Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression

DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances tr...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 4; p. 101026
Main Authors Fu, Yajuan, Fang, Yijun, Lin, Zhang, Yang, Lei, Zheng, Liqun, Hu, Hao, Yu, Tingting, Huang, Baoting, Chen, Suxing, Wang, Hanze, Xu, Shan, Bao, Wei, Chen, Qi, Sun, Lijun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.04.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. [Display omitted] •cGAS-STING pathway suppresses transgene expression from DNA vectors•Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA•Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation
AbstractList DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. : Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation Subject Areas: Biological Sciences, Molecular Biology, Molecular Mechanism of Gene Regulation
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. • cGAS-STING pathway suppresses transgene expression from DNA vectors • Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA • Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy. [Display omitted] •cGAS-STING pathway suppresses transgene expression from DNA vectors•Interferon-mediated mobilization of OAS-RNaseL system degrades plasmid-derived mRNA•Inhibitors of cGAS-STING-IFN-ISG axis enhance gene expression in primary cells Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.
ArticleNumber 101026
Author Chen, Suxing
Sun, Lijun
Chen, Qi
Fang, Yijun
Xu, Shan
Zheng, Liqun
Yu, Tingting
Yang, Lei
Lin, Zhang
Hu, Hao
Wang, Hanze
Bao, Wei
Fu, Yajuan
Huang, Baoting
AuthorAffiliation 1 Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
2 Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
AuthorAffiliation_xml – name: 2 Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– name: 1 Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
Author_xml – sequence: 1
  givenname: Yajuan
  surname: Fu
  fullname: Fu, Yajuan
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 2
  givenname: Yijun
  surname: Fang
  fullname: Fang, Yijun
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 3
  givenname: Zhang
  surname: Lin
  fullname: Lin, Zhang
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 4
  givenname: Lei
  surname: Yang
  fullname: Yang, Lei
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 5
  givenname: Liqun
  surname: Zheng
  fullname: Zheng, Liqun
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 6
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 7
  givenname: Tingting
  surname: Yu
  fullname: Yu, Tingting
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 8
  givenname: Baoting
  surname: Huang
  fullname: Huang, Baoting
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 9
  givenname: Suxing
  surname: Chen
  fullname: Chen, Suxing
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 10
  givenname: Hanze
  surname: Wang
  fullname: Wang, Hanze
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 11
  givenname: Shan
  surname: Xu
  fullname: Xu, Shan
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 12
  givenname: Wei
  surname: Bao
  fullname: Bao, Wei
  organization: Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 13
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  email: nfsw@fjnu.edu.cn
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
– sequence: 14
  givenname: Lijun
  surname: Sun
  fullname: Sun, Lijun
  email: sunlijun@fjnu.edu.cn
  organization: Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32283527$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v3CAQxVGVKv-aL9BD5WMv3sKwgC1VlaIoSVdK1apNzgjweMPKC1vwRu23DxunUdJDTqCZ994AP47IXogBCXnP6IxRJj-tZj47PwMKDwUK8g05BNG0NaVz2Hu2PyAnOa8oLUoK81bukwMO0HAB6pD8WIRbb_3oY6hiX7nL01_1N-y8GbGrFmHE1GMqvZ-YNzFkrC6M84MfSz9X18mEvMSA1fmfTcKcS8o78rY3Q8aTx_WY3FycX599ra--Xy7OTq9qJ4CNtRTCctlZJjvFUWKrrJy3Dikq6NsOqLT9XFEU0nCjkHNqDSrRWdE7xmTPj8liyu2iWelN8muT_upovH4oxLTUJo3eDajRugZZuXBTZkhJjQHXcqu4BAUWaMn6MmVttnaNncMwJjO8CH3ZCf5WL-OdVkwIoKoEfHwMSPH3FvOo14UODoMJGLdZA29a2XJGeZF-eD7racg_JEUAk8ClmHPC_knCqN6h1yu9Q6936PWEvpia_0xux6jwKOf1w-vWz5MVC607j0kXBQZXPkFCN5bn9K_Z7wEcEck7
CitedBy_id crossref_primary_10_1016_j_hlife_2024_11_005
crossref_primary_10_1016_j_ijpharm_2025_125470
crossref_primary_10_3390_muscles2020011
crossref_primary_10_3390_ph16121675
crossref_primary_10_7554_eLife_84238
crossref_primary_10_1002_anie_202417916
crossref_primary_10_1002_ange_202417916
crossref_primary_10_1038_s41596_021_00577_3
crossref_primary_10_1038_s41417_025_00893_w
crossref_primary_10_7554_eLife_60637
crossref_primary_10_1016_j_bbagen_2023_130483
crossref_primary_10_1016_j_ijbiomac_2024_138752
crossref_primary_10_1371_journal_pone_0303472
crossref_primary_10_1186_s40580_022_00310_0
crossref_primary_10_1021_acs_bioconjchem_4c00079
crossref_primary_10_1016_j_omtn_2022_11_025
crossref_primary_10_3389_fimmu_2022_826880
crossref_primary_10_3389_fbioe_2023_1242126
crossref_primary_10_1080_14760584_2022_2110075
crossref_primary_10_4049_jimmunol_2300196
Cites_doi 10.1371/journal.pone.0092545
10.1038/s41418-018-0251-z
10.1126/science.1232458
10.1007/s00216-010-3821-6
10.1016/j.jim.2003.07.015
10.1074/jbc.A114.627778
10.1111/j.1600-065X.2011.01051.x
10.1084/jem.20161674
10.1016/j.it.2015.02.002
10.1016/j.cell.2009.06.015
10.1126/science.1132505
10.1038/nri888
10.1126/science.288.5466.669
10.4049/jimmunol.1601999
10.1186/1472-6750-13-52
10.1126/science.1229963
10.1007/s00232-017-9948-z
10.1073/pnas.1218528110
10.1016/j.phrs.2016.04.008
10.1128/JVI.01763-14
10.1038/nm.3082
10.1074/jbc.M109.000414
10.1093/nar/15.3.1311
10.1002/wrna.1534
10.1128/AAC.02496-13
10.1146/annurev-immunol-032713-120231
10.1038/s41586-019-1006-9
10.1038/nbt1026
10.1016/j.chom.2015.07.001
10.1042/BJ20101701
10.1016/j.molcel.2014.03.040
10.1007/978-1-59745-396-7_9
10.1038/cr.2017.39
10.1074/jbc.R700002200
10.1038/sj.gt.3301923
10.1016/j.bbrc.2011.12.156
10.1128/JVI.01471-07
10.1038/ni.3558
10.1126/science.1240933
10.1128/JVI.01781-15
10.1023/A:1014861900478
10.1016/j.ymthe.2005.04.008
10.1128/MMBR.00027-06
10.1038/s41586-018-0287-8
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2020.101026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_ebc8e18358b64660aa2c93b736272b20
PMC7155207
32283527
10_1016_j_isci_2020_101026
S2589004220302108
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-655b36db16d73e6e97b649ce0e72f9d206bf470e56a3a7e330bae75db5fc116f3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:12:03 EDT 2025
Thu Aug 21 14:10:51 EDT 2025
Fri Jul 11 07:05:48 EDT 2025
Thu Jan 02 22:57:40 EST 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 01:03:29 EDT 2025
Sun Apr 06 06:53:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Molecular Biology
Molecular Mechanism of Gene Regulation
Biological Sciences
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-655b36db16d73e6e97b649ce0e72f9d206bf470e56a3a7e330bae75db5fc116f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/ebc8e18358b64660aa2c93b736272b20
PMID 32283527
PQID 2389693103
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ebc8e18358b64660aa2c93b736272b20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7155207
proquest_miscellaneous_2389693103
pubmed_primary_32283527
crossref_primary_10_1016_j_isci_2020_101026
crossref_citationtrail_10_1016_j_isci_2020_101026
elsevier_sciencedirect_doi_10_1016_j_isci_2020_101026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-24
PublicationDateYYYYMMDD 2020-04-24
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sun, Wu, Du, Chen, Chen (bib40) 2013; 339
Silverman (bib39) 2007; 81
Langereis, Rabouw, Holwerda, Visser, van Kuppeveld (bib29) 2015; 89
Sellins, Fradkin, Liggitt, Dow (bib38) 2005; 12
Wu, Sun, Chen, Du, Shi, Chen, Chen (bib41) 2012; 339
Clark, Peggie, Plater, Sorcek, Young, Madwed, Hough, McIver, Cohen (bib9) 2011; 434
Gavegnano, Detorio, Montero, Bosque, Planelles, Schinazi (bib17) 2014; 58
Porritt, Hertzog (bib34) 2015; 36
Reilly, Chiang, Decker, Chang, Uhm, Larsen, Rubin, Mowers, White, Hochberg (bib35) 2013; 19
Hornung, Ellegast, Kim, Brzozka, Jung, Kato, Poeck, Akira, Conzelmann, Schlee (bib22) 2006; 314
Petherick, Conway, Mpamhanga, Osborne, Kamal, Saxty, Ganley (bib33) 2015; 290
Donovan, Dufner, Korennykh (bib13) 2013; 110
Chen, Sun, Chen (bib6) 2016; 17
Hasan, Yan (bib20) 2016; 111
Dobbs, Burnaevskiy, Chen, Gonugunta, Alto, Yan (bib12) 2015; 18
Chu, Hayakawa, Berg (bib8) 1987; 15
Schwartz, Conn (bib37) 2019; 10
Deo, Patel, Dzananovic, Booy, Zeid, McEleney, Harding, McKenna (bib11) 2014; 9
Lai, Chang, Farber (bib28) 2003; 282
Cai, Chiu, Chen (bib3) 2014; 54
Chiu, Macmillan, Chen (bib7) 2009; 138
Fischer, Bieber, Li, Elsasser, Kissel (bib14) 1999; 16
Clark, Plater, Peggie, Cohen (bib10) 2009; 284
Katze, He, Gale (bib26) 2002; 2
Liu, Wu, Wang, Li, Tian, Siraj, Sehgal, Wang, Wang, Shang (bib31) 2019; 26
Wurm (bib42) 2004; 22
Bosnjak, Kamensek, Sersa, Stolfa, Lavrencak, Cemazar (bib2) 2017; 251
Haag, Gulen, Reymond, Gibelin, Abrami, Decout, Heymann, van der Goot, Turcatti, Behrendt (bib19) 2018; 559
Barber (bib1) 2011; 243
Schneider, Chevillotte, Rice (bib36) 2014; 32
Zhang, Edwards, Mosser (bib44) 2009; 531
Cerboni, Jeremiah, Gentili, Gehrmann, Conrad, Stolzenberg, Picard, Neven, Fischer, Amigorena (bib5) 2017; 214
Yoshida, Kimura, Fukaya, Sekiya, Morita, Shichita, Inoue, Yoshimura (bib43) 2012; 418
Jager, Bussow, Wagner, Weber, Hust, Frenzel, Schirrmann (bib25) 2013; 13
Cavazzana-Calvo, Hacein-Bey, de Saint Basile, Gross, Yvon, Nusbaum, Selz, Hue, Certain, Casanova (bib4) 2000; 288
Kim, Eberwine (bib27) 2010; 397
Larkin, Ilyukha, Sorokin, Buzdin, Vannier, Poltorak (bib30) 2017; 199
Ilan, Osman, Namer, Eliahu, Cohen-Chalamish, Ben-Asouli, Banai, Kaempfer (bib24) 2017; 27
Niidome, Huang (bib32) 2002; 9
Ibsen, Gad, Thavachelvam, Boesen, Despres, Hartmann (bib23) 2014; 88
Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (bib15) 2013; 341
Garcia, Gil, Ventoso, Guerra, Domingo, Rivas, Esteban (bib16) 2006; 70
Gui, Yang, Li, Tan, Shi, Li, Du, Chen (bib18) 2019; 567
Hiscott (bib21) 2007; 282
Barber (10.1016/j.isci.2020.101026_bib1) 2011; 243
Fischer (10.1016/j.isci.2020.101026_bib14) 1999; 16
Liu (10.1016/j.isci.2020.101026_bib31) 2019; 26
Niidome (10.1016/j.isci.2020.101026_bib32) 2002; 9
Cerboni (10.1016/j.isci.2020.101026_bib5) 2017; 214
Donovan (10.1016/j.isci.2020.101026_bib13) 2013; 110
Reilly (10.1016/j.isci.2020.101026_bib35) 2013; 19
Gui (10.1016/j.isci.2020.101026_bib18) 2019; 567
Ilan (10.1016/j.isci.2020.101026_bib24) 2017; 27
Wurm (10.1016/j.isci.2020.101026_bib42) 2004; 22
Porritt (10.1016/j.isci.2020.101026_bib34) 2015; 36
Silverman (10.1016/j.isci.2020.101026_bib39) 2007; 81
Langereis (10.1016/j.isci.2020.101026_bib29) 2015; 89
Dobbs (10.1016/j.isci.2020.101026_bib12) 2015; 18
Katze (10.1016/j.isci.2020.101026_bib26) 2002; 2
Jager (10.1016/j.isci.2020.101026_bib25) 2013; 13
Wu (10.1016/j.isci.2020.101026_bib41) 2012; 339
Petherick (10.1016/j.isci.2020.101026_bib33) 2015; 290
Schwartz (10.1016/j.isci.2020.101026_bib37) 2019; 10
Zhang (10.1016/j.isci.2020.101026_bib44) 2009; 531
Gao (10.1016/j.isci.2020.101026_bib15) 2013; 341
Hornung (10.1016/j.isci.2020.101026_bib22) 2006; 314
Cai (10.1016/j.isci.2020.101026_bib3) 2014; 54
Bosnjak (10.1016/j.isci.2020.101026_bib2) 2017; 251
Ibsen (10.1016/j.isci.2020.101026_bib23) 2014; 88
Clark (10.1016/j.isci.2020.101026_bib10) 2009; 284
Schneider (10.1016/j.isci.2020.101026_bib36) 2014; 32
Clark (10.1016/j.isci.2020.101026_bib9) 2011; 434
Yoshida (10.1016/j.isci.2020.101026_bib43) 2012; 418
Gavegnano (10.1016/j.isci.2020.101026_bib17) 2014; 58
Chu (10.1016/j.isci.2020.101026_bib8) 1987; 15
Sun (10.1016/j.isci.2020.101026_bib40) 2013; 339
Deo (10.1016/j.isci.2020.101026_bib11) 2014; 9
Garcia (10.1016/j.isci.2020.101026_bib16) 2006; 70
Chiu (10.1016/j.isci.2020.101026_bib7) 2009; 138
Hasan (10.1016/j.isci.2020.101026_bib20) 2016; 111
Sellins (10.1016/j.isci.2020.101026_bib38) 2005; 12
Haag (10.1016/j.isci.2020.101026_bib19) 2018; 559
Kim (10.1016/j.isci.2020.101026_bib27) 2010; 397
Chen (10.1016/j.isci.2020.101026_bib6) 2016; 17
Cavazzana-Calvo (10.1016/j.isci.2020.101026_bib4) 2000; 288
Lai (10.1016/j.isci.2020.101026_bib28) 2003; 282
Larkin (10.1016/j.isci.2020.101026_bib30) 2017; 199
Hiscott (10.1016/j.isci.2020.101026_bib21) 2007; 282
References_xml – volume: 559
  start-page: 269
  year: 2018
  end-page: 273
  ident: bib19
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
– volume: 567
  start-page: 262
  year: 2019
  end-page: 266
  ident: bib18
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
– volume: 282
  start-page: 15325
  year: 2007
  end-page: 15329
  ident: bib21
  article-title: Triggering the innate antiviral response through IRF-3 activation
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 52
  year: 2013
  ident: bib25
  article-title: High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells
  publication-title: BMC Biotechnol.
– volume: 19
  start-page: 313
  year: 2013
  end-page: 321
  ident: bib35
  article-title: An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice
  publication-title: Nat. Med.
– volume: 243
  start-page: 99
  year: 2011
  end-page: 108
  ident: bib1
  article-title: Cytoplasmic DNA innate immune pathways
  publication-title: Immunol. Rev.
– volume: 314
  start-page: 994
  year: 2006
  end-page: 997
  ident: bib22
  article-title: 5'-triphosphate RNA is the ligand for RIG-I
  publication-title: Science
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: bib40
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
– volume: 214
  start-page: 1769
  year: 2017
  end-page: 1785
  ident: bib5
  article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes
  publication-title: J. Exp. Med.
– volume: 81
  start-page: 12720
  year: 2007
  end-page: 12729
  ident: bib39
  article-title: Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response
  publication-title: J. Virol.
– volume: 111
  start-page: 336
  year: 2016
  end-page: 342
  ident: bib20
  article-title: Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies
  publication-title: Pharmacol. Res.
– volume: 16
  start-page: 1273
  year: 1999
  end-page: 1279
  ident: bib14
  article-title: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity
  publication-title: Pharm. Res.
– volume: 284
  start-page: 14136
  year: 2009
  end-page: 14146
  ident: bib10
  article-title: Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 451
  year: 2005
  end-page: 459
  ident: bib38
  article-title: Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes
  publication-title: Mol. Ther.
– volume: 89
  start-page: 11169
  year: 2015
  end-page: 11173
  ident: bib29
  article-title: Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells
  publication-title: J. Virol.
– volume: 288
  start-page: 669
  year: 2000
  end-page: 672
  ident: bib4
  article-title: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease
  publication-title: Science
– volume: 2
  start-page: 675
  year: 2002
  end-page: 687
  ident: bib26
  article-title: Viruses and interferon: a fight for supremacy
  publication-title: Nat. Rev. Immunol.
– volume: 434
  start-page: 93
  year: 2011
  end-page: 104
  ident: bib9
  article-title: Novel cross-talk within the IKK family controls innate immunity
  publication-title: Biochem. J.
– volume: 9
  start-page: e92545
  year: 2014
  ident: bib11
  article-title: Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome
  publication-title: PLoS One
– volume: 282
  start-page: 93
  year: 2003
  end-page: 102
  ident: bib28
  article-title: Gene transfection and expression in resting and activated murine CD4 T cell subsets
  publication-title: J. Immunol. Methods
– volume: 10
  start-page: e1534
  year: 2019
  ident: bib37
  article-title: RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 339
  start-page: 826
  year: 2012
  end-page: 830
  ident: bib41
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
– volume: 138
  start-page: 576
  year: 2009
  end-page: 591
  ident: bib7
  article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
  publication-title: Cell
– volume: 58
  start-page: 1977
  year: 2014
  end-page: 1986
  ident: bib17
  article-title: Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro
  publication-title: Antimicrob. Agents Chemother.
– volume: 26
  start-page: 1735
  year: 2019
  end-page: 1749
  ident: bib31
  article-title: STING directly activates autophagy to tune the innate immune response
  publication-title: Cell Death Differ.
– volume: 27
  start-page: 688
  year: 2017
  end-page: 704
  ident: bib24
  article-title: PKR activation and eIF2alpha phosphorylation mediate human globin mRNA splicing at spliceosome assembly
  publication-title: Cell Res.
– volume: 54
  start-page: 289
  year: 2014
  end-page: 296
  ident: bib3
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
– volume: 110
  start-page: 1652
  year: 2013
  end-page: 1657
  ident: bib13
  article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 397
  start-page: 3173
  year: 2010
  end-page: 3178
  ident: bib27
  article-title: Mammalian cell transfection: the present and the future
  publication-title: Anal. Bioanal. Chem.
– volume: 251
  start-page: 179
  year: 2017
  end-page: 185
  ident: bib2
  article-title: Inhibition of the innate immune receptors for foreign DNA sensing improves transfection efficiency of gene electrotransfer in melanoma B16F10 cells
  publication-title: J. Membr. Biol.
– volume: 15
  start-page: 1311
  year: 1987
  end-page: 1326
  ident: bib8
  article-title: Electroporation for the efficient transfection of mammalian cells with DNA
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 1393
  year: 2004
  end-page: 1398
  ident: bib42
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 418
  start-page: 234
  year: 2012
  end-page: 240
  ident: bib43
  article-title: Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 18
  start-page: 157
  year: 2015
  end-page: 168
  ident: bib12
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
– volume: 88
  start-page: 14222
  year: 2014
  end-page: 14231
  ident: bib23
  article-title: The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation
  publication-title: J. Virol.
– volume: 32
  start-page: 513
  year: 2014
  end-page: 545
  ident: bib36
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
– volume: 36
  start-page: 150
  year: 2015
  end-page: 160
  ident: bib34
  article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators
  publication-title: Trends Immunol.
– volume: 9
  start-page: 1647
  year: 2002
  end-page: 1652
  ident: bib32
  article-title: Gene therapy progress and prospects: nonviral vectors
  publication-title: Gene Ther.
– volume: 290
  start-page: 28726
  year: 2015
  ident: bib33
  article-title: Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy
  publication-title: J. Biol. Chem.
– volume: 341
  start-page: 903
  year: 2013
  end-page: 906
  ident: bib15
  article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
– volume: 199
  start-page: 397
  year: 2017
  end-page: 402
  ident: bib30
  article-title: Cutting edge: activation of STING in T cells induces type I IFN responses and cell death
  publication-title: J. Immunol.
– volume: 531
  start-page: 123
  year: 2009
  end-page: 143
  ident: bib44
  article-title: The expression of exogenous genes in macrophages: obstacles and opportunities
  publication-title: Methods Mol. Biol.
– volume: 17
  start-page: 1142
  year: 2016
  end-page: 1149
  ident: bib6
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
– volume: 70
  start-page: 1032
  year: 2006
  end-page: 1060
  ident: bib16
  article-title: Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 9
  start-page: e92545
  year: 2014
  ident: 10.1016/j.isci.2020.101026_bib11
  article-title: Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092545
– volume: 26
  start-page: 1735
  year: 2019
  ident: 10.1016/j.isci.2020.101026_bib31
  article-title: STING directly activates autophagy to tune the innate immune response
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0251-z
– volume: 339
  start-page: 786
  year: 2013
  ident: 10.1016/j.isci.2020.101026_bib40
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 397
  start-page: 3173
  year: 2010
  ident: 10.1016/j.isci.2020.101026_bib27
  article-title: Mammalian cell transfection: the present and the future
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3821-6
– volume: 282
  start-page: 93
  year: 2003
  ident: 10.1016/j.isci.2020.101026_bib28
  article-title: Gene transfection and expression in resting and activated murine CD4 T cell subsets
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2003.07.015
– volume: 290
  start-page: 28726
  year: 2015
  ident: 10.1016/j.isci.2020.101026_bib33
  article-title: Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.A114.627778
– volume: 243
  start-page: 99
  year: 2011
  ident: 10.1016/j.isci.2020.101026_bib1
  article-title: Cytoplasmic DNA innate immune pathways
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01051.x
– volume: 214
  start-page: 1769
  year: 2017
  ident: 10.1016/j.isci.2020.101026_bib5
  article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20161674
– volume: 36
  start-page: 150
  year: 2015
  ident: 10.1016/j.isci.2020.101026_bib34
  article-title: Dynamic control of type I IFN signalling by an integrated network of negative regulators
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.02.002
– volume: 138
  start-page: 576
  year: 2009
  ident: 10.1016/j.isci.2020.101026_bib7
  article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.015
– volume: 314
  start-page: 994
  year: 2006
  ident: 10.1016/j.isci.2020.101026_bib22
  article-title: 5'-triphosphate RNA is the ligand for RIG-I
  publication-title: Science
  doi: 10.1126/science.1132505
– volume: 2
  start-page: 675
  year: 2002
  ident: 10.1016/j.isci.2020.101026_bib26
  article-title: Viruses and interferon: a fight for supremacy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri888
– volume: 288
  start-page: 669
  year: 2000
  ident: 10.1016/j.isci.2020.101026_bib4
  article-title: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease
  publication-title: Science
  doi: 10.1126/science.288.5466.669
– volume: 199
  start-page: 397
  year: 2017
  ident: 10.1016/j.isci.2020.101026_bib30
  article-title: Cutting edge: activation of STING in T cells induces type I IFN responses and cell death
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601999
– volume: 13
  start-page: 52
  year: 2013
  ident: 10.1016/j.isci.2020.101026_bib25
  article-title: High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-13-52
– volume: 339
  start-page: 826
  year: 2012
  ident: 10.1016/j.isci.2020.101026_bib41
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 251
  start-page: 179
  year: 2017
  ident: 10.1016/j.isci.2020.101026_bib2
  article-title: Inhibition of the innate immune receptors for foreign DNA sensing improves transfection efficiency of gene electrotransfer in melanoma B16F10 cells
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-017-9948-z
– volume: 110
  start-page: 1652
  year: 2013
  ident: 10.1016/j.isci.2020.101026_bib13
  article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1218528110
– volume: 111
  start-page: 336
  year: 2016
  ident: 10.1016/j.isci.2020.101026_bib20
  article-title: Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.04.008
– volume: 88
  start-page: 14222
  year: 2014
  ident: 10.1016/j.isci.2020.101026_bib23
  article-title: The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation
  publication-title: J. Virol.
  doi: 10.1128/JVI.01763-14
– volume: 19
  start-page: 313
  year: 2013
  ident: 10.1016/j.isci.2020.101026_bib35
  article-title: An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.3082
– volume: 284
  start-page: 14136
  year: 2009
  ident: 10.1016/j.isci.2020.101026_bib10
  article-title: Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.000414
– volume: 15
  start-page: 1311
  year: 1987
  ident: 10.1016/j.isci.2020.101026_bib8
  article-title: Electroporation for the efficient transfection of mammalian cells with DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/15.3.1311
– volume: 10
  start-page: e1534
  year: 2019
  ident: 10.1016/j.isci.2020.101026_bib37
  article-title: RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1534
– volume: 58
  start-page: 1977
  year: 2014
  ident: 10.1016/j.isci.2020.101026_bib17
  article-title: Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02496-13
– volume: 32
  start-page: 513
  year: 2014
  ident: 10.1016/j.isci.2020.101026_bib36
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120231
– volume: 567
  start-page: 262
  year: 2019
  ident: 10.1016/j.isci.2020.101026_bib18
  article-title: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway
  publication-title: Nature
  doi: 10.1038/s41586-019-1006-9
– volume: 22
  start-page: 1393
  year: 2004
  ident: 10.1016/j.isci.2020.101026_bib42
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1026
– volume: 18
  start-page: 157
  year: 2015
  ident: 10.1016/j.isci.2020.101026_bib12
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 434
  start-page: 93
  year: 2011
  ident: 10.1016/j.isci.2020.101026_bib9
  article-title: Novel cross-talk within the IKK family controls innate immunity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101701
– volume: 54
  start-page: 289
  year: 2014
  ident: 10.1016/j.isci.2020.101026_bib3
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.040
– volume: 531
  start-page: 123
  year: 2009
  ident: 10.1016/j.isci.2020.101026_bib44
  article-title: The expression of exogenous genes in macrophages: obstacles and opportunities
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-396-7_9
– volume: 27
  start-page: 688
  year: 2017
  ident: 10.1016/j.isci.2020.101026_bib24
  article-title: PKR activation and eIF2alpha phosphorylation mediate human globin mRNA splicing at spliceosome assembly
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.39
– volume: 282
  start-page: 15325
  year: 2007
  ident: 10.1016/j.isci.2020.101026_bib21
  article-title: Triggering the innate antiviral response through IRF-3 activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700002200
– volume: 9
  start-page: 1647
  year: 2002
  ident: 10.1016/j.isci.2020.101026_bib32
  article-title: Gene therapy progress and prospects: nonviral vectors
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301923
– volume: 418
  start-page: 234
  year: 2012
  ident: 10.1016/j.isci.2020.101026_bib43
  article-title: Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.12.156
– volume: 81
  start-page: 12720
  year: 2007
  ident: 10.1016/j.isci.2020.101026_bib39
  article-title: Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response
  publication-title: J. Virol.
  doi: 10.1128/JVI.01471-07
– volume: 17
  start-page: 1142
  year: 2016
  ident: 10.1016/j.isci.2020.101026_bib6
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 341
  start-page: 903
  year: 2013
  ident: 10.1016/j.isci.2020.101026_bib15
  article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
  doi: 10.1126/science.1240933
– volume: 89
  start-page: 11169
  year: 2015
  ident: 10.1016/j.isci.2020.101026_bib29
  article-title: Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.01781-15
– volume: 16
  start-page: 1273
  year: 1999
  ident: 10.1016/j.isci.2020.101026_bib14
  article-title: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity
  publication-title: Pharm. Res.
  doi: 10.1023/A:1014861900478
– volume: 12
  start-page: 451
  year: 2005
  ident: 10.1016/j.isci.2020.101026_bib38
  article-title: Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2005.04.008
– volume: 70
  start-page: 1032
  year: 2006
  ident: 10.1016/j.isci.2020.101026_bib16
  article-title: Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00027-06
– volume: 559
  start-page: 269
  year: 2018
  ident: 10.1016/j.isci.2020.101026_bib19
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-018-0287-8
SSID ssj0002002496
Score 2.2354386
Snippet DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101026
SubjectTerms Biological Sciences
Molecular Biology
Molecular Mechanism of Gene Regulation
Title Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression
URI https://dx.doi.org/10.1016/j.isci.2020.101026
https://www.ncbi.nlm.nih.gov/pubmed/32283527
https://www.proquest.com/docview/2389693103
https://pubmed.ncbi.nlm.nih.gov/PMC7155207
https://doaj.org/article/ebc8e18358b64660aa2c93b736272b20
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKS9LUbVIc6K2YypIlrY9JyTYppJQ8IDehx4hsKN6QB-TnZ0byLrstpJdeJb9mNPLMSJ--YeyzhwQyxa5JnedEqt02rqXVJhH7CYbXShk6nHz6Ux9fdj-u1NVKqS_ChBV64KK4r-DDBNDu1MTrTmvunAi99AZ_vEZ4kbN19HkrydRN3l4jKrxcWU4RJghNczwxU8BddOIVk0ORGzKzwopXyuT9a87p7-DzTwzlilOavmGvx2iyPihSvGWvYNhiv06G65nPUKx6nurw_eC8Oc0VOSDWeQUwwR32nRV4LNRTFwpXN9zX2XehUUF99DRiZIdtdjk9uvh23IyFE5pA9Qka1LCXOvpWRyNBQ29Qd30ADkakPgqufeoMB6WddAak5N6BUdGrFNpWJ_mObQzzAd6zmhsMWTrANDHwLgrnReQRIrgJx7EMULF2oTgbRlZxKm7x2y7gYzeWlG1J2bYou2JflvfcFk6NF68-pPFYXkl82LkBrcSOVmL_ZSUVU4vRtGNoUUIGfNTsxZfvL4be4ryjzRQ3wPzx3mKo0-ueqrRVbKeYwvITJXEKKWEqZtaMZE2G9Z5hdp25vQ1R4nHz4X8I_ZFtkii09yW6XbbxcPcIexhCPfhPebY8AwESFvI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+cGAS-Mediated+Interferon+Response+Facilitates+Transgene+Expression&rft.jtitle=iScience&rft.au=Fu%2C+Yajuan&rft.au=Fang%2C+Yijun&rft.au=Lin%2C+Zhang&rft.au=Yang%2C+Lei&rft.date=2020-04-24&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=4&rft.spage=101026&rft_id=info:doi/10.1016%2Fj.isci.2020.101026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2020_101026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon