Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as me...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 32; no. 5; pp. 751 - 766.e11
Main Authors Abulizi, Abudukadier, Cardone, Rebecca L., Stark, Romana, Lewandowski, Sophie L., Zhao, Xiaojian, Hillion, Joelle, Ma, Lingjun, Sehgal, Raghav, Alves, Tiago C., Thomas, Craig, Kung, Charles, Wang, Bei, Siebel, Stephan, Andrews, Zane B., Mason, Graeme F., Rinehart, Jesse, Merrins, Matthew J., Kibbey, Richard G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2−/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. [Display omitted] •Pyruvate kinase activators (PKa) amplify insulin release in preclinical T2DM models•PKa amplify insulin release via the phosphoenolpyruvate cycle in vivo•PKa acutely short-circuit gluconeogenesis and accelerate red blood cell glycolysis•PKa improve insulin sensitivity, steatosis, and dyslipidemia in obese rats Abulizi et al. show that small molecule activation of mitochondrial PEPCK (pck2)-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes.
AbstractList The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.
The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2 mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.
The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2 −/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. Abulizi et al. show that small molecule activation of mitochondrial PEPCK ( pck2 )-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes.
The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2−/− mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity. [Display omitted] •Pyruvate kinase activators (PKa) amplify insulin release in preclinical T2DM models•PKa amplify insulin release via the phosphoenolpyruvate cycle in vivo•PKa acutely short-circuit gluconeogenesis and accelerate red blood cell glycolysis•PKa improve insulin sensitivity, steatosis, and dyslipidemia in obese rats Abulizi et al. show that small molecule activation of mitochondrial PEPCK (pck2)-dependent phosphoenolpyruvate (PEP) cycling amplifies glucose-stimulated insulin secretion without evidence of islet injury and improves insulin sensitivity in vivo. These are accompanied by decreased gluconeogenesis, increased red blood cell glycolysis, and reduced hepatic steatosis in preclinical rodent models of diabetes.
Author Hillion, Joelle
Merrins, Matthew J.
Abulizi, Abudukadier
Mason, Graeme F.
Alves, Tiago C.
Thomas, Craig
Kibbey, Richard G.
Ma, Lingjun
Wang, Bei
Siebel, Stephan
Lewandowski, Sophie L.
Zhao, Xiaojian
Stark, Romana
Cardone, Rebecca L.
Rinehart, Jesse
Sehgal, Raghav
Kung, Charles
Andrews, Zane B.
AuthorAffiliation 7 Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
3 Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
8 Lead Contact
2 Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
5 Agios Pharmaceuticals, Cambridge, MA 02139, USA
6 Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA
1 Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
4 Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: 6 Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA
– name: 7 Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
– name: 3 Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
– name: 4 Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– name: 5 Agios Pharmaceuticals, Cambridge, MA 02139, USA
– name: 1 Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– name: 2 Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
– name: 8 Lead Contact
Author_xml – sequence: 1
  givenname: Abudukadier
  orcidid: 0000-0003-0828-1604
  surname: Abulizi
  fullname: Abulizi, Abudukadier
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 2
  givenname: Rebecca L.
  surname: Cardone
  fullname: Cardone, Rebecca L.
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 3
  givenname: Romana
  orcidid: 0000-0002-4264-0060
  surname: Stark
  fullname: Stark, Romana
  organization: Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
– sequence: 4
  givenname: Sophie L.
  orcidid: 0000-0002-2838-7054
  surname: Lewandowski
  fullname: Lewandowski, Sophie L.
  organization: Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
– sequence: 5
  givenname: Xiaojian
  surname: Zhao
  fullname: Zhao, Xiaojian
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 6
  givenname: Joelle
  surname: Hillion
  fullname: Hillion, Joelle
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 7
  givenname: Lingjun
  orcidid: 0000-0003-2223-7626
  surname: Ma
  fullname: Ma, Lingjun
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 8
  givenname: Raghav
  orcidid: 0000-0002-9387-1758
  surname: Sehgal
  fullname: Sehgal, Raghav
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 9
  givenname: Tiago C.
  surname: Alves
  fullname: Alves, Tiago C.
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 10
  givenname: Craig
  surname: Thomas
  fullname: Thomas, Craig
  organization: Division of Preclinical Innovation, National Center for Advancing Translational Sciences, and Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 11
  givenname: Charles
  surname: Kung
  fullname: Kung, Charles
  organization: Agios Pharmaceuticals, Cambridge, MA 02139, USA
– sequence: 12
  givenname: Bei
  surname: Wang
  fullname: Wang, Bei
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 13
  givenname: Stephan
  surname: Siebel
  fullname: Siebel, Stephan
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
– sequence: 14
  givenname: Zane B.
  orcidid: 0000-0002-9097-7944
  surname: Andrews
  fullname: Andrews, Zane B.
  organization: Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
– sequence: 15
  givenname: Graeme F.
  orcidid: 0000-0002-6573-5222
  surname: Mason
  fullname: Mason, Graeme F.
  organization: Department of Diagnostic Radiology and Psychiatry, Yale University, New Haven, CT 06520, USA
– sequence: 16
  givenname: Jesse
  orcidid: 0000-0003-4839-4005
  surname: Rinehart
  fullname: Rinehart, Jesse
  organization: Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
– sequence: 17
  givenname: Matthew J.
  surname: Merrins
  fullname: Merrins, Matthew J.
  organization: Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Department of Biomolecular Chemistry, University of Wisconsin-Madison, and William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
– sequence: 18
  givenname: Richard G.
  surname: Kibbey
  fullname: Kibbey, Richard G.
  email: richard.kibbey@yale.edu
  organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33147485$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wB1ggL9lk6lfiWEJI7QhopY5gUcTS8jg3xCMnDrYz0vx7EqatgEVXtq7POdc63zk6GcIACL2lZEUJrS53K9tDXjHClsGKkOoFOqOKs0IKRk7me1mSQlBOT9F5SjtCeMUVf4VOOadCiro8Q_1m8tkV9y6lCfCVteAhmuzCgEOLcwd443KwXRia6IzH37qQxi7AEPx4iNPeZMDrg_WAb_sxhj0k_KMLHorr0BzwBrLZBu8svgHjc_cavWyNT_Dm4bxA3z9_ul_fFHdfv9yur-4KWzKaC0lrKZSyAkQLFWFSECXqygpqG0VaVUvCGec1hZrV3G6bRnJqt4SJxjBacn6BPh5zx2nbQ2NhyNF4PUbXm3jQwTj978vgOv0z7LWspCJ0CXj_EBDDrwlS1r1LczfeDBCmpJkopZJE0HqWvvt719OSx45nATsKbAwpRWifJJToBaTe6QWkXkAusxnkbKr_M1mX_3CZ_-v889YPRyvMDe8dRJ2sg8FC4yLYrJvgnrP_BvDJumU
CitedBy_id crossref_primary_10_1016_j_coisb_2021_100389
crossref_primary_10_1155_2023_1500032
crossref_primary_10_2337_db21_0037
crossref_primary_10_1172_jci_insight_154198
crossref_primary_10_3390_ijms22031476
crossref_primary_10_1038_s41574_020_00447_0
crossref_primary_10_3389_fendo_2021_642152
crossref_primary_10_3390_antiox10020197
crossref_primary_10_1038_s42255_021_00516_2
crossref_primary_10_3389_fmolb_2024_1354199
crossref_primary_10_1089_ars_2021_0113
crossref_primary_10_1016_j_bpc_2024_107270
crossref_primary_10_3390_biom12020335
crossref_primary_10_1073_pnas_2400781121
crossref_primary_10_1016_j_cmet_2022_11_011
crossref_primary_10_1073_pnas_2216810120
crossref_primary_10_1016_j_biosystems_2024_105257
crossref_primary_10_1016_j_jhazmat_2023_132013
crossref_primary_10_3390_ijms24086978
crossref_primary_10_3390_biomedicines10071627
crossref_primary_10_1080_19382014_2025_2479911
crossref_primary_10_3389_fbioe_2024_1392575
crossref_primary_10_2337_db24_0131
crossref_primary_10_1016_j_jlr_2021_100132
crossref_primary_10_7554_eLife_79422
crossref_primary_10_1021_acs_analchem_4c05341
crossref_primary_10_1016_j_lfs_2022_120725
crossref_primary_10_2337_dbi23_0032
crossref_primary_10_1089_ars_2024_0799
crossref_primary_10_1016_j_talanta_2024_126134
crossref_primary_10_2337_dbi21_0009
crossref_primary_10_1007_s10863_023_09965_8
crossref_primary_10_1016_j_celrep_2021_108690
crossref_primary_10_1016_j_ijbiomac_2023_126039
crossref_primary_10_1007_s00125_022_05672_y
crossref_primary_10_1016_j_xhgg_2023_100182
crossref_primary_10_3389_fphar_2024_1501990
crossref_primary_10_1111_apha_14155
crossref_primary_10_1016_j_cmet_2022_06_003
crossref_primary_10_1111_imm_13827
crossref_primary_10_2337_db22_0728
crossref_primary_10_1016_j_cmet_2020_10_007
crossref_primary_10_1016_j_jbc_2021_101278
crossref_primary_10_1111_apha_14148
crossref_primary_10_3389_fimmu_2022_1028130
crossref_primary_10_1016_j_cmet_2020_10_008
crossref_primary_10_1002_adhm_202303785
crossref_primary_10_1007_s13340_022_00576_z
crossref_primary_10_1016_j_celrep_2023_112394
crossref_primary_10_1016_j_jcjd_2021_11_002
crossref_primary_10_1681_ASN_0000000000000122
Cites_doi 10.2337/diabetes.51.2007.S389
10.2337/diabetes.51.9.2861
10.1016/j.pharmthera.2016.10.018
10.1016/S0021-9258(18)33867-5
10.1016/j.cmet.2013.05.018
10.1111/j.1476-5381.2012.02184.x
10.1016/j.bmcl.2010.04.015
10.1074/jbc.M602954200
10.1038/s41598-019-52952-6
10.1016/j.molmet.2018.03.014
10.1042/BJ20112197
10.1007/BF00219375
10.1152/ajpendo.00218.2004
10.1016/j.cmet.2015.08.021
10.1016/j.cell.2015.01.012
10.1016/j.celrep.2019.11.009
10.1016/j.cmet.2020.10.007
10.1074/jbc.M311842200
10.1007/978-1-59745-471-1_16
10.1056/NEJMoa1902678
10.1073/pnas.052005699
10.1055/s-2007-1003284
10.1007/s00424-002-0781-5
10.1042/bj2080333
10.1006/bbrc.2000.2616
10.1016/S0140-6736(10)60408-4
10.2337/diab.42.6.843
10.1073/pnas.1423952112
10.1016/j.celrep.2019.06.058
10.1002/cpdd.604
10.1038/nchembio.1060
10.1371/journal.pone.0097139
10.1038/s41467-017-01143-w
10.1016/0009-8981(82)90011-0
10.1016/j.bbcan.2019.01.004
10.3390/jcm9061619
10.1056/NEJMoa031314
10.2337/diab.34.3.246
10.1074/jbc.273.50.33501
10.2337/diab.37.7.997
10.1016/j.bbamcr.2012.07.005
10.1210/me.2014-1095
10.2337/db14-0783
10.1038/nature13270
10.1074/jbc.M200958200
10.1152/ajpendo.90604.2008
10.1016/j.cmet.2007.02.008
10.1038/nbt822
10.1016/j.tem.2017.03.003
10.1371/journal.pbio.1001485
10.1021/jm901577g
10.1172/JCI82498
10.1038/s41591-018-0125-4
10.1038/nm.3579
10.2337/db19-0388
10.2337/db11-1564
10.1016/S0021-9258(18)93432-0
10.1074/jbc.M109.011775
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2020.10.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 766.e11
ExternalDocumentID PMC7679013
33147485
10_1016_j_cmet_2020_10_006
S1550413120305398
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK092606
– fundername: NIDDK NIH HHS
  grantid: R01 DK127637
– fundername: NIDDK NIH HHS
  grantid: T32 DK007665
– fundername: NIDDK NIH HHS
  grantid: R01 DK110181
– fundername: NIDDK NIH HHS
  grantid: R01 DK108283
– fundername: NIA NIH HHS
  grantid: R21 AG050135
– fundername: NIDDK NIH HHS
  grantid: F31 DK126403
– fundername: NIDDK NIH HHS
  grantid: P30 DK034989
– fundername: NIDDK NIH HHS
  grantid: K08 DK080142
– fundername: NCRR NIH HHS
  grantid: UL1 RR024139
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-7187499c4e4fe6027409486c41cd90f9870323381e8283cbdd731cb024da21533
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 13:35:03 EDT 2025
Mon Jul 21 10:43:42 EDT 2025
Mon Jul 21 06:02:23 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 23 02:44:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords human islets
anaplerosis
pyruvate kinase
cataplerosis
mitochondrial GTP
fatty liver
insulin secretion
mitochondrial PEPCK
phosphoenolpyruvate cycle
insulin resistance
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-7187499c4e4fe6027409486c41cd90f9870323381e8283cbdd731cb024da21533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
R.G.K. conceived the study and wrote the paper with A.A., R.L.C., and R. Stark. A.A. and R.L.C. performed the main body of experiments with contributions from R. Stark., T.C.A., S.L.L., J.H., and L.M. and assisted by B.W., X.Z., R. Sehgal, and S.S. C.K., C.T., R.S., Z.B.A., G.F.M., and J.R. provided reagents and technical expertise. R.G.K., G.F.M., M.J.M., R.S., and Z.B.A. obtained funding. R.G.K., A.A., R.L.C., R. Stark., S.L.L., M.J.M., C.T., and C.K. interpreted the data and edited the manuscript.
ORCID 0000-0002-9387-1758
0000-0002-4264-0060
0000-0003-4839-4005
0000-0003-0828-1604
0000-0002-2838-7054
0000-0002-6573-5222
0000-0002-9097-7944
0000-0003-2223-7626
OpenAccessLink http://www.cell.com/article/S1550413120305398/pdf
PMID 33147485
PQID 2457970418
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7679013
proquest_miscellaneous_2457970418
pubmed_primary_33147485
crossref_primary_10_1016_j_cmet_2020_10_006
crossref_citationtrail_10_1016_j_cmet_2020_10_006
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Olofsson, Göpel, Barg, Galvanovskis, Ma, Salehi, Rorsman, Eliasson (bib36) 2002; 444
Miyanaga, Nagano, Cottam (bib34) 1982; 257
Shalev (bib47) 2014; 28
Staal, Rijksen, Vlug, Vromen-van den Bos, Akkerman, Gorter, Dierick, Petermans (bib50) 1982; 118
Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha (bib3) 2012; 8
Parks, Drake (bib38) 1982; 208
Schuit, Van Lommel, Granvik, Goyvaerts, de Faudeur, Schraenen, Lemaire (bib46) 2012; 61
Samuel, Petersen, Shulman (bib45) 2010; 375
De Ceuninck, Kargar, Ilic, Caliez, Rolin, Umbdenstock, Vinson, Combettes, de Fanti, Harley (bib6) 2013; 168
Kibbey, Choi, Lee, Cabrera, Pongratz, Zhao, Birkenfeld, Li, Berggren, Stanley, Shulman (bib22) 2014; 63
Wang, Chu, Das, Ren, Hasstedt, Elbein (bib55) 2002; 51
Yu, Chen, Cline, Zhang, Zong, Wang, Bergeron, Kim, Cushman, Cooney (bib58) 2002; 277
Palomino-Schätzlein, Lamas-Domingo, Ciudin, Gutiérrez-Carcedo, Marés, Aparicio-Gómez, Hernández, Simó, Herance (bib37) 2020; 9
Gassaway, Cardone, Padyana, Petersen, Judd, Hayes, Tong, Barber, Apostolidi, Abulizi (bib11) 2019; 29
Dechiara, Poueymirou, Auerbach, Frendewey, Yancopoulos, Valenzuela (bib7) 2009; 530
Prentki, Matschinsky, Madiraju (bib44) 2013; 18
Lewandowski, Cardone, Foster, Ho, Potapenko, Poudel, VanDeusen, Sdao, Alves, Zhao (bib23) 2020; 32
Perry, Camporez, Kursawe, Titchenell, Zhang, Perry, Jurczak, Abudukadier, Han, Zhang (bib40) 2015; 160
Lu, Mulder, Zhao, Burgess, Jensen, Kamzolova, Newgard, Sherry (bib24) 2002; 99
Erion, Lapworth, Amor, Bai, Vera, Clark, Yan, Zhu, Ross, Purkal (bib9) 2014; 9
Perry, Zhang, Zhang, Kumashiro, Camporez, Cline, Rothman, Shulman (bib39) 2014; 20
Jesinkey, Madiraju, Alves, Yarborough, Cardone, Zhao, Parsaei, Nasiri, Butrico, Liu (bib19) 2019; 28
Petersen, Dufour, Befroy, Garcia, Shulman (bib42) 2004; 350
Zawalich, Zawalich, Cline, Shulman, Rasmussen (bib59) 1993; 42
Alves, Pongratz, Zhao, Yarborough, Sereda, Shirihai, Cline, Mason, Kibbey (bib2) 2015; 22
Harris, Fenton (bib14) 2019; 1871
Jiang, Boxer, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park (bib20) 2010; 20
Malaisse-Lagae, Bakkali Nadi, Malaisse (bib32) 1994; 328
Newgard, Lu, Jensen, Schissler, Boucher, Burgess, Sherry (bib35) 2002; 51
Titchenell, Lazar, Birnbaum (bib52) 2017; 28
Boxer, Jiang, Vander Heiden, Shen, Skoumbourdis, Southall, Veith, Leister, Austin, Park (bib4) 2010; 53
MacDonald, McKenzie, Walker, Kaysen (bib28) 1992; 24
Shi, Lu, Chen, Wei, Xu, Li, Bai, Xia, Lam, Zhang (bib49) 2020; 69
Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald (bib30) 2014; 510
Iwakura, Fujimoto, Kagimoto, Inada, Kubota, Someya, Ihara, Yamada, Seino (bib15) 2000; 271
Grace, Rose, Layton, Galactéros, Barcellini, Morton, van Beers, Yaish, Ravindranath, Kuo (bib13) 2019; 381
Vatner, Majumdar, Kumashiro, Petersen, Rahimi, Gattu, Bears, Camporez, Cline, Jurczak (bib54) 2015; 112
Sharma, Wu, Wynn, Gui, Malloy, Sherry, Chuang, Khemtong (bib48) 2019; 9
Ferdaoussi, Dai, Jensen, Wang, Peterson, Huang, Ilkayeva, Smith, Miller, Hajmrle (bib10) 2015; 125
Valenzuela, Murphy, Frendewey, Gale, Economides, Auerbach, Poueymirou, Adams, Rojas, Yasenchak (bib53) 2003; 21
Akhmedov, De Marchi, Wollheim, Wiederkehr (bib1) 2012; 1823
Jensen, Joseph, Ronnebaum, Burgess, Sherry, Newgard (bib17) 2008; 295
MacDonald, Chang (bib26) 1985; 68
Madiraju, Qiu, Perry, Rahimi, Zhang, Zhang, Camporez, Cline, Butrico, Kemp (bib31) 2018; 24
Girousse, Tavernier, Valle, Moro, Mejhert, Dinel, Houssier, Roussel, Besse-Patin, Combes (bib12) 2013; 11
Cline, Lepine, Papas, Kibbey, Shulman (bib5) 2004; 279
Kibbey, Pongratz, Romanelli, Wollheim, Cline, Shulman (bib21) 2007; 5
MacDonald, Chang (bib25) 1985; 34
Stark, Pasquel, Turcu, Pongratz, Roden, Cline, Shulman, Kibbey (bib51) 2009; 284
Perry, Peng, Cline, Butrico, Wang, Zhang, Rothman, Petersen, Shulman (bib41) 2017; 8
Efanova, Zaitsev, Zhivotovsky, Köhler, Efendić, Orrenius, Berggren (bib8) 1998; 273
MacDonald, Fahien, Brown, Hasan, Buss, Kendrick (bib29) 2005; 288
James, Jahn, Zhong, Smeltz, Hu, Stacpoole (bib16) 2017; 170
Matschinsky, Ellerman (bib33) 1968; 243
MacDonald, Fahien (bib27) 1988; 37
Wu, Tso, Chuang, Gui, Lou, Sharma, Khemtong, Qi, Wynn, Chuang (bib56) 2018; 12
Jeoung, Rahimi, Wu, Lee, Harris (bib18) 2012; 443
Pongratz, Kibbey, Shulman, Cline (bib43) 2007; 282
Yang, Merica, Chen, Cohen, Goldwater, Kosinski, Kung, Yuan, Silverman, Goldwasser (bib57) 2019; 8
MacDonald (10.1016/j.cmet.2020.10.006_bib29) 2005; 288
Ferdaoussi (10.1016/j.cmet.2020.10.006_bib10) 2015; 125
Jeoung (10.1016/j.cmet.2020.10.006_bib18) 2012; 443
Miyanaga (10.1016/j.cmet.2020.10.006_bib34) 1982; 257
Zawalich (10.1016/j.cmet.2020.10.006_bib59) 1993; 42
Madiraju (10.1016/j.cmet.2020.10.006_bib30) 2014; 510
Olofsson (10.1016/j.cmet.2020.10.006_bib36) 2002; 444
Newgard (10.1016/j.cmet.2020.10.006_bib35) 2002; 51
Jensen (10.1016/j.cmet.2020.10.006_bib17) 2008; 295
Stark (10.1016/j.cmet.2020.10.006_bib51) 2009; 284
Jesinkey (10.1016/j.cmet.2020.10.006_bib19) 2019; 28
Palomino-Schätzlein (10.1016/j.cmet.2020.10.006_bib37) 2020; 9
Kibbey (10.1016/j.cmet.2020.10.006_bib22) 2014; 63
Matschinsky (10.1016/j.cmet.2020.10.006_bib33) 1968; 243
James (10.1016/j.cmet.2020.10.006_bib16) 2017; 170
Gassaway (10.1016/j.cmet.2020.10.006_bib11) 2019; 29
Jiang (10.1016/j.cmet.2020.10.006_bib20) 2010; 20
Vatner (10.1016/j.cmet.2020.10.006_bib54) 2015; 112
Dechiara (10.1016/j.cmet.2020.10.006_bib7) 2009; 530
Malaisse-Lagae (10.1016/j.cmet.2020.10.006_bib32) 1994; 328
Anastasiou (10.1016/j.cmet.2020.10.006_bib3) 2012; 8
Grace (10.1016/j.cmet.2020.10.006_bib13) 2019; 381
Yu (10.1016/j.cmet.2020.10.006_bib58) 2002; 277
Perry (10.1016/j.cmet.2020.10.006_bib41) 2017; 8
Alves (10.1016/j.cmet.2020.10.006_bib2) 2015; 22
Efanova (10.1016/j.cmet.2020.10.006_bib8) 1998; 273
Petersen (10.1016/j.cmet.2020.10.006_bib42) 2004; 350
Valenzuela (10.1016/j.cmet.2020.10.006_bib53) 2003; 21
Perry (10.1016/j.cmet.2020.10.006_bib39) 2014; 20
Madiraju (10.1016/j.cmet.2020.10.006_bib31) 2018; 24
Wu (10.1016/j.cmet.2020.10.006_bib56) 2018; 12
Staal (10.1016/j.cmet.2020.10.006_bib50) 1982; 118
Akhmedov (10.1016/j.cmet.2020.10.006_bib1) 2012; 1823
MacDonald (10.1016/j.cmet.2020.10.006_bib27) 1988; 37
Parks (10.1016/j.cmet.2020.10.006_bib38) 1982; 208
Kibbey (10.1016/j.cmet.2020.10.006_bib21) 2007; 5
Cline (10.1016/j.cmet.2020.10.006_bib5) 2004; 279
Schuit (10.1016/j.cmet.2020.10.006_bib46) 2012; 61
Boxer (10.1016/j.cmet.2020.10.006_bib4) 2010; 53
De Ceuninck (10.1016/j.cmet.2020.10.006_bib6) 2013; 168
Harris (10.1016/j.cmet.2020.10.006_bib14) 2019; 1871
Lu (10.1016/j.cmet.2020.10.006_bib24) 2002; 99
Erion (10.1016/j.cmet.2020.10.006_bib9) 2014; 9
Prentki (10.1016/j.cmet.2020.10.006_bib44) 2013; 18
Lewandowski (10.1016/j.cmet.2020.10.006_bib23) 2020; 32
Perry (10.1016/j.cmet.2020.10.006_bib40) 2015; 160
Yang (10.1016/j.cmet.2020.10.006_bib57) 2019; 8
MacDonald (10.1016/j.cmet.2020.10.006_bib28) 1992; 24
Wang (10.1016/j.cmet.2020.10.006_bib55) 2002; 51
Titchenell (10.1016/j.cmet.2020.10.006_bib52) 2017; 28
Pongratz (10.1016/j.cmet.2020.10.006_bib43) 2007; 282
Samuel (10.1016/j.cmet.2020.10.006_bib45) 2010; 375
Girousse (10.1016/j.cmet.2020.10.006_bib12) 2013; 11
Shi (10.1016/j.cmet.2020.10.006_bib49) 2020; 69
MacDonald (10.1016/j.cmet.2020.10.006_bib26) 1985; 68
MacDonald (10.1016/j.cmet.2020.10.006_bib25) 1985; 34
Shalev (10.1016/j.cmet.2020.10.006_bib47) 2014; 28
Sharma (10.1016/j.cmet.2020.10.006_bib48) 2019; 9
Iwakura (10.1016/j.cmet.2020.10.006_bib15) 2000; 271
33208920 - Nat Rev Endocrinol. 2021 Jan;17(1):3
33147479 - Cell Metab. 2020 Nov 3;32(5):693-694
References_xml – volume: 279
  start-page: 44370
  year: 2004
  end-page: 44375
  ident: bib5
  article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 798
  year: 2017
  ident: bib41
  article-title: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA)
  publication-title: Nat. Commun.
– volume: 277
  start-page: 50230
  year: 2002
  end-page: 50236
  ident: bib58
  article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 3394
  year: 2019
  end-page: 3404.e9
  ident: bib11
  article-title: Distinct hepatic PKA and CDK signaling pathways control activity-independent pyruvate kinase phosphorylation and hepatic glucose production
  publication-title: Cell Rep.
– volume: 170
  start-page: 166
  year: 2017
  end-page: 180
  ident: bib16
  article-title: Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1
  publication-title: Pharmacol. Ther.
– volume: 530
  start-page: 311
  year: 2009
  end-page: 324
  ident: bib7
  article-title: VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos
  publication-title: Methods Mol. Biol.
– volume: 28
  start-page: 1211
  year: 2014
  end-page: 1220
  ident: bib47
  article-title: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell
  publication-title: Mol. Endocrinol.
– volume: 444
  start-page: 43
  year: 2002
  end-page: 51
  ident: bib36
  article-title: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells
  publication-title: Pflugers Arch.
– volume: 273
  start-page: 33501
  year: 1998
  end-page: 33507
  ident: bib8
  article-title: Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: e1001485
  year: 2013
  ident: bib12
  article-title: Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass
  publication-title: PLoS Biol.
– volume: 68
  start-page: 115
  year: 1985
  end-page: 120
  ident: bib26
  article-title: Pancreatic islets contain the M2 isoenzyme of pyruvate kinase. Its phosphorylation has no effect on enzyme activity
  publication-title: Mol. Cell. Biochem.
– volume: 28
  start-page: 759
  year: 2019
  end-page: 772.e10
  ident: bib19
  article-title: Mitochondrial GTP links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion independent of OxPhos
  publication-title: Cell Rep.
– volume: 12
  start-page: 12
  year: 2018
  end-page: 24
  ident: bib56
  article-title: Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice
  publication-title: Mol. Metab.
– volume: 9
  start-page: e97139
  year: 2014
  ident: bib9
  article-title: The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats
  publication-title: PLoS One
– volume: 8
  start-page: 839
  year: 2012
  end-page: 847
  ident: bib3
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat. Chem. Biol.
– volume: 257
  start-page: 10617
  year: 1982
  end-page: 10623
  ident: bib34
  article-title: Effect of insulin on liver pyruvate kinase in vivo and in vitro
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 759
  year: 2014
  end-page: 763
  ident: bib39
  article-title: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
  publication-title: Nat. Med.
– volume: 288
  start-page: E1
  year: 2005
  end-page: E15
  ident: bib29
  article-title: Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 8
  start-page: 246
  year: 2019
  end-page: 259
  ident: bib57
  article-title: Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers
  publication-title: Clin. Pharmacol. Drug Dev.
– volume: 53
  start-page: 1048
  year: 2010
  end-page: 1055
  ident: bib4
  article-title: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: J. Med. Chem.
– volume: 34
  start-page: 246
  year: 1985
  end-page: 250
  ident: bib25
  article-title: Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity?
  publication-title: Diabetes
– volume: 271
  start-page: 422
  year: 2000
  end-page: 428
  ident: bib15
  article-title: Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 99
  start-page: 2708
  year: 2002
  end-page: 2713
  ident: bib24
  article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 375
  start-page: 2267
  year: 2010
  end-page: 2277
  ident: bib45
  article-title: Lipid-induced insulin resistance: unravelling the mechanism
  publication-title: Lancet
– volume: 61
  start-page: 969
  year: 2012
  end-page: 975
  ident: bib46
  article-title: β-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion?
  publication-title: Diabetes
– volume: 22
  start-page: 936
  year: 2015
  end-page: 947
  ident: bib2
  article-title: Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle
  publication-title: Cell Metab.
– volume: 69
  start-page: 591
  year: 2020
  end-page: 602
  ident: bib49
  article-title: Liver ChREBP protects against fructose-induced glycogenic hepatotoxicity by regulating L-type pyruvate kinase
  publication-title: Diabetes
– volume: 243
  start-page: 2730
  year: 1968
  end-page: 2736
  ident: bib33
  article-title: Metabolism of glucose in the islets of Langerhans
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 652
  year: 2003
  end-page: 659
  ident: bib53
  article-title: High-throughput engineering of the mouse genome coupled with high-resolution expression analysis
  publication-title: Nat. Biotechnol.
– volume: 168
  start-page: 339
  year: 2013
  end-page: 353
  ident: bib6
  article-title: Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans
  publication-title: Br. J. Pharmacol.
– volume: 24
  start-page: 1384
  year: 2018
  end-page: 1394
  ident: bib31
  article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo
  publication-title: Nat. Med.
– volume: 18
  start-page: 162
  year: 2013
  end-page: 185
  ident: bib44
  article-title: Metabolic signaling in fuel-induced insulin secretion
  publication-title: Cell Metab.
– volume: 37
  start-page: 997
  year: 1988
  end-page: 999
  ident: bib27
  article-title: Glyceraldehyde phosphate and methyl esters of succinic acid. Two “new” potent insulin secretagogues
  publication-title: Diabetes
– volume: 9
  start-page: 1619
  year: 2020
  ident: bib37
  article-title: A translational in vivo and in vitro metabolomic study reveals altered metabolic pathways in red blood cells of type 2 diabetes
  publication-title: J. Clin. Med.
– volume: 125
  start-page: 3847
  year: 2015
  end-page: 3860
  ident: bib10
  article-title: Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells
  publication-title: J. Clin. Invest.
– volume: 381
  start-page: 933
  year: 2019
  end-page: 944
  ident: bib13
  article-title: Safety and efficacy of mitapivat in pyruvate kinase deficiency
  publication-title: N. Engl. J. Med.
– volume: 443
  start-page: 829
  year: 2012
  end-page: 839
  ident: bib18
  article-title: Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice
  publication-title: Biochem. J.
– volume: 1871
  start-page: 225
  year: 2019
  end-page: 239
  ident: bib14
  article-title: A critical review of the role of M
  publication-title: Biochim Biophys Acta Rev Cancer
– volume: 20
  start-page: 3387
  year: 2010
  end-page: 3393
  ident: bib20
  article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 328
  start-page: 235
  year: 1994
  end-page: 242
  ident: bib32
  article-title: Insulinotropic response to enterally administered succinic and glutamic acid methyl esters
  publication-title: Arch. Int. Pharmacodyn. Ther.
– volume: 63
  start-page: 4218
  year: 2014
  end-page: 4229
  ident: bib22
  article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release
  publication-title: Diabetes
– volume: 510
  start-page: 542
  year: 2014
  end-page: 546
  ident: bib30
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
– volume: 28
  start-page: 497
  year: 2017
  end-page: 505
  ident: bib52
  article-title: Unraveling the regulation of hepatic metabolism by insulin
  publication-title: Trends Endocrinol. Metab.
– volume: 51
  start-page: S389
  year: 2002
  end-page: S393
  ident: bib35
  article-title: Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach
  publication-title: Diabetes
– volume: 282
  start-page: 200
  year: 2007
  end-page: 207
  ident: bib43
  article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 333
  year: 1982
  end-page: 337
  ident: bib38
  article-title: Insulin mediates the stimulation of pyruvate kinase by a dual mechanism
  publication-title: Biochem. J.
– volume: 160
  start-page: 745
  year: 2015
  end-page: 758
  ident: bib40
  article-title: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
  publication-title: Cell
– volume: 284
  start-page: 26578
  year: 2009
  end-page: 26590
  ident: bib51
  article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 253
  year: 2007
  end-page: 264
  ident: bib21
  article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion
  publication-title: Cell Metab.
– volume: 1823
  start-page: 1815
  year: 2012
  end-page: 1824
  ident: bib1
  article-title: Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells
  publication-title: Biochim. Biophys. Acta
– volume: 295
  start-page: E1287
  year: 2008
  end-page: E1297
  ident: bib17
  article-title: Metabolic cycling in control of glucose-stimulated insulin secretion
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 9
  start-page: 16480
  year: 2019
  ident: bib48
  article-title: Real-time hyperpolarized
  publication-title: Sci. Rep.
– volume: 112
  start-page: 1143
  year: 2015
  end-page: 1148
  ident: bib54
  article-title: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 736
  year: 2020
  end-page: 750
  ident: bib23
  article-title: Pyruvate kinase controls signal strength in the insulin secretory pathway
  publication-title: Cell Metab.
– volume: 24
  start-page: 158
  year: 1992
  end-page: 160
  ident: bib28
  article-title: Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets
  publication-title: Horm. Metab. Res.
– volume: 51
  start-page: 2861
  year: 2002
  end-page: 2865
  ident: bib55
  article-title: Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians
  publication-title: Diabetes
– volume: 118
  start-page: 241
  year: 1982
  end-page: 253
  ident: bib50
  article-title: Extreme deficiency of L-type pyruvate kinase with moderate clinical expression
  publication-title: Clin. Chim. Acta
– volume: 42
  start-page: 843
  year: 1993
  end-page: 850
  ident: bib59
  article-title: Comparative effects of monomethylsuccinate and glucose on insulin secretion from perifused rat islets
  publication-title: Diabetes
– volume: 350
  start-page: 664
  year: 2004
  end-page: 671
  ident: bib42
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 51
  start-page: S389
  issue: Suppl 3
  year: 2002
  ident: 10.1016/j.cmet.2020.10.006_bib35
  article-title: Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.2007.S389
– volume: 51
  start-page: 2861
  year: 2002
  ident: 10.1016/j.cmet.2020.10.006_bib55
  article-title: Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.9.2861
– volume: 170
  start-page: 166
  year: 2017
  ident: 10.1016/j.cmet.2020.10.006_bib16
  article-title: Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.10.018
– volume: 257
  start-page: 10617
  year: 1982
  ident: 10.1016/j.cmet.2020.10.006_bib34
  article-title: Effect of insulin on liver pyruvate kinase in vivo and in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33867-5
– volume: 18
  start-page: 162
  year: 2013
  ident: 10.1016/j.cmet.2020.10.006_bib44
  article-title: Metabolic signaling in fuel-induced insulin secretion
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.05.018
– volume: 168
  start-page: 339
  year: 2013
  ident: 10.1016/j.cmet.2020.10.006_bib6
  article-title: Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2012.02184.x
– volume: 20
  start-page: 3387
  year: 2010
  ident: 10.1016/j.cmet.2020.10.006_bib20
  article-title: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2010.04.015
– volume: 282
  start-page: 200
  year: 2007
  ident: 10.1016/j.cmet.2020.10.006_bib43
  article-title: Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602954200
– volume: 9
  start-page: 16480
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib48
  article-title: Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52952-6
– volume: 12
  start-page: 12
  year: 2018
  ident: 10.1016/j.cmet.2020.10.006_bib56
  article-title: Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2018.03.014
– volume: 443
  start-page: 829
  year: 2012
  ident: 10.1016/j.cmet.2020.10.006_bib18
  article-title: Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice
  publication-title: Biochem. J.
  doi: 10.1042/BJ20112197
– volume: 68
  start-page: 115
  year: 1985
  ident: 10.1016/j.cmet.2020.10.006_bib26
  article-title: Pancreatic islets contain the M2 isoenzyme of pyruvate kinase. Its phosphorylation has no effect on enzyme activity
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00219375
– volume: 288
  start-page: E1
  year: 2005
  ident: 10.1016/j.cmet.2020.10.006_bib29
  article-title: Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00218.2004
– volume: 22
  start-page: 936
  year: 2015
  ident: 10.1016/j.cmet.2020.10.006_bib2
  article-title: Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.08.021
– volume: 160
  start-page: 745
  year: 2015
  ident: 10.1016/j.cmet.2020.10.006_bib40
  article-title: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.012
– volume: 29
  start-page: 3394
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib11
  article-title: Distinct hepatic PKA and CDK signaling pathways control activity-independent pyruvate kinase phosphorylation and hepatic glucose production
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.009
– volume: 32
  start-page: 736
  year: 2020
  ident: 10.1016/j.cmet.2020.10.006_bib23
  article-title: Pyruvate kinase controls signal strength in the insulin secretory pathway
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.10.007
– volume: 279
  start-page: 44370
  year: 2004
  ident: 10.1016/j.cmet.2020.10.006_bib5
  article-title: 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311842200
– volume: 530
  start-page: 311
  year: 2009
  ident: 10.1016/j.cmet.2020.10.006_bib7
  article-title: VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-471-1_16
– volume: 381
  start-page: 933
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib13
  article-title: Safety and efficacy of mitapivat in pyruvate kinase deficiency
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1902678
– volume: 99
  start-page: 2708
  year: 2002
  ident: 10.1016/j.cmet.2020.10.006_bib24
  article-title: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.052005699
– volume: 24
  start-page: 158
  year: 1992
  ident: 10.1016/j.cmet.2020.10.006_bib28
  article-title: Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-2007-1003284
– volume: 444
  start-page: 43
  year: 2002
  ident: 10.1016/j.cmet.2020.10.006_bib36
  article-title: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-002-0781-5
– volume: 208
  start-page: 333
  year: 1982
  ident: 10.1016/j.cmet.2020.10.006_bib38
  article-title: Insulin mediates the stimulation of pyruvate kinase by a dual mechanism
  publication-title: Biochem. J.
  doi: 10.1042/bj2080333
– volume: 271
  start-page: 422
  year: 2000
  ident: 10.1016/j.cmet.2020.10.006_bib15
  article-title: Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2616
– volume: 375
  start-page: 2267
  year: 2010
  ident: 10.1016/j.cmet.2020.10.006_bib45
  article-title: Lipid-induced insulin resistance: unravelling the mechanism
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60408-4
– volume: 42
  start-page: 843
  year: 1993
  ident: 10.1016/j.cmet.2020.10.006_bib59
  article-title: Comparative effects of monomethylsuccinate and glucose on insulin secretion from perifused rat islets
  publication-title: Diabetes
  doi: 10.2337/diab.42.6.843
– volume: 112
  start-page: 1143
  year: 2015
  ident: 10.1016/j.cmet.2020.10.006_bib54
  article-title: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1423952112
– volume: 28
  start-page: 759
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib19
  article-title: Mitochondrial GTP links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion independent of OxPhos
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.06.058
– volume: 8
  start-page: 246
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib57
  article-title: Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers
  publication-title: Clin. Pharmacol. Drug Dev.
  doi: 10.1002/cpdd.604
– volume: 8
  start-page: 839
  year: 2012
  ident: 10.1016/j.cmet.2020.10.006_bib3
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1060
– volume: 9
  start-page: e97139
  year: 2014
  ident: 10.1016/j.cmet.2020.10.006_bib9
  article-title: The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097139
– volume: 8
  start-page: 798
  year: 2017
  ident: 10.1016/j.cmet.2020.10.006_bib41
  article-title: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA)
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01143-w
– volume: 118
  start-page: 241
  year: 1982
  ident: 10.1016/j.cmet.2020.10.006_bib50
  article-title: Extreme deficiency of L-type pyruvate kinase with moderate clinical expression
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(82)90011-0
– volume: 328
  start-page: 235
  year: 1994
  ident: 10.1016/j.cmet.2020.10.006_bib32
  article-title: Insulinotropic response to enterally administered succinic and glutamic acid methyl esters
  publication-title: Arch. Int. Pharmacodyn. Ther.
– volume: 1871
  start-page: 225
  year: 2019
  ident: 10.1016/j.cmet.2020.10.006_bib14
  article-title: A critical review of the role of M2PYK in the Warburg effect
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2019.01.004
– volume: 9
  start-page: 1619
  year: 2020
  ident: 10.1016/j.cmet.2020.10.006_bib37
  article-title: A translational in vivo and in vitro metabolomic study reveals altered metabolic pathways in red blood cells of type 2 diabetes
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9061619
– volume: 350
  start-page: 664
  year: 2004
  ident: 10.1016/j.cmet.2020.10.006_bib42
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa031314
– volume: 34
  start-page: 246
  year: 1985
  ident: 10.1016/j.cmet.2020.10.006_bib25
  article-title: Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity?
  publication-title: Diabetes
  doi: 10.2337/diab.34.3.246
– volume: 273
  start-page: 33501
  year: 1998
  ident: 10.1016/j.cmet.2020.10.006_bib8
  article-title: Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.50.33501
– volume: 37
  start-page: 997
  year: 1988
  ident: 10.1016/j.cmet.2020.10.006_bib27
  article-title: Glyceraldehyde phosphate and methyl esters of succinic acid. Two “new” potent insulin secretagogues
  publication-title: Diabetes
  doi: 10.2337/diab.37.7.997
– volume: 1823
  start-page: 1815
  year: 2012
  ident: 10.1016/j.cmet.2020.10.006_bib1
  article-title: Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.07.005
– volume: 28
  start-page: 1211
  year: 2014
  ident: 10.1016/j.cmet.2020.10.006_bib47
  article-title: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2014-1095
– volume: 63
  start-page: 4218
  year: 2014
  ident: 10.1016/j.cmet.2020.10.006_bib22
  article-title: Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release
  publication-title: Diabetes
  doi: 10.2337/db14-0783
– volume: 510
  start-page: 542
  year: 2014
  ident: 10.1016/j.cmet.2020.10.006_bib30
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
  doi: 10.1038/nature13270
– volume: 277
  start-page: 50230
  year: 2002
  ident: 10.1016/j.cmet.2020.10.006_bib58
  article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200958200
– volume: 295
  start-page: E1287
  year: 2008
  ident: 10.1016/j.cmet.2020.10.006_bib17
  article-title: Metabolic cycling in control of glucose-stimulated insulin secretion
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90604.2008
– volume: 5
  start-page: 253
  year: 2007
  ident: 10.1016/j.cmet.2020.10.006_bib21
  article-title: Mitochondrial GTP regulates glucose-stimulated insulin secretion
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.02.008
– volume: 21
  start-page: 652
  year: 2003
  ident: 10.1016/j.cmet.2020.10.006_bib53
  article-title: High-throughput engineering of the mouse genome coupled with high-resolution expression analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt822
– volume: 28
  start-page: 497
  year: 2017
  ident: 10.1016/j.cmet.2020.10.006_bib52
  article-title: Unraveling the regulation of hepatic metabolism by insulin
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2017.03.003
– volume: 11
  start-page: e1001485
  year: 2013
  ident: 10.1016/j.cmet.2020.10.006_bib12
  article-title: Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001485
– volume: 53
  start-page: 1048
  year: 2010
  ident: 10.1016/j.cmet.2020.10.006_bib4
  article-title: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901577g
– volume: 125
  start-page: 3847
  year: 2015
  ident: 10.1016/j.cmet.2020.10.006_bib10
  article-title: Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI82498
– volume: 24
  start-page: 1384
  year: 2018
  ident: 10.1016/j.cmet.2020.10.006_bib31
  article-title: Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0125-4
– volume: 20
  start-page: 759
  year: 2014
  ident: 10.1016/j.cmet.2020.10.006_bib39
  article-title: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3579
– volume: 69
  start-page: 591
  year: 2020
  ident: 10.1016/j.cmet.2020.10.006_bib49
  article-title: Liver ChREBP protects against fructose-induced glycogenic hepatotoxicity by regulating L-type pyruvate kinase
  publication-title: Diabetes
  doi: 10.2337/db19-0388
– volume: 61
  start-page: 969
  year: 2012
  ident: 10.1016/j.cmet.2020.10.006_bib46
  article-title: β-cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion?
  publication-title: Diabetes
  doi: 10.2337/db11-1564
– volume: 243
  start-page: 2730
  year: 1968
  ident: 10.1016/j.cmet.2020.10.006_bib33
  article-title: Metabolism of glucose in the islets of Langerhans
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)93432-0
– volume: 284
  start-page: 26578
  year: 2009
  ident: 10.1016/j.cmet.2020.10.006_bib51
  article-title: Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.011775
– reference: 33208920 - Nat Rev Endocrinol. 2021 Jan;17(1):3
– reference: 33147479 - Cell Metab. 2020 Nov 3;32(5):693-694
SSID ssj0036393
Score 2.5428796
Snippet The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 751
SubjectTerms anaplerosis
Animals
cataplerosis
fatty liver
Homeostasis
human islets
Insulin - metabolism
insulin resistance
insulin secretion
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - metabolism
mitochondrial GTP
mitochondrial PEPCK
Phosphoenolpyruvate - metabolism
phosphoenolpyruvate cycle
pyruvate kinase
Pyruvate Kinase - metabolism
Rats
Rats, Sprague-Dawley
Title Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health
URI https://dx.doi.org/10.1016/j.cmet.2020.10.006
https://www.ncbi.nlm.nih.gov/pubmed/33147485
https://www.proquest.com/docview/2457970418
https://pubmed.ncbi.nlm.nih.gov/PMC7679013
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEHwR784bEXyTMNukTfOowyHCRFBxb6VNMjaZ7dhF2L_3nKQdTtEHH5umJeQ7OedLe74cQi6uYNuDkkiWmVwzobRmSawyZvtKQ_QFxuv0Fd2H-O5F3PeiXoO0ay0MplVWvt_7dOetq5ZWNZut8XDYekJyDS44CNFmuULBLxeJE_H1bmpvzCECuyR76MywdyWc8Tle-t1iPmWIDZjh9Vtw-kk-v-dQfglKnS2yWbFJeu0HvE0attgh676-5GKXvDt5LXt2k0uvtYYY4xGnZZ8C9aNdWNDgAAuDdkgfB-V0PChtUY7Gi8n8A3gobS_gzdR_e7BT-or1dNlNaRa0a2dgQaOhpl7LtEdeOrfP7TtW1VdgGssYMIn1-BRgYkXfxrg_hb1eEmsRaKOu-gqWMg8By8ACnFznxkge6ByiuslC5In7ZK0oC3tIaBBZGxqRxdxEIjQqF1YGNouM1KFUOmmSoJ7YVFeHj2MNjFFaZ5m9pQhGimBgG4DRJJfLZ8b-6I0_e0c1XumKAaUQG_587rwGN4WVhb9LssKW82kaikgqCSYGoz_wYC_HwXkgpEiiJpErZrDsgKd2r94phgN3ereMJXAwfvTP8R6TDbxyckh-QtZmk7k9BV40y8-c4X8CLM8L9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIKXiW86vowET8hqYztx_MDDNphatk5IdKJvJrFdtahLqrUF5e_iH-QuTioKYg9Ie3Xs6Ow73_0uuQ9CXvfA7cGUSJa53DKprWVpojPmJ9qC9QXEW-dXDM-S_rn8OI7HO-RnmwuDYZWN7g86vdbWzUi3Oc3uYjbrfkZwDSo44iizQqdNZOWJr36A37Z8N3gPTH7D-fGH0VGfNa0FmMUK_kxhKzoN5Hg58Qm6ZuDmpImVkXW6NwFHvCc4bCPysBNhc-eUiGwOBs1lHCESvPcGuQnoQ6E2GIwPW_UvwOTXUf1AHUPymkydEFRmLzwGcHIcwJCyf1nDv9Hun0Gbv1nB47tkr4Gv9CCc0D2y44v75FZoaFk9IBd1Pi8b1dykB9aCUQsiRssJBaxJh6BBQOMWDgWffpqWy8W09EU5X1SX6-8AfOlRBW-m4WOHX9Iv2MCXHZauokO_ApGdzywNyVMPyfm1nPojsluUhX9CaBR7z53MEuFiyZ3OpVeRz2KnLFfaph0StQdrbFPtHJtuzE0b1vbNIDMMMgPHgBkd8nazZhFqfVw5O275ZbYk1oAxunLdq5a5Bq4y_p_JCl-ul4bLWGkFMg3UPw7M3tAhRCSVTOMOUVtisJmAZcK3nxSzaV0uXCUKQJ_Y_096X5Lb_dHw1JwOzk6ekjv4pM7FFM_I7upy7Z8DKFvlL-pLQMnX6751vwBA_kZX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Tissue+Acceleration+of+the+Mitochondrial+Phosphoenolpyruvate+Cycle+Improves+Whole-Body+Metabolic+Health&rft.jtitle=Cell+metabolism&rft.au=Abulizi%2C+Abudukadier&rft.au=Cardone%2C+Rebecca+L&rft.au=Stark%2C+Romana&rft.au=Lewandowski%2C+Sophie+L&rft.date=2020-11-03&rft.eissn=1932-7420&rft.volume=32&rft.issue=5&rft.spage=751&rft_id=info:doi/10.1016%2Fj.cmet.2020.10.006&rft_id=info%3Apmid%2F33147485&rft.externalDocID=33147485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon