Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances tr...
Saved in:
Published in | iScience Vol. 23; no. 4; p. 101026 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.04.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.
[Display omitted]
•cGAS-STING pathway suppresses transgene expression from DNA vectors•Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA•Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells
Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation |
---|---|
AbstractList | DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. : Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation Subject Areas: Biological Sciences, Molecular Biology, Molecular Mechanism of Gene Regulation DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. • cGAS-STING pathway suppresses transgene expression from DNA vectors • Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA • Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. [Display omitted] •cGAS-STING pathway suppresses transgene expression from DNA vectors•Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA•Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. |
ArticleNumber | 101026 |
Author | Chen, Suxing Sun, Lijun Chen, Qi Fang, Yijun Xu, Shan Zheng, Liqun Yu, Tingting Yang, Lei Lin, Zhang Hu, Hao Wang, Hanze Bao, Wei Fu, Yajuan Huang, Baoting |
AuthorAffiliation | 1 Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China 2 Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China |
AuthorAffiliation_xml | – name: 2 Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – name: 1 Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China |
Author_xml | – sequence: 1 givenname: Yajuan surname: Fu fullname: Fu, Yajuan organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 2 givenname: Yijun surname: Fang fullname: Fang, Yijun organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 3 givenname: Zhang surname: Lin fullname: Lin, Zhang organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 4 givenname: Lei surname: Yang fullname: Yang, Lei organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 5 givenname: Liqun surname: Zheng fullname: Zheng, Liqun organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 6 givenname: Hao surname: Hu fullname: Hu, Hao organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 7 givenname: Tingting surname: Yu fullname: Yu, Tingting organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 8 givenname: Baoting surname: Huang fullname: Huang, Baoting organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 9 givenname: Suxing surname: Chen fullname: Chen, Suxing organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 10 givenname: Hanze surname: Wang fullname: Wang, Hanze organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 11 givenname: Shan surname: Xu fullname: Xu, Shan organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 12 givenname: Wei surname: Bao fullname: Bao, Wei organization: Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 13 givenname: Qi surname: Chen fullname: Chen, Qi email: nfsw@fjnu.edu.cn organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China – sequence: 14 givenname: Lijun surname: Sun fullname: Sun, Lijun email: sunlijun@fjnu.edu.cn organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32283527$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v3CAQxVGVKv-aL9BD5WMv3sKwgC1VlaIoSVdK1apNzgjweMPKC1vwRu23DxunUdJDTqCZ994AP47IXogBCXnP6IxRJj-tZj47PwMKDwUK8g05BNG0NaVz2Hu2PyAnOa8oLUoK81bukwMO0HAB6pD8WIRbb_3oY6hiX7nL01_1N-y8GbGrFmHE1GMqvZ-YNzFkrC6M84MfSz9X18mEvMSA1fmfTcKcS8o78rY3Q8aTx_WY3FycX599ra--Xy7OTq9qJ4CNtRTCctlZJjvFUWKrrJy3Dikq6NsOqLT9XFEU0nCjkHNqDSrRWdE7xmTPj8liyu2iWelN8muT_upovH4oxLTUJo3eDajRugZZuXBTZkhJjQHXcqu4BAUWaMn6MmVttnaNncMwJjO8CH3ZCf5WL-OdVkwIoKoEfHwMSPH3FvOo14UODoMJGLdZA29a2XJGeZF-eD7racg_JEUAk8ClmHPC_knCqN6h1yu9Q6936PWEvpia_0xux6jwKOf1w-vWz5MVC607j0kXBQZXPkFCN5bn9K_Z7wEcEck7 |
CitedBy_id | crossref_primary_10_1016_j_hlife_2024_11_005 crossref_primary_10_1016_j_ijpharm_2025_125470 crossref_primary_10_3390_muscles2020011 crossref_primary_10_3390_ph16121675 crossref_primary_10_7554_eLife_84238 crossref_primary_10_1002_anie_202417916 crossref_primary_10_1002_ange_202417916 crossref_primary_10_1038_s41596_021_00577_3 crossref_primary_10_1038_s41417_025_00893_w crossref_primary_10_7554_eLife_60637 crossref_primary_10_1016_j_bbagen_2023_130483 crossref_primary_10_1016_j_ijbiomac_2024_138752 crossref_primary_10_1371_journal_pone_0303472 crossref_primary_10_1186_s40580_022_00310_0 crossref_primary_10_1021_acs_bioconjchem_4c00079 crossref_primary_10_1016_j_omtn_2022_11_025 crossref_primary_10_3389_fimmu_2022_826880 crossref_primary_10_3389_fbioe_2023_1242126 crossref_primary_10_1080_14760584_2022_2110075 crossref_primary_10_4049_jimmunol_2300196 |
Cites_doi | 10.1371/journal.pone.0092545 10.1038/s41418-018-0251-z 10.1126/science.1232458 10.1007/s00216-010-3821-6 10.1016/j.jim.2003.07.015 10.1074/jbc.A114.627778 10.1111/j.1600-065X.2011.01051.x 10.1084/jem.20161674 10.1016/j.it.2015.02.002 10.1016/j.cell.2009.06.015 10.1126/science.1132505 10.1038/nri888 10.1126/science.288.5466.669 10.4049/jimmunol.1601999 10.1186/1472-6750-13-52 10.1126/science.1229963 10.1007/s00232-017-9948-z 10.1073/pnas.1218528110 10.1016/j.phrs.2016.04.008 10.1128/JVI.01763-14 10.1038/nm.3082 10.1074/jbc.M109.000414 10.1093/nar/15.3.1311 10.1002/wrna.1534 10.1128/AAC.02496-13 10.1146/annurev-immunol-032713-120231 10.1038/s41586-019-1006-9 10.1038/nbt1026 10.1016/j.chom.2015.07.001 10.1042/BJ20101701 10.1016/j.molcel.2014.03.040 10.1007/978-1-59745-396-7_9 10.1038/cr.2017.39 10.1074/jbc.R700002200 10.1038/sj.gt.3301923 10.1016/j.bbrc.2011.12.156 10.1128/JVI.01471-07 10.1038/ni.3558 10.1126/science.1240933 10.1128/JVI.01781-15 10.1023/A:1014861900478 10.1016/j.ymthe.2005.04.008 10.1128/MMBR.00027-06 10.1038/s41586-018-0287-8 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.101026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_ebc8e18358b64660aa2c93b736272b20 PMC7155207 32283527 10_1016_j_isci_2020_101026 S2589004220302108 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AACTN AAEDW AAFTH AALRI AAMRU AAXUO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NCXOZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-655b36db16d73e6e97b649ce0e72f9d206bf470e56a3a7e330bae75db5fc116f3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:12:03 EDT 2025 Thu Aug 21 14:10:51 EDT 2025 Fri Jul 11 07:05:48 EDT 2025 Thu Jan 02 22:57:40 EST 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 01:03:29 EDT 2025 Sun Apr 06 06:53:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Molecular Biology Molecular Mechanism of Gene Regulation Biological Sciences |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-655b36db16d73e6e97b649ce0e72f9d206bf470e56a3a7e330bae75db5fc116f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/ebc8e18358b64660aa2c93b736272b20 |
PMID | 32283527 |
PQID | 2389693103 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebc8e18358b64660aa2c93b736272b20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7155207 proquest_miscellaneous_2389693103 pubmed_primary_32283527 crossref_primary_10_1016_j_isci_2020_101026 crossref_citationtrail_10_1016_j_isci_2020_101026 elsevier_sciencedirect_doi_10_1016_j_isci_2020_101026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-24 |
PublicationDateYYYYMMDD | 2020-04-24 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Sun, Wu, Du, Chen, Chen (bib40) 2013; 339 Silverman (bib39) 2007; 81 Langereis, Rabouw, Holwerda, Visser, van Kuppeveld (bib29) 2015; 89 Sellins, Fradkin, Liggitt, Dow (bib38) 2005; 12 Wu, Sun, Chen, Du, Shi, Chen, Chen (bib41) 2012; 339 Clark, Peggie, Plater, Sorcek, Young, Madwed, Hough, McIver, Cohen (bib9) 2011; 434 Gavegnano, Detorio, Montero, Bosque, Planelles, Schinazi (bib17) 2014; 58 Porritt, Hertzog (bib34) 2015; 36 Reilly, Chiang, Decker, Chang, Uhm, Larsen, Rubin, Mowers, White, Hochberg (bib35) 2013; 19 Hornung, Ellegast, Kim, Brzozka, Jung, Kato, Poeck, Akira, Conzelmann, Schlee (bib22) 2006; 314 Petherick, Conway, Mpamhanga, Osborne, Kamal, Saxty, Ganley (bib33) 2015; 290 Donovan, Dufner, Korennykh (bib13) 2013; 110 Chen, Sun, Chen (bib6) 2016; 17 Hasan, Yan (bib20) 2016; 111 Dobbs, Burnaevskiy, Chen, Gonugunta, Alto, Yan (bib12) 2015; 18 Chu, Hayakawa, Berg (bib8) 1987; 15 Schwartz, Conn (bib37) 2019; 10 Deo, Patel, Dzananovic, Booy, Zeid, McEleney, Harding, McKenna (bib11) 2014; 9 Lai, Chang, Farber (bib28) 2003; 282 Cai, Chiu, Chen (bib3) 2014; 54 Chiu, Macmillan, Chen (bib7) 2009; 138 Fischer, Bieber, Li, Elsasser, Kissel (bib14) 1999; 16 Clark, Plater, Peggie, Cohen (bib10) 2009; 284 Katze, He, Gale (bib26) 2002; 2 Liu, Wu, Wang, Li, Tian, Siraj, Sehgal, Wang, Wang, Shang (bib31) 2019; 26 Wurm (bib42) 2004; 22 Bosnjak, Kamensek, Sersa, Stolfa, Lavrencak, Cemazar (bib2) 2017; 251 Haag, Gulen, Reymond, Gibelin, Abrami, Decout, Heymann, van der Goot, Turcatti, Behrendt (bib19) 2018; 559 Barber (bib1) 2011; 243 Schneider, Chevillotte, Rice (bib36) 2014; 32 Zhang, Edwards, Mosser (bib44) 2009; 531 Cerboni, Jeremiah, Gentili, Gehrmann, Conrad, Stolzenberg, Picard, Neven, Fischer, Amigorena (bib5) 2017; 214 Yoshida, Kimura, Fukaya, Sekiya, Morita, Shichita, Inoue, Yoshimura (bib43) 2012; 418 Jager, Bussow, Wagner, Weber, Hust, Frenzel, Schirrmann (bib25) 2013; 13 Cavazzana-Calvo, Hacein-Bey, de Saint Basile, Gross, Yvon, Nusbaum, Selz, Hue, Certain, Casanova (bib4) 2000; 288 Kim, Eberwine (bib27) 2010; 397 Larkin, Ilyukha, Sorokin, Buzdin, Vannier, Poltorak (bib30) 2017; 199 Ilan, Osman, Namer, Eliahu, Cohen-Chalamish, Ben-Asouli, Banai, Kaempfer (bib24) 2017; 27 Niidome, Huang (bib32) 2002; 9 Ibsen, Gad, Thavachelvam, Boesen, Despres, Hartmann (bib23) 2014; 88 Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (bib15) 2013; 341 Garcia, Gil, Ventoso, Guerra, Domingo, Rivas, Esteban (bib16) 2006; 70 Gui, Yang, Li, Tan, Shi, Li, Du, Chen (bib18) 2019; 567 Hiscott (bib21) 2007; 282 Barber (10.1016/j.isci.2020.101026_bib1) 2011; 243 Fischer (10.1016/j.isci.2020.101026_bib14) 1999; 16 Liu (10.1016/j.isci.2020.101026_bib31) 2019; 26 Niidome (10.1016/j.isci.2020.101026_bib32) 2002; 9 Cerboni (10.1016/j.isci.2020.101026_bib5) 2017; 214 Donovan (10.1016/j.isci.2020.101026_bib13) 2013; 110 Reilly (10.1016/j.isci.2020.101026_bib35) 2013; 19 Gui (10.1016/j.isci.2020.101026_bib18) 2019; 567 Ilan (10.1016/j.isci.2020.101026_bib24) 2017; 27 Wurm (10.1016/j.isci.2020.101026_bib42) 2004; 22 Porritt (10.1016/j.isci.2020.101026_bib34) 2015; 36 Silverman (10.1016/j.isci.2020.101026_bib39) 2007; 81 Langereis (10.1016/j.isci.2020.101026_bib29) 2015; 89 Dobbs (10.1016/j.isci.2020.101026_bib12) 2015; 18 Katze (10.1016/j.isci.2020.101026_bib26) 2002; 2 Jager (10.1016/j.isci.2020.101026_bib25) 2013; 13 Wu (10.1016/j.isci.2020.101026_bib41) 2012; 339 Petherick (10.1016/j.isci.2020.101026_bib33) 2015; 290 Schwartz (10.1016/j.isci.2020.101026_bib37) 2019; 10 Zhang (10.1016/j.isci.2020.101026_bib44) 2009; 531 Gao (10.1016/j.isci.2020.101026_bib15) 2013; 341 Hornung (10.1016/j.isci.2020.101026_bib22) 2006; 314 Cai (10.1016/j.isci.2020.101026_bib3) 2014; 54 Bosnjak (10.1016/j.isci.2020.101026_bib2) 2017; 251 Ibsen (10.1016/j.isci.2020.101026_bib23) 2014; 88 Clark (10.1016/j.isci.2020.101026_bib10) 2009; 284 Schneider (10.1016/j.isci.2020.101026_bib36) 2014; 32 Clark (10.1016/j.isci.2020.101026_bib9) 2011; 434 Yoshida (10.1016/j.isci.2020.101026_bib43) 2012; 418 Gavegnano (10.1016/j.isci.2020.101026_bib17) 2014; 58 Chu (10.1016/j.isci.2020.101026_bib8) 1987; 15 Sun (10.1016/j.isci.2020.101026_bib40) 2013; 339 Deo (10.1016/j.isci.2020.101026_bib11) 2014; 9 Garcia (10.1016/j.isci.2020.101026_bib16) 2006; 70 Chiu (10.1016/j.isci.2020.101026_bib7) 2009; 138 Hasan (10.1016/j.isci.2020.101026_bib20) 2016; 111 Sellins (10.1016/j.isci.2020.101026_bib38) 2005; 12 Haag (10.1016/j.isci.2020.101026_bib19) 2018; 559 Kim (10.1016/j.isci.2020.101026_bib27) 2010; 397 Chen (10.1016/j.isci.2020.101026_bib6) 2016; 17 Cavazzana-Calvo (10.1016/j.isci.2020.101026_bib4) 2000; 288 Lai (10.1016/j.isci.2020.101026_bib28) 2003; 282 Larkin (10.1016/j.isci.2020.101026_bib30) 2017; 199 Hiscott (10.1016/j.isci.2020.101026_bib21) 2007; 282 |
References_xml | – volume: 559 start-page: 269 year: 2018 end-page: 273 ident: bib19 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature – volume: 567 start-page: 262 year: 2019 end-page: 266 ident: bib18 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature – volume: 282 start-page: 15325 year: 2007 end-page: 15329 ident: bib21 article-title: Triggering the innate antiviral response through IRF-3 activation publication-title: J. Biol. Chem. – volume: 13 start-page: 52 year: 2013 ident: bib25 article-title: High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells publication-title: BMC Biotechnol. – volume: 19 start-page: 313 year: 2013 end-page: 321 ident: bib35 article-title: An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice publication-title: Nat. Med. – volume: 243 start-page: 99 year: 2011 end-page: 108 ident: bib1 article-title: Cytoplasmic DNA innate immune pathways publication-title: Immunol. Rev. – volume: 314 start-page: 994 year: 2006 end-page: 997 ident: bib22 article-title: 5'-triphosphate RNA is the ligand for RIG-I publication-title: Science – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: bib40 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science – volume: 214 start-page: 1769 year: 2017 end-page: 1785 ident: bib5 article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes publication-title: J. Exp. Med. – volume: 81 start-page: 12720 year: 2007 end-page: 12729 ident: bib39 article-title: Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response publication-title: J. Virol. – volume: 111 start-page: 336 year: 2016 end-page: 342 ident: bib20 article-title: Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies publication-title: Pharmacol. Res. – volume: 16 start-page: 1273 year: 1999 end-page: 1279 ident: bib14 article-title: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity publication-title: Pharm. Res. – volume: 284 start-page: 14136 year: 2009 end-page: 14146 ident: bib10 article-title: Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation publication-title: J. Biol. Chem. – volume: 12 start-page: 451 year: 2005 end-page: 459 ident: bib38 article-title: Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes publication-title: Mol. Ther. – volume: 89 start-page: 11169 year: 2015 end-page: 11173 ident: bib29 article-title: Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells publication-title: J. Virol. – volume: 288 start-page: 669 year: 2000 end-page: 672 ident: bib4 article-title: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease publication-title: Science – volume: 2 start-page: 675 year: 2002 end-page: 687 ident: bib26 article-title: Viruses and interferon: a fight for supremacy publication-title: Nat. Rev. Immunol. – volume: 434 start-page: 93 year: 2011 end-page: 104 ident: bib9 article-title: Novel cross-talk within the IKK family controls innate immunity publication-title: Biochem. J. – volume: 9 start-page: e92545 year: 2014 ident: bib11 article-title: Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome publication-title: PLoS One – volume: 282 start-page: 93 year: 2003 end-page: 102 ident: bib28 article-title: Gene transfection and expression in resting and activated murine CD4 T cell subsets publication-title: J. Immunol. Methods – volume: 10 start-page: e1534 year: 2019 ident: bib37 article-title: RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase publication-title: Wiley Interdiscip. Rev. RNA – volume: 339 start-page: 826 year: 2012 end-page: 830 ident: bib41 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science – volume: 138 start-page: 576 year: 2009 end-page: 591 ident: bib7 article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway publication-title: Cell – volume: 58 start-page: 1977 year: 2014 end-page: 1986 ident: bib17 article-title: Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro publication-title: Antimicrob. Agents Chemother. – volume: 26 start-page: 1735 year: 2019 end-page: 1749 ident: bib31 article-title: STING directly activates autophagy to tune the innate immune response publication-title: Cell Death Differ. – volume: 27 start-page: 688 year: 2017 end-page: 704 ident: bib24 article-title: PKR activation and eIF2alpha phosphorylation mediate human globin mRNA splicing at spliceosome assembly publication-title: Cell Res. – volume: 54 start-page: 289 year: 2014 end-page: 296 ident: bib3 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell – volume: 110 start-page: 1652 year: 2013 end-page: 1657 ident: bib13 article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 397 start-page: 3173 year: 2010 end-page: 3178 ident: bib27 article-title: Mammalian cell transfection: the present and the future publication-title: Anal. Bioanal. Chem. – volume: 251 start-page: 179 year: 2017 end-page: 185 ident: bib2 article-title: Inhibition of the innate immune receptors for foreign DNA sensing improves transfection efficiency of gene electrotransfer in melanoma B16F10 cells publication-title: J. Membr. Biol. – volume: 15 start-page: 1311 year: 1987 end-page: 1326 ident: bib8 article-title: Electroporation for the efficient transfection of mammalian cells with DNA publication-title: Nucleic Acids Res. – volume: 22 start-page: 1393 year: 2004 end-page: 1398 ident: bib42 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nat. Biotechnol. – volume: 418 start-page: 234 year: 2012 end-page: 240 ident: bib43 article-title: Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation publication-title: Biochem. Biophys. Res. Commun. – volume: 18 start-page: 157 year: 2015 end-page: 168 ident: bib12 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe – volume: 88 start-page: 14222 year: 2014 end-page: 14231 ident: bib23 article-title: The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation publication-title: J. Virol. – volume: 32 start-page: 513 year: 2014 end-page: 545 ident: bib36 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. – volume: 36 start-page: 150 year: 2015 end-page: 160 ident: bib34 article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators publication-title: Trends Immunol. – volume: 9 start-page: 1647 year: 2002 end-page: 1652 ident: bib32 article-title: Gene therapy progress and prospects: nonviral vectors publication-title: Gene Ther. – volume: 290 start-page: 28726 year: 2015 ident: bib33 article-title: Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy publication-title: J. Biol. Chem. – volume: 341 start-page: 903 year: 2013 end-page: 906 ident: bib15 article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science – volume: 199 start-page: 397 year: 2017 end-page: 402 ident: bib30 article-title: Cutting edge: activation of STING in T cells induces type I IFN responses and cell death publication-title: J. Immunol. – volume: 531 start-page: 123 year: 2009 end-page: 143 ident: bib44 article-title: The expression of exogenous genes in macrophages: obstacles and opportunities publication-title: Methods Mol. Biol. – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: bib6 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. – volume: 70 start-page: 1032 year: 2006 end-page: 1060 ident: bib16 article-title: Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action publication-title: Microbiol. Mol. Biol. Rev. – volume: 9 start-page: e92545 year: 2014 ident: 10.1016/j.isci.2020.101026_bib11 article-title: Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome publication-title: PLoS One doi: 10.1371/journal.pone.0092545 – volume: 26 start-page: 1735 year: 2019 ident: 10.1016/j.isci.2020.101026_bib31 article-title: STING directly activates autophagy to tune the innate immune response publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0251-z – volume: 339 start-page: 786 year: 2013 ident: 10.1016/j.isci.2020.101026_bib40 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 397 start-page: 3173 year: 2010 ident: 10.1016/j.isci.2020.101026_bib27 article-title: Mammalian cell transfection: the present and the future publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3821-6 – volume: 282 start-page: 93 year: 2003 ident: 10.1016/j.isci.2020.101026_bib28 article-title: Gene transfection and expression in resting and activated murine CD4 T cell subsets publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2003.07.015 – volume: 290 start-page: 28726 year: 2015 ident: 10.1016/j.isci.2020.101026_bib33 article-title: Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.A114.627778 – volume: 243 start-page: 99 year: 2011 ident: 10.1016/j.isci.2020.101026_bib1 article-title: Cytoplasmic DNA innate immune pathways publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01051.x – volume: 214 start-page: 1769 year: 2017 ident: 10.1016/j.isci.2020.101026_bib5 article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes publication-title: J. Exp. Med. doi: 10.1084/jem.20161674 – volume: 36 start-page: 150 year: 2015 ident: 10.1016/j.isci.2020.101026_bib34 article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators publication-title: Trends Immunol. doi: 10.1016/j.it.2015.02.002 – volume: 138 start-page: 576 year: 2009 ident: 10.1016/j.isci.2020.101026_bib7 article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway publication-title: Cell doi: 10.1016/j.cell.2009.06.015 – volume: 314 start-page: 994 year: 2006 ident: 10.1016/j.isci.2020.101026_bib22 article-title: 5'-triphosphate RNA is the ligand for RIG-I publication-title: Science doi: 10.1126/science.1132505 – volume: 2 start-page: 675 year: 2002 ident: 10.1016/j.isci.2020.101026_bib26 article-title: Viruses and interferon: a fight for supremacy publication-title: Nat. Rev. Immunol. doi: 10.1038/nri888 – volume: 288 start-page: 669 year: 2000 ident: 10.1016/j.isci.2020.101026_bib4 article-title: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease publication-title: Science doi: 10.1126/science.288.5466.669 – volume: 199 start-page: 397 year: 2017 ident: 10.1016/j.isci.2020.101026_bib30 article-title: Cutting edge: activation of STING in T cells induces type I IFN responses and cell death publication-title: J. Immunol. doi: 10.4049/jimmunol.1601999 – volume: 13 start-page: 52 year: 2013 ident: 10.1016/j.isci.2020.101026_bib25 article-title: High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-13-52 – volume: 339 start-page: 826 year: 2012 ident: 10.1016/j.isci.2020.101026_bib41 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 251 start-page: 179 year: 2017 ident: 10.1016/j.isci.2020.101026_bib2 article-title: Inhibition of the innate immune receptors for foreign DNA sensing improves transfection efficiency of gene electrotransfer in melanoma B16F10 cells publication-title: J. Membr. Biol. doi: 10.1007/s00232-017-9948-z – volume: 110 start-page: 1652 year: 2013 ident: 10.1016/j.isci.2020.101026_bib13 article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1 publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1218528110 – volume: 111 start-page: 336 year: 2016 ident: 10.1016/j.isci.2020.101026_bib20 article-title: Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2016.04.008 – volume: 88 start-page: 14222 year: 2014 ident: 10.1016/j.isci.2020.101026_bib23 article-title: The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation publication-title: J. Virol. doi: 10.1128/JVI.01763-14 – volume: 19 start-page: 313 year: 2013 ident: 10.1016/j.isci.2020.101026_bib35 article-title: An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice publication-title: Nat. Med. doi: 10.1038/nm.3082 – volume: 284 start-page: 14136 year: 2009 ident: 10.1016/j.isci.2020.101026_bib10 article-title: Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.000414 – volume: 15 start-page: 1311 year: 1987 ident: 10.1016/j.isci.2020.101026_bib8 article-title: Electroporation for the efficient transfection of mammalian cells with DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/15.3.1311 – volume: 10 start-page: e1534 year: 2019 ident: 10.1016/j.isci.2020.101026_bib37 article-title: RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1534 – volume: 58 start-page: 1977 year: 2014 ident: 10.1016/j.isci.2020.101026_bib17 article-title: Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02496-13 – volume: 32 start-page: 513 year: 2014 ident: 10.1016/j.isci.2020.101026_bib36 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120231 – volume: 567 start-page: 262 year: 2019 ident: 10.1016/j.isci.2020.101026_bib18 article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway publication-title: Nature doi: 10.1038/s41586-019-1006-9 – volume: 22 start-page: 1393 year: 2004 ident: 10.1016/j.isci.2020.101026_bib42 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt1026 – volume: 18 start-page: 157 year: 2015 ident: 10.1016/j.isci.2020.101026_bib12 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 434 start-page: 93 year: 2011 ident: 10.1016/j.isci.2020.101026_bib9 article-title: Novel cross-talk within the IKK family controls innate immunity publication-title: Biochem. J. doi: 10.1042/BJ20101701 – volume: 54 start-page: 289 year: 2014 ident: 10.1016/j.isci.2020.101026_bib3 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.040 – volume: 531 start-page: 123 year: 2009 ident: 10.1016/j.isci.2020.101026_bib44 article-title: The expression of exogenous genes in macrophages: obstacles and opportunities publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-396-7_9 – volume: 27 start-page: 688 year: 2017 ident: 10.1016/j.isci.2020.101026_bib24 article-title: PKR activation and eIF2alpha phosphorylation mediate human globin mRNA splicing at spliceosome assembly publication-title: Cell Res. doi: 10.1038/cr.2017.39 – volume: 282 start-page: 15325 year: 2007 ident: 10.1016/j.isci.2020.101026_bib21 article-title: Triggering the innate antiviral response through IRF-3 activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700002200 – volume: 9 start-page: 1647 year: 2002 ident: 10.1016/j.isci.2020.101026_bib32 article-title: Gene therapy progress and prospects: nonviral vectors publication-title: Gene Ther. doi: 10.1038/sj.gt.3301923 – volume: 418 start-page: 234 year: 2012 ident: 10.1016/j.isci.2020.101026_bib43 article-title: Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.12.156 – volume: 81 start-page: 12720 year: 2007 ident: 10.1016/j.isci.2020.101026_bib39 article-title: Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response publication-title: J. Virol. doi: 10.1128/JVI.01471-07 – volume: 17 start-page: 1142 year: 2016 ident: 10.1016/j.isci.2020.101026_bib6 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 341 start-page: 903 year: 2013 ident: 10.1016/j.isci.2020.101026_bib15 article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science doi: 10.1126/science.1240933 – volume: 89 start-page: 11169 year: 2015 ident: 10.1016/j.isci.2020.101026_bib29 article-title: Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells publication-title: J. Virol. doi: 10.1128/JVI.01781-15 – volume: 16 start-page: 1273 year: 1999 ident: 10.1016/j.isci.2020.101026_bib14 article-title: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity publication-title: Pharm. Res. doi: 10.1023/A:1014861900478 – volume: 12 start-page: 451 year: 2005 ident: 10.1016/j.isci.2020.101026_bib38 article-title: Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2005.04.008 – volume: 70 start-page: 1032 year: 2006 ident: 10.1016/j.isci.2020.101026_bib16 article-title: Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00027-06 – volume: 559 start-page: 269 year: 2018 ident: 10.1016/j.isci.2020.101026_bib19 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature doi: 10.1038/s41586-018-0287-8 |
SSID | ssj0002002496 |
Score | 2.2354386 |
Snippet | DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101026 |
SubjectTerms | Biological Sciences Molecular Biology Molecular Mechanism of Gene Regulation |
Title | Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression |
URI | https://dx.doi.org/10.1016/j.isci.2020.101026 https://www.ncbi.nlm.nih.gov/pubmed/32283527 https://www.proquest.com/docview/2389693103 https://pubmed.ncbi.nlm.nih.gov/PMC7155207 https://doaj.org/article/ebc8e18358b64660aa2c93b736272b20 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKS9LUbVIc6K2YypIlrY9JyTYppJQ8IDehx4hsKN6QB-TnZ0byLrstpJdeJb9mNPLMSJ--YeyzhwQyxa5JnedEqt02rqXVJhH7CYbXShk6nHz6Ux9fdj-u1NVKqS_ChBV64KK4r-DDBNDu1MTrTmvunAi99AZ_vEZ4kbN19HkrydRN3l4jKrxcWU4RJghNczwxU8BddOIVk0ORGzKzwopXyuT9a87p7-DzTwzlilOavmGvx2iyPihSvGWvYNhiv06G65nPUKx6nurw_eC8Oc0VOSDWeQUwwR32nRV4LNRTFwpXN9zX2XehUUF99DRiZIdtdjk9uvh23IyFE5pA9Qka1LCXOvpWRyNBQ29Qd30ADkakPgqufeoMB6WddAak5N6BUdGrFNpWJ_mObQzzAd6zmhsMWTrANDHwLgrnReQRIrgJx7EMULF2oTgbRlZxKm7x2y7gYzeWlG1J2bYou2JflvfcFk6NF68-pPFYXkl82LkBrcSOVmL_ZSUVU4vRtGNoUUIGfNTsxZfvL4be4ryjzRQ3wPzx3mKo0-ueqrRVbKeYwvITJXEKKWEqZtaMZE2G9Z5hdp25vQ1R4nHz4X8I_ZFtkii09yW6XbbxcPcIexhCPfhPebY8AwESFvI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+cGAS-Mediated+Interferon+Response+Facilitates+Transgene+Expression&rft.jtitle=iScience&rft.au=Fu%2C+Yajuan&rft.au=Fang%2C+Yijun&rft.au=Lin%2C+Zhang&rft.au=Yang%2C+Lei&rft.date=2020-04-24&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=4&rft.spage=101026&rft_id=info:doi/10.1016%2Fj.isci.2020.101026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2020_101026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |