Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis
Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in he...
Saved in:
Published in | Cell metabolism Vol. 34; no. 8; pp. 1201 - 1213.e5 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.
[Display omitted]
•NAFLD/NASH livers present iron-deficient hepatocytes and iron overloaded HSCs•Hepatocyte iron deficiency enhances lipogenesis and insulin resistance via HIF2α-ATF4•Hepatocyte EVs shuttle iron into HSCs in NAFLD/NASH•Iron overload stimulates HSC ROS production and fibrogenic activation
Hepatocytes have important roles in liver iron homeostasis. Gao et al. report that hepatocyte-derived, iron-containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cell iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet-fed mice. |
---|---|
AbstractList | Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restore liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. Hepatocytes have important roles in liver iron homeostasis. Gao et al., report that hepatocyte-derived iron containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cells iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet fed mice. Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. [Display omitted] •NAFLD/NASH livers present iron-deficient hepatocytes and iron overloaded HSCs•Hepatocyte iron deficiency enhances lipogenesis and insulin resistance via HIF2α-ATF4•Hepatocyte EVs shuttle iron into HSCs in NAFLD/NASH•Iron overload stimulates HSC ROS production and fibrogenic activation Hepatocytes have important roles in liver iron homeostasis. Gao et al. report that hepatocyte-derived, iron-containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cell iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet-fed mice. |
Author | Wang, Gaowei Gao, Hong Karin, Michael Zhao, Huayi Jin, Zhongmou Zhang, Dinghong Kisseleva, Tatiana Liu, Xiao Brenner, David A. Ying, Wei Rocha, Karina Cunha e Bandyopadhyay, Gautam |
AuthorAffiliation | 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA 6 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA 4 Department of Medicine, University of California, San Diego, California, USA 2 Division of Biological Sciences, University of California, San Diego, California, USA 7 Lead Contact 3 Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California, USA 5 Department of Surgery, University of California, La Jolla, San Diego, California, USA |
AuthorAffiliation_xml | – name: 7 Lead Contact – name: 3 Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California, USA – name: 4 Department of Medicine, University of California, San Diego, California, USA – name: 6 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA – name: 2 Division of Biological Sciences, University of California, San Diego, California, USA – name: 5 Department of Surgery, University of California, La Jolla, San Diego, California, USA – name: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA |
Author_xml | – sequence: 1 givenname: Hong surname: Gao fullname: Gao, Hong email: hog007@health.ucsd.edu organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 2 givenname: Zhongmou surname: Jin fullname: Jin, Zhongmou organization: Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA – sequence: 3 givenname: Gautam surname: Bandyopadhyay fullname: Bandyopadhyay, Gautam organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 4 givenname: Gaowei surname: Wang fullname: Wang, Gaowei organization: Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA – sequence: 5 givenname: Dinghong surname: Zhang fullname: Zhang, Dinghong organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 6 givenname: Karina Cunha e surname: Rocha fullname: Rocha, Karina Cunha e organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 7 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 8 givenname: Huayi surname: Zhao fullname: Zhao, Huayi organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 9 givenname: Tatiana surname: Kisseleva fullname: Kisseleva, Tatiana organization: Department of Surgery, University of California, San Diego, La Jolla, CA, USA – sequence: 10 givenname: David A. surname: Brenner fullname: Brenner, David A. organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA – sequence: 11 givenname: Michael surname: Karin fullname: Karin, Michael email: karinoffice@health.ucsd.edu organization: Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA – sequence: 12 givenname: Wei surname: Ying fullname: Ying, Wei email: weying@health.ucsd.edu organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35921818$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuFDEQtFAQecAPcEBz5DKTtr32zEgIKYp4RIrEBc6Wx-5NejVrL7Z3Rf4ejzZBwCEXt9tdVS1XnbOTEAMy9pZDx4Hry03ntlg6AUJ00HcA-gU746MUbb8ScFLvSkG74pKfsvOcNwBSy1G-YqdSjYIPfDhj09WEKdlQGkoxNJ5ySTTtC9XmQLa5x50t0T0UbHPBebYFG1drY39RbnyiA-Zmrmeq5y7eYcBcBzb4Zk1TirV5zV6u7ZzxzWO9YD8-f_p-_bW9_fbl5vrqtnVK8NJqgF71k9VrISSgllZ6HO3awSBVfZa9W3mnpLK-AlBoYdXoJlyBHqTXIC_Yx6Pubj9t0TsMJdnZ7BJtbXow0ZL5dxLo3tzFgxmlVhwWgfePAin-3GMuZkt5-awNGPfZCD0OWsI4LNB3f-_6s-TJ2AoYjgBXPcgJ18ZRsYutdTXNhoNZMjQbs2RolgwN9KZmWKniP-qT-rOkD0cSVocPhMlkRxgcekroivGRnqP_BoMSuAY |
CitedBy_id | crossref_primary_10_1016_j_bbcan_2022_188848 crossref_primary_10_1016_j_jbc_2024_107340 crossref_primary_10_2147_JIR_S385977 crossref_primary_10_1016_j_reth_2024_09_016 crossref_primary_10_1016_j_phymed_2023_155134 crossref_primary_10_1186_s40364_024_00669_8 crossref_primary_10_3389_fphar_2023_1152042 crossref_primary_10_2478_acve_2024_0004 crossref_primary_10_1002_advs_202305856 crossref_primary_10_3390_antiox13111363 crossref_primary_10_1038_s41419_023_05708_0 crossref_primary_10_3390_metabo14040228 crossref_primary_10_2147_IJN_S465346 crossref_primary_10_1007_s13679_024_00600_0 crossref_primary_10_1142_S0192415X24500149 crossref_primary_10_3390_cancers17050842 crossref_primary_10_1007_s10534_024_00600_6 crossref_primary_10_3390_molecules28010272 crossref_primary_10_1016_j_intimp_2023_111045 crossref_primary_10_1016_j_ejps_2024_106690 crossref_primary_10_1016_j_talanta_2025_127694 crossref_primary_10_1111_liv_15490 crossref_primary_10_1126_scitranslmed_adi0759 crossref_primary_10_1186_s40779_023_00487_3 crossref_primary_10_1016_j_nutres_2024_09_011 crossref_primary_10_3390_metabo14040218 crossref_primary_10_1016_j_jare_2024_03_009 crossref_primary_10_3389_fcell_2023_1199519 crossref_primary_10_1016_j_metabol_2024_155953 crossref_primary_10_1111_1751_2980_13292 crossref_primary_10_3389_fendo_2024_1431652 crossref_primary_10_3390_biomedicines13030683 crossref_primary_10_1038_s41467_024_45520_8 crossref_primary_10_1021_acs_chemrev_4c00577 crossref_primary_10_1038_s41467_024_46776_w crossref_primary_10_3389_fphar_2024_1281095 crossref_primary_10_1136_gutjnl_2023_331848 crossref_primary_10_1016_j_celrep_2024_113900 crossref_primary_10_3390_membranes12101023 crossref_primary_10_1016_j_isci_2023_108560 crossref_primary_10_1016_j_cmet_2024_05_008 crossref_primary_10_1080_10715762_2023_2191813 crossref_primary_10_1016_j_phymed_2024_155465 crossref_primary_10_3389_fphar_2023_1286718 crossref_primary_10_1093_lifemeta_loac036 crossref_primary_10_1111_apt_70037 crossref_primary_10_1038_s41574_023_00807_6 crossref_primary_10_3168_jds_2024_25839 crossref_primary_10_1016_j_cmet_2024_05_003 crossref_primary_10_1093_mtomcs_mfae043 crossref_primary_10_1152_ajpendo_00287_2023 crossref_primary_10_1016_S1875_5364_24_60690_4 crossref_primary_10_1016_j_heliyon_2024_e33741 crossref_primary_10_1186_s13062_025_00610_5 crossref_primary_10_1002_smll_202412093 crossref_primary_10_3389_fendo_2024_1454193 crossref_primary_10_3390_antiox12091653 crossref_primary_10_31083_j_fbl2901030 crossref_primary_10_1016_j_jnutbio_2025_109895 crossref_primary_10_1016_j_cbi_2024_111119 crossref_primary_10_1002_oby_24236 crossref_primary_10_1093_bbb_zbad140 crossref_primary_10_3390_nu14245237 crossref_primary_10_1007_s11427_022_2302_5 crossref_primary_10_1016_j_numecd_2023_09_016 crossref_primary_10_1155_2022_5295434 crossref_primary_10_1002_adbi_202400383 crossref_primary_10_31083_j_fbl2812332 crossref_primary_10_1038_s41598_025_91456_4 crossref_primary_10_1007_s10753_024_02184_2 crossref_primary_10_1016_j_jcmgh_2023_11_014 crossref_primary_10_1111_apt_18402 crossref_primary_10_1016_j_molstruc_2024_141208 crossref_primary_10_3389_fgene_2024_1406230 crossref_primary_10_1097_MEG_0000000000002530 crossref_primary_10_1016_j_jep_2024_118169 crossref_primary_10_1038_s42255_024_01214_5 crossref_primary_10_1016_j_bcp_2023_115909 crossref_primary_10_1126_sciimmunol_adp7193 crossref_primary_10_3390_antiox13020208 crossref_primary_10_1111_jdi_14407 crossref_primary_10_1038_s41580_023_00648_1 crossref_primary_10_1186_s12951_023_01921_3 crossref_primary_10_1146_annurev_physiol_042222_024535 crossref_primary_10_1007_s12035_025_04687_x crossref_primary_10_1016_j_jhepr_2023_100744 crossref_primary_10_1016_j_ijbiomac_2023_129104 crossref_primary_10_1111_tra_12905 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_1016_j_jep_2024_118557 crossref_primary_10_1021_acs_biomac_4c00691 crossref_primary_10_1016_j_canlet_2024_216652 crossref_primary_10_1073_pnas_2412473122 crossref_primary_10_1007_s00018_024_05376_z crossref_primary_10_1007_s12011_024_04149_w crossref_primary_10_1007_s00535_024_02157_0 crossref_primary_10_1097_CM9_0000000000002784 crossref_primary_10_3389_fnut_2024_1344924 crossref_primary_10_20960_nh_04653 crossref_primary_10_3389_fphar_2023_1127931 crossref_primary_10_1097_HC9_0000000000000658 crossref_primary_10_3390_biom13101464 crossref_primary_10_1016_j_phrs_2025_107579 |
Cites_doi | 10.1074/jbc.M000713200 10.1016/j.cmet.2015.09.006 10.1371/journal.pone.0187065 10.1126/science.aau6977 10.1038/s41366-020-0522-x 10.1007/s00431-014-2268-8 10.1038/s41467-020-14450-6 10.1016/j.cmet.2020.12.019 10.1182/blood-2013-06-427757 10.1053/j.gastro.2020.10.042 10.1038/ncb2000 10.1080/09168451.2018.1515616 10.1016/j.immuni.2020.06.003 10.1038/nri.2017.11 10.1053/j.gastro.2013.12.031 10.1182/blood-2002-10-3235 10.1038/ijo.2012.145 10.1053/j.gastro.2009.11.013 10.1016/j.cmet.2021.08.006 10.1038/s41556-018-0250-9 10.3748/wjg.v22.i36.8112 10.1038/s41467-019-09720-x 10.1002/hep4.1190 10.1084/jem.20071460 10.1002/hep.29754 10.1172/JCI88881 10.1158/0008-5472.CAN-12-0925 10.1038/nchembio.1416 10.1038/s41591-018-0104-9 10.1002/hep.23276 10.1038/oby.2009.319 10.1002/hep.24038 10.1016/j.cell.2009.12.052 10.1074/jbc.M113.470526 10.1038/35001596 10.1038/sj.ijo.0803625 10.1074/jbc.M116.726836 10.1126/science.1104742 10.1017/S1368980008002401 10.1016/j.devcel.2019.10.007 10.1182/blood-2017-02-768580 10.1182/blood-2006-07-033969 10.1002/hep.21260 10.1038/nrdp.2018.16 10.1016/S1097-2765(00)80425-6 10.1016/j.cell.2016.12.034 10.1111/liv.13513 10.1182/blood-2007-06-094441 10.1016/j.cmet.2013.02.007 10.1016/j.metabol.2012.01.007 10.1016/j.cell.2013.09.031 10.1016/j.immuni.2020.04.001 10.1002/hep.24706 10.1053/j.gastro.2015.04.005 10.1002/hep.25746 10.1056/NEJMra1804281 10.1016/j.freeradbiomed.2011.10.003 10.1016/j.cell.2017.08.035 10.1038/s42255-021-00444-1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2022.07.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1213.e5 |
ExternalDocumentID | PMC9365100 35921818 10_1016_j_cmet_2022_07_006 S1550413122003059 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: P50 AA011999 – fundername: NIDDK NIH HHS grantid: R01 DK101737 – fundername: NIH HHS grantid: S10 OD026929 – fundername: NCI NIH HHS grantid: R01 CA234128 – fundername: NIDDK NIH HHS grantid: R01 DK120714 – fundername: NIDDK NIH HHS grantid: R01 DK125560 – fundername: NIAAA NIH HHS grantid: U01 AA022614 – fundername: NIDDK NIH HHS grantid: R00 DK115998 – fundername: NIDDK NIH HHS grantid: R01 DK099205 – fundername: NINDS NIH HHS grantid: P30 NS047101 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-600757ba6f2230e63a3de9afc0835ba637c4dc535ad223e262a59cbe40683d603 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:42:13 EDT 2025 Fri Jul 11 07:24:09 EDT 2025 Thu Apr 03 07:01:41 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Fri Feb 23 02:40:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | NAFLD liver fibrosis hepatocyte iron liver steatosis hepatic stellate cell NASH extracellular vesicle |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-600757ba6f2230e63a3de9afc0835ba637c4dc535ad223e262a59cbe40683d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 H.G., M.K., and W.Y. designed the studies, and H.G. performed most of the experiments. G.B. performed lipogenesis assays. Z.J., D.Z., and K.R. assisted with tissue collection, cell culture, qPCR analysis, and western blot analysis. G.W. performed RNAseq analysis. X.L., H.Z., T.K., and D.A.B. contributed the human liver samples. M.K. and W.Y. supervised the project. T.K. and D.A.B. edited manuscript. H.G., M.K., and W.Y. analyzed and interpreted the data and co-wrote the manuscript. Author contributions |
OpenAccessLink | https://escholarship.org/content/qt0wk867h7/qt0wk867h7.pdf |
PMID | 35921818 |
PQID | 2698630980 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365100 proquest_miscellaneous_2698630980 pubmed_primary_35921818 crossref_citationtrail_10_1016_j_cmet_2022_07_006 crossref_primary_10_1016_j_cmet_2022_07_006 elsevier_sciencedirect_doi_10_1016_j_cmet_2022_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-02 |
PublicationDateYYYYMMDD | 2022-08-02 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shah, Xie (bib44) 2014; 146 Stoffel, El-Mallah, Herter-Aeberli, Bissani, Wehbe, Obeid, Zimmermann (bib47) 2020; 44 Auguet, Aragones, Berlanga, Martinez, Sabench, Binetti, Aguilar, Porras, Molina, Del Castillo, Richart (bib2) 2017; 12 Park, Lee, Yu, He, Ali, Holzer, Osterreicher, Takahashi, Karin (bib39) 2010; 140 Ganz (bib15) 2019; 381 Valenti, Fracanzani, Bugianesi, Dongiovanni, Galmozzi, Vanni, Canavesi, Lattuada, Roviaro, Marchesini, Fargion (bib51) 2010; 138 Simcox, McClain (bib45) 2013; 17 Brissot, Pietrangelo, Adams, de Graaff, McLaren, Loreal (bib5) 2018; 4 He, Dhar, Nakagawa, Font-Burgada, Ogata, Jiang, Shalapour, Seki, Yost, Jepsen (bib16) 2013; 155 Ji, Luo, Gao, Dos Reis, Bandyopadhyay, Jin, Manda, Isaac, Yang, Fu (bib19) 2021; 3 Li, Xiao, Yu, Xia, Liu, Guo, Deng, Chen, Wang, Guo (bib27) 2016; 291 Song, Tang, Han, Jiang, Dong, Liu, Liang, Dong, Qiu, Wang, Du (bib46) 2019; 10 Yanoff, Menzie, Denkinger, Sebring, McHugh, Remaley, Yanovski (bib55) 2007; 31 Rolo, Teodoro, Palmeira (bib41) 2012; 52 Tran, Baba, Poupel, Dussaud, Moreau, Gelineau, Marcelin, Magreau-Davy, Ouhachi, Lesnik (bib48) 2020; 53 Truman-Rosentsvit, Berenbaum, Spektor, Cohen, Belizowsky-Moshe, Lifshitz, Ma, Li, Kesselman, Abutbul-Ionita (bib49) 2018; 131 Brown, Amante, Chhoy, Elaimy, Liu, Zhu, Baer, Dixon, Mercurio (bib8) 2019; 51 Demircioglu, Gorunmez, Dagistan, Goksugur, Bekdas, Tosun, Kizildag, Kismet (bib9) 2014; 173 Zhao, Zhao, Jiang, Wu, Liu, Yuan, Shen, Zhang, Zhou, He (bib59) 2020; 11 Seidman, Troutman, Sakai, Gola, Spann, Bennett, Bruni, Ouyang, Li, Sun (bib43) 2020; 52 McKie, Marciani, Rolfs, Brennan, Wehr, Barrow, Miret, Bomford, Peters, Farzaneh (bib30) 2000; 5 Ostrowski, Carmo, Krumeich, Fanget, Raposo, Savina, Moita, Schauer, Hume, Freitas (bib38) 2010; 12 Kalluri, LeBleu (bib20) 2020; 367 Ying, Riopel, Bandyopadhyay, Dong, Birmingham, Seo, Ofrecio, Wollam, Hernandez-Carretero, Fu (bib56) 2017; 171 Verga Falzacappa, Vujic Spasic, Kessler, Stolte, Hentze, Muckenthaler (bib52) 2007; 109 Nemeth, Tuttle, Powelson, Vaughn, Donovan, Ward, Ganz, Kaplan (bib37) 2004; 306 Abboud, Haile (bib1) 2000; 275 Mathieu, Martin-Jaular, Lavieu, Thery (bib29) 2019; 21 McLean, Cogswell, Egli, Wojdyla, de Benoist (bib31) 2009; 12 Dixon, Stockwell (bib10) 2014; 10 Koyama, Brenner (bib24) 2017; 127 Meynard, Babitt, Lin (bib32) 2014; 123 Isaac, Reis, Ying, Olefsky (bib18) 2021; 33 Hori, Hara, Ishizuka (bib17) 2018; 82 Britton, Bridle, Reiling, Santrampurwala, Wockner, Ching, Stuart, Subramaniam, Jeffrey, St Pierre (bib7) 2018; 2 Friedman, Neuschwander-Tetri, Rinella, Sanyal (bib14) 2018; 24 Kim, Chang, Sung, Shin, Ryu (bib21) 2012; 61 Promrat, Kleiner, Niemeier, Jackvony, Kearns, Wands, Fava, Wing (bib40) 2010; 51 Ying, Gao, Dos Reis, Bandyopadhyay, Ofrecio, Luo, Ji, Jin, Ly, Olefsky (bib57) 2021; 33 Nemeth, Valore, Territo, Schiller, Lichtenstein, Ganz (bib36) 2003; 101 Kowdley, Belt, Wilson, Yeh, Neuschwander-Tetri, Chalasani, Sanyal, Nelson, Network (bib23) 2012; 55 Vilar-Gomez, Martinez-Perez, Calzadilla-Bertot, Torres-Gonzalez, Gra-Oramas, Gonzalez-Fabian, Friedman, Diago, Romero-Gomez (bib53) 2015; 149 Krenkel, Tacke (bib25) 2017; 17 Ryan, Armitage, Cobbold, Banerjee, Borsani, Dongiovanni, Neubauer, Morovat, Wang, Pasricha (bib42) 2018; 38 Koditz, Nesper, Wottawa, Stiehl, Camenisch, Franke, Myllyharju, Wenger, Katschinski (bib22) 2007; 110 Zhang, Zhang, Guo, An, Tao, Wang (bib58) 2012; 56 Bobrie, Krumeich, Reyal, Recchi, Moita, Seabra, Ostrowski, Thery (bib4) 2012; 72 Donovan, Brownlie, Zhou, Shepard, Pratt, Moynihan, Paw, Drejer, Barut, Zapata (bib11) 2000; 403 Tussing-Humphreys, Nemeth, Fantuzzi, Freels, Guzman, Holterman, Braunschweig (bib50) 2010; 18 Drakesmith, Nemeth, Ganz (bib12) 2015; 22 Lange, Chavez, Pinto, Coppola, Sun, Townes, Geschwind, Ratan (bib26) 2008; 205 Xiao, Zhang, Yu, Lee, Calabuig-Navarro, Yamauchi, Ringquist, Dong (bib54) 2013; 288 Baumgartner, Smuts, Aeberli, Malan, Tjalsma, Zimmermann (bib3) 2013; 37 Luo, Ji, Gao, Gomes Dos Reis, Bandyopadhyay, Jin, Ly, Chang, Zhang, Kumar, Ying (bib28) 2021; 160 Muckenthaler, Rivella, Hentze, Galy (bib34) 2017; 168 Nelson, Wilson, Brunt, Yeh, Kleiner, Unalp-Arida, Kowdley, Nonalcoholic Steatohepatitis Clinical Research (bib35) 2011; 53 Morello, Sutti, Foglia, Novo, Cannito, Bocca, Rajsky, Bruzzi, Abate, Rosso (bib33) 2018; 67 Britton, Subramaniam, Crawford (bib6) 2016; 22 Falize, Guillygomarc'h, Perrin, Laine, Guyader, Brissot, Turlin, Deugnier (bib13) 2006; 44 Ying (10.1016/j.cmet.2022.07.006_bib56) 2017; 171 Brown (10.1016/j.cmet.2022.07.006_bib8) 2019; 51 Seidman (10.1016/j.cmet.2022.07.006_bib43) 2020; 52 He (10.1016/j.cmet.2022.07.006_bib16) 2013; 155 Ying (10.1016/j.cmet.2022.07.006_bib57) 2021; 33 Kowdley (10.1016/j.cmet.2022.07.006_bib23) 2012; 55 Vilar-Gomez (10.1016/j.cmet.2022.07.006_bib53) 2015; 149 Meynard (10.1016/j.cmet.2022.07.006_bib32) 2014; 123 McLean (10.1016/j.cmet.2022.07.006_bib31) 2009; 12 Donovan (10.1016/j.cmet.2022.07.006_bib11) 2000; 403 Britton (10.1016/j.cmet.2022.07.006_bib6) 2016; 22 Falize (10.1016/j.cmet.2022.07.006_bib13) 2006; 44 Song (10.1016/j.cmet.2022.07.006_bib46) 2019; 10 Auguet (10.1016/j.cmet.2022.07.006_bib2) 2017; 12 Dixon (10.1016/j.cmet.2022.07.006_bib10) 2014; 10 McKie (10.1016/j.cmet.2022.07.006_bib30) 2000; 5 Hori (10.1016/j.cmet.2022.07.006_bib17) 2018; 82 Isaac (10.1016/j.cmet.2022.07.006_bib18) 2021; 33 Koyama (10.1016/j.cmet.2022.07.006_bib24) 2017; 127 Drakesmith (10.1016/j.cmet.2022.07.006_bib12) 2015; 22 Truman-Rosentsvit (10.1016/j.cmet.2022.07.006_bib49) 2018; 131 Demircioglu (10.1016/j.cmet.2022.07.006_bib9) 2014; 173 Rolo (10.1016/j.cmet.2022.07.006_bib41) 2012; 52 Ryan (10.1016/j.cmet.2022.07.006_bib42) 2018; 38 Ji (10.1016/j.cmet.2022.07.006_bib19) 2021; 3 Yanoff (10.1016/j.cmet.2022.07.006_bib55) 2007; 31 Shah (10.1016/j.cmet.2022.07.006_bib44) 2014; 146 Bobrie (10.1016/j.cmet.2022.07.006_bib4) 2012; 72 Tran (10.1016/j.cmet.2022.07.006_bib48) 2020; 53 Ganz (10.1016/j.cmet.2022.07.006_bib15) 2019; 381 Nemeth (10.1016/j.cmet.2022.07.006_bib36) 2003; 101 Nelson (10.1016/j.cmet.2022.07.006_bib35) 2011; 53 Li (10.1016/j.cmet.2022.07.006_bib27) 2016; 291 Kalluri (10.1016/j.cmet.2022.07.006_bib20) 2020; 367 Baumgartner (10.1016/j.cmet.2022.07.006_bib3) 2013; 37 Lange (10.1016/j.cmet.2022.07.006_bib26) 2008; 205 Valenti (10.1016/j.cmet.2022.07.006_bib51) 2010; 138 Abboud (10.1016/j.cmet.2022.07.006_bib1) 2000; 275 Tussing-Humphreys (10.1016/j.cmet.2022.07.006_bib50) 2010; 18 Simcox (10.1016/j.cmet.2022.07.006_bib45) 2013; 17 Koditz (10.1016/j.cmet.2022.07.006_bib22) 2007; 110 Stoffel (10.1016/j.cmet.2022.07.006_bib47) 2020; 44 Ostrowski (10.1016/j.cmet.2022.07.006_bib38) 2010; 12 Muckenthaler (10.1016/j.cmet.2022.07.006_bib34) 2017; 168 Kim (10.1016/j.cmet.2022.07.006_bib21) 2012; 61 Mathieu (10.1016/j.cmet.2022.07.006_bib29) 2019; 21 Zhao (10.1016/j.cmet.2022.07.006_bib59) 2020; 11 Verga Falzacappa (10.1016/j.cmet.2022.07.006_bib52) 2007; 109 Zhang (10.1016/j.cmet.2022.07.006_bib58) 2012; 56 Nemeth (10.1016/j.cmet.2022.07.006_bib37) 2004; 306 Friedman (10.1016/j.cmet.2022.07.006_bib14) 2018; 24 Xiao (10.1016/j.cmet.2022.07.006_bib54) 2013; 288 Promrat (10.1016/j.cmet.2022.07.006_bib40) 2010; 51 Luo (10.1016/j.cmet.2022.07.006_bib28) 2021; 160 Britton (10.1016/j.cmet.2022.07.006_bib7) 2018; 2 Park (10.1016/j.cmet.2022.07.006_bib39) 2010; 140 Brissot (10.1016/j.cmet.2022.07.006_bib5) 2018; 4 Krenkel (10.1016/j.cmet.2022.07.006_bib25) 2017; 17 Morello (10.1016/j.cmet.2022.07.006_bib33) 2018; 67 |
References_xml | – volume: 82 start-page: 2140 year: 2018 end-page: 2148 ident: bib17 article-title: Marginal iron deficiency enhances liver triglyceride accumulation in rats fed a high-sucrose diet publication-title: Biosci. Biotechnol. Biochem. – volume: 4 start-page: 18016 year: 2018 ident: bib5 article-title: Haemochromatosis publication-title: Nat. Rev. Dis. Primers – volume: 17 start-page: 329 year: 2013 end-page: 341 ident: bib45 article-title: Iron and diabetes risk publication-title: Cell Metab. – volume: 149 start-page: 367 year: 2015 end-page: 378.e5 ident: bib53 article-title: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis publication-title: Gastroenterology – volume: 173 start-page: 947 year: 2014 end-page: 951 ident: bib9 article-title: Serum hepcidin levels and iron metabolism in obese children with and without fatty liver: case-control study publication-title: Eur. J. Pediatr. – volume: 275 start-page: 19906 year: 2000 end-page: 19912 ident: bib1 article-title: A novel mammalian iron-regulated protein involved in intracellular iron metabolism publication-title: J. Biol. Chem. – volume: 2 start-page: 644 year: 2018 end-page: 653 ident: bib7 article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease publication-title: Hepatol. Commun. – volume: 10 start-page: 9 year: 2014 end-page: 17 ident: bib10 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. – volume: 171 start-page: 372 year: 2017 end-page: 384.e12 ident: bib56 article-title: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity publication-title: Cell – volume: 11 start-page: 719 year: 2020 ident: bib59 article-title: Liver governs adipose remodelling via extracellular vesicles in response to lipid overload publication-title: Nat. Commun. – volume: 306 start-page: 2090 year: 2004 end-page: 2093 ident: bib37 article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization publication-title: Science – volume: 155 start-page: 384 year: 2013 end-page: 396 ident: bib16 article-title: Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling publication-title: Cell – volume: 109 start-page: 353 year: 2007 end-page: 358 ident: bib52 article-title: STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation publication-title: Blood – volume: 22 start-page: 8112 year: 2016 ident: bib6 article-title: Iron and non-alcoholic fatty liver disease publication-title: World J. Gastroenterol. – volume: 51 start-page: 121 year: 2010 end-page: 129 ident: bib40 article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis publication-title: Hepatology – volume: 38 start-page: 164 year: 2018 end-page: 173 ident: bib42 article-title: Hepatic iron is the major determinant of serum ferritin in NAFLD patients publication-title: Liver Int. – volume: 168 start-page: 344 year: 2017 end-page: 361 ident: bib34 article-title: A red carpet for iron metabolism publication-title: Cell – volume: 12 start-page: 444 year: 2009 ident: bib31 article-title: Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005 publication-title: Public Health Nutr. – volume: 10 start-page: 1639 year: 2019 ident: bib46 article-title: KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a publication-title: Nat. Commun. – volume: 160 start-page: 863 year: 2021 end-page: 874 ident: bib28 article-title: CRIg(+) macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance publication-title: Gastroenterology – volume: 51 start-page: 575 year: 2019 end-page: 586.e4 ident: bib8 article-title: Prominin2 drives ferroptosis resistance by stimulating iron export publication-title: Dev. Cell – volume: 403 start-page: 776 year: 2000 end-page: 781 ident: bib11 article-title: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter publication-title: Nature – volume: 67 start-page: 2196 year: 2018 end-page: 2214 ident: bib33 article-title: Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein publication-title: Hepatology – volume: 288 start-page: 25350 year: 2013 end-page: 25361 ident: bib54 article-title: ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice publication-title: J. Biol. Chem. – volume: 101 start-page: 2461 year: 2003 end-page: 2463 ident: bib36 article-title: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein publication-title: Blood – volume: 31 start-page: 1412 year: 2007 end-page: 1419 ident: bib55 article-title: Inflammation and iron deficiency in the hypoferremia of obesity publication-title: Int. J. Obes. – volume: 140 start-page: 197 year: 2010 end-page: 208 ident: bib39 article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression publication-title: Cell – volume: 33 start-page: 1744 year: 2021 end-page: 1762 ident: bib18 article-title: Exosomes as mediators of intercellular crosstalk in metabolism publication-title: Cell Metab. – volume: 127 start-page: 55 year: 2017 end-page: 64 ident: bib24 article-title: Liver inflammation and fibrosis publication-title: J. Clin. Invest. – volume: 37 start-page: 24 year: 2013 end-page: 30 ident: bib3 article-title: Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention publication-title: Int. J. Obes. – volume: 381 start-page: 1148 year: 2019 end-page: 1157 ident: bib15 article-title: Anemia of inflammation publication-title: N. Engl. J. Med. – volume: 55 start-page: 77 year: 2012 end-page: 85 ident: bib23 article-title: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease publication-title: Hepatology – volume: 5 start-page: 299 year: 2000 end-page: 309 ident: bib30 article-title: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation publication-title: Mol. Cell – volume: 110 start-page: 3610 year: 2007 end-page: 3617 ident: bib22 article-title: Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor publication-title: Blood – volume: 146 start-page: 630 year: 2014 end-page: 642 ident: bib44 article-title: Hypoxia-inducible factors link iron homeostasis and erythropoiesis publication-title: Gastroenterology – volume: 291 start-page: 18536 year: 2016 end-page: 18546 ident: bib27 article-title: Liver-specific gene inactivation of the transcription factor ATF4 alleviates alcoholic liver steatosis in mice publication-title: J. Biol. Chem. – volume: 33 start-page: 781 year: 2021 end-page: 790.e5 ident: bib57 article-title: MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice publication-title: Cell Metab. – volume: 131 start-page: 342 year: 2018 end-page: 352 ident: bib49 article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways publication-title: Blood – volume: 205 start-page: 1227 year: 2008 end-page: 1242 ident: bib26 article-title: ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo publication-title: J. Exp. Med. – volume: 44 start-page: 472 year: 2006 end-page: 477 ident: bib13 article-title: Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases publication-title: Hepatology – volume: 17 start-page: 306 year: 2017 end-page: 321 ident: bib25 article-title: Liver macrophages in tissue homeostasis and disease publication-title: Nat. Rev. Immunol. – volume: 367 start-page: eaau6977 year: 2020 ident: bib20 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 138 start-page: 905 year: 2010 end-page: 912 ident: bib51 article-title: HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 72 start-page: 4920 year: 2012 end-page: 4930 ident: bib4 article-title: Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression publication-title: Cancer Res. – volume: 53 start-page: 627 year: 2020 end-page: 640.e5 ident: bib48 article-title: Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis publication-title: Immunity – volume: 22 start-page: 777 year: 2015 end-page: 787 ident: bib12 article-title: Ironing out Ferroportin publication-title: Cell Metab. – volume: 12 start-page: 19 year: 2010 end-page: 30 ident: bib38 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat. Cell Biol. – volume: 123 start-page: 168 year: 2014 end-page: 176 ident: bib32 article-title: The liver: conductor of systemic iron balance publication-title: Blood – volume: 52 start-page: 59 year: 2012 end-page: 69 ident: bib41 article-title: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis publication-title: Free Radic. Biol. Med. – volume: 3 start-page: 1163 year: 2021 end-page: 1174 ident: bib19 article-title: Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075 publication-title: Nat. Metab. – volume: 56 start-page: 961 year: 2012 end-page: 971 ident: bib58 article-title: Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice publication-title: Hepatology – volume: 12 year: 2017 ident: bib2 article-title: Hepcidin in morbidly obese women with non-alcoholic fatty liver disease publication-title: PLoS One – volume: 44 start-page: 1291 year: 2020 end-page: 1300 ident: bib47 article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women publication-title: Int. J. Obes. – volume: 53 start-page: 448 year: 2011 end-page: 457 ident: bib35 article-title: Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease publication-title: Hepatology – volume: 61 start-page: 1182 year: 2012 end-page: 1188 ident: bib21 article-title: Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men publication-title: Metabolism – volume: 52 start-page: 1057 year: 2020 end-page: 1074.e7 ident: bib43 article-title: Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis publication-title: Immunity – volume: 24 start-page: 908 year: 2018 end-page: 922 ident: bib14 article-title: Mechanisms of NAFLD development and therapeutic strategies publication-title: Nat. Med. – volume: 21 start-page: 9 year: 2019 end-page: 17 ident: bib29 article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication publication-title: Nat. Cell Biol. – volume: 18 start-page: 1449 year: 2010 end-page: 1456 ident: bib50 article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females publication-title: Obesity – volume: 275 start-page: 19906 year: 2000 ident: 10.1016/j.cmet.2022.07.006_bib1 article-title: A novel mammalian iron-regulated protein involved in intracellular iron metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000713200 – volume: 22 start-page: 777 year: 2015 ident: 10.1016/j.cmet.2022.07.006_bib12 article-title: Ironing out Ferroportin publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.006 – volume: 12 year: 2017 ident: 10.1016/j.cmet.2022.07.006_bib2 article-title: Hepcidin in morbidly obese women with non-alcoholic fatty liver disease publication-title: PLoS One doi: 10.1371/journal.pone.0187065 – volume: 367 start-page: eaau6977 year: 2020 ident: 10.1016/j.cmet.2022.07.006_bib20 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 44 start-page: 1291 year: 2020 ident: 10.1016/j.cmet.2022.07.006_bib47 article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women publication-title: Int. J. Obes. doi: 10.1038/s41366-020-0522-x – volume: 173 start-page: 947 year: 2014 ident: 10.1016/j.cmet.2022.07.006_bib9 article-title: Serum hepcidin levels and iron metabolism in obese children with and without fatty liver: case-control study publication-title: Eur. J. Pediatr. doi: 10.1007/s00431-014-2268-8 – volume: 11 start-page: 719 year: 2020 ident: 10.1016/j.cmet.2022.07.006_bib59 article-title: Liver governs adipose remodelling via extracellular vesicles in response to lipid overload publication-title: Nat. Commun. doi: 10.1038/s41467-020-14450-6 – volume: 33 start-page: 781 year: 2021 ident: 10.1016/j.cmet.2022.07.006_bib57 article-title: MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.12.019 – volume: 123 start-page: 168 year: 2014 ident: 10.1016/j.cmet.2022.07.006_bib32 article-title: The liver: conductor of systemic iron balance publication-title: Blood doi: 10.1182/blood-2013-06-427757 – volume: 160 start-page: 863 year: 2021 ident: 10.1016/j.cmet.2022.07.006_bib28 article-title: CRIg(+) macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.10.042 – volume: 12 start-page: 19 year: 2010 ident: 10.1016/j.cmet.2022.07.006_bib38 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb2000 – volume: 82 start-page: 2140 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib17 article-title: Marginal iron deficiency enhances liver triglyceride accumulation in rats fed a high-sucrose diet publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2018.1515616 – volume: 53 start-page: 627 year: 2020 ident: 10.1016/j.cmet.2022.07.006_bib48 article-title: Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis publication-title: Immunity doi: 10.1016/j.immuni.2020.06.003 – volume: 17 start-page: 306 year: 2017 ident: 10.1016/j.cmet.2022.07.006_bib25 article-title: Liver macrophages in tissue homeostasis and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.11 – volume: 146 start-page: 630 year: 2014 ident: 10.1016/j.cmet.2022.07.006_bib44 article-title: Hypoxia-inducible factors link iron homeostasis and erythropoiesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.12.031 – volume: 101 start-page: 2461 year: 2003 ident: 10.1016/j.cmet.2022.07.006_bib36 article-title: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein publication-title: Blood doi: 10.1182/blood-2002-10-3235 – volume: 37 start-page: 24 year: 2013 ident: 10.1016/j.cmet.2022.07.006_bib3 article-title: Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention publication-title: Int. J. Obes. doi: 10.1038/ijo.2012.145 – volume: 138 start-page: 905 year: 2010 ident: 10.1016/j.cmet.2022.07.006_bib51 article-title: HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.11.013 – volume: 33 start-page: 1744 year: 2021 ident: 10.1016/j.cmet.2022.07.006_bib18 article-title: Exosomes as mediators of intercellular crosstalk in metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.08.006 – volume: 21 start-page: 9 year: 2019 ident: 10.1016/j.cmet.2022.07.006_bib29 article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0250-9 – volume: 22 start-page: 8112 year: 2016 ident: 10.1016/j.cmet.2022.07.006_bib6 article-title: Iron and non-alcoholic fatty liver disease publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v22.i36.8112 – volume: 10 start-page: 1639 year: 2019 ident: 10.1016/j.cmet.2022.07.006_bib46 article-title: KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a publication-title: Nat. Commun. doi: 10.1038/s41467-019-09720-x – volume: 2 start-page: 644 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib7 article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease publication-title: Hepatol. Commun. doi: 10.1002/hep4.1190 – volume: 205 start-page: 1227 year: 2008 ident: 10.1016/j.cmet.2022.07.006_bib26 article-title: ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20071460 – volume: 67 start-page: 2196 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib33 article-title: Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein publication-title: Hepatology doi: 10.1002/hep.29754 – volume: 127 start-page: 55 year: 2017 ident: 10.1016/j.cmet.2022.07.006_bib24 article-title: Liver inflammation and fibrosis publication-title: J. Clin. Invest. doi: 10.1172/JCI88881 – volume: 72 start-page: 4920 year: 2012 ident: 10.1016/j.cmet.2022.07.006_bib4 article-title: Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0925 – volume: 10 start-page: 9 year: 2014 ident: 10.1016/j.cmet.2022.07.006_bib10 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1416 – volume: 24 start-page: 908 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib14 article-title: Mechanisms of NAFLD development and therapeutic strategies publication-title: Nat. Med. doi: 10.1038/s41591-018-0104-9 – volume: 51 start-page: 121 year: 2010 ident: 10.1016/j.cmet.2022.07.006_bib40 article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.23276 – volume: 18 start-page: 1449 year: 2010 ident: 10.1016/j.cmet.2022.07.006_bib50 article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females publication-title: Obesity doi: 10.1038/oby.2009.319 – volume: 53 start-page: 448 year: 2011 ident: 10.1016/j.cmet.2022.07.006_bib35 article-title: Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.24038 – volume: 140 start-page: 197 year: 2010 ident: 10.1016/j.cmet.2022.07.006_bib39 article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression publication-title: Cell doi: 10.1016/j.cell.2009.12.052 – volume: 288 start-page: 25350 year: 2013 ident: 10.1016/j.cmet.2022.07.006_bib54 article-title: ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.470526 – volume: 403 start-page: 776 year: 2000 ident: 10.1016/j.cmet.2022.07.006_bib11 article-title: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter publication-title: Nature doi: 10.1038/35001596 – volume: 31 start-page: 1412 year: 2007 ident: 10.1016/j.cmet.2022.07.006_bib55 article-title: Inflammation and iron deficiency in the hypoferremia of obesity publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0803625 – volume: 291 start-page: 18536 year: 2016 ident: 10.1016/j.cmet.2022.07.006_bib27 article-title: Liver-specific gene inactivation of the transcription factor ATF4 alleviates alcoholic liver steatosis in mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.726836 – volume: 306 start-page: 2090 year: 2004 ident: 10.1016/j.cmet.2022.07.006_bib37 article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization publication-title: Science doi: 10.1126/science.1104742 – volume: 12 start-page: 444 year: 2009 ident: 10.1016/j.cmet.2022.07.006_bib31 article-title: Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005 publication-title: Public Health Nutr. doi: 10.1017/S1368980008002401 – volume: 51 start-page: 575 year: 2019 ident: 10.1016/j.cmet.2022.07.006_bib8 article-title: Prominin2 drives ferroptosis resistance by stimulating iron export publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.10.007 – volume: 131 start-page: 342 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib49 article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways publication-title: Blood doi: 10.1182/blood-2017-02-768580 – volume: 109 start-page: 353 year: 2007 ident: 10.1016/j.cmet.2022.07.006_bib52 article-title: STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation publication-title: Blood doi: 10.1182/blood-2006-07-033969 – volume: 44 start-page: 472 year: 2006 ident: 10.1016/j.cmet.2022.07.006_bib13 article-title: Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases publication-title: Hepatology doi: 10.1002/hep.21260 – volume: 4 start-page: 18016 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib5 article-title: Haemochromatosis publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2018.16 – volume: 5 start-page: 299 year: 2000 ident: 10.1016/j.cmet.2022.07.006_bib30 article-title: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80425-6 – volume: 168 start-page: 344 year: 2017 ident: 10.1016/j.cmet.2022.07.006_bib34 article-title: A red carpet for iron metabolism publication-title: Cell doi: 10.1016/j.cell.2016.12.034 – volume: 38 start-page: 164 year: 2018 ident: 10.1016/j.cmet.2022.07.006_bib42 article-title: Hepatic iron is the major determinant of serum ferritin in NAFLD patients publication-title: Liver Int. doi: 10.1111/liv.13513 – volume: 110 start-page: 3610 year: 2007 ident: 10.1016/j.cmet.2022.07.006_bib22 article-title: Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor publication-title: Blood doi: 10.1182/blood-2007-06-094441 – volume: 17 start-page: 329 year: 2013 ident: 10.1016/j.cmet.2022.07.006_bib45 article-title: Iron and diabetes risk publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.02.007 – volume: 61 start-page: 1182 year: 2012 ident: 10.1016/j.cmet.2022.07.006_bib21 article-title: Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men publication-title: Metabolism doi: 10.1016/j.metabol.2012.01.007 – volume: 155 start-page: 384 year: 2013 ident: 10.1016/j.cmet.2022.07.006_bib16 article-title: Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling publication-title: Cell doi: 10.1016/j.cell.2013.09.031 – volume: 52 start-page: 1057 year: 2020 ident: 10.1016/j.cmet.2022.07.006_bib43 article-title: Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis publication-title: Immunity doi: 10.1016/j.immuni.2020.04.001 – volume: 55 start-page: 77 year: 2012 ident: 10.1016/j.cmet.2022.07.006_bib23 article-title: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.24706 – volume: 149 start-page: 367 year: 2015 ident: 10.1016/j.cmet.2022.07.006_bib53 article-title: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.04.005 – volume: 56 start-page: 961 year: 2012 ident: 10.1016/j.cmet.2022.07.006_bib58 article-title: Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice publication-title: Hepatology doi: 10.1002/hep.25746 – volume: 381 start-page: 1148 year: 2019 ident: 10.1016/j.cmet.2022.07.006_bib15 article-title: Anemia of inflammation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1804281 – volume: 52 start-page: 59 year: 2012 ident: 10.1016/j.cmet.2022.07.006_bib41 article-title: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.10.003 – volume: 171 start-page: 372 year: 2017 ident: 10.1016/j.cmet.2022.07.006_bib56 article-title: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity publication-title: Cell doi: 10.1016/j.cell.2017.08.035 – volume: 3 start-page: 1163 year: 2021 ident: 10.1016/j.cmet.2022.07.006_bib19 article-title: Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075 publication-title: Nat. Metab. doi: 10.1038/s42255-021-00444-1 |
SSID | ssj0036393 |
Score | 2.6650167 |
Snippet | Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1201 |
SubjectTerms | Animals Disease Models, Animal extracellular vesicle Fibrosis hepatic stellate cell Hepatic Stellate Cells - metabolism hepatocyte Hepatocytes - metabolism iron Iron - metabolism Iron Overload - complications Iron Overload - metabolism Iron Overload - pathology Kupffer Cells - metabolism Lipogenesis Liver - metabolism Liver Cirrhosis - metabolism liver fibrosis liver steatosis NAFLD NASH Non-alcoholic Fatty Liver Disease - metabolism |
Title | Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis |
URI | https://dx.doi.org/10.1016/j.cmet.2022.07.006 https://www.ncbi.nlm.nih.gov/pubmed/35921818 https://www.proquest.com/docview/2698630980 https://pubmed.ncbi.nlm.nih.gov/PMC9365100 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN4kbDevbY4qigh6UWFvIU2zWtF22e2K_ntn-lhcFQ9eCkkmEDLpzJd25htCjuHCBY4kNiyJvGKSO8ViFxmWeqSClk71BeY739zqqwd5PVCDBXLe5sJgWGVj-2ubXlnrpqfb7GZ3lGXdOwTXYIJ7nFdAGJP4hIyrJL7BWWuNBXjgKsgehBlKN4kzdYyXfw0YT8l5ReCJVY9-d04_wef3GMovTulylaw0aJKe1gteIwshXydLdX3Jjw2SnCZhDM6opJjMRlMkyW3qW9G3zNEn8EVl4T_KwCaYTQK4k-KXfOreswlNx0hJS18wcgOeo-IR7SIMuDylQ7hmF9DYJA-XF_fnV6wpqsA81i5gyEev-onTQwAGUdDCiTQYN_SIxaBb9L1MvRLKpSAQuAb1GZ8EcPyxSHUktshiXuRhh1AnnQ-uBxAg9lJ640DJmIrrneRJLxEd0mt30_qGcRwLX7zYNrTs2aIGLGrARvgjXHfIyWzOqObb-FNatUqyc6fGgkP4c95Rq1ELrxPurMtDMZ1Yrk2sRWTiqEO2aw3P1iGUQUAUd0h_TvczAaTqnh_Js6eKstsIDcYv2v3nevfIMraqwEO-TxbL8TQcABgqk8PqtH8CsQ0JoA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEM-lPI0EJxQ1tWMnPnBYHquWfVzYlXozjuOyQUtStVmgv4s_yEziVBTQHpD2UqmxU7kzzsxn5ZtvAF7ggQsTSaajPHYySriVUWZjHRWOpKATK1NB9c6HR2p8knyYyukW_OxrYYhWGWJ_F9PbaB2uDIM1h_OyHH4kcI0heMR5C4R1YFbu-9V3PLctX0_eoZNfcr73_vjtOAqtBSJHCv4RqbLLNLdqhukx9kpYUXhtZ44QCV4WqUsKJ4W0BU7wXOGf0C73mP4yUahY4O9egauIPlKKBpPpmz78C0z5LasfVxfR8kKlTkcqc189ETg5bxVDqc3Sv7Ph32j3T9Lmb1lw7xbcDPCV7XYWug1bvroD17qGlqu7kO_mfoHZr2FUPccKUuUNDbXYt9KyU0x-Te1WjY-WVL6CQJfRqwNmf5RLVixIA5edEVUEP-f1ZwrEOGCrgs3wXF_jl3twcimmvg_bVV35B8BsYp23I8QcmUsSpy3uKqr9dTbh-SgXAxj11jQuSJxTp40z03PZvhjygCEPmJjevKsBvFrfM-8EPi6cLXsnmY1tajADXXjf896jBp9fsqytfH2-NFzpTIlYZ_EAdjoPr9chpCYElg0g3fD9egJpg2-OVOVpqxGuhcJoGz_8z_U-g-vj48MDczA52n8EN2ikZT3yx7DdLM79E0RiTf603fkMPl32o_YLQYdGAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+iron+distribution+via+hepatocyte-stellate+cell+axis+drives+liver+lipogenesis+and+fibrosis&rft.jtitle=Cell+metabolism&rft.au=Gao%2C+Hong&rft.au=Jin%2C+Zhongmou&rft.au=Bandyopadhyay%2C+Gautam&rft.au=Wang%2C+Gaowei&rft.date=2022-08-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=34&rft.issue=8&rft.spage=1201&rft.epage=1213.e5&rft_id=info:doi/10.1016%2Fj.cmet.2022.07.006&rft.externalDocID=S1550413122003059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |