bib10) 2018; 4
Good (10.1016/j.xpro.2020.100221_bib7) 2013; 342
Oakey (10.1016/j.xpro.2020.100221_bib11) 2018; 2018
Tsai (10.1016/j.xpro.2020.100221_bib12) 2005; 15
Debroy (10.1016/j.xpro.2020.100221_bib1) 2019; 18
Good (10.1016/j.xpro.2020.100221_bib6) 2018
Whitesides (10.1016/j.xpro.2020.100221_bib13) 2001; 54
References_xml – volume: 342
  start-page: 856
  year: 2013
  end-page: 860
  ident: bib7
  article-title: Cytoplasmic volume modulates spindle size during embryogenesis
  publication-title: Science
  contributor:
    fullname: Heald
– volume: 11
  start-page: 429
  year: 2011
  end-page: 434
  ident: bib9
  article-title: Towards high throughput production of artificial egg oocytes using microfluidics
  publication-title: Lab. Chip
  contributor:
    fullname: Gueroui
– volume: 54
  start-page: 42
  year: 2001
  end-page: 48
  ident: bib13
  article-title: Flexible methods for microfluidics
  publication-title: Phys. Today
  contributor:
    fullname: Stroock
– volume: 510
  start-page: 334
  year: 2018
  end-page: 344
  ident: bib2
  article-title: Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication
  publication-title: J Colloid. Interface Sci.
  contributor:
    fullname: Li
– volume: 30
  start-page: 3016
  year: 2020
  end-page: 3023
  ident: bib5
  article-title: Microtubule growth rates are sensitive to global and local changes in microtubule plus-end density
  publication-title: Curr. Biol.
  contributor:
    fullname: Gatlin
– volume: 15
  start-page: 2156
  year: 2005
  end-page: 2163
  ident: bib12
  article-title: Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly
  publication-title: Curr. Biol.
  contributor:
    fullname: Zheng
– volume: 18
  start-page: 253
  year: 2019
  end-page: 256
  ident: bib1
  article-title: Structured hydrogel particles with nanofabricated interfaces via controlled oxygen inhibition
  publication-title: IEEE Trans. Nanobiosci.
  contributor:
    fullname: Oakey
– volume: 342
  start-page: 853
  year: 2013
  end-page: 856
  ident: bib8
  article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling
  publication-title: Science
  contributor:
    fullname: Gatlin
– volume: 4
  start-page: 3078
  year: 2018
  end-page: 3087
  ident: bib10
  article-title: Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation
  publication-title: ACS Biomater. Sci. Eng.
  contributor:
    fullname: Oakey
– volume: 2018
  year: 2018
  ident: bib11
  article-title: Microfluidic encapsulation of demembranated sperm nuclei in
  publication-title: Cold Spring Harb. Protoc.
  contributor:
    fullname: Gatlin
– volume: 41
  start-page: 8547
  year: 2008
  end-page: 8556
  ident: bib3
  article-title: Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device
  publication-title: Macromolecules
  contributor:
    fullname: Doyle
– volume: 30
  start-page: 6702
  year: 2009
  end-page: 6707
  ident: bib4
  article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility
  publication-title: Biomaterials
  contributor:
    fullname: Anseth
– year: 2018
  ident: bib6
  article-title: Preparation of cellular extracts from
  publication-title: Cold Spring Harb. Protoc.
  contributor:
    fullname: Heald
– volume: 342
  start-page: 856
  year: 2013
  ident: 10.1016/j.xpro.2020.100221_bib7
  article-title: Cytoplasmic volume modulates spindle size during embryogenesis
  publication-title: Science
  doi: 10.1126/science.1243147
  contributor:
    fullname: Good
– volume: 18
  start-page: 253
  year: 2019
  ident: 10.1016/j.xpro.2020.100221_bib1
  article-title: Structured hydrogel particles with nanofabricated interfaces via controlled oxygen inhibition
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2019.2905489
  contributor:
    fullname: Debroy
– volume: 30
  start-page: 3016
  year: 2020
  ident: 10.1016/j.xpro.2020.100221_bib5
  article-title: Microtubule growth rates are sensitive to global and local changes in microtubule plus-end density
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.05.056
  contributor:
    fullname: Geisterfer
– volume: 41
  start-page: 8547
  year: 2008
  ident: 10.1016/j.xpro.2020.100221_bib3
  article-title: Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device
  publication-title: Macromolecules
  doi: 10.1021/ma801219w
  contributor:
    fullname: Dendukuri
– year: 2018
  ident: 10.1016/j.xpro.2020.100221_bib6
  article-title: Preparation of cellular extracts from Xenopus eggs and embryos
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot097055
  contributor:
    fullname: Good
– volume: 11
  start-page: 429
  year: 2011
  ident: 10.1016/j.xpro.2020.100221_bib9
  article-title: Towards high throughput production of artificial egg oocytes using microfluidics
  publication-title: Lab. Chip
  doi: 10.1039/C0LC00046A
  contributor:
    fullname: Jimenez
– volume: 4
  start-page: 3078
  year: 2018
  ident: 10.1016/j.xpro.2020.100221_bib10
  article-title: Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00350
  contributor:
    fullname: Levalley
– volume: 54
  start-page: 42
  year: 2001
  ident: 10.1016/j.xpro.2020.100221_bib13
  article-title: Flexible methods for microfluidics
  publication-title: Phys. Today
  doi: 10.1063/1.1387591
  contributor:
    fullname: Whitesides
– volume: 510
  start-page: 334
  year: 2018
  ident: 10.1016/j.xpro.2020.100221_bib2
  article-title: Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication
  publication-title: J Colloid. Interface Sci.
  doi: 10.1016/j.jcis.2017.09.081
  contributor:
    fullname: Debroy
– volume: 30
  start-page: 6702
  year: 2009
  ident: 10.1016/j.xpro.2020.100221_bib4
  article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.055
  contributor:
    fullname: Fairbanks
– volume: 2018
  year: 2018
  ident: 10.1016/j.xpro.2020.100221_bib11
  article-title: Microfluidic encapsulation of demembranated sperm nuclei in Xenopus egg extracts
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot102913
  contributor:
    fullname: Oakey
– volume: 15
  start-page: 2156
  year: 2005
  ident: 10.1016/j.xpro.2020.100221_bib12
  article-title: Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.10.054
  contributor:
    fullname: Tsai
– volume: 342
  start-page: 853
  year: 2013
  ident: 10.1016/j.xpro.2020.100221_bib8
  article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling
  publication-title: Science
  doi: 10.1126/science.1243110
  contributor:
    fullname: Hazel
SSID ssj0002512418
Score 2.2043443
Snippet Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk...
Cell-free extract derived from the eggs of the African clawed frog is a well-established model system that has been used historically in bulk aliquots. Here,...
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100221
SubjectTerms Animals
Biophysics
Cell Biology
Cell Extracts - isolation & purification
Cell isolation
Cell-Free System - metabolism
Cell-Free System - physiology
Cytoplasm - metabolism
Hydrogels - chemistry
Microfluidic Analytical Techniques - methods
Microfluidics - methods
Microscopy
Model Organisms
Oocytes - metabolism
Protocol
Xenopus laevis - metabolism
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yT77IHafeqicRfJNi23z2UcXjEM4nD_YtJE3mdmVpl_2A8793pukeWwV9uaeEtrSdySTzm_CbCWPvLdoJVSIrdCmgkNgvmojBCqLXJGU0Cobcqpvv-vpWfpur-dFRX8QJy-WBs-I-QgxCWhClrxO2NoSIHgqgxVaCzatv2RwFU7QGk9eWw-YeOiBdVFqbMWMmk7vucXnC4LDOJUjrauKVhuL9E-f0N_j8k0N55JSuTtmzEU3yT1mKM_YkdefM3RDJDlb7ZVy2HK3QYyScKW-8Bz5PXb_eb_nKU2I5p537AjYpcVymKWVqy4kLf8cXv-Kmv0srvl70O2LJLcbq1s_Z7dXXH1-ui_EchaKl4woKo1LtVW2DQTCUEEGpCkJTiZTKUAZbe9mEgEARVJna2IAPjVUGuyaGFMCIF-yk67t0wbgXUVtf2kiBZKNb2wZtAXTrwRqT7Ix9OOjRrXO5DHfgkf10pHVHWndZ6zP2mVT98CSVuh4uoAG40QDc_wxgxtRhoNyIGjIawFct__nxd4dRdTilSNu-S_1-62qJiioxdEdxXuZRfvhFIYQxVSVmzEzGfyLD9E63XAxlu43B2E7ZV48h9Gv2lEQhXk1l37CT3WafLhEd7cLbYSL8BhJSEG4
  priority: 102
  providerName: Directory of Open Access Journals
Title Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography
URI https://dx.doi.org/10.1016/j.xpro.2020.100221
https://www.ncbi.nlm.nih.gov/pubmed/33377113
https://search.proquest.com/docview/2473903838
https://pubmed.ncbi.nlm.nih.gov/PMC7757658
https://doaj.org/article/fdb348f30a2e48f8bbd293ffcbd24f82
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJTr2UlDbtJm1QobfgrG1JlnxsQ0MIbOmhgb0JPXcdNvayD2j_fWf8CHELOeQk4aekGWm-Ed-MCPmiQE8wE1lSpCwmHOpJ6cFZAfQaOPdSxDa2avajuLnjt3MxPyBiiIVpSfvOVpf16uGyrpYtt3L94KYDT2z6c3YlJaBkoaaH5BAU9ImLjssvGmyeqT5ApuNy_YbVCHzBvMs4muPxMIwxKbOMjexRm7Z_ZJb-h53_siefmKPrY_K6x5H0a9feN-Qg1G-JniG9Lq72la8cBf0z4AN3ZDfaRDoPdbPeb-nKYEg5xT37JG5CoLBAY7DUliILfkGXf_ymWYQVXS-bHfLjln1e63fk7vr7r6ubpD9BIXF4UEEiRciNyJWVAIMCYCeRRVtmLITUplblhpfWAkSMIg3Ol9HYUgkJVeltsFGyE3JUN3X4QKhhvlAmVR5dyLJwytlCxVg4E5WUQU3IxTCOet0lytADg-xeowA0CkB3ApiQbzjUj09ikuv2QrNZ6F7UOnrLuIosNXmAUlnrAZzE6KDkUeUTIgZB6R4vdDgAPlU9-_PPg1Q1TCYcbVOHZr_VOYeBSsFph-6876T82MRBYSZEjuQ_6sP4Duhvm7C719fTF795Rl5h-5FGk6mP5Gi32YdPAIZ29rzdRDhvp8Bfbc0OZA
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFgXgtTyNxQ-kmsR07R6ioFuhWHFppb5afu0HbZLUPCf49M3lUDUgcOMXK054Ze76JvhkT8l6BnWAlsqRIWUw4tJPSQ7AC6DVw7qWIbW7V_KKYXfGvC7E4ImLIhWlJ-85WJ_X6-qSuVi23cnPtpgNPbPp9fioloGShpnfIXZivKb8VpOMCjC6bZ6pPkenYXD9hPYJoMO9qjua4QQxjTMosYyOP1BbuHzmmv4Hnn_zJWw7p7CF50CNJ-rHr8SNyFOrHRM-RYBfXh8pXjoIFGoiCO7obbSJdhLrZHHZ0bTCpnOJf-yRuQ6CwRGO61I4iD35JV7_8tlmGNd2smj0y5FZ9Zesn5Ors8-XpLOn3UEgcblWQSBFyI3JlJQChAOhJZNGWGQshtalVueGltQASo0iD82U0tlRCQlN6G2yU7Ck5rps6PCfUMF8okyqPQWRZOOVsoWIsnIlKyqAm5MMgR73pSmXogUP2Q6MCNCpAdwqYkE8o6ps7scx1e6LZLnWvbB29ZVxFlpo8wFFZ6wGexOjgyKPKJ0QMitI9YuiQALyq-ufH3w1a1TCdUNqmDs1hp3MOgkohbIfhPOu0fNPFwWAmRI70PxrD-ApYcFuyu7fYF__95Ftyb3Y5P9fnXy6-vST3cSxIqsnUK3K83x7Ca4BGe_umnQi_AWO8EMU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSIgXBOJaTiPxhtJN4jh2HqGwKsdWfaDSvlk-d1Ntk2gPif77zuSoNiDxwFOsnPbM2PNN9M2YkA8S7AQrkUV5zEKUQTsqHAQrgF59ljnBQ5tbNT_LTy-y7wu-ONjqqyXtW1MeV-ur46pctdzK5spOB57Y9Hx-IgSgZC6njQvTu-QezNk4PwjUcRFGt50lsk-T6Rhdv2FNgogw7eqOprhJDGNMiCRhI6_UFu8fOae_weefHMoDpzR7RB72aJJ-6nr9mNzx1ROi5kiyC-t96UpLwQo1RMId5Y3WgS58VTf7LV1rTCyn-Oc-ChvvKSzTmDK1pciFX9LVtdvUS7-mzareIUtu1Ve3fkouZl9_nZxG_T4KkcXtCiLBfap5Ko0AMOQBQfEkmCJh3scmNjLVWWEMAMXAY29dEbQpJBfQFM54EwR7Ro6quvIvCNXM5VLH0mEgWeRWWpPLEHKrgxTCywn5OMhRNV25DDXwyC4VKkChAlSngAn5jKK-vRNLXbcn6s1S9QpXwRmWycBinXo4SmMcQJQQLByzINMJ4YOiVI8aOjQAryr_-fH3g1YVTCmUtq58vd-qNANBxRC6w3Ced1q-7eJgMBMiRvofjWF8Bay4LdvdW-3L_37yHbl__mWmfn47-_GKPMChIK8mka_J0W6z928AHe3M23Ye3AA0xRHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+encapsulation+of+Xenopus+laevis+cell-free+extracts+using+hydrogel+photolithography&rft.jtitle=STAR+protocols&rft.au=Geisterfer%2C+Zachary+M.&rft.au=Oakey%2C+John&rft.au=Gatlin%2C+Jesse+C.&rft.date=2020-12-18&rft.pub=Elsevier+Inc&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1016%2Fj.xpro.2020.100221&rft.externalDocID=S2666166720302082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon