Blue-/Green-Light-Responsive Cyanobacteriochromes Are Cell Shade Sensors in Red-Light Replete Niches
Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100936 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2020.100936 |
Cover
Loading…
Abstract | Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria.
[Display omitted]
•Blue- and green-light-sensing cyanobacteriochromes can be sensors of cell density•They may provide information about the cell position in microbial mats•Green-light-induced dispersion of aggregates needs red-light-driven photosynthesis•Cyanobacteriochromes might work in a different niche than red/far-red phytochromes
Sensor; Biological Sciences; Microbiology |
---|---|
AbstractList | Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria.Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. : Sensor; Biological Sciences; Microbiology Subject Areas: Sensor, Biological Sciences, Microbiology Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus . This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. • Blue- and green-light-sensing cyanobacteriochromes can be sensors of cell density • They may provide information about the cell position in microbial mats • Green-light-induced dispersion of aggregates needs red-light-driven photosynthesis • Cyanobacteriochromes might work in a different niche than red/far-red phytochromes Sensor; Biological Sciences; Microbiology Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. [Display omitted] •Blue- and green-light-sensing cyanobacteriochromes can be sensors of cell density•They may provide information about the cell position in microbial mats•Green-light-induced dispersion of aggregates needs red-light-driven photosynthesis•Cyanobacteriochromes might work in a different niche than red/far-red phytochromes Sensor; Biological Sciences; Microbiology |
ArticleNumber | 100936 |
Author | Enomoto, Gen Ikeuchi, Masahiko |
AuthorAffiliation | 1 Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan |
AuthorAffiliation_xml | – name: 1 Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan |
Author_xml | – sequence: 1 givenname: Gen orcidid: 0000-0002-9492-7557 surname: Enomoto fullname: Enomoto, Gen email: gen.enomoto@biologie.uni-freiburg.de organization: Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan – sequence: 2 givenname: Masahiko surname: Ikeuchi fullname: Ikeuchi, Masahiko organization: Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32146329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSdP8gR6Kj714ow9blqEUkqVNA0sLSXsWsjRea_FKW0m7kH9fOU5C0kNOGmbeeyPmvffoyHkHCH0keEEw4eebhY3aLiimUwO3jL9BJ7QWbYlxRY-e1cfoLMYNxhmJadXyd-iYUVJxRtsTZC7HPZTnVwHAlSu7HlJ5A3HnXbQHKJZ3yvlO6QTBej0Ev4VYXIQ8gHEsbgdloLgFF32IhXXFDZhZI1e7ERIUP60eIH5Ab3s1Rjh7eE_Rn-_ffi9_lKtfV9fLi1Wpa0pSybHolBGqN6TXpqEa95QoYIQCFU2FtaoNa2usK8MpB8O4YYLVpCG8AsYVO0XXs67xaiN3wW5VuJNeWXnf8GEtVUhWjyD7hnVci7arqq5iLRGYa9aANlBXRNBJ6-ustdt3WzAaXApqfCH6cuLsINf-IBucL8twFvj8IBD83z3EJLfZsXw35cDvo6SsqWtCRCMy9NPzXU9LHm3KADoDdPAxBuifIATLKQ5yI6c4yCkOco5DJon_SNomlayf_mvH16lfZipktw4WgswIcBqMDaBTPqd9jf4PP47PkQ |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2022_105105 crossref_primary_10_1146_annurev_micro_041522_094613 crossref_primary_10_1039_c9pp00489k crossref_primary_10_1093_plphys_kiab240 crossref_primary_10_1016_j_ijbiomac_2024_133407 crossref_primary_10_1016_j_jmb_2023_168313 crossref_primary_10_1021_acs_jpcb_0c04822 crossref_primary_10_1007_s43630_022_00213_3 crossref_primary_10_1073_pnas_2024583118 crossref_primary_10_1093_femsml_uqad019 crossref_primary_10_1007_s43630_023_00387_4 crossref_primary_10_3390_life10110252 crossref_primary_10_7554_eLife_73405 crossref_primary_10_7554_eLife_70327 |
Cites_doi | 10.1016/j.sbi.2015.07.005 10.1074/jbc.M114.583674 10.1111/nph.16240 10.1039/b802660m 10.1111/j.1365-2958.2012.08106.x 10.1128/genomeA.01060-13 10.1016/j.cub.2017.05.085 10.1016/j.pbi.2017.03.006 10.1128/JB.00344-19 10.1016/j.molp.2019.07.002 10.1128/MMBR.62.4.1353-1370.1998 10.1128/mBio.02130-15 10.1093/femsre/fux045 10.1093/pcp/pcr155 10.1111/febs.12003 10.1093/pcp/pch214 10.1021/bi201783j 10.1039/C4PP00486H 10.1038/s41598-018-23628-4 10.1128/AEM.53.4.879-886.1987 10.1126/science.1256963 10.1128/AEM.56.8.2327-2340.1990 10.1016/j.cub.2016.11.056 10.1073/pnas.1504228112 10.1562/0031-8655(2001)073<0090:EQASIF>2.0.CO;2 10.1038/nrmicro.2016.84 10.1074/jbc.M115.669150 10.1007/s00253-014-6020-0 10.1146/annurev-micro-020518-115738 10.3389/fmicb.2019.01612 10.1038/nrmicro.2016.190 10.1093/pcp/pcr047 10.1111/mmi.13977 10.1021/bi300020u 10.1021/bi047518q 10.1073/pnas.1104242108 10.1038/ismej.2017.98 10.3389/fmicb.2015.01303 10.1038/nrmicro.2016.94 10.1073/pnas.1217107110 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100936 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_f73b6c89b44b4391806c37ecde54182a PMC7063230 32146329 10_1016_j_isci_2020_100936 S2589004220301206 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-608bad8afd1fcd72c0f21ae312e28740ca5d3950c4d626ed36d383517164e36a3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Thu Aug 21 14:07:18 EDT 2025 Thu Jul 10 18:45:49 EDT 2025 Thu Jan 02 22:57:34 EST 2025 Tue Jul 01 01:03:28 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 25 21:04:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Microbiology Biological Sciences Sensor |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-608bad8afd1fcd72c0f21ae312e28740ca5d3950c4d626ed36d383517164e36a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Present address: Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany |
ORCID | 0000-0002-9492-7557 |
OpenAccessLink | https://doaj.org/article/f73b6c89b44b4391806c37ecde54182a |
PMID | 32146329 |
PQID | 2375511878 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f73b6c89b44b4391806c37ecde54182a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7063230 proquest_miscellaneous_2375511878 pubmed_primary_32146329 crossref_primary_10_1016_j_isci_2020_100936 crossref_citationtrail_10_1016_j_isci_2020_100936 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ohkubo, Miyashita (bib25) 2017; 11 Jorgensen, Cohen, Des Marais (bib16) 1987; 53 Ward, Ferris, Nold, Bateson (bib37) 1998; 62 Ohnishi, Allakhverdiev, Takahashi, Higashi, Watanabe, Nishiyama, Murata (bib26) 2005; 44 Rockwell, Martin, Gulevich, Lagarias (bib30) 2012; 51 Ma, Hua, Chen, Liu, Kramer, Scheer, Zhao, Zhou (bib19) 2012; 279 Zhao, Gan, Shen, Bryant (bib41) 2015; 6 Yoshihara, Katayama, Geng, Ikeuchi (bib40) 2004; 45 Ho, Soulier, Canniffe, Shen, Bryant (bib13) 2017; 37 Pierson, Sands, Frederick (bib27) 1990; 56 Gan, Zhang, Rockwell, Martin, Lagarias, Bryant (bib11) 2014; 345 Wilde, Mullineaux (bib38) 2017; 41 Nadell, Drescher, Foster (bib22) 2016; 14 Ponce-Toledo, Deschamps, López-García, Zivanovic, Benzerara, Moreira (bib28) 2017; 27 Song, Cho, Cho, Jeon, Lagarias, Park (bib35) 2011; 108 Savakis, De Causmaecker, Angerer, Ruppert, Anders, Essen, Wilde (bib33) 2012; 85 Hirose, Chihong, Watanabe, Yonekawa, Murata, Ikeuchi, Eki (bib12) 2019; 12 Maeda, Tamura, Okuda, Narikawa, Midorikawa, Ikeuchi (bib20) 2018; 109 Wiltbank, Kehoe (bib39) 2016; 7 Enomoto, Ni Ni, Narikawa, Ikeuchi (bib6) 2015; 112 Ikeuchi, Ishizuka (bib14) 2008; 7 Sanfilippo, Garczarek, Partensky, Kehoe (bib32) 2019; 73 Conradi, Zhou, Oeser, Schuergers, Wilde, Mullineaux (bib4) 2019; 201 Enomoto, Hirose, Narikawa, Ikeuchi (bib5) 2012; 51 Nishiyama, Murata (bib24) 2014; 98 Rockwell, Martin, Lagarias (bib31) 2015; 14 Moore, Magnabosco, Momper, Gold, Bosak, Fournier (bib21) 2019; 10 Jenal, Reinders, Lori (bib15) 2017; 15 Shih, Wu, Latifi, Axen, Fewer, Talla, Calteau, Cai, Tandeau de Marsac, Rippka (bib34) 2013; 110 Anders, Essen (bib1) 2015; 35 Fiorucci, Fankhauser (bib9) 2017; 27 Stolyar, Liu, Thiel, Tomsho, Pinel, Nelson, Lindemann, Romine, Haruta, Schuster (bib36) 2014; 2 Enomoto, Okuda, Ikeuchi (bib8) 2018; 8 Kondou, Nakazawa, Higashi, Watanabe, Manabe (bib18) 2001; 73 Enomoto, Nomura, Shimada, Ni Ni, Narikawa, Ikeuchi (bib7) 2014; 289 Flemming, Wingender, Szewzyk, Steinberg, Rice, Kjelleberg (bib10) 2016; 14 Bolhuis, Cretoiu, Stal (bib2) 2014; 90 Narikawa, Suzuki, Yoshihara, Higashi, Watanabe, Ikeuchi (bib23) 2011; 52 Rockwell, Lagarias (bib29) 2019; 225 Cho, Jeoung, Song, Kupriyanova, Pronina, Lee, Jo, Park, Choi, Song, Park (bib3) 2015; 290 Kawano, Saotome, Ochiai, Katayama, Narikawa, Ikeuchi (bib17) 2011; 52 Gan (10.1016/j.isci.2020.100936_bib11) 2014; 345 Maeda (10.1016/j.isci.2020.100936_bib20) 2018; 109 Wiltbank (10.1016/j.isci.2020.100936_bib39) 2016; 7 Yoshihara (10.1016/j.isci.2020.100936_bib40) 2004; 45 Ward (10.1016/j.isci.2020.100936_bib37) 1998; 62 Enomoto (10.1016/j.isci.2020.100936_bib7) 2014; 289 Jenal (10.1016/j.isci.2020.100936_bib15) 2017; 15 Nadell (10.1016/j.isci.2020.100936_bib22) 2016; 14 Nishiyama (10.1016/j.isci.2020.100936_bib24) 2014; 98 Enomoto (10.1016/j.isci.2020.100936_bib5) 2012; 51 Ma (10.1016/j.isci.2020.100936_bib19) 2012; 279 Zhao (10.1016/j.isci.2020.100936_bib41) 2015; 6 Rockwell (10.1016/j.isci.2020.100936_bib31) 2015; 14 Narikawa (10.1016/j.isci.2020.100936_bib23) 2011; 52 Wilde (10.1016/j.isci.2020.100936_bib38) 2017; 41 Ho (10.1016/j.isci.2020.100936_bib13) 2017; 37 Flemming (10.1016/j.isci.2020.100936_bib10) 2016; 14 Shih (10.1016/j.isci.2020.100936_bib34) 2013; 110 Ohkubo (10.1016/j.isci.2020.100936_bib25) 2017; 11 Stolyar (10.1016/j.isci.2020.100936_bib36) 2014; 2 Rockwell (10.1016/j.isci.2020.100936_bib29) 2019; 225 Enomoto (10.1016/j.isci.2020.100936_bib6) 2015; 112 Song (10.1016/j.isci.2020.100936_bib35) 2011; 108 Cho (10.1016/j.isci.2020.100936_bib3) 2015; 290 Savakis (10.1016/j.isci.2020.100936_bib33) 2012; 85 Sanfilippo (10.1016/j.isci.2020.100936_bib32) 2019; 73 Ikeuchi (10.1016/j.isci.2020.100936_bib14) 2008; 7 Ohnishi (10.1016/j.isci.2020.100936_bib26) 2005; 44 Enomoto (10.1016/j.isci.2020.100936_bib8) 2018; 8 Fiorucci (10.1016/j.isci.2020.100936_bib9) 2017; 27 Kawano (10.1016/j.isci.2020.100936_bib17) 2011; 52 Ponce-Toledo (10.1016/j.isci.2020.100936_bib28) 2017; 27 Hirose (10.1016/j.isci.2020.100936_bib12) 2019; 12 Jorgensen (10.1016/j.isci.2020.100936_bib16) 1987; 53 Kondou (10.1016/j.isci.2020.100936_bib18) 2001; 73 Moore (10.1016/j.isci.2020.100936_bib21) 2019; 10 Anders (10.1016/j.isci.2020.100936_bib1) 2015; 35 Bolhuis (10.1016/j.isci.2020.100936_bib2) 2014; 90 Pierson (10.1016/j.isci.2020.100936_bib27) 1990; 56 Conradi (10.1016/j.isci.2020.100936_bib4) 2019; 201 Rockwell (10.1016/j.isci.2020.100936_bib30) 2012; 51 |
References_xml | – volume: 44 start-page: 8494 year: 2005 end-page: 8499 ident: bib26 article-title: Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center publication-title: Biochemistry – volume: 37 start-page: 24 year: 2017 end-page: 33 ident: bib13 article-title: Light regulation of pigment and photosystem biosynthesis in cyanobacteria publication-title: Curr.Opin. Plant Biol. – volume: 62 start-page: 1353 year: 1998 end-page: 1370 ident: bib37 article-title: A natural view of microbial biodiversity within hot spring cyanobacterial mat communities publication-title: Microbiol. Mol. Biol. Rev. – volume: 225 start-page: 2283 year: 2019 end-page: 2300 ident: bib29 article-title: Phytochrome evolution in 3D: deletion, duplication, and diversification publication-title: New Phytol. – volume: 2 year: 2014 ident: bib36 article-title: Genome sequence of the thermophilic cyanobacterium publication-title: Genome Announc. – volume: 53 start-page: 879 year: 1987 end-page: 886 ident: bib16 article-title: Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat publication-title: Appl. Environ. Microbiol. – volume: 51 start-page: 1449 year: 2012 end-page: 1463 ident: bib30 article-title: Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily publication-title: Biochemistry – volume: 52 start-page: 2214 year: 2011 end-page: 2224 ident: bib23 article-title: Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium publication-title: Plant Cell Physiol. – volume: 35 start-page: 7 year: 2015 end-page: 16 ident: bib1 article-title: The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful publication-title: Curr.Opin.Struct. Biol. – volume: 56 start-page: 2327 year: 1990 ident: bib27 article-title: Spectral irradiance and distribution of pigments in a highly layered marine microbial mat publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 929 year: 2015 end-page: 941 ident: bib31 article-title: Identification of DXCF cyanobacteriochrome lineages with predictable photocycles publication-title: Photochem. Photobiol. Sci. – volume: 51 start-page: 3050 year: 2012 end-page: 3058 ident: bib5 article-title: Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999 publication-title: Biochemistry – volume: 98 start-page: 8777 year: 2014 end-page: 8796 ident: bib24 article-title: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery publication-title: Appl. Microbiol. Biotechnol. – volume: 27 start-page: 386 year: 2017 end-page: 391 ident: bib28 article-title: An early-branching freshwater cyanobacterium at the origin of plastids publication-title: Curr. Biol. – volume: 12 start-page: 1167 year: 2019 end-page: 1169 ident: bib12 article-title: Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria publication-title: Mol. Plant – volume: 110 start-page: 1053 year: 2013 end-page: 1058 ident: bib34 article-title: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing publication-title: Proc. Natl. Acad. Sci. U S A – volume: 73 start-page: 90 year: 2001 end-page: 95 ident: bib18 article-title: Equal-quantum action spectra indicate fluence-rate-selective action of multiple photoreceptors for photomovement of the thermophilic cyanobacterium publication-title: Photochem. Photobiol. – volume: 201 year: 2019 ident: bib4 article-title: Factors controlling floc formation and structure in the cyanobacterium publication-title: J. Bacteriol. – volume: 109 start-page: 121 year: 2018 end-page: 134 ident: bib20 article-title: Genetic identification of factors for extracellular cellulose accumulation in the thermophilic cyanobacterium publication-title: Mol. Microbiol. – volume: 52 start-page: 957 year: 2011 end-page: 966 ident: bib17 article-title: Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium publication-title: Plant Cell Physiol. – volume: 10 start-page: 1612 year: 2019 ident: bib21 article-title: An expanded ribosomal phylogeny of cyanobacteria supports a deep placement of plastids publication-title: Front. Microbiol. – volume: 85 start-page: 239 year: 2012 end-page: 251 ident: bib33 article-title: Light-induced alteration of c-di-GMP level controls motility of publication-title: Mol. Microbiol. – volume: 345 start-page: 1312 year: 2014 end-page: 1317 ident: bib11 article-title: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light publication-title: Science – volume: 7 start-page: 1159 year: 2008 end-page: 1167 ident: bib14 article-title: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria publication-title: Photochem.Photobiol.Sci. – volume: 14 start-page: 589 year: 2016 end-page: 600 ident: bib22 article-title: Spatial structure, cooperation and competition in biofilms publication-title: Nat. Rev. Microbiol. – volume: 27 start-page: R931 year: 2017 end-page: R940 ident: bib9 article-title: Plant strategies for enhancing access to sunlight publication-title: Curr. Biol. – volume: 90 start-page: 335 year: 2014 end-page: 350 ident: bib2 article-title: Molecular ecology of microbial mats publication-title: FEMS Microbiol. Ecol. – volume: 279 start-page: 4095 year: 2012 end-page: 4108 ident: bib19 article-title: A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in publication-title: FEBS J. – volume: 108 start-page: 10780 year: 2011 end-page: 10785 ident: bib35 article-title: Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium publication-title: Proc. Natl. Acad. Sci. U S A – volume: 73 start-page: 407 year: 2019 end-page: 433 ident: bib32 article-title: Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis publication-title: Annu. Rev. Microbiol. – volume: 112 start-page: 8082 year: 2015 end-page: 8087 ident: bib6 article-title: Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation publication-title: Proc. Natl. Acad. Sci. U S A – volume: 14 start-page: 563 year: 2016 end-page: 575 ident: bib10 article-title: Biofilms: an emergent form of bacterial life publication-title: Nat. Rev. Microbiol. – volume: 289 start-page: 24801 year: 2014 end-page: 24809 ident: bib7 article-title: Cyanobacteriochrome SesA is a diguanylatecyclase that induces cell aggregation in publication-title: J. Biol. Chem. – volume: 45 start-page: 1729 year: 2004 end-page: 1737 ident: bib40 article-title: Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms publication-title: Plant Cell Physiol. – volume: 15 start-page: 271 year: 2017 end-page: 284 ident: bib15 article-title: Cyclic di-GMP: second messenger extraordinaire publication-title: Nat. Rev. Microbiol. – volume: 41 start-page: 900 year: 2017 end-page: 922 ident: bib38 article-title: Light-controlled motility in prokaryotes and the problem of directional light perception publication-title: FEMS Microbiol. Rev. – volume: 8 start-page: 5338 year: 2018 ident: bib8 article-title: Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of publication-title: Sci. Rep. – volume: 11 start-page: 2368 year: 2017 end-page: 2378 ident: bib25 article-title: A niche for cyanobacteria producing chlorophyll publication-title: ISME J. – volume: 290 start-page: 28502 year: 2015 end-page: 28514 ident: bib3 article-title: Genomic survey and biochemical analysis of recombinant candidate cyanobacteriochromes reveals enrichment for near UV/violet sensors in the halotolerant and alkaliphilic cyanobacterium publication-title: J. Biol. Chem. – volume: 7 year: 2016 ident: bib39 article-title: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light publication-title: mBio – volume: 6 start-page: 1303 year: 2015 ident: bib41 article-title: RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP) publication-title: Front. Microbiol. – volume: 35 start-page: 7 year: 2015 ident: 10.1016/j.isci.2020.100936_bib1 article-title: The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful publication-title: Curr.Opin.Struct. Biol. doi: 10.1016/j.sbi.2015.07.005 – volume: 289 start-page: 24801 year: 2014 ident: 10.1016/j.isci.2020.100936_bib7 article-title: Cyanobacteriochrome SesA is a diguanylatecyclase that induces cell aggregation in Thermosynechococcus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.583674 – volume: 225 start-page: 2283 year: 2019 ident: 10.1016/j.isci.2020.100936_bib29 article-title: Phytochrome evolution in 3D: deletion, duplication, and diversification publication-title: New Phytol. doi: 10.1111/nph.16240 – volume: 7 start-page: 1159 year: 2008 ident: 10.1016/j.isci.2020.100936_bib14 article-title: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria publication-title: Photochem.Photobiol.Sci. doi: 10.1039/b802660m – volume: 85 start-page: 239 year: 2012 ident: 10.1016/j.isci.2020.100936_bib33 article-title: Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08106.x – volume: 2 year: 2014 ident: 10.1016/j.isci.2020.100936_bib36 article-title: Genome sequence of the thermophilic cyanobacterium Thermosynechococcus sp. strain NK55a publication-title: Genome Announc. doi: 10.1128/genomeA.01060-13 – volume: 27 start-page: R931 year: 2017 ident: 10.1016/j.isci.2020.100936_bib9 article-title: Plant strategies for enhancing access to sunlight publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.05.085 – volume: 37 start-page: 24 year: 2017 ident: 10.1016/j.isci.2020.100936_bib13 article-title: Light regulation of pigment and photosystem biosynthesis in cyanobacteria publication-title: Curr.Opin. Plant Biol. doi: 10.1016/j.pbi.2017.03.006 – volume: 201 year: 2019 ident: 10.1016/j.isci.2020.100936_bib4 article-title: Factors controlling floc formation and structure in the cyanobacterium Synechocystis sp. strain PCC 6803 publication-title: J. Bacteriol. doi: 10.1128/JB.00344-19 – volume: 12 start-page: 1167 year: 2019 ident: 10.1016/j.isci.2020.100936_bib12 article-title: Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria publication-title: Mol. Plant doi: 10.1016/j.molp.2019.07.002 – volume: 62 start-page: 1353 year: 1998 ident: 10.1016/j.isci.2020.100936_bib37 article-title: A natural view of microbial biodiversity within hot spring cyanobacterial mat communities publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.62.4.1353-1370.1998 – volume: 7 year: 2016 ident: 10.1016/j.isci.2020.100936_bib39 article-title: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light publication-title: mBio doi: 10.1128/mBio.02130-15 – volume: 41 start-page: 900 year: 2017 ident: 10.1016/j.isci.2020.100936_bib38 article-title: Light-controlled motility in prokaryotes and the problem of directional light perception publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fux045 – volume: 52 start-page: 2214 year: 2011 ident: 10.1016/j.isci.2020.100936_bib23 article-title: Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr155 – volume: 279 start-page: 4095 year: 2012 ident: 10.1016/j.isci.2020.100936_bib19 article-title: A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120 publication-title: FEBS J. doi: 10.1111/febs.12003 – volume: 45 start-page: 1729 year: 2004 ident: 10.1016/j.isci.2020.100936_bib40 article-title: Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch214 – volume: 51 start-page: 1449 year: 2012 ident: 10.1016/j.isci.2020.100936_bib30 article-title: Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily publication-title: Biochemistry doi: 10.1021/bi201783j – volume: 14 start-page: 929 year: 2015 ident: 10.1016/j.isci.2020.100936_bib31 article-title: Identification of DXCF cyanobacteriochrome lineages with predictable photocycles publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C4PP00486H – volume: 8 start-page: 5338 year: 2018 ident: 10.1016/j.isci.2020.100936_bib8 article-title: Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcusvulcanus publication-title: Sci. Rep. doi: 10.1038/s41598-018-23628-4 – volume: 53 start-page: 879 year: 1987 ident: 10.1016/j.isci.2020.100936_bib16 article-title: Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.53.4.879-886.1987 – volume: 345 start-page: 1312 year: 2014 ident: 10.1016/j.isci.2020.100936_bib11 article-title: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light publication-title: Science doi: 10.1126/science.1256963 – volume: 56 start-page: 2327 year: 1990 ident: 10.1016/j.isci.2020.100936_bib27 article-title: Spectral irradiance and distribution of pigments in a highly layered marine microbial mat publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.56.8.2327-2340.1990 – volume: 27 start-page: 386 year: 2017 ident: 10.1016/j.isci.2020.100936_bib28 article-title: An early-branching freshwater cyanobacterium at the origin of plastids publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.11.056 – volume: 112 start-page: 8082 year: 2015 ident: 10.1016/j.isci.2020.100936_bib6 article-title: Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1504228112 – volume: 73 start-page: 90 year: 2001 ident: 10.1016/j.isci.2020.100936_bib18 article-title: Equal-quantum action spectra indicate fluence-rate-selective action of multiple photoreceptors for photomovement of the thermophilic cyanobacterium Synechococcus elongatus publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)073<0090:EQASIF>2.0.CO;2 – volume: 90 start-page: 335 year: 2014 ident: 10.1016/j.isci.2020.100936_bib2 article-title: Molecular ecology of microbial mats publication-title: FEMS Microbiol. Ecol. – volume: 14 start-page: 589 year: 2016 ident: 10.1016/j.isci.2020.100936_bib22 article-title: Spatial structure, cooperation and competition in biofilms publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.84 – volume: 290 start-page: 28502 year: 2015 ident: 10.1016/j.isci.2020.100936_bib3 article-title: Genomic survey and biochemical analysis of recombinant candidate cyanobacteriochromes reveals enrichment for near UV/violet sensors in the halotolerant and alkaliphilic cyanobacterium Microcoleus IPPAS B353 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.669150 – volume: 98 start-page: 8777 year: 2014 ident: 10.1016/j.isci.2020.100936_bib24 article-title: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6020-0 – volume: 73 start-page: 407 year: 2019 ident: 10.1016/j.isci.2020.100936_bib32 article-title: Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-020518-115738 – volume: 10 start-page: 1612 year: 2019 ident: 10.1016/j.isci.2020.100936_bib21 article-title: An expanded ribosomal phylogeny of cyanobacteria supports a deep placement of plastids publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01612 – volume: 15 start-page: 271 year: 2017 ident: 10.1016/j.isci.2020.100936_bib15 article-title: Cyclic di-GMP: second messenger extraordinaire publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.190 – volume: 52 start-page: 957 year: 2011 ident: 10.1016/j.isci.2020.100936_bib17 article-title: Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr047 – volume: 109 start-page: 121 year: 2018 ident: 10.1016/j.isci.2020.100936_bib20 article-title: Genetic identification of factors for extracellular cellulose accumulation in the thermophilic cyanobacterium Thermosynechococcus vulcanus: proposal of a novel tripartite secretion system publication-title: Mol. Microbiol. doi: 10.1111/mmi.13977 – volume: 51 start-page: 3050 year: 2012 ident: 10.1016/j.isci.2020.100936_bib5 article-title: Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999 publication-title: Biochemistry doi: 10.1021/bi300020u – volume: 44 start-page: 8494 year: 2005 ident: 10.1016/j.isci.2020.100936_bib26 article-title: Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center publication-title: Biochemistry doi: 10.1021/bi047518q – volume: 108 start-page: 10780 year: 2011 ident: 10.1016/j.isci.2020.100936_bib35 article-title: Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1104242108 – volume: 11 start-page: 2368 year: 2017 ident: 10.1016/j.isci.2020.100936_bib25 article-title: A niche for cyanobacteria producing chlorophyll f within a microbial mat publication-title: ISME J. doi: 10.1038/ismej.2017.98 – volume: 6 start-page: 1303 year: 2015 ident: 10.1016/j.isci.2020.100936_bib41 article-title: RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP) publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01303 – volume: 14 start-page: 563 year: 2016 ident: 10.1016/j.isci.2020.100936_bib10 article-title: Biofilms: an emergent form of bacterial life publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.94 – volume: 110 start-page: 1053 year: 2013 ident: 10.1016/j.isci.2020.100936_bib34 article-title: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1217107110 |
SSID | ssj0002002496 |
Score | 2.2062092 |
Snippet | Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100936 |
SubjectTerms | Biological Sciences Microbiology Sensor |
Title | Blue-/Green-Light-Responsive Cyanobacteriochromes Are Cell Shade Sensors in Red-Light Replete Niches |
URI | https://dx.doi.org/10.1016/j.isci.2020.100936 https://www.ncbi.nlm.nih.gov/pubmed/32146329 https://www.proquest.com/docview/2375511878 https://pubmed.ncbi.nlm.nih.gov/PMC7063230 https://doaj.org/article/f73b6c89b44b4391806c37ecde54182a |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQiK9AQUHihqI6tmM7R1pRVQh6oFTqzfLHRLvVKlt1u0j8e2bs7LILUrlwi-zEiTNjzRv5-Q1j7xFSBxs9b0xqY6ME2MZLbpsQBqu1xYCSWZVfz_XZpfp81V3tlPoiTliRBy4_7mgwMuho-6BUoFOilusoDcQEnUJsnKERxrydZOo6b6-RFF6uLNcRJwhdczoxU8hddOIVk0ORWQJ91mf-HZWyeP9ecPobfP7JodwJSqeP2aMJTdYfyyyesAcwPmXpeLGG5igzapovRShkYsL-gPrkpx9xDWeN5mWckVrBCgfADlgs6ouZT1BfYG67vF3V87H-BqmMgVc3aGOoz4k8unrGLk8_fT85a6ZiCk2kmgWN5jb4ZP2Q2iEmIyIfROtBtgJI8p5H3yXZdzyqhDkOJKkTJq8dqekokNrL5-xgXI7wktVaDYqrEExUUoVB9kl6MYDBVgFgeMXazc90cVIap4IXC7ehlF07MoAjA7higIp92D5zU3Q27r37mGy0vZM0snMDeo6bPMf9y3Mq1m0s7Ca4UWAEDjW_9-XvNu7gcC3SBosfYbleOSFNRxmbsRV7Udxj-4lUEEpL0VfM7DnO3hz2e8b5LOt9G4SRmCm--h-Tfs0e0lSIRSfMITu4u13DG4RVd-FtXkG_AE6XHZU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blue-%2FGreen-Light-Responsive+Cyanobacteriochromes+Are+Cell+Shade+Sensors+in+Red-Light+Replete+Niches&rft.jtitle=iScience&rft.au=Enomoto%2C+Gen&rft.au=Ikeuchi%2C+Masahiko&rft.date=2020-03-27&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft.spage=100936&rft_id=info:doi/10.1016%2Fj.isci.2020.100936&rft_id=info%3Apmid%2F32146329&rft.externalDocID=32146329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |