From Isocyanides to Iminonitriles via Silver-mediated Sequential Insertion of C(sp3)–H Bond
Heterocycles are prevalent constituents of many marketing drugs and biologically active molecules to meet modern medical challenges. Isocyanide insertion into C(sp3)–H bonds is challenging especially for the construction of quaternary carbon centers. Herein, we describe an efficient strategy for the...
Saved in:
Published in | iScience Vol. 21; pp. 650 - 663 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.11.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Heterocycles are prevalent constituents of many marketing drugs and biologically active molecules to meet modern medical challenges. Isocyanide insertion into C(sp3)–H bonds is challenging especially for the construction of quaternary carbon centers. Herein, we describe an efficient strategy for the synthesis of α-iminonitrile substituted isochromans and tetrahydroisoquinolines (THIQs) with quaternary carbon centers through silver-triflate-mediated sequential isocyanide insertion of C(sp3)–H bonds, where isocyanide acts as the crucial “CN” and “imine” sources. The produced α-iminonitriles have extensive applications as valuable synthetic building blocks for pharmacologically interesting heterocycles. This protocol could be further applied for the synthesis of iminonitrile-decorated phenanthridines and azapyrene. Interestingly, a remarkable aggregation-induced emission (AIE) effect was first observed for an iminonitrile-decorated pyrene derivative, which may open a particular area for iminonitrile applications in materials science.
[Display omitted]
•Iminonitrile formation via sequential C(sp3)-H bond isocyanide insertion•Construction of quaternary center•Isocyanide as both "imine" and "CN" sources•Valuable synthetic building blocks and novel AIEgen
Materials Chemistry; Optical Property; Organic Synthesis |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2019.10.057 |