Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health
The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as me...
Saved in:
Published in | Cell metabolism Vol. 32; no. 5; pp. 751 - 766.e11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2−/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.
[Display omitted]
•Pyruvate kinase activators (PKa) amplify insulin release in preclinical T2DM models•PKa amplify insulin release via the phosphoenolpyruvate cycle in vivo•PKa acutely short-circuit gluconeogenesis and accelerate red blood cell glycolysis•PKa improve insulin sensitivity, steatosis, and dyslipidemia in obese rats
Abulizi et al. show that small molecule activation of mitochondrial PEPCK (pck2)-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes. |
---|---|
AbstractList | The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2 mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2 −/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. Abulizi et al. show that small molecule activation of mitochondrial PEPCK ( pck2 )-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes. The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2−/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. [Display omitted] •Pyruvate kinase activators (PKa) amplify insulin release in preclinical T2DM models•PKa amplify insulin release via the phosphoenolpyruvate cycle in vivo•PKa acutely short-circuit gluconeogenesis and accelerate red blood cell glycolysis•PKa improve insulin sensitivity, steatosis, and dyslipidemia in obese rats Abulizi et al. show that small molecule activation of mitochondrial PEPCK (pck2)-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes. |
Author | Hillion, Joelle Merrins, Matthew J. Abulizi, Abudukadier Mason, Graeme F. Alves, Tiago C. Thomas, Craig Kibbey, Richard G. Ma, Lingjun Wang, Bei Siebel, Stephan Lewandowski, Sophie L. Zhao, Xiaojian Stark, Romana Cardone, Rebecca L. Rinehart, Jesse Sehgal, Raghav Kung, Charles Andrews, Zane B. |
AuthorAffiliation | 7 Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA 3 Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA 8 Lead Contact 2 Department of Physiology, Monash University, Melbourne, VIC 3800, Australia 5 Agios Pharmaceuticals, Cambridge, MA 02139, USA 6 Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA 1 Department of Internal Medicine, Yale University, New Haven, CT 06520, USA 4 Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA |
AuthorAffiliation_xml | – name: 6 Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA – name: 7 Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA – name: 3 Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA – name: 4 Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – name: 5 Agios Pharmaceuticals, Cambridge, MA 02139, USA – name: 1 Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – name: 2 Department of Physiology, Monash University, Melbourne, VIC 3800, Australia – name: 8 Lead Contact |
Author_xml | – sequence: 1 givenname: Abudukadier orcidid: 0000-0003-0828-1604 surname: Abulizi fullname: Abulizi, Abudukadier organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 2 givenname: Rebecca L. surname: Cardone fullname: Cardone, Rebecca L. organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 3 givenname: Romana orcidid: 0000-0002-4264-0060 surname: Stark fullname: Stark, Romana organization: Department of Physiology, Monash University, Melbourne, VIC 3800, Australia – sequence: 4 givenname: Sophie L. orcidid: 0000-0002-2838-7054 surname: Lewandowski fullname: Lewandowski, Sophie L. organization: Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA – sequence: 5 givenname: Xiaojian surname: Zhao fullname: Zhao, Xiaojian organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 6 givenname: Joelle surname: Hillion fullname: Hillion, Joelle organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 7 givenname: Lingjun orcidid: 0000-0003-2223-7626 surname: Ma fullname: Ma, Lingjun organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 8 givenname: Raghav orcidid: 0000-0002-9387-1758 surname: Sehgal fullname: Sehgal, Raghav organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 9 givenname: Tiago C. surname: Alves fullname: Alves, Tiago C. organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 10 givenname: Craig surname: Thomas fullname: Thomas, Craig organization: Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 11 givenname: Charles surname: Kung fullname: Kung, Charles organization: Agios Pharmaceuticals, Cambridge, MA 02139, USA – sequence: 12 givenname: Bei surname: Wang fullname: Wang, Bei organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 13 givenname: Stephan surname: Siebel fullname: Siebel, Stephan organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 14 givenname: Zane B. orcidid: 0000-0002-9097-7944 surname: Andrews fullname: Andrews, Zane B. organization: Department of Physiology, Monash University, Melbourne, VIC 3800, Australia – sequence: 15 givenname: Graeme F. orcidid: 0000-0002-6573-5222 surname: Mason fullname: Mason, Graeme F. organization: Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA – sequence: 16 givenname: Jesse orcidid: 0000-0003-4839-4005 surname: Rinehart fullname: Rinehart, Jesse organization: Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA – sequence: 17 givenname: Matthew J. surname: Merrins fullname: Merrins, Matthew J. organization: Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA – sequence: 18 givenname: Richard G. surname: Kibbey fullname: Kibbey, Richard G. email: richard.kibbey@yale.edu organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33147485$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB_wB1ggL9lk6lfiWEJI7QhopY5gUcTS8jg3xCMnDrYz0vx7EqatgEVXtq7POdc63zk6GcIACL2lZEUJrS53K9tDXjHClsGKkOoFOqOKs0IKRk7me1mSQlBOT9F5SjtCeMUVf4VOOadCiro8Q_1m8tkV9y6lCfCVteAhmuzCgEOLcwd443KwXRia6IzH37qQxi7AEPx4iNPeZMDrg_WAb_sxhj0k_KMLHorr0BzwBrLZBu8svgHjc_cavWyNT_Dm4bxA3z9_ul_fFHdfv9yur-4KWzKaC0lrKZSyAkQLFWFSECXqygpqG0VaVUvCGec1hZrV3G6bRnJqt4SJxjBacn6BPh5zx2nbQ2NhyNF4PUbXm3jQwTj978vgOv0z7LWspCJ0CXj_EBDDrwlS1r1LczfeDBCmpJkopZJE0HqWvvt719OSx45nATsKbAwpRWifJJToBaTe6QWkXkAusxnkbKr_M1mX_3CZ_-v889YPRyvMDe8dRJ2sg8FC4yLYrJvgnrP_BvDJumU |
CitedBy_id | crossref_primary_10_1016_j_coisb_2021_100389 crossref_primary_10_1155_2023_1500032 crossref_primary_10_2337_db21_0037 crossref_primary_10_1172_jci_insight_154198 crossref_primary_10_3390_ijms22031476 crossref_primary_10_1038_s41574_020_00447_0 crossref_primary_10_3389_fendo_2021_642152 crossref_primary_10_3390_antiox10020197 crossref_primary_10_1038_s42255_021_00516_2 crossref_primary_10_3389_fmolb_2024_1354199 crossref_primary_10_1089_ars_2021_0113 crossref_primary_10_1016_j_bpc_2024_107270 crossref_primary_10_3390_biom12020335 crossref_primary_10_1073_pnas_2400781121 crossref_primary_10_1016_j_cmet_2022_11_011 crossref_primary_10_1073_pnas_2216810120 crossref_primary_10_1016_j_biosystems_2024_105257 crossref_primary_10_1016_j_jhazmat_2023_132013 crossref_primary_10_3390_ijms24086978 crossref_primary_10_3390_biomedicines10071627 crossref_primary_10_1080_19382014_2025_2479911 crossref_primary_10_3389_fbioe_2024_1392575 crossref_primary_10_2337_db24_0131 crossref_primary_10_1016_j_jlr_2021_100132 crossref_primary_10_7554_eLife_79422 crossref_primary_10_1021_acs_analchem_4c05341 crossref_primary_10_1016_j_lfs_2022_120725 crossref_primary_10_2337_dbi23_0032 crossref_primary_10_1089_ars_2024_0799 crossref_primary_10_1016_j_talanta_2024_126134 crossref_primary_10_2337_dbi21_0009 crossref_primary_10_1007_s10863_023_09965_8 crossref_primary_10_1016_j_celrep_2021_108690 crossref_primary_10_1016_j_ijbiomac_2023_126039 crossref_primary_10_1007_s00125_022_05672_y crossref_primary_10_1016_j_xhgg_2023_100182 crossref_primary_10_3389_fphar_2024_1501990 crossref_primary_10_1111_apha_14155 crossref_primary_10_1016_j_cmet_2022_06_003 crossref_primary_10_1111_imm_13827 crossref_primary_10_2337_db22_0728 crossref_primary_10_1016_j_cmet_2020_10_007 crossref_primary_10_1016_j_jbc_2021_101278 crossref_primary_10_1111_apha_14148 crossref_primary_10_3389_fimmu_2022_1028130 crossref_primary_10_1016_j_cmet_2020_10_008 crossref_primary_10_1002_adhm_202303785 crossref_primary_10_1007_s13340_022_00576_z crossref_primary_10_1016_j_celrep_2023_112394 crossref_primary_10_1016_j_jcjd_2021_11_002 crossref_primary_10_1681_ASN_0000000000000122 |
Cites_doi | 10.2337/diabetes.51.2007.S389 10.2337/diabetes.51.9.2861 10.1016/j.pharmthera.2016.10.018 10.1016/S0021-9258(18)33867-5 10.1016/j.cmet.2013.05.018 10.1111/j.1476-5381.2012.02184.x 10.1016/j.bmcl.2010.04.015 10.1074/jbc.M602954200 10.1038/s41598-019-52952-6 10.1016/j.molmet.2018.03.014 10.1042/BJ20112197 10.1007/BF00219375 10.1152/ajpendo.00218.2004 10.1016/j.cmet.2015.08.021 10.1016/j.cell.2015.01.012 10.1016/j.celrep.2019.11.009 10.1016/j.cmet.2020.10.007 10.1074/jbc.M311842200 10.1007/978-1-59745-471-1_16 10.1056/NEJMoa1902678 10.1073/pnas.052005699 10.1055/s-2007-1003284 10.1007/s00424-002-0781-5 10.1042/bj2080333 10.1006/bbrc.2000.2616 10.1016/S0140-6736(10)60408-4 10.2337/diab.42.6.843 10.1073/pnas.1423952112 10.1016/j.celrep.2019.06.058 10.1002/cpdd.604 10.1038/nchembio.1060 10.1371/journal.pone.0097139 10.1038/s41467-017-01143-w 10.1016/0009-8981(82)90011-0 10.1016/j.bbcan.2019.01.004 10.3390/jcm9061619 10.1056/NEJMoa031314 10.2337/diab.34.3.246 10.1074/jbc.273.50.33501 10.2337/diab.37.7.997 10.1016/j.bbamcr.2012.07.005 10.1210/me.2014-1095 10.2337/db14-0783 10.1038/nature13270 10.1074/jbc.M200958200 10.1152/ajpendo.90604.2008 10.1016/j.cmet.2007.02.008 10.1038/nbt822 10.1016/j.tem.2017.03.003 10.1371/journal.pbio.1001485 10.1021/jm901577g 10.1172/JCI82498 10.1038/s41591-018-0125-4 10.1038/nm.3579 10.2337/db19-0388 10.2337/db11-1564 10.1016/S0021-9258(18)93432-0 10.1074/jbc.M109.011775 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.10.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 766.e11 |
ExternalDocumentID | PMC7679013 33147485 10_1016_j_cmet_2020_10_006 S1550413120305398 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK092606 – fundername: NIDDK NIH HHS grantid: R01 DK127637 – fundername: NIDDK NIH HHS grantid: T32 DK007665 – fundername: NIDDK NIH HHS grantid: R01 DK110181 – fundername: NIDDK NIH HHS grantid: R01 DK108283 – fundername: NIA NIH HHS grantid: R21 AG050135 – fundername: NIDDK NIH HHS grantid: F31 DK126403 – fundername: NIDDK NIH HHS grantid: P30 DK034989 – fundername: NIDDK NIH HHS grantid: K08 DK080142 – fundername: NCRR NIH HHS grantid: UL1 RR024139 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-7187499c4e4fe6027409486c41cd90f9870323381e8283cbdd731cb024da21533 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 13:35:03 EDT 2025 Mon Jul 21 10:43:42 EDT 2025 Mon Jul 21 06:02:23 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Fri Feb 23 02:44:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | human islets anaplerosis pyruvate kinase cataplerosis mitochondrial GTP fatty liver insulin secretion mitochondrial PEPCK phosphoenolpyruvate cycle insulin resistance |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-7187499c4e4fe6027409486c41cd90f9870323381e8283cbdd731cb024da21533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS R.G.K. conceived the study and wrote the paper with A.A., R.L.C., and R. Stark. A.A. and R.L.C. performed the main body of experiments with contributions from R. Stark., T.C.A., S.L.L., J.H., and L.M. and assisted by B.W., X.Z., R. Sehgal, and S.S. C.K., C.T., R.S., Z.B.A., G.F.M., and J.R. provided reagents and technical expertise. R.G.K., G.F.M., M.J.M., R.S., and Z.B.A. obtained funding. R.G.K., A.A., R.L.C., R. Stark., S.L.L., M.J.M., C.T., and C.K. interpreted the data and edited the manuscript. |
ORCID | 0000-0002-9387-1758 0000-0002-4264-0060 0000-0003-4839-4005 0000-0003-0828-1604 0000-0002-2838-7054 0000-0002-6573-5222 0000-0002-9097-7944 0000-0003-2223-7626 |
OpenAccessLink | http://www.cell.com/article/S1550413120305398/pdf |
PMID | 33147485 |
PQID | 2457970418 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7679013 proquest_miscellaneous_2457970418 pubmed_primary_33147485 crossref_primary_10_1016_j_cmet_2020_10_006 crossref_citationtrail_10_1016_j_cmet_2020_10_006 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-03 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Olofsson, Göpel, Barg, Galvanovskis, Ma, Salehi, Rorsman, Eliasson (bib36) 2002; 444 Miyanaga, Nagano, Cottam (bib34) 1982; 257 Shalev (bib47) 2014; 28 Staal, Rijksen, Vlug, Vromen-van den Bos, Akkerman, Gorter, Dierick, Petermans (bib50) 1982; 118 Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha (bib3) 2012; 8 Parks, Drake (bib38) 1982; 208 Schuit, Van Lommel, Granvik, Goyvaerts, de Faudeur, Schraenen, Lemaire (bib46) 2012; 61 Samuel, Petersen, Shulman (bib45) 2010; 375 De Ceuninck, Kargar, Ilic, Caliez, Rolin, Umbdenstock, Vinson, Combettes, de Fanti, Harley (bib6) 2013; 168 Kibbey, Choi, Lee, Cabrera, Pongratz, Zhao, Birkenfeld, Li, Berggren, Stanley, Shulman (bib22) 2014; 63 Wang, Chu, Das, Ren, Hasstedt, Elbein (bib55) 2002; 51 Yu, Chen, Cline, Zhang, Zong, Wang, Bergeron, Kim, Cushman, Cooney (bib58) 2002; 277 Palomino-Schätzlein, Lamas-Domingo, Ciudin, Gutiérrez-Carcedo, Marés, Aparicio-Gómez, Hernández, Simó, Herance (bib37) 2020; 9 Gassaway, Cardone, Padyana, Petersen, Judd, Hayes, Tong, Barber, Apostolidi, Abulizi (bib11) 2019; 29 Dechiara, Poueymirou, Auerbach, Frendewey, Yancopoulos, Valenzuela (bib7) 2009; 530 Prentki, Matschinsky, Madiraju (bib44) 2013; 18 Lewandowski, Cardone, Foster, Ho, Potapenko, Poudel, VanDeusen, Sdao, Alves, Zhao (bib23) 2020; 32 Perry, Camporez, Kursawe, Titchenell, Zhang, Perry, Jurczak, Abudukadier, Han, Zhang (bib40) 2015; 160 Lu, Mulder, Zhao, Burgess, Jensen, Kamzolova, Newgard, Sherry (bib24) 2002; 99 Erion, Lapworth, Amor, Bai, Vera, Clark, Yan, Zhu, Ross, Purkal (bib9) 2014; 9 Perry, Zhang, Zhang, Kumashiro, Camporez, Cline, Rothman, Shulman (bib39) 2014; 20 Jesinkey, Madiraju, Alves, Yarborough, Cardone, Zhao, Parsaei, Nasiri, Butrico, Liu (bib19) 2019; 28 Petersen, Dufour, Befroy, Garcia, Shulman (bib42) 2004; 350 Zawalich, Zawalich, Cline, Shulman, Rasmussen (bib59) 1993; 42 Alves, Pongratz, Zhao, Yarborough, Sereda, Shirihai, Cline, Mason, Kibbey (bib2) 2015; 22 Harris, Fenton (bib14) 2019; 1871 Jiang, Boxer, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park (bib20) 2010; 20 Malaisse-Lagae, Bakkali Nadi, Malaisse (bib32) 1994; 328 Newgard, Lu, Jensen, Schissler, Boucher, Burgess, Sherry (bib35) 2002; 51 Titchenell, Lazar, Birnbaum (bib52) 2017; 28 Boxer, Jiang, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park (bib4) 2010; 53 MacDonald, McKenzie, Walker, Kaysen (bib28) 1992; 24 Shi, Lu, Chen, Wei, Xu, Li, Bai, Xia, Lam, Zhang (bib49) 2020; 69 Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald (bib30) 2014; 510 Iwakura, Fujimoto, Kagimoto, Inada, Kubota, Someya, Ihara, Yamada, Seino (bib15) 2000; 271 Grace, Rose, Layton, Galactéros, Barcellini, Morton, van Beers, Yaish, Ravindranath, Kuo (bib13) 2019; 381 Vatner, Majumdar, Kumashiro, Petersen, Rahimi, Gattu, Bears, Camporez, Cline, Jurczak (bib54) 2015; 112 Sharma, Wu, Wynn, Gui, Malloy, Sherry, Chuang, Khemtong (bib48) 2019; 9 Ferdaoussi, Dai, Jensen, Wang, Peterson, Huang, Ilkayeva, Smith, Miller, Hajmrle (bib10) 2015; 125 Valenzuela, Murphy, Frendewey, Gale, Economides, Auerbach, Poueymirou, Adams, Rojas, Yasenchak (bib53) 2003; 21 Akhmedov, De Marchi, Wollheim, Wiederkehr (bib1) 2012; 1823 Jensen, Joseph, Ronnebaum, Burgess, Sherry, Newgard (bib17) 2008; 295 MacDonald, Chang (bib26) 1985; 68 Madiraju, Qiu, Perry, Rahimi, Zhang, Zhang, Camporez, Cline, Butrico, Kemp (bib31) 2018; 24 Girousse, Tavernier, Valle, Moro, Mejhert, Dinel, Houssier, Roussel, Besse-Patin, Combes (bib12) 2013; 11 Cline, Lepine, Papas, Kibbey, Shulman (bib5) 2004; 279 Kibbey, Pongratz, Romanelli, Wollheim, Cline, Shulman (bib21) 2007; 5 MacDonald, Chang (bib25) 1985; 34 Stark, Pasquel, Turcu, Pongratz, Roden, Cline, Shulman, Kibbey (bib51) 2009; 284 Perry, Peng, Cline, Butrico, Wang, Zhang, Rothman, Petersen, Shulman (bib41) 2017; 8 Efanova, Zaitsev, Zhivotovsky, Köhler, Efendić, Orrenius, Berggren (bib8) 1998; 273 MacDonald, Fahien, Brown, Hasan, Buss, Kendrick (bib29) 2005; 288 James, Jahn, Zhong, Smeltz, Hu, Stacpoole (bib16) 2017; 170 Matschinsky, Ellerman (bib33) 1968; 243 MacDonald, Fahien (bib27) 1988; 37 Wu, Tso, Chuang, Gui, Lou, Sharma, Khemtong, Qi, Wynn, Chuang (bib56) 2018; 12 Jeoung, Rahimi, Wu, Lee, Harris (bib18) 2012; 443 Pongratz, Kibbey, Shulman, Cline (bib43) 2007; 282 Yang, Merica, Chen, Cohen, Goldwater, Kosinski, Kung, Yuan, Silverman, Goldwasser (bib57) 2019; 8 MacDonald (10.1016/j.cmet.2020.10.006_bib29) 2005; 288 Ferdaoussi (10.1016/j.cmet.2020.10.006_bib10) 2015; 125 Jeoung (10.1016/j.cmet.2020.10.006_bib18) 2012; 443 Miyanaga (10.1016/j.cmet.2020.10.006_bib34) 1982; 257 Zawalich (10.1016/j.cmet.2020.10.006_bib59) 1993; 42 Madiraju (10.1016/j.cmet.2020.10.006_bib30) 2014; 510 Olofsson (10.1016/j.cmet.2020.10.006_bib36) 2002; 444 Newgard (10.1016/j.cmet.2020.10.006_bib35) 2002; 51 Jensen (10.1016/j.cmet.2020.10.006_bib17) 2008; 295 Stark (10.1016/j.cmet.2020.10.006_bib51) 2009; 284 Jesinkey (10.1016/j.cmet.2020.10.006_bib19) 2019; 28 Palomino-Schätzlein (10.1016/j.cmet.2020.10.006_bib37) 2020; 9 Kibbey (10.1016/j.cmet.2020.10.006_bib22) 2014; 63 Matschinsky (10.1016/j.cmet.2020.10.006_bib33) 1968; 243 James (10.1016/j.cmet.2020.10.006_bib16) 2017; 170 Gassaway (10.1016/j.cmet.2020.10.006_bib11) 2019; 29 Jiang (10.1016/j.cmet.2020.10.006_bib20) 2010; 20 Vatner (10.1016/j.cmet.2020.10.006_bib54) 2015; 112 Dechiara (10.1016/j.cmet.2020.10.006_bib7) 2009; 530 Malaisse-Lagae (10.1016/j.cmet.2020.10.006_bib32) 1994; 328 Anastasiou (10.1016/j.cmet.2020.10.006_bib3) 2012; 8 Grace (10.1016/j.cmet.2020.10.006_bib13) 2019; 381 Yu (10.1016/j.cmet.2020.10.006_bib58) 2002; 277 Perry (10.1016/j.cmet.2020.10.006_bib41) 2017; 8 Alves (10.1016/j.cmet.2020.10.006_bib2) 2015; 22 Efanova (10.1016/j.cmet.2020.10.006_bib8) 1998; 273 Petersen (10.1016/j.cmet.2020.10.006_bib42) 2004; 350 Valenzuela (10.1016/j.cmet.2020.10.006_bib53) 2003; 21 Perry (10.1016/j.cmet.2020.10.006_bib39) 2014; 20 Madiraju (10.1016/j.cmet.2020.10.006_bib31) 2018; 24 Wu (10.1016/j.cmet.2020.10.006_bib56) 2018; 12 Staal (10.1016/j.cmet.2020.10.006_bib50) 1982; 118 Akhmedov (10.1016/j.cmet.2020.10.006_bib1) 2012; 1823 MacDonald (10.1016/j.cmet.2020.10.006_bib27) 1988; 37 Parks (10.1016/j.cmet.2020.10.006_bib38) 1982; 208 Kibbey (10.1016/j.cmet.2020.10.006_bib21) 2007; 5 Cline (10.1016/j.cmet.2020.10.006_bib5) 2004; 279 Schuit (10.1016/j.cmet.2020.10.006_bib46) 2012; 61 Boxer (10.1016/j.cmet.2020.10.006_bib4) 2010; 53 De Ceuninck (10.1016/j.cmet.2020.10.006_bib6) 2013; 168 Harris (10.1016/j.cmet.2020.10.006_bib14) 2019; 1871 Lu (10.1016/j.cmet.2020.10.006_bib24) 2002; 99 Erion (10.1016/j.cmet.2020.10.006_bib9) 2014; 9 Prentki (10.1016/j.cmet.2020.10.006_bib44) 2013; 18 Lewandowski (10.1016/j.cmet.2020.10.006_bib23) 2020; 32 Perry (10.1016/j.cmet.2020.10.006_bib40) 2015; 160 Yang (10.1016/j.cmet.2020.10.006_bib57) 2019; 8 MacDonald (10.1016/j.cmet.2020.10.006_bib28) 1992; 24 Wang (10.1016/j.cmet.2020.10.006_bib55) 2002; 51 Titchenell (10.1016/j.cmet.2020.10.006_bib52) 2017; 28 Pongratz (10.1016/j.cmet.2020.10.006_bib43) 2007; 282 Samuel (10.1016/j.cmet.2020.10.006_bib45) 2010; 375 Girousse (10.1016/j.cmet.2020.10.006_bib12) 2013; 11 Shi (10.1016/j.cmet.2020.10.006_bib49) 2020; 69 MacDonald (10.1016/j.cmet.2020.10.006_bib26) 1985; 68 MacDonald (10.1016/j.cmet.2020.10.006_bib25) 1985; 34 Shalev (10.1016/j.cmet.2020.10.006_bib47) 2014; 28 Sharma (10.1016/j.cmet.2020.10.006_bib48) 2019; 9 Iwakura (10.1016/j.cmet.2020.10.006_bib15) 2000; 271 33208920 - Nat Rev Endocrinol. 2021 Jan;17(1):3 33147479 - Cell Metab. 2020 Nov 3;32(5):693-694 |
References_xml | – volume: 279 start-page: 44370 year: 2004 end-page: 44375 ident: bib5 article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells publication-title: J. Biol. Chem. – volume: 8 start-page: 798 year: 2017 ident: bib41 article-title: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA) publication-title: Nat. Commun. – volume: 277 start-page: 50230 year: 2002 end-page: 50236 ident: bib58 article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle publication-title: J. Biol. Chem. – volume: 29 start-page: 3394 year: 2019 end-page: 3404.e9 ident: bib11 article-title: Distinct hepatic PKA and CDK signaling pathways control activity-independent pyruvate kinase phosphorylation and hepatic glucose production publication-title: Cell Rep. – volume: 170 start-page: 166 year: 2017 end-page: 180 ident: bib16 article-title: Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1 publication-title: Pharmacol. Ther. – volume: 530 start-page: 311 year: 2009 end-page: 324 ident: bib7 article-title: VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos publication-title: Methods Mol. Biol. – volume: 28 start-page: 1211 year: 2014 end-page: 1220 ident: bib47 article-title: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell publication-title: Mol. Endocrinol. – volume: 444 start-page: 43 year: 2002 end-page: 51 ident: bib36 article-title: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells publication-title: Pflugers Arch. – volume: 273 start-page: 33501 year: 1998 end-page: 33507 ident: bib8 article-title: Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration publication-title: J. Biol. Chem. – volume: 11 start-page: e1001485 year: 2013 ident: bib12 article-title: Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass publication-title: PLoS Biol. – volume: 68 start-page: 115 year: 1985 end-page: 120 ident: bib26 article-title: Pancreatic islets contain the M2 isoenzyme of pyruvate kinase. Its phosphorylation has no effect on enzyme activity publication-title: Mol. Cell. Biochem. – volume: 28 start-page: 759 year: 2019 end-page: 772.e10 ident: bib19 article-title: Mitochondrial GTP links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion independent of OxPhos publication-title: Cell Rep. – volume: 12 start-page: 12 year: 2018 end-page: 24 ident: bib56 article-title: Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice publication-title: Mol. Metab. – volume: 9 start-page: e97139 year: 2014 ident: bib9 article-title: The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats publication-title: PLoS One – volume: 8 start-page: 839 year: 2012 end-page: 847 ident: bib3 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat. Chem. Biol. – volume: 257 start-page: 10617 year: 1982 end-page: 10623 ident: bib34 article-title: Effect of insulin on liver pyruvate kinase in vivo and in vitro publication-title: J. Biol. Chem. – volume: 20 start-page: 759 year: 2014 end-page: 763 ident: bib39 article-title: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis publication-title: Nat. Med. – volume: 288 start-page: E1 year: 2005 end-page: E15 ident: bib29 article-title: Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 8 start-page: 246 year: 2019 end-page: 259 ident: bib57 article-title: Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers publication-title: Clin. Pharmacol. Drug Dev. – volume: 53 start-page: 1048 year: 2010 end-page: 1055 ident: bib4 article-title: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: J. Med. Chem. – volume: 34 start-page: 246 year: 1985 end-page: 250 ident: bib25 article-title: Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity? publication-title: Diabetes – volume: 271 start-page: 422 year: 2000 end-page: 428 ident: bib15 article-title: Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells publication-title: Biochem. Biophys. Res. Commun. – volume: 99 start-page: 2708 year: 2002 end-page: 2713 ident: bib24 article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS) publication-title: Proc. Natl. Acad. Sci. USA – volume: 375 start-page: 2267 year: 2010 end-page: 2277 ident: bib45 article-title: Lipid-induced insulin resistance: unravelling the mechanism publication-title: Lancet – volume: 61 start-page: 969 year: 2012 end-page: 975 ident: bib46 article-title: β-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion? publication-title: Diabetes – volume: 22 start-page: 936 year: 2015 end-page: 947 ident: bib2 article-title: Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle publication-title: Cell Metab. – volume: 69 start-page: 591 year: 2020 end-page: 602 ident: bib49 article-title: Liver ChREBP protects against fructose-induced glycogenic hepatotoxicity by regulating L-type pyruvate kinase publication-title: Diabetes – volume: 243 start-page: 2730 year: 1968 end-page: 2736 ident: bib33 article-title: Metabolism of glucose in the islets of Langerhans publication-title: J. Biol. Chem. – volume: 21 start-page: 652 year: 2003 end-page: 659 ident: bib53 article-title: High-throughput engineering of the mouse genome coupled with high-resolution expression analysis publication-title: Nat. Biotechnol. – volume: 168 start-page: 339 year: 2013 end-page: 353 ident: bib6 article-title: Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans publication-title: Br. J. Pharmacol. – volume: 24 start-page: 1384 year: 2018 end-page: 1394 ident: bib31 article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo publication-title: Nat. Med. – volume: 18 start-page: 162 year: 2013 end-page: 185 ident: bib44 article-title: Metabolic signaling in fuel-induced insulin secretion publication-title: Cell Metab. – volume: 37 start-page: 997 year: 1988 end-page: 999 ident: bib27 article-title: Glyceraldehyde phosphate and methyl esters of succinic acid. Two “new” potent insulin secretagogues publication-title: Diabetes – volume: 9 start-page: 1619 year: 2020 ident: bib37 article-title: A translational in vivo and in vitro metabolomic study reveals altered metabolic pathways in red blood cells of type 2 diabetes publication-title: J. Clin. Med. – volume: 125 start-page: 3847 year: 2015 end-page: 3860 ident: bib10 article-title: Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells publication-title: J. Clin. Invest. – volume: 381 start-page: 933 year: 2019 end-page: 944 ident: bib13 article-title: Safety and efficacy of mitapivat in pyruvate kinase deficiency publication-title: N. Engl. J. Med. – volume: 443 start-page: 829 year: 2012 end-page: 839 ident: bib18 article-title: Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice publication-title: Biochem. J. – volume: 1871 start-page: 225 year: 2019 end-page: 239 ident: bib14 article-title: A critical review of the role of M publication-title: Biochim Biophys Acta Rev Cancer – volume: 20 start-page: 3387 year: 2010 end-page: 3393 ident: bib20 article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: Bioorg. Med. Chem. Lett. – volume: 328 start-page: 235 year: 1994 end-page: 242 ident: bib32 article-title: Insulinotropic response to enterally administered succinic and glutamic acid methyl esters publication-title: Arch. Int. Pharmacodyn. Ther. – volume: 63 start-page: 4218 year: 2014 end-page: 4229 ident: bib22 article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release publication-title: Diabetes – volume: 510 start-page: 542 year: 2014 end-page: 546 ident: bib30 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature – volume: 28 start-page: 497 year: 2017 end-page: 505 ident: bib52 article-title: Unraveling the regulation of hepatic metabolism by insulin publication-title: Trends Endocrinol. Metab. – volume: 51 start-page: S389 year: 2002 end-page: S393 ident: bib35 article-title: Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach publication-title: Diabetes – volume: 282 start-page: 200 year: 2007 end-page: 207 ident: bib43 article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion publication-title: J. Biol. Chem. – volume: 208 start-page: 333 year: 1982 end-page: 337 ident: bib38 article-title: Insulin mediates the stimulation of pyruvate kinase by a dual mechanism publication-title: Biochem. J. – volume: 160 start-page: 745 year: 2015 end-page: 758 ident: bib40 article-title: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes publication-title: Cell – volume: 284 start-page: 26578 year: 2009 end-page: 26590 ident: bib51 article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion publication-title: J. Biol. Chem. – volume: 5 start-page: 253 year: 2007 end-page: 264 ident: bib21 article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion publication-title: Cell Metab. – volume: 1823 start-page: 1815 year: 2012 end-page: 1824 ident: bib1 article-title: Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells publication-title: Biochim. Biophys. Acta – volume: 295 start-page: E1287 year: 2008 end-page: E1297 ident: bib17 article-title: Metabolic cycling in control of glucose-stimulated insulin secretion publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 9 start-page: 16480 year: 2019 ident: bib48 article-title: Real-time hyperpolarized publication-title: Sci. Rep. – volume: 112 start-page: 1143 year: 2015 end-page: 1148 ident: bib54 article-title: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 736 year: 2020 end-page: 750 ident: bib23 article-title: Pyruvate kinase controls signal strength in the insulin secretory pathway publication-title: Cell Metab. – volume: 24 start-page: 158 year: 1992 end-page: 160 ident: bib28 article-title: Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets publication-title: Horm. Metab. Res. – volume: 51 start-page: 2861 year: 2002 end-page: 2865 ident: bib55 article-title: Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians publication-title: Diabetes – volume: 118 start-page: 241 year: 1982 end-page: 253 ident: bib50 article-title: Extreme deficiency of L-type pyruvate kinase with moderate clinical expression publication-title: Clin. Chim. Acta – volume: 42 start-page: 843 year: 1993 end-page: 850 ident: bib59 article-title: Comparative effects of monomethylsuccinate and glucose on insulin secretion from perifused rat islets publication-title: Diabetes – volume: 350 start-page: 664 year: 2004 end-page: 671 ident: bib42 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N. Engl. J. Med. – volume: 51 start-page: S389 issue: Suppl 3 year: 2002 ident: 10.1016/j.cmet.2020.10.006_bib35 article-title: Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach publication-title: Diabetes doi: 10.2337/diabetes.51.2007.S389 – volume: 51 start-page: 2861 year: 2002 ident: 10.1016/j.cmet.2020.10.006_bib55 article-title: Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians publication-title: Diabetes doi: 10.2337/diabetes.51.9.2861 – volume: 170 start-page: 166 year: 2017 ident: 10.1016/j.cmet.2020.10.006_bib16 article-title: Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.10.018 – volume: 257 start-page: 10617 year: 1982 ident: 10.1016/j.cmet.2020.10.006_bib34 article-title: Effect of insulin on liver pyruvate kinase in vivo and in vitro publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33867-5 – volume: 18 start-page: 162 year: 2013 ident: 10.1016/j.cmet.2020.10.006_bib44 article-title: Metabolic signaling in fuel-induced insulin secretion publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.05.018 – volume: 168 start-page: 339 year: 2013 ident: 10.1016/j.cmet.2020.10.006_bib6 article-title: Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2012.02184.x – volume: 20 start-page: 3387 year: 2010 ident: 10.1016/j.cmet.2020.10.006_bib20 article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.04.015 – volume: 282 start-page: 200 year: 2007 ident: 10.1016/j.cmet.2020.10.006_bib43 article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602954200 – volume: 9 start-page: 16480 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib48 article-title: Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers publication-title: Sci. Rep. doi: 10.1038/s41598-019-52952-6 – volume: 12 start-page: 12 year: 2018 ident: 10.1016/j.cmet.2020.10.006_bib56 article-title: Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.03.014 – volume: 443 start-page: 829 year: 2012 ident: 10.1016/j.cmet.2020.10.006_bib18 article-title: Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice publication-title: Biochem. J. doi: 10.1042/BJ20112197 – volume: 68 start-page: 115 year: 1985 ident: 10.1016/j.cmet.2020.10.006_bib26 article-title: Pancreatic islets contain the M2 isoenzyme of pyruvate kinase. Its phosphorylation has no effect on enzyme activity publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00219375 – volume: 288 start-page: E1 year: 2005 ident: 10.1016/j.cmet.2020.10.006_bib29 article-title: Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00218.2004 – volume: 22 start-page: 936 year: 2015 ident: 10.1016/j.cmet.2020.10.006_bib2 article-title: Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.08.021 – volume: 160 start-page: 745 year: 2015 ident: 10.1016/j.cmet.2020.10.006_bib40 article-title: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes publication-title: Cell doi: 10.1016/j.cell.2015.01.012 – volume: 29 start-page: 3394 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib11 article-title: Distinct hepatic PKA and CDK signaling pathways control activity-independent pyruvate kinase phosphorylation and hepatic glucose production publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.009 – volume: 32 start-page: 736 year: 2020 ident: 10.1016/j.cmet.2020.10.006_bib23 article-title: Pyruvate kinase controls signal strength in the insulin secretory pathway publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.10.007 – volume: 279 start-page: 44370 year: 2004 ident: 10.1016/j.cmet.2020.10.006_bib5 article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311842200 – volume: 530 start-page: 311 year: 2009 ident: 10.1016/j.cmet.2020.10.006_bib7 article-title: VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-471-1_16 – volume: 381 start-page: 933 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib13 article-title: Safety and efficacy of mitapivat in pyruvate kinase deficiency publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1902678 – volume: 99 start-page: 2708 year: 2002 ident: 10.1016/j.cmet.2020.10.006_bib24 article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.052005699 – volume: 24 start-page: 158 year: 1992 ident: 10.1016/j.cmet.2020.10.006_bib28 article-title: Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets publication-title: Horm. Metab. Res. doi: 10.1055/s-2007-1003284 – volume: 444 start-page: 43 year: 2002 ident: 10.1016/j.cmet.2020.10.006_bib36 article-title: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells publication-title: Pflugers Arch. doi: 10.1007/s00424-002-0781-5 – volume: 208 start-page: 333 year: 1982 ident: 10.1016/j.cmet.2020.10.006_bib38 article-title: Insulin mediates the stimulation of pyruvate kinase by a dual mechanism publication-title: Biochem. J. doi: 10.1042/bj2080333 – volume: 271 start-page: 422 year: 2000 ident: 10.1016/j.cmet.2020.10.006_bib15 article-title: Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.2616 – volume: 375 start-page: 2267 year: 2010 ident: 10.1016/j.cmet.2020.10.006_bib45 article-title: Lipid-induced insulin resistance: unravelling the mechanism publication-title: Lancet doi: 10.1016/S0140-6736(10)60408-4 – volume: 42 start-page: 843 year: 1993 ident: 10.1016/j.cmet.2020.10.006_bib59 article-title: Comparative effects of monomethylsuccinate and glucose on insulin secretion from perifused rat islets publication-title: Diabetes doi: 10.2337/diab.42.6.843 – volume: 112 start-page: 1143 year: 2015 ident: 10.1016/j.cmet.2020.10.006_bib54 article-title: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1423952112 – volume: 28 start-page: 759 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib19 article-title: Mitochondrial GTP links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion independent of OxPhos publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.06.058 – volume: 8 start-page: 246 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib57 article-title: Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers publication-title: Clin. Pharmacol. Drug Dev. doi: 10.1002/cpdd.604 – volume: 8 start-page: 839 year: 2012 ident: 10.1016/j.cmet.2020.10.006_bib3 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1060 – volume: 9 start-page: e97139 year: 2014 ident: 10.1016/j.cmet.2020.10.006_bib9 article-title: The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats publication-title: PLoS One doi: 10.1371/journal.pone.0097139 – volume: 8 start-page: 798 year: 2017 ident: 10.1016/j.cmet.2020.10.006_bib41 article-title: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA) publication-title: Nat. Commun. doi: 10.1038/s41467-017-01143-w – volume: 118 start-page: 241 year: 1982 ident: 10.1016/j.cmet.2020.10.006_bib50 article-title: Extreme deficiency of L-type pyruvate kinase with moderate clinical expression publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(82)90011-0 – volume: 328 start-page: 235 year: 1994 ident: 10.1016/j.cmet.2020.10.006_bib32 article-title: Insulinotropic response to enterally administered succinic and glutamic acid methyl esters publication-title: Arch. Int. Pharmacodyn. Ther. – volume: 1871 start-page: 225 year: 2019 ident: 10.1016/j.cmet.2020.10.006_bib14 article-title: A critical review of the role of M2PYK in the Warburg effect publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2019.01.004 – volume: 9 start-page: 1619 year: 2020 ident: 10.1016/j.cmet.2020.10.006_bib37 article-title: A translational in vivo and in vitro metabolomic study reveals altered metabolic pathways in red blood cells of type 2 diabetes publication-title: J. Clin. Med. doi: 10.3390/jcm9061619 – volume: 350 start-page: 664 year: 2004 ident: 10.1016/j.cmet.2020.10.006_bib42 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa031314 – volume: 34 start-page: 246 year: 1985 ident: 10.1016/j.cmet.2020.10.006_bib25 article-title: Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity? publication-title: Diabetes doi: 10.2337/diab.34.3.246 – volume: 273 start-page: 33501 year: 1998 ident: 10.1016/j.cmet.2020.10.006_bib8 article-title: Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.50.33501 – volume: 37 start-page: 997 year: 1988 ident: 10.1016/j.cmet.2020.10.006_bib27 article-title: Glyceraldehyde phosphate and methyl esters of succinic acid. Two “new” potent insulin secretagogues publication-title: Diabetes doi: 10.2337/diab.37.7.997 – volume: 1823 start-page: 1815 year: 2012 ident: 10.1016/j.cmet.2020.10.006_bib1 article-title: Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.07.005 – volume: 28 start-page: 1211 year: 2014 ident: 10.1016/j.cmet.2020.10.006_bib47 article-title: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell publication-title: Mol. Endocrinol. doi: 10.1210/me.2014-1095 – volume: 63 start-page: 4218 year: 2014 ident: 10.1016/j.cmet.2020.10.006_bib22 article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release publication-title: Diabetes doi: 10.2337/db14-0783 – volume: 510 start-page: 542 year: 2014 ident: 10.1016/j.cmet.2020.10.006_bib30 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature doi: 10.1038/nature13270 – volume: 277 start-page: 50230 year: 2002 ident: 10.1016/j.cmet.2020.10.006_bib58 article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200958200 – volume: 295 start-page: E1287 year: 2008 ident: 10.1016/j.cmet.2020.10.006_bib17 article-title: Metabolic cycling in control of glucose-stimulated insulin secretion publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90604.2008 – volume: 5 start-page: 253 year: 2007 ident: 10.1016/j.cmet.2020.10.006_bib21 article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.02.008 – volume: 21 start-page: 652 year: 2003 ident: 10.1016/j.cmet.2020.10.006_bib53 article-title: High-throughput engineering of the mouse genome coupled with high-resolution expression analysis publication-title: Nat. Biotechnol. doi: 10.1038/nbt822 – volume: 28 start-page: 497 year: 2017 ident: 10.1016/j.cmet.2020.10.006_bib52 article-title: Unraveling the regulation of hepatic metabolism by insulin publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2017.03.003 – volume: 11 start-page: e1001485 year: 2013 ident: 10.1016/j.cmet.2020.10.006_bib12 article-title: Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001485 – volume: 53 start-page: 1048 year: 2010 ident: 10.1016/j.cmet.2020.10.006_bib4 article-title: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase publication-title: J. Med. Chem. doi: 10.1021/jm901577g – volume: 125 start-page: 3847 year: 2015 ident: 10.1016/j.cmet.2020.10.006_bib10 article-title: Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells publication-title: J. Clin. Invest. doi: 10.1172/JCI82498 – volume: 24 start-page: 1384 year: 2018 ident: 10.1016/j.cmet.2020.10.006_bib31 article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo publication-title: Nat. Med. doi: 10.1038/s41591-018-0125-4 – volume: 20 start-page: 759 year: 2014 ident: 10.1016/j.cmet.2020.10.006_bib39 article-title: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis publication-title: Nat. Med. doi: 10.1038/nm.3579 – volume: 69 start-page: 591 year: 2020 ident: 10.1016/j.cmet.2020.10.006_bib49 article-title: Liver ChREBP protects against fructose-induced glycogenic hepatotoxicity by regulating L-type pyruvate kinase publication-title: Diabetes doi: 10.2337/db19-0388 – volume: 61 start-page: 969 year: 2012 ident: 10.1016/j.cmet.2020.10.006_bib46 article-title: β-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion? publication-title: Diabetes doi: 10.2337/db11-1564 – volume: 243 start-page: 2730 year: 1968 ident: 10.1016/j.cmet.2020.10.006_bib33 article-title: Metabolism of glucose in the islets of Langerhans publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)93432-0 – volume: 284 start-page: 26578 year: 2009 ident: 10.1016/j.cmet.2020.10.006_bib51 article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.011775 – reference: 33208920 - Nat Rev Endocrinol. 2021 Jan;17(1):3 – reference: 33147479 - Cell Metab. 2020 Nov 3;32(5):693-694 |
SSID | ssj0036393 |
Score | 2.5428796 |
Snippet | The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 751 |
SubjectTerms | anaplerosis Animals cataplerosis fatty liver Homeostasis human islets Insulin - metabolism insulin resistance insulin secretion Male Mice Mice, Inbred C57BL Mice, Knockout Mitochondria - metabolism mitochondrial GTP mitochondrial PEPCK Phosphoenolpyruvate - metabolism phosphoenolpyruvate cycle pyruvate kinase Pyruvate Kinase - metabolism Rats Rats, Sprague-Dawley |
Title | Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health |
URI | https://dx.doi.org/10.1016/j.cmet.2020.10.006 https://www.ncbi.nlm.nih.gov/pubmed/33147485 https://www.proquest.com/docview/2457970418 https://pubmed.ncbi.nlm.nih.gov/PMC7679013 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEHwR784bEXyTMNukTfOowyHCRFBxb6VNMjaZ7dhF2L_3nKQdTtEHH5umJeQ7OedLe74cQi6uYNuDkkiWmVwzobRmSawyZvtKQ_QFxuv0Fd2H-O5F3PeiXoO0ay0MplVWvt_7dOetq5ZWNZut8XDYekJyDS44CNFmuULBLxeJE_H1bmpvzCECuyR76MywdyWc8Tle-t1iPmWIDZjh9Vtw-kk-v-dQfglKnS2yWbFJeu0HvE0attgh676-5GKXvDt5LXt2k0uvtYYY4xGnZZ8C9aNdWNDgAAuDdkgfB-V0PChtUY7Gi8n8A3gobS_gzdR_e7BT-or1dNlNaRa0a2dgQaOhpl7LtEdeOrfP7TtW1VdgGssYMIn1-BRgYkXfxrg_hb1eEmsRaKOu-gqWMg8By8ACnFznxkge6ByiuslC5In7ZK0oC3tIaBBZGxqRxdxEIjQqF1YGNouM1KFUOmmSoJ7YVFeHj2MNjFFaZ5m9pQhGimBgG4DRJJfLZ8b-6I0_e0c1XumKAaUQG_587rwGN4WVhb9LssKW82kaikgqCSYGoz_wYC_HwXkgpEiiJpErZrDsgKd2r94phgN3ereMJXAwfvTP8R6TDbxyckh-QtZmk7k9BV40y8-c4X8CLM8L9w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIKXiW86vowET8hqYztx_MDDNphatk5IdKJvJrFdtahLqrUF5e_iH-QuTioKYg9Ie3Xs6Ow73_0uuQ9CXvfA7cGUSJa53DKprWVpojPmJ9qC9QXEW-dXDM-S_rn8OI7HO-RnmwuDYZWN7g86vdbWzUi3Oc3uYjbrfkZwDSo44iizQqdNZOWJr36A37Z8N3gPTH7D-fGH0VGfNa0FmMUK_kxhKzoN5Hg58Qm6ZuDmpImVkXW6NwFHvCc4bCPysBNhc-eUiGwOBs1lHCESvPcGuQnoQ6E2GIwPW_UvwOTXUf1AHUPymkydEFRmLzwGcHIcwJCyf1nDv9Hun0Gbv1nB47tkr4Gv9CCc0D2y44v75FZoaFk9IBd1Pi8b1dykB9aCUQsiRssJBaxJh6BBQOMWDgWffpqWy8W09EU5X1SX6-8AfOlRBW-m4WOHX9Iv2MCXHZauokO_ApGdzywNyVMPyfm1nPojsluUhX9CaBR7z53MEuFiyZ3OpVeRz2KnLFfaph0StQdrbFPtHJtuzE0b1vbNIDMMMgPHgBkd8nazZhFqfVw5O275ZbYk1oAxunLdq5a5Bq4y_p_JCl-ul4bLWGkFMg3UPw7M3tAhRCSVTOMOUVtisJmAZcK3nxSzaV0uXCUKQJ_Y_096X5Lb_dHw1JwOzk6ekjv4pM7FFM_I7upy7Z8DKFvlL-pLQMnX6751vwBA_kZX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Tissue+Acceleration+of+the+Mitochondrial+Phosphoenolpyruvate+Cycle+Improves+Whole-Body+Metabolic+Health&rft.jtitle=Cell+metabolism&rft.au=Abulizi%2C+Abudukadier&rft.au=Cardone%2C+Rebecca+L&rft.au=Stark%2C+Romana&rft.au=Lewandowski%2C+Sophie+L&rft.date=2020-11-03&rft.eissn=1932-7420&rft.volume=32&rft.issue=5&rft.spage=751&rft_id=info:doi/10.1016%2Fj.cmet.2020.10.006&rft_id=info%3Apmid%2F33147485&rft.externalDocID=33147485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |