Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis

Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in he...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 34; no. 8; pp. 1201 - 1213.e5
Main Authors Gao, Hong, Jin, Zhongmou, Bandyopadhyay, Gautam, Wang, Gaowei, Zhang, Dinghong, Rocha, Karina Cunha e, Liu, Xiao, Zhao, Huayi, Kisseleva, Tatiana, Brenner, David A., Karin, Michael, Ying, Wei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. [Display omitted] •NAFLD/NASH livers present iron-deficient hepatocytes and iron overloaded HSCs•Hepatocyte iron deficiency enhances lipogenesis and insulin resistance via HIF2α-ATF4•Hepatocyte EVs shuttle iron into HSCs in NAFLD/NASH•Iron overload stimulates HSC ROS production and fibrogenic activation Hepatocytes have important roles in liver iron homeostasis. Gao et al. report that hepatocyte-derived, iron-containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cell iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet-fed mice.
AbstractList Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.
Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restore liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. Hepatocytes have important roles in liver iron homeostasis. Gao et al., report that hepatocyte-derived iron containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cells iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet fed mice.
Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.
Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases. [Display omitted] •NAFLD/NASH livers present iron-deficient hepatocytes and iron overloaded HSCs•Hepatocyte iron deficiency enhances lipogenesis and insulin resistance via HIF2α-ATF4•Hepatocyte EVs shuttle iron into HSCs in NAFLD/NASH•Iron overload stimulates HSC ROS production and fibrogenic activation Hepatocytes have important roles in liver iron homeostasis. Gao et al. report that hepatocyte-derived, iron-containing extracellular vesicles lead to hepatocyte iron deficiency and hepatic stellate cell iron overload, which contributes to the development of liver steatosis and fibrosis in Western diet-fed mice.
Author Wang, Gaowei
Gao, Hong
Karin, Michael
Zhao, Huayi
Jin, Zhongmou
Zhang, Dinghong
Kisseleva, Tatiana
Liu, Xiao
Brenner, David A.
Ying, Wei
Rocha, Karina Cunha e
Bandyopadhyay, Gautam
AuthorAffiliation 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
6 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
4 Department of Medicine, University of California, San Diego, California, USA
2 Division of Biological Sciences, University of California, San Diego, California, USA
7 Lead Contact
3 Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California, USA
5 Department of Surgery, University of California, La Jolla, San Diego, California, USA
AuthorAffiliation_xml – name: 7 Lead Contact
– name: 3 Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California, USA
– name: 4 Department of Medicine, University of California, San Diego, California, USA
– name: 6 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
– name: 2 Division of Biological Sciences, University of California, San Diego, California, USA
– name: 5 Department of Surgery, University of California, La Jolla, San Diego, California, USA
– name: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
Author_xml – sequence: 1
  givenname: Hong
  surname: Gao
  fullname: Gao, Hong
  email: hog007@health.ucsd.edu
  organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Zhongmou
  surname: Jin
  fullname: Jin, Zhongmou
  organization: Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Gautam
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Gautam
  organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Gaowei
  surname: Wang
  fullname: Wang, Gaowei
  organization: Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
– sequence: 5
  givenname: Dinghong
  surname: Zhang
  fullname: Zhang, Dinghong
  organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 6
  givenname: Karina Cunha e
  surname: Rocha
  fullname: Rocha, Karina Cunha e
  organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 7
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 8
  givenname: Huayi
  surname: Zhao
  fullname: Zhao, Huayi
  organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 9
  givenname: Tatiana
  surname: Kisseleva
  fullname: Kisseleva, Tatiana
  organization: Department of Surgery, University of California, San Diego, La Jolla, CA, USA
– sequence: 10
  givenname: David A.
  surname: Brenner
  fullname: Brenner, David A.
  organization: Department of Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 11
  givenname: Michael
  surname: Karin
  fullname: Karin, Michael
  email: karinoffice@health.ucsd.edu
  organization: Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
– sequence: 12
  givenname: Wei
  surname: Ying
  fullname: Ying, Wei
  email: weying@health.ucsd.edu
  organization: Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35921818$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQecAPcEBz5DKTtr32zEgIKYp4RIrEBc6Wx-5NejVrL7Z3Rf4ejzZBwCEXt9tdVS1XnbOTEAMy9pZDx4Hry03ntlg6AUJ00HcA-gU746MUbb8ScFLvSkG74pKfsvOcNwBSy1G-YqdSjYIPfDhj09WEKdlQGkoxNJ5ySTTtC9XmQLa5x50t0T0UbHPBebYFG1drY39RbnyiA-Zmrmeq5y7eYcBcBzb4Zk1TirV5zV6u7ZzxzWO9YD8-f_p-_bW9_fbl5vrqtnVK8NJqgF71k9VrISSgllZ6HO3awSBVfZa9W3mnpLK-AlBoYdXoJlyBHqTXIC_Yx6Pubj9t0TsMJdnZ7BJtbXow0ZL5dxLo3tzFgxmlVhwWgfePAin-3GMuZkt5-awNGPfZCD0OWsI4LNB3f-_6s-TJ2AoYjgBXPcgJ18ZRsYutdTXNhoNZMjQbs2RolgwN9KZmWKniP-qT-rOkD0cSVocPhMlkRxgcekroivGRnqP_BoMSuAY
CitedBy_id crossref_primary_10_1016_j_bbcan_2022_188848
crossref_primary_10_1016_j_jbc_2024_107340
crossref_primary_10_2147_JIR_S385977
crossref_primary_10_1016_j_reth_2024_09_016
crossref_primary_10_1016_j_phymed_2023_155134
crossref_primary_10_1186_s40364_024_00669_8
crossref_primary_10_3389_fphar_2023_1152042
crossref_primary_10_2478_acve_2024_0004
crossref_primary_10_1002_advs_202305856
crossref_primary_10_3390_antiox13111363
crossref_primary_10_1038_s41419_023_05708_0
crossref_primary_10_3390_metabo14040228
crossref_primary_10_2147_IJN_S465346
crossref_primary_10_1007_s13679_024_00600_0
crossref_primary_10_1142_S0192415X24500149
crossref_primary_10_3390_cancers17050842
crossref_primary_10_1007_s10534_024_00600_6
crossref_primary_10_3390_molecules28010272
crossref_primary_10_1016_j_intimp_2023_111045
crossref_primary_10_1016_j_ejps_2024_106690
crossref_primary_10_1016_j_talanta_2025_127694
crossref_primary_10_1111_liv_15490
crossref_primary_10_1126_scitranslmed_adi0759
crossref_primary_10_1186_s40779_023_00487_3
crossref_primary_10_1016_j_nutres_2024_09_011
crossref_primary_10_3390_metabo14040218
crossref_primary_10_1016_j_jare_2024_03_009
crossref_primary_10_3389_fcell_2023_1199519
crossref_primary_10_1016_j_metabol_2024_155953
crossref_primary_10_1111_1751_2980_13292
crossref_primary_10_3389_fendo_2024_1431652
crossref_primary_10_3390_biomedicines13030683
crossref_primary_10_1038_s41467_024_45520_8
crossref_primary_10_1021_acs_chemrev_4c00577
crossref_primary_10_1038_s41467_024_46776_w
crossref_primary_10_3389_fphar_2024_1281095
crossref_primary_10_1136_gutjnl_2023_331848
crossref_primary_10_1016_j_celrep_2024_113900
crossref_primary_10_3390_membranes12101023
crossref_primary_10_1016_j_isci_2023_108560
crossref_primary_10_1016_j_cmet_2024_05_008
crossref_primary_10_1080_10715762_2023_2191813
crossref_primary_10_1016_j_phymed_2024_155465
crossref_primary_10_3389_fphar_2023_1286718
crossref_primary_10_1093_lifemeta_loac036
crossref_primary_10_1111_apt_70037
crossref_primary_10_1038_s41574_023_00807_6
crossref_primary_10_3168_jds_2024_25839
crossref_primary_10_1016_j_cmet_2024_05_003
crossref_primary_10_1093_mtomcs_mfae043
crossref_primary_10_1152_ajpendo_00287_2023
crossref_primary_10_1016_S1875_5364_24_60690_4
crossref_primary_10_1016_j_heliyon_2024_e33741
crossref_primary_10_1186_s13062_025_00610_5
crossref_primary_10_1002_smll_202412093
crossref_primary_10_3389_fendo_2024_1454193
crossref_primary_10_3390_antiox12091653
crossref_primary_10_31083_j_fbl2901030
crossref_primary_10_1016_j_jnutbio_2025_109895
crossref_primary_10_1016_j_cbi_2024_111119
crossref_primary_10_1002_oby_24236
crossref_primary_10_1093_bbb_zbad140
crossref_primary_10_3390_nu14245237
crossref_primary_10_1007_s11427_022_2302_5
crossref_primary_10_1016_j_numecd_2023_09_016
crossref_primary_10_1155_2022_5295434
crossref_primary_10_1002_adbi_202400383
crossref_primary_10_31083_j_fbl2812332
crossref_primary_10_1038_s41598_025_91456_4
crossref_primary_10_1007_s10753_024_02184_2
crossref_primary_10_1016_j_jcmgh_2023_11_014
crossref_primary_10_1111_apt_18402
crossref_primary_10_1016_j_molstruc_2024_141208
crossref_primary_10_3389_fgene_2024_1406230
crossref_primary_10_1097_MEG_0000000000002530
crossref_primary_10_1016_j_jep_2024_118169
crossref_primary_10_1038_s42255_024_01214_5
crossref_primary_10_1016_j_bcp_2023_115909
crossref_primary_10_1126_sciimmunol_adp7193
crossref_primary_10_3390_antiox13020208
crossref_primary_10_1111_jdi_14407
crossref_primary_10_1038_s41580_023_00648_1
crossref_primary_10_1186_s12951_023_01921_3
crossref_primary_10_1146_annurev_physiol_042222_024535
crossref_primary_10_1007_s12035_025_04687_x
crossref_primary_10_1016_j_jhepr_2023_100744
crossref_primary_10_1016_j_ijbiomac_2023_129104
crossref_primary_10_1111_tra_12905
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_1016_j_jep_2024_118557
crossref_primary_10_1021_acs_biomac_4c00691
crossref_primary_10_1016_j_canlet_2024_216652
crossref_primary_10_1073_pnas_2412473122
crossref_primary_10_1007_s00018_024_05376_z
crossref_primary_10_1007_s12011_024_04149_w
crossref_primary_10_1007_s00535_024_02157_0
crossref_primary_10_1097_CM9_0000000000002784
crossref_primary_10_3389_fnut_2024_1344924
crossref_primary_10_20960_nh_04653
crossref_primary_10_3389_fphar_2023_1127931
crossref_primary_10_1097_HC9_0000000000000658
crossref_primary_10_3390_biom13101464
crossref_primary_10_1016_j_phrs_2025_107579
Cites_doi 10.1074/jbc.M000713200
10.1016/j.cmet.2015.09.006
10.1371/journal.pone.0187065
10.1126/science.aau6977
10.1038/s41366-020-0522-x
10.1007/s00431-014-2268-8
10.1038/s41467-020-14450-6
10.1016/j.cmet.2020.12.019
10.1182/blood-2013-06-427757
10.1053/j.gastro.2020.10.042
10.1038/ncb2000
10.1080/09168451.2018.1515616
10.1016/j.immuni.2020.06.003
10.1038/nri.2017.11
10.1053/j.gastro.2013.12.031
10.1182/blood-2002-10-3235
10.1038/ijo.2012.145
10.1053/j.gastro.2009.11.013
10.1016/j.cmet.2021.08.006
10.1038/s41556-018-0250-9
10.3748/wjg.v22.i36.8112
10.1038/s41467-019-09720-x
10.1002/hep4.1190
10.1084/jem.20071460
10.1002/hep.29754
10.1172/JCI88881
10.1158/0008-5472.CAN-12-0925
10.1038/nchembio.1416
10.1038/s41591-018-0104-9
10.1002/hep.23276
10.1038/oby.2009.319
10.1002/hep.24038
10.1016/j.cell.2009.12.052
10.1074/jbc.M113.470526
10.1038/35001596
10.1038/sj.ijo.0803625
10.1074/jbc.M116.726836
10.1126/science.1104742
10.1017/S1368980008002401
10.1016/j.devcel.2019.10.007
10.1182/blood-2017-02-768580
10.1182/blood-2006-07-033969
10.1002/hep.21260
10.1038/nrdp.2018.16
10.1016/S1097-2765(00)80425-6
10.1016/j.cell.2016.12.034
10.1111/liv.13513
10.1182/blood-2007-06-094441
10.1016/j.cmet.2013.02.007
10.1016/j.metabol.2012.01.007
10.1016/j.cell.2013.09.031
10.1016/j.immuni.2020.04.001
10.1002/hep.24706
10.1053/j.gastro.2015.04.005
10.1002/hep.25746
10.1056/NEJMra1804281
10.1016/j.freeradbiomed.2011.10.003
10.1016/j.cell.2017.08.035
10.1038/s42255-021-00444-1
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2022.07.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1213.e5
ExternalDocumentID PMC9365100
35921818
10_1016_j_cmet_2022_07_006
S1550413122003059
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: P50 AA011999
– fundername: NIDDK NIH HHS
  grantid: R01 DK101737
– fundername: NIH HHS
  grantid: S10 OD026929
– fundername: NCI NIH HHS
  grantid: R01 CA234128
– fundername: NIDDK NIH HHS
  grantid: R01 DK120714
– fundername: NIDDK NIH HHS
  grantid: R01 DK125560
– fundername: NIAAA NIH HHS
  grantid: U01 AA022614
– fundername: NIDDK NIH HHS
  grantid: R00 DK115998
– fundername: NIDDK NIH HHS
  grantid: R01 DK099205
– fundername: NINDS NIH HHS
  grantid: P30 NS047101
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-600757ba6f2230e63a3de9afc0835ba637c4dc535ad223e262a59cbe40683d603
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:42:13 EDT 2025
Fri Jul 11 07:24:09 EDT 2025
Thu Apr 03 07:01:41 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Fri Feb 23 02:40:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords NAFLD
liver fibrosis
hepatocyte
iron
liver steatosis
hepatic stellate cell
NASH
extracellular vesicle
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-600757ba6f2230e63a3de9afc0835ba637c4dc535ad223e262a59cbe40683d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
H.G., M.K., and W.Y. designed the studies, and H.G. performed most of the experiments. G.B. performed lipogenesis assays. Z.J., D.Z., and K.R. assisted with tissue collection, cell culture, qPCR analysis, and western blot analysis. G.W. performed RNAseq analysis. X.L., H.Z., T.K., and D.A.B. contributed the human liver samples. M.K. and W.Y. supervised the project. T.K. and D.A.B. edited manuscript. H.G., M.K., and W.Y. analyzed and interpreted the data and co-wrote the manuscript.
Author contributions
OpenAccessLink https://escholarship.org/content/qt0wk867h7/qt0wk867h7.pdf
PMID 35921818
PQID 2698630980
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365100
proquest_miscellaneous_2698630980
pubmed_primary_35921818
crossref_citationtrail_10_1016_j_cmet_2022_07_006
crossref_primary_10_1016_j_cmet_2022_07_006
elsevier_sciencedirect_doi_10_1016_j_cmet_2022_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-02
PublicationDateYYYYMMDD 2022-08-02
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shah, Xie (bib44) 2014; 146
Stoffel, El-Mallah, Herter-Aeberli, Bissani, Wehbe, Obeid, Zimmermann (bib47) 2020; 44
Auguet, Aragones, Berlanga, Martinez, Sabench, Binetti, Aguilar, Porras, Molina, Del Castillo, Richart (bib2) 2017; 12
Park, Lee, Yu, He, Ali, Holzer, Osterreicher, Takahashi, Karin (bib39) 2010; 140
Ganz (bib15) 2019; 381
Valenti, Fracanzani, Bugianesi, Dongiovanni, Galmozzi, Vanni, Canavesi, Lattuada, Roviaro, Marchesini, Fargion (bib51) 2010; 138
Simcox, McClain (bib45) 2013; 17
Brissot, Pietrangelo, Adams, de Graaff, McLaren, Loreal (bib5) 2018; 4
He, Dhar, Nakagawa, Font-Burgada, Ogata, Jiang, Shalapour, Seki, Yost, Jepsen (bib16) 2013; 155
Ji, Luo, Gao, Dos Reis, Bandyopadhyay, Jin, Manda, Isaac, Yang, Fu (bib19) 2021; 3
Li, Xiao, Yu, Xia, Liu, Guo, Deng, Chen, Wang, Guo (bib27) 2016; 291
Song, Tang, Han, Jiang, Dong, Liu, Liang, Dong, Qiu, Wang, Du (bib46) 2019; 10
Yanoff, Menzie, Denkinger, Sebring, McHugh, Remaley, Yanovski (bib55) 2007; 31
Rolo, Teodoro, Palmeira (bib41) 2012; 52
Tran, Baba, Poupel, Dussaud, Moreau, Gelineau, Marcelin, Magreau-Davy, Ouhachi, Lesnik (bib48) 2020; 53
Truman-Rosentsvit, Berenbaum, Spektor, Cohen, Belizowsky-Moshe, Lifshitz, Ma, Li, Kesselman, Abutbul-Ionita (bib49) 2018; 131
Brown, Amante, Chhoy, Elaimy, Liu, Zhu, Baer, Dixon, Mercurio (bib8) 2019; 51
Demircioglu, Gorunmez, Dagistan, Goksugur, Bekdas, Tosun, Kizildag, Kismet (bib9) 2014; 173
Zhao, Zhao, Jiang, Wu, Liu, Yuan, Shen, Zhang, Zhou, He (bib59) 2020; 11
Seidman, Troutman, Sakai, Gola, Spann, Bennett, Bruni, Ouyang, Li, Sun (bib43) 2020; 52
McKie, Marciani, Rolfs, Brennan, Wehr, Barrow, Miret, Bomford, Peters, Farzaneh (bib30) 2000; 5
Ostrowski, Carmo, Krumeich, Fanget, Raposo, Savina, Moita, Schauer, Hume, Freitas (bib38) 2010; 12
Kalluri, LeBleu (bib20) 2020; 367
Ying, Riopel, Bandyopadhyay, Dong, Birmingham, Seo, Ofrecio, Wollam, Hernandez-Carretero, Fu (bib56) 2017; 171
Verga Falzacappa, Vujic Spasic, Kessler, Stolte, Hentze, Muckenthaler (bib52) 2007; 109
Nemeth, Tuttle, Powelson, Vaughn, Donovan, Ward, Ganz, Kaplan (bib37) 2004; 306
Abboud, Haile (bib1) 2000; 275
Mathieu, Martin-Jaular, Lavieu, Thery (bib29) 2019; 21
McLean, Cogswell, Egli, Wojdyla, de Benoist (bib31) 2009; 12
Dixon, Stockwell (bib10) 2014; 10
Koyama, Brenner (bib24) 2017; 127
Meynard, Babitt, Lin (bib32) 2014; 123
Isaac, Reis, Ying, Olefsky (bib18) 2021; 33
Hori, Hara, Ishizuka (bib17) 2018; 82
Britton, Bridle, Reiling, Santrampurwala, Wockner, Ching, Stuart, Subramaniam, Jeffrey, St Pierre (bib7) 2018; 2
Friedman, Neuschwander-Tetri, Rinella, Sanyal (bib14) 2018; 24
Kim, Chang, Sung, Shin, Ryu (bib21) 2012; 61
Promrat, Kleiner, Niemeier, Jackvony, Kearns, Wands, Fava, Wing (bib40) 2010; 51
Ying, Gao, Dos Reis, Bandyopadhyay, Ofrecio, Luo, Ji, Jin, Ly, Olefsky (bib57) 2021; 33
Nemeth, Valore, Territo, Schiller, Lichtenstein, Ganz (bib36) 2003; 101
Kowdley, Belt, Wilson, Yeh, Neuschwander-Tetri, Chalasani, Sanyal, Nelson, Network (bib23) 2012; 55
Vilar-Gomez, Martinez-Perez, Calzadilla-Bertot, Torres-Gonzalez, Gra-Oramas, Gonzalez-Fabian, Friedman, Diago, Romero-Gomez (bib53) 2015; 149
Krenkel, Tacke (bib25) 2017; 17
Ryan, Armitage, Cobbold, Banerjee, Borsani, Dongiovanni, Neubauer, Morovat, Wang, Pasricha (bib42) 2018; 38
Koditz, Nesper, Wottawa, Stiehl, Camenisch, Franke, Myllyharju, Wenger, Katschinski (bib22) 2007; 110
Zhang, Zhang, Guo, An, Tao, Wang (bib58) 2012; 56
Bobrie, Krumeich, Reyal, Recchi, Moita, Seabra, Ostrowski, Thery (bib4) 2012; 72
Donovan, Brownlie, Zhou, Shepard, Pratt, Moynihan, Paw, Drejer, Barut, Zapata (bib11) 2000; 403
Tussing-Humphreys, Nemeth, Fantuzzi, Freels, Guzman, Holterman, Braunschweig (bib50) 2010; 18
Drakesmith, Nemeth, Ganz (bib12) 2015; 22
Lange, Chavez, Pinto, Coppola, Sun, Townes, Geschwind, Ratan (bib26) 2008; 205
Xiao, Zhang, Yu, Lee, Calabuig-Navarro, Yamauchi, Ringquist, Dong (bib54) 2013; 288
Baumgartner, Smuts, Aeberli, Malan, Tjalsma, Zimmermann (bib3) 2013; 37
Luo, Ji, Gao, Gomes Dos Reis, Bandyopadhyay, Jin, Ly, Chang, Zhang, Kumar, Ying (bib28) 2021; 160
Muckenthaler, Rivella, Hentze, Galy (bib34) 2017; 168
Nelson, Wilson, Brunt, Yeh, Kleiner, Unalp-Arida, Kowdley, Nonalcoholic Steatohepatitis Clinical Research (bib35) 2011; 53
Morello, Sutti, Foglia, Novo, Cannito, Bocca, Rajsky, Bruzzi, Abate, Rosso (bib33) 2018; 67
Britton, Subramaniam, Crawford (bib6) 2016; 22
Falize, Guillygomarc'h, Perrin, Laine, Guyader, Brissot, Turlin, Deugnier (bib13) 2006; 44
Ying (10.1016/j.cmet.2022.07.006_bib56) 2017; 171
Brown (10.1016/j.cmet.2022.07.006_bib8) 2019; 51
Seidman (10.1016/j.cmet.2022.07.006_bib43) 2020; 52
He (10.1016/j.cmet.2022.07.006_bib16) 2013; 155
Ying (10.1016/j.cmet.2022.07.006_bib57) 2021; 33
Kowdley (10.1016/j.cmet.2022.07.006_bib23) 2012; 55
Vilar-Gomez (10.1016/j.cmet.2022.07.006_bib53) 2015; 149
Meynard (10.1016/j.cmet.2022.07.006_bib32) 2014; 123
McLean (10.1016/j.cmet.2022.07.006_bib31) 2009; 12
Donovan (10.1016/j.cmet.2022.07.006_bib11) 2000; 403
Britton (10.1016/j.cmet.2022.07.006_bib6) 2016; 22
Falize (10.1016/j.cmet.2022.07.006_bib13) 2006; 44
Song (10.1016/j.cmet.2022.07.006_bib46) 2019; 10
Auguet (10.1016/j.cmet.2022.07.006_bib2) 2017; 12
Dixon (10.1016/j.cmet.2022.07.006_bib10) 2014; 10
McKie (10.1016/j.cmet.2022.07.006_bib30) 2000; 5
Hori (10.1016/j.cmet.2022.07.006_bib17) 2018; 82
Isaac (10.1016/j.cmet.2022.07.006_bib18) 2021; 33
Koyama (10.1016/j.cmet.2022.07.006_bib24) 2017; 127
Drakesmith (10.1016/j.cmet.2022.07.006_bib12) 2015; 22
Truman-Rosentsvit (10.1016/j.cmet.2022.07.006_bib49) 2018; 131
Demircioglu (10.1016/j.cmet.2022.07.006_bib9) 2014; 173
Rolo (10.1016/j.cmet.2022.07.006_bib41) 2012; 52
Ryan (10.1016/j.cmet.2022.07.006_bib42) 2018; 38
Ji (10.1016/j.cmet.2022.07.006_bib19) 2021; 3
Yanoff (10.1016/j.cmet.2022.07.006_bib55) 2007; 31
Shah (10.1016/j.cmet.2022.07.006_bib44) 2014; 146
Bobrie (10.1016/j.cmet.2022.07.006_bib4) 2012; 72
Tran (10.1016/j.cmet.2022.07.006_bib48) 2020; 53
Ganz (10.1016/j.cmet.2022.07.006_bib15) 2019; 381
Nemeth (10.1016/j.cmet.2022.07.006_bib36) 2003; 101
Nelson (10.1016/j.cmet.2022.07.006_bib35) 2011; 53
Li (10.1016/j.cmet.2022.07.006_bib27) 2016; 291
Kalluri (10.1016/j.cmet.2022.07.006_bib20) 2020; 367
Baumgartner (10.1016/j.cmet.2022.07.006_bib3) 2013; 37
Lange (10.1016/j.cmet.2022.07.006_bib26) 2008; 205
Valenti (10.1016/j.cmet.2022.07.006_bib51) 2010; 138
Abboud (10.1016/j.cmet.2022.07.006_bib1) 2000; 275
Tussing-Humphreys (10.1016/j.cmet.2022.07.006_bib50) 2010; 18
Simcox (10.1016/j.cmet.2022.07.006_bib45) 2013; 17
Koditz (10.1016/j.cmet.2022.07.006_bib22) 2007; 110
Stoffel (10.1016/j.cmet.2022.07.006_bib47) 2020; 44
Ostrowski (10.1016/j.cmet.2022.07.006_bib38) 2010; 12
Muckenthaler (10.1016/j.cmet.2022.07.006_bib34) 2017; 168
Kim (10.1016/j.cmet.2022.07.006_bib21) 2012; 61
Mathieu (10.1016/j.cmet.2022.07.006_bib29) 2019; 21
Zhao (10.1016/j.cmet.2022.07.006_bib59) 2020; 11
Verga Falzacappa (10.1016/j.cmet.2022.07.006_bib52) 2007; 109
Zhang (10.1016/j.cmet.2022.07.006_bib58) 2012; 56
Nemeth (10.1016/j.cmet.2022.07.006_bib37) 2004; 306
Friedman (10.1016/j.cmet.2022.07.006_bib14) 2018; 24
Xiao (10.1016/j.cmet.2022.07.006_bib54) 2013; 288
Promrat (10.1016/j.cmet.2022.07.006_bib40) 2010; 51
Luo (10.1016/j.cmet.2022.07.006_bib28) 2021; 160
Britton (10.1016/j.cmet.2022.07.006_bib7) 2018; 2
Park (10.1016/j.cmet.2022.07.006_bib39) 2010; 140
Brissot (10.1016/j.cmet.2022.07.006_bib5) 2018; 4
Krenkel (10.1016/j.cmet.2022.07.006_bib25) 2017; 17
Morello (10.1016/j.cmet.2022.07.006_bib33) 2018; 67
References_xml – volume: 82
  start-page: 2140
  year: 2018
  end-page: 2148
  ident: bib17
  article-title: Marginal iron deficiency enhances liver triglyceride accumulation in rats fed a high-sucrose diet
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 4
  start-page: 18016
  year: 2018
  ident: bib5
  article-title: Haemochromatosis
  publication-title: Nat. Rev. Dis. Primers
– volume: 17
  start-page: 329
  year: 2013
  end-page: 341
  ident: bib45
  article-title: Iron and diabetes risk
  publication-title: Cell Metab.
– volume: 149
  start-page: 367
  year: 2015
  end-page: 378.e5
  ident: bib53
  article-title: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis
  publication-title: Gastroenterology
– volume: 173
  start-page: 947
  year: 2014
  end-page: 951
  ident: bib9
  article-title: Serum hepcidin levels and iron metabolism in obese children with and without fatty liver: case-control study
  publication-title: Eur. J. Pediatr.
– volume: 275
  start-page: 19906
  year: 2000
  end-page: 19912
  ident: bib1
  article-title: A novel mammalian iron-regulated protein involved in intracellular iron metabolism
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 644
  year: 2018
  end-page: 653
  ident: bib7
  article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease
  publication-title: Hepatol. Commun.
– volume: 10
  start-page: 9
  year: 2014
  end-page: 17
  ident: bib10
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
– volume: 171
  start-page: 372
  year: 2017
  end-page: 384.e12
  ident: bib56
  article-title: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity
  publication-title: Cell
– volume: 11
  start-page: 719
  year: 2020
  ident: bib59
  article-title: Liver governs adipose remodelling via extracellular vesicles in response to lipid overload
  publication-title: Nat. Commun.
– volume: 306
  start-page: 2090
  year: 2004
  end-page: 2093
  ident: bib37
  article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
  publication-title: Science
– volume: 155
  start-page: 384
  year: 2013
  end-page: 396
  ident: bib16
  article-title: Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling
  publication-title: Cell
– volume: 109
  start-page: 353
  year: 2007
  end-page: 358
  ident: bib52
  article-title: STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation
  publication-title: Blood
– volume: 22
  start-page: 8112
  year: 2016
  ident: bib6
  article-title: Iron and non-alcoholic fatty liver disease
  publication-title: World J. Gastroenterol.
– volume: 51
  start-page: 121
  year: 2010
  end-page: 129
  ident: bib40
  article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 38
  start-page: 164
  year: 2018
  end-page: 173
  ident: bib42
  article-title: Hepatic iron is the major determinant of serum ferritin in NAFLD patients
  publication-title: Liver Int.
– volume: 168
  start-page: 344
  year: 2017
  end-page: 361
  ident: bib34
  article-title: A red carpet for iron metabolism
  publication-title: Cell
– volume: 12
  start-page: 444
  year: 2009
  ident: bib31
  article-title: Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005
  publication-title: Public Health Nutr.
– volume: 10
  start-page: 1639
  year: 2019
  ident: bib46
  article-title: KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a
  publication-title: Nat. Commun.
– volume: 160
  start-page: 863
  year: 2021
  end-page: 874
  ident: bib28
  article-title: CRIg(+) macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance
  publication-title: Gastroenterology
– volume: 51
  start-page: 575
  year: 2019
  end-page: 586.e4
  ident: bib8
  article-title: Prominin2 drives ferroptosis resistance by stimulating iron export
  publication-title: Dev. Cell
– volume: 403
  start-page: 776
  year: 2000
  end-page: 781
  ident: bib11
  article-title: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter
  publication-title: Nature
– volume: 67
  start-page: 2196
  year: 2018
  end-page: 2214
  ident: bib33
  article-title: Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein
  publication-title: Hepatology
– volume: 288
  start-page: 25350
  year: 2013
  end-page: 25361
  ident: bib54
  article-title: ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice
  publication-title: J. Biol. Chem.
– volume: 101
  start-page: 2461
  year: 2003
  end-page: 2463
  ident: bib36
  article-title: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein
  publication-title: Blood
– volume: 31
  start-page: 1412
  year: 2007
  end-page: 1419
  ident: bib55
  article-title: Inflammation and iron deficiency in the hypoferremia of obesity
  publication-title: Int. J. Obes.
– volume: 140
  start-page: 197
  year: 2010
  end-page: 208
  ident: bib39
  article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression
  publication-title: Cell
– volume: 33
  start-page: 1744
  year: 2021
  end-page: 1762
  ident: bib18
  article-title: Exosomes as mediators of intercellular crosstalk in metabolism
  publication-title: Cell Metab.
– volume: 127
  start-page: 55
  year: 2017
  end-page: 64
  ident: bib24
  article-title: Liver inflammation and fibrosis
  publication-title: J. Clin. Invest.
– volume: 37
  start-page: 24
  year: 2013
  end-page: 30
  ident: bib3
  article-title: Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention
  publication-title: Int. J. Obes.
– volume: 381
  start-page: 1148
  year: 2019
  end-page: 1157
  ident: bib15
  article-title: Anemia of inflammation
  publication-title: N. Engl. J. Med.
– volume: 55
  start-page: 77
  year: 2012
  end-page: 85
  ident: bib23
  article-title: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 5
  start-page: 299
  year: 2000
  end-page: 309
  ident: bib30
  article-title: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation
  publication-title: Mol. Cell
– volume: 110
  start-page: 3610
  year: 2007
  end-page: 3617
  ident: bib22
  article-title: Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor
  publication-title: Blood
– volume: 146
  start-page: 630
  year: 2014
  end-page: 642
  ident: bib44
  article-title: Hypoxia-inducible factors link iron homeostasis and erythropoiesis
  publication-title: Gastroenterology
– volume: 291
  start-page: 18536
  year: 2016
  end-page: 18546
  ident: bib27
  article-title: Liver-specific gene inactivation of the transcription factor ATF4 alleviates alcoholic liver steatosis in mice
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 781
  year: 2021
  end-page: 790.e5
  ident: bib57
  article-title: MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice
  publication-title: Cell Metab.
– volume: 131
  start-page: 342
  year: 2018
  end-page: 352
  ident: bib49
  article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways
  publication-title: Blood
– volume: 205
  start-page: 1227
  year: 2008
  end-page: 1242
  ident: bib26
  article-title: ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo
  publication-title: J. Exp. Med.
– volume: 44
  start-page: 472
  year: 2006
  end-page: 477
  ident: bib13
  article-title: Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases
  publication-title: Hepatology
– volume: 17
  start-page: 306
  year: 2017
  end-page: 321
  ident: bib25
  article-title: Liver macrophages in tissue homeostasis and disease
  publication-title: Nat. Rev. Immunol.
– volume: 367
  start-page: eaau6977
  year: 2020
  ident: bib20
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
– volume: 138
  start-page: 905
  year: 2010
  end-page: 912
  ident: bib51
  article-title: HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 72
  start-page: 4920
  year: 2012
  end-page: 4930
  ident: bib4
  article-title: Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression
  publication-title: Cancer Res.
– volume: 53
  start-page: 627
  year: 2020
  end-page: 640.e5
  ident: bib48
  article-title: Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis
  publication-title: Immunity
– volume: 22
  start-page: 777
  year: 2015
  end-page: 787
  ident: bib12
  article-title: Ironing out Ferroportin
  publication-title: Cell Metab.
– volume: 12
  start-page: 19
  year: 2010
  end-page: 30
  ident: bib38
  article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway
  publication-title: Nat. Cell Biol.
– volume: 123
  start-page: 168
  year: 2014
  end-page: 176
  ident: bib32
  article-title: The liver: conductor of systemic iron balance
  publication-title: Blood
– volume: 52
  start-page: 59
  year: 2012
  end-page: 69
  ident: bib41
  article-title: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis
  publication-title: Free Radic. Biol. Med.
– volume: 3
  start-page: 1163
  year: 2021
  end-page: 1174
  ident: bib19
  article-title: Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075
  publication-title: Nat. Metab.
– volume: 56
  start-page: 961
  year: 2012
  end-page: 971
  ident: bib58
  article-title: Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice
  publication-title: Hepatology
– volume: 12
  year: 2017
  ident: bib2
  article-title: Hepcidin in morbidly obese women with non-alcoholic fatty liver disease
  publication-title: PLoS One
– volume: 44
  start-page: 1291
  year: 2020
  end-page: 1300
  ident: bib47
  article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women
  publication-title: Int. J. Obes.
– volume: 53
  start-page: 448
  year: 2011
  end-page: 457
  ident: bib35
  article-title: Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 61
  start-page: 1182
  year: 2012
  end-page: 1188
  ident: bib21
  article-title: Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men
  publication-title: Metabolism
– volume: 52
  start-page: 1057
  year: 2020
  end-page: 1074.e7
  ident: bib43
  article-title: Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis
  publication-title: Immunity
– volume: 24
  start-page: 908
  year: 2018
  end-page: 922
  ident: bib14
  article-title: Mechanisms of NAFLD development and therapeutic strategies
  publication-title: Nat. Med.
– volume: 21
  start-page: 9
  year: 2019
  end-page: 17
  ident: bib29
  article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication
  publication-title: Nat. Cell Biol.
– volume: 18
  start-page: 1449
  year: 2010
  end-page: 1456
  ident: bib50
  article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females
  publication-title: Obesity
– volume: 275
  start-page: 19906
  year: 2000
  ident: 10.1016/j.cmet.2022.07.006_bib1
  article-title: A novel mammalian iron-regulated protein involved in intracellular iron metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000713200
– volume: 22
  start-page: 777
  year: 2015
  ident: 10.1016/j.cmet.2022.07.006_bib12
  article-title: Ironing out Ferroportin
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.006
– volume: 12
  year: 2017
  ident: 10.1016/j.cmet.2022.07.006_bib2
  article-title: Hepcidin in morbidly obese women with non-alcoholic fatty liver disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187065
– volume: 367
  start-page: eaau6977
  year: 2020
  ident: 10.1016/j.cmet.2022.07.006_bib20
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
  doi: 10.1126/science.aau6977
– volume: 44
  start-page: 1291
  year: 2020
  ident: 10.1016/j.cmet.2022.07.006_bib47
  article-title: The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women
  publication-title: Int. J. Obes.
  doi: 10.1038/s41366-020-0522-x
– volume: 173
  start-page: 947
  year: 2014
  ident: 10.1016/j.cmet.2022.07.006_bib9
  article-title: Serum hepcidin levels and iron metabolism in obese children with and without fatty liver: case-control study
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/s00431-014-2268-8
– volume: 11
  start-page: 719
  year: 2020
  ident: 10.1016/j.cmet.2022.07.006_bib59
  article-title: Liver governs adipose remodelling via extracellular vesicles in response to lipid overload
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14450-6
– volume: 33
  start-page: 781
  year: 2021
  ident: 10.1016/j.cmet.2022.07.006_bib57
  article-title: MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.12.019
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.cmet.2022.07.006_bib32
  article-title: The liver: conductor of systemic iron balance
  publication-title: Blood
  doi: 10.1182/blood-2013-06-427757
– volume: 160
  start-page: 863
  year: 2021
  ident: 10.1016/j.cmet.2022.07.006_bib28
  article-title: CRIg(+) macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.10.042
– volume: 12
  start-page: 19
  year: 2010
  ident: 10.1016/j.cmet.2022.07.006_bib38
  article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2000
– volume: 82
  start-page: 2140
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib17
  article-title: Marginal iron deficiency enhances liver triglyceride accumulation in rats fed a high-sucrose diet
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2018.1515616
– volume: 53
  start-page: 627
  year: 2020
  ident: 10.1016/j.cmet.2022.07.006_bib48
  article-title: Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.003
– volume: 17
  start-page: 306
  year: 2017
  ident: 10.1016/j.cmet.2022.07.006_bib25
  article-title: Liver macrophages in tissue homeostasis and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.11
– volume: 146
  start-page: 630
  year: 2014
  ident: 10.1016/j.cmet.2022.07.006_bib44
  article-title: Hypoxia-inducible factors link iron homeostasis and erythropoiesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.12.031
– volume: 101
  start-page: 2461
  year: 2003
  ident: 10.1016/j.cmet.2022.07.006_bib36
  article-title: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein
  publication-title: Blood
  doi: 10.1182/blood-2002-10-3235
– volume: 37
  start-page: 24
  year: 2013
  ident: 10.1016/j.cmet.2022.07.006_bib3
  article-title: Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2012.145
– volume: 138
  start-page: 905
  year: 2010
  ident: 10.1016/j.cmet.2022.07.006_bib51
  article-title: HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.11.013
– volume: 33
  start-page: 1744
  year: 2021
  ident: 10.1016/j.cmet.2022.07.006_bib18
  article-title: Exosomes as mediators of intercellular crosstalk in metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.08.006
– volume: 21
  start-page: 9
  year: 2019
  ident: 10.1016/j.cmet.2022.07.006_bib29
  article-title: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0250-9
– volume: 22
  start-page: 8112
  year: 2016
  ident: 10.1016/j.cmet.2022.07.006_bib6
  article-title: Iron and non-alcoholic fatty liver disease
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i36.8112
– volume: 10
  start-page: 1639
  year: 2019
  ident: 10.1016/j.cmet.2022.07.006_bib46
  article-title: KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09720-x
– volume: 2
  start-page: 644
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib7
  article-title: Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease
  publication-title: Hepatol. Commun.
  doi: 10.1002/hep4.1190
– volume: 205
  start-page: 1227
  year: 2008
  ident: 10.1016/j.cmet.2022.07.006_bib26
  article-title: ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071460
– volume: 67
  start-page: 2196
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib33
  article-title: Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein
  publication-title: Hepatology
  doi: 10.1002/hep.29754
– volume: 127
  start-page: 55
  year: 2017
  ident: 10.1016/j.cmet.2022.07.006_bib24
  article-title: Liver inflammation and fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI88881
– volume: 72
  start-page: 4920
  year: 2012
  ident: 10.1016/j.cmet.2022.07.006_bib4
  article-title: Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0925
– volume: 10
  start-page: 9
  year: 2014
  ident: 10.1016/j.cmet.2022.07.006_bib10
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1416
– volume: 24
  start-page: 908
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib14
  article-title: Mechanisms of NAFLD development and therapeutic strategies
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0104-9
– volume: 51
  start-page: 121
  year: 2010
  ident: 10.1016/j.cmet.2022.07.006_bib40
  article-title: Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.23276
– volume: 18
  start-page: 1449
  year: 2010
  ident: 10.1016/j.cmet.2022.07.006_bib50
  article-title: Elevated systemic hepcidin and iron depletion in obese premenopausal females
  publication-title: Obesity
  doi: 10.1038/oby.2009.319
– volume: 53
  start-page: 448
  year: 2011
  ident: 10.1016/j.cmet.2022.07.006_bib35
  article-title: Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.24038
– volume: 140
  start-page: 197
  year: 2010
  ident: 10.1016/j.cmet.2022.07.006_bib39
  article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.052
– volume: 288
  start-page: 25350
  year: 2013
  ident: 10.1016/j.cmet.2022.07.006_bib54
  article-title: ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.470526
– volume: 403
  start-page: 776
  year: 2000
  ident: 10.1016/j.cmet.2022.07.006_bib11
  article-title: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter
  publication-title: Nature
  doi: 10.1038/35001596
– volume: 31
  start-page: 1412
  year: 2007
  ident: 10.1016/j.cmet.2022.07.006_bib55
  article-title: Inflammation and iron deficiency in the hypoferremia of obesity
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0803625
– volume: 291
  start-page: 18536
  year: 2016
  ident: 10.1016/j.cmet.2022.07.006_bib27
  article-title: Liver-specific gene inactivation of the transcription factor ATF4 alleviates alcoholic liver steatosis in mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.726836
– volume: 306
  start-page: 2090
  year: 2004
  ident: 10.1016/j.cmet.2022.07.006_bib37
  article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
  publication-title: Science
  doi: 10.1126/science.1104742
– volume: 12
  start-page: 444
  year: 2009
  ident: 10.1016/j.cmet.2022.07.006_bib31
  article-title: Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005
  publication-title: Public Health Nutr.
  doi: 10.1017/S1368980008002401
– volume: 51
  start-page: 575
  year: 2019
  ident: 10.1016/j.cmet.2022.07.006_bib8
  article-title: Prominin2 drives ferroptosis resistance by stimulating iron export
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.10.007
– volume: 131
  start-page: 342
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib49
  article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways
  publication-title: Blood
  doi: 10.1182/blood-2017-02-768580
– volume: 109
  start-page: 353
  year: 2007
  ident: 10.1016/j.cmet.2022.07.006_bib52
  article-title: STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation
  publication-title: Blood
  doi: 10.1182/blood-2006-07-033969
– volume: 44
  start-page: 472
  year: 2006
  ident: 10.1016/j.cmet.2022.07.006_bib13
  article-title: Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases
  publication-title: Hepatology
  doi: 10.1002/hep.21260
– volume: 4
  start-page: 18016
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib5
  article-title: Haemochromatosis
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2018.16
– volume: 5
  start-page: 299
  year: 2000
  ident: 10.1016/j.cmet.2022.07.006_bib30
  article-title: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80425-6
– volume: 168
  start-page: 344
  year: 2017
  ident: 10.1016/j.cmet.2022.07.006_bib34
  article-title: A red carpet for iron metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.034
– volume: 38
  start-page: 164
  year: 2018
  ident: 10.1016/j.cmet.2022.07.006_bib42
  article-title: Hepatic iron is the major determinant of serum ferritin in NAFLD patients
  publication-title: Liver Int.
  doi: 10.1111/liv.13513
– volume: 110
  start-page: 3610
  year: 2007
  ident: 10.1016/j.cmet.2022.07.006_bib22
  article-title: Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor
  publication-title: Blood
  doi: 10.1182/blood-2007-06-094441
– volume: 17
  start-page: 329
  year: 2013
  ident: 10.1016/j.cmet.2022.07.006_bib45
  article-title: Iron and diabetes risk
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.02.007
– volume: 61
  start-page: 1182
  year: 2012
  ident: 10.1016/j.cmet.2022.07.006_bib21
  article-title: Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2012.01.007
– volume: 155
  start-page: 384
  year: 2013
  ident: 10.1016/j.cmet.2022.07.006_bib16
  article-title: Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.031
– volume: 52
  start-page: 1057
  year: 2020
  ident: 10.1016/j.cmet.2022.07.006_bib43
  article-title: Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.001
– volume: 55
  start-page: 77
  year: 2012
  ident: 10.1016/j.cmet.2022.07.006_bib23
  article-title: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.24706
– volume: 149
  start-page: 367
  year: 2015
  ident: 10.1016/j.cmet.2022.07.006_bib53
  article-title: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.04.005
– volume: 56
  start-page: 961
  year: 2012
  ident: 10.1016/j.cmet.2022.07.006_bib58
  article-title: Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice
  publication-title: Hepatology
  doi: 10.1002/hep.25746
– volume: 381
  start-page: 1148
  year: 2019
  ident: 10.1016/j.cmet.2022.07.006_bib15
  article-title: Anemia of inflammation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1804281
– volume: 52
  start-page: 59
  year: 2012
  ident: 10.1016/j.cmet.2022.07.006_bib41
  article-title: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.10.003
– volume: 171
  start-page: 372
  year: 2017
  ident: 10.1016/j.cmet.2022.07.006_bib56
  article-title: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.035
– volume: 3
  start-page: 1163
  year: 2021
  ident: 10.1016/j.cmet.2022.07.006_bib19
  article-title: Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-021-00444-1
SSID ssj0036393
Score 2.6650167
Snippet Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1201
SubjectTerms Animals
Disease Models, Animal
extracellular vesicle
Fibrosis
hepatic stellate cell
Hepatic Stellate Cells - metabolism
hepatocyte
Hepatocytes - metabolism
iron
Iron - metabolism
Iron Overload - complications
Iron Overload - metabolism
Iron Overload - pathology
Kupffer Cells - metabolism
Lipogenesis
Liver - metabolism
Liver Cirrhosis - metabolism
liver fibrosis
liver steatosis
NAFLD
NASH
Non-alcoholic Fatty Liver Disease - metabolism
Title Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis
URI https://dx.doi.org/10.1016/j.cmet.2022.07.006
https://www.ncbi.nlm.nih.gov/pubmed/35921818
https://www.proquest.com/docview/2698630980
https://pubmed.ncbi.nlm.nih.gov/PMC9365100
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN4kbDevbY4qigh6UWFvIU2zWtF22e2K_ntn-lhcFQ9eCkkmEDLpzJd25htCjuHCBY4kNiyJvGKSO8ViFxmWeqSClk71BeY739zqqwd5PVCDBXLe5sJgWGVj-2ubXlnrpqfb7GZ3lGXdOwTXYIJ7nFdAGJP4hIyrJL7BWWuNBXjgKsgehBlKN4kzdYyXfw0YT8l5ReCJVY9-d04_wef3GMovTulylaw0aJKe1gteIwshXydLdX3Jjw2SnCZhDM6opJjMRlMkyW3qW9G3zNEn8EVl4T_KwCaYTQK4k-KXfOreswlNx0hJS18wcgOeo-IR7SIMuDylQ7hmF9DYJA-XF_fnV6wpqsA81i5gyEev-onTQwAGUdDCiTQYN_SIxaBb9L1MvRLKpSAQuAb1GZ8EcPyxSHUktshiXuRhh1AnnQ-uBxAg9lJ640DJmIrrneRJLxEd0mt30_qGcRwLX7zYNrTs2aIGLGrARvgjXHfIyWzOqObb-FNatUqyc6fGgkP4c95Rq1ELrxPurMtDMZ1Yrk2sRWTiqEO2aw3P1iGUQUAUd0h_TvczAaTqnh_Js6eKstsIDcYv2v3nevfIMraqwEO-TxbL8TQcABgqk8PqtH8CsQ0JoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEM-lPI0EJxQ1tWMnPnBYHquWfVzYlXozjuOyQUtStVmgv4s_yEziVBTQHpD2UqmxU7kzzsxn5ZtvAF7ggQsTSaajPHYySriVUWZjHRWOpKATK1NB9c6HR2p8knyYyukW_OxrYYhWGWJ_F9PbaB2uDIM1h_OyHH4kcI0heMR5C4R1YFbu-9V3PLctX0_eoZNfcr73_vjtOAqtBSJHCv4RqbLLNLdqhukx9kpYUXhtZ44QCV4WqUsKJ4W0BU7wXOGf0C73mP4yUahY4O9egauIPlKKBpPpmz78C0z5LasfVxfR8kKlTkcqc189ETg5bxVDqc3Sv7Ph32j3T9Lmb1lw7xbcDPCV7XYWug1bvroD17qGlqu7kO_mfoHZr2FUPccKUuUNDbXYt9KyU0x-Te1WjY-WVL6CQJfRqwNmf5RLVixIA5edEVUEP-f1ZwrEOGCrgs3wXF_jl3twcimmvg_bVV35B8BsYp23I8QcmUsSpy3uKqr9dTbh-SgXAxj11jQuSJxTp40z03PZvhjygCEPmJjevKsBvFrfM-8EPi6cLXsnmY1tajADXXjf896jBp9fsqytfH2-NFzpTIlYZ_EAdjoPr9chpCYElg0g3fD9egJpg2-OVOVpqxGuhcJoGz_8z_U-g-vj48MDczA52n8EN2ikZT3yx7DdLM79E0RiTf603fkMPl32o_YLQYdGAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+iron+distribution+via+hepatocyte-stellate+cell+axis+drives+liver+lipogenesis+and+fibrosis&rft.jtitle=Cell+metabolism&rft.au=Gao%2C+Hong&rft.au=Jin%2C+Zhongmou&rft.au=Bandyopadhyay%2C+Gautam&rft.au=Wang%2C+Gaowei&rft.date=2022-08-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=34&rft.issue=8&rft.spage=1201&rft.epage=1213.e5&rft_id=info:doi/10.1016%2Fj.cmet.2022.07.006&rft.externalDocID=S1550413122003059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon